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In this article we present a semi-supervised active learning 
algorithm for pattern discovery in information extraction 
from textual data. The patterns are reduced regular 
expressions composed of various characteristics of features 
useful in information extraction. Our major contribution is a 
semi-supervised learning algorithm that extracts information 
from a set of examples labeled as relevant or irrelevant to a 
given attribute. The approach is semi-supervised because it 
does not require precise labeling of the exact location of 
features in the training data. This significantly reduces the 
effort needed to develop a training set. An active learning 
algorithm is used to assist the semi-supervised learning 
algorithm in order to further reduce training set development 
effort. The active learning algorithm is seeded with a single 
positive example of a given attribute. The context of the seed is 
used to automatically identify candidates for additional 
positive examples of the given attribute. Candidate examples 
are manually pruned during the active learning phase, and 
our semi-supervised learning algorithm automatically 
discovers reduced regular expressions for each attribute. We 
have successfully applied this learning technique in the 
extraction of textual features from police incident reports, 
university crime reports, and patents. The performance of our 
algorithm compares favorably with competitive extraction 
systems being used in criminal justice information systems. 
 
1. Introduction 

 
Homeland Defense is an important application domain 

for information extraction and mining technologies. Law 
enforcement agencies around the world generate numerous 
reports, many of them in narrative (unstructured) textual 
form. Information extraction techniques can be employed 
to automatically identify and extract data from such 
unstructured text and store it in fielded, relational form in 
databases. Once stored in relational form, the extracted 
information is useful in a variety of everyday law 
enforcement applications such as search and retrieval.  The 
extracted information can also be used to map modus 
operandi to physical descriptions of criminal suspects, an 

application of advanced modeling useful in suspect 
identification. 

Regular expressions can be used as patterns to extract 
features from semi-structured and narrative text (Soderland, 
1999). After studying hundreds of police incident reports, 
patents and other unstructured data, we found that regular 
expressions can be readily employed to express patterns of 
features. For example, in a police incident report a 
suspect’s height might be recorded as “{CD} feet {CD} 
inches tall”, where {CD} is the part-of-speech tag for a 
numeric value. We have developed an algorithm for 
automatic discovery of regular expressions of this nature.  

At Lehigh University we are conducting information 
extraction research in collaboration with Lockheed Martin 
M&DS, the Pennsylvania State Police and the City of 
Bethlehem Police Department. Our target is to develop a 
system that extracts features related to criminal modus 
operandi and physical descriptions of suspects as recorded 
in narrative incident reports. Our results in (Wu & 
Pottenger, 2003a) demonstrate that our semi-supervised 
learning algorithm achieves excellent performance on ten 
features important in homeland defense. In this article we 
present the results of extending the algorithm presented in 
(Wu & Pottenger, 2003a) by combining it with an active 
learning algorithm. 

Our combined semi-supervised active learning 
algorithm requires significantly less effort to develop a 
training set than other approaches. A training-set developer 
does not need to label an inordinate amount of data. Rather, 
the algorithm automatically generates a small set of 
candidate segments for the developer to label. A second 
benefit of the algorithm is that the training-set developer 
need only record whether a specific feature of interest 
occurs somewhere in a segment as opposed to labeling the 
exact location of the feature in the segment. For instance, 
given that the feature of interest is Height and given a 
segment “The suspect is five feet eight inches tall weighing 
180 pounds”, the training-set developer need only assign 
this segment the label Height. Our semi-supervised active 
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learning algorithm discovers a reduced regular expression 
that precisely matches and extracts the feature “five feet 
eight inches tall” from this segment. 

This article is organized as follows. In section 2, we 
summarize previous work in which we conducted a manual 
study of regular expressions for use in extracting features 
from police incident reports. Following this, we provide 
definitions in section 3. In section 4, we present a semi-
supervised reduced regular expression discovery algorithm 
and analyze biases of the algorithm.  Following this in 
section 5 we describe our active learning approach. In 
section 6, we discuss experimental results for the combined 
semi-supervised active learning algorithm. We introduce 
related work in section 7 and discuss future work in section 
8. Finally, we give conclusions in section 9 and 
acknowledge those who have contributed to this work. 
 
2. Previous Work 
 

In our work with Lockheed Martin for the 
Pennsylvania State Police, our first purpose was to 
ascertain whether regular expressions are suitable for 
information extraction from unstructured (narrative) police 
reports. 

To address this question we studied voluminous police 
incident reports and manually developed regular 
expressions for extracting key attributes useful in criminal 
justice information systems. Our source data was drawn 
from Fairfax County, Virginia police incident reports. 
Based on this training data, we manually generated regular 
expressions for the seven attributes listed in Table 1. An 
independent test dataset was used to assess the performance 
of the regular expressions. 

As can be seen in Table 1, the test performance was 
promising. We achieved 100% precision for Time, Age, 
Height, Hair Color, Eye Color, and Weight. Race also has 
high precision (94%). In addition, recall was above 90% for 
all of the features. In fact, we achieved 100% for both 
precision and recall for Time, Height, Eye Color, and 
Weight.  

 
TABLE 1.  Test Performance of Manual Expressions 

Attribute Precision Recall Fβ (β=1) 
Time 100% 100% 100% 
Race 94% 97.9% 95.91% 
Age 100% 94.8% 97.33% 

Height 100% 100% 100% 
Hair Color 100% 90.6% 95.07% 
Eye Color 100% 100% 100% 

Weight 100% 100% 100% 
 
Based on these results we concluded that regular 

expressions are suitable for the extraction of attributes in 
police incident reports. In the course of this work, however, 
we confirmed that it is both time consuming and tedious to 
create regular expressions for information extraction 
manually. Thus, we embarked on a research effort to 

develop a data-driven algorithm to automatically discover 
regular expressions based on a small training set. We 
describe the resulting semi-supervised active learning 
algorithm in sections 4 and 5. In section 3, we define 
terminology used in this article. 
  
3. Definitions 
 

In this section, we begin with the standard definition of 
a regular expression, and then define a reduced regular 
expression as used in our algorithm. Following this, we 
define terminology used in this article. 
 
Regular expression: “Given a finite alphabet Σ, the set of 
regular expressions over that alphabet is defined as: 
1) Σ∈∀ α , α is a regular expression and denotes the set 

{α}. 
2) If r and s are regular expressions denoting the 

languages R and S, respectively, then (r+s), (rs), and 
(r*) are regular expressions that denote the sets R ∪  S, 
RS and R* respectively.” (Hopcroft & Ullman, 1979) 
 

Reduced regular expression (RRE): Our reduced regular 
expression is defined as follows: Given a finite alphabet Σ, 
our reduced regular expression is defined as a set: 
 
� Σ∈∀ α , α is a RRE and denotes the set {α}. 
� All words in our lexicon and all part-of-speech tags in 

the Penn tag set (Manning & Schütze, 2000) belong to 
Σ. 

� Σ∈Σ∈ $,^ , where ^ is the start of a line, and $ is 
the end of a line. 

� [0-9]∈ ∑, where [0-9] represents any single numeric 
digit. 

� [A-Z]∈ ∑, where [A-Z] represents any single 
alphabetic character (upper or lower case). 

� All punctuation characters belong to ∑. 
� All white space characters belong to ∑. 
� ε∈ ∑ is the null symbol (i.e., the empty string). 
� (a|ε) is a RRE, where a∈ ∑ is any single alphanumeric 

or punctuation character. 
� if r and s are RREs denoting the languages R and S, 

respectively, then (rs) is an RRE that denotes the set 
RS. 

 
The major difference between regular expressions and 
reduced regular expressions is that reduced regular 
expressions do not support Kleene closure (i.e., ‘*’). 
Examples of regular expressions that are not RREs include: 
α*, (α|β), and α+, where α and β are arbitrary word or part-
of-speech members of Σ. We have not found it necessary to 
support such regular expressions to achieve high 
accuracies. 
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Feature: The smallest unit of information extracted. 
Examples include values for the attributes Height, Weight, 
Age, etc. 
 
Segment: A (portion of) a sentence. Commas mark 
segment boundaries. An exception is a comma that 
separates two numbers, as in “$1,000”. The comma in the 
phrase “…in his twenties, with brown eyes…”, on the other 
hand, is a segment boundary. The textual string between 
any two segment boundaries is a segment.  
 
Item:  A document from which features are extracted. In 
the experiments described herein this is either a police 
incident report or a full text patent. 
 
True set: If the system is learning a RRE for an attribute a, 
then the true set consists of all segments labeled a in the 
training set.  
 
False set If the system is learning a RRE for an attribute a, 
then the false set consists of all segments that are not 
labeled a in the training set. 
 
Element: A word in the RRE with frequency in the true set 
higher than a threshold λword or a part-of-speech tag in the 
RRE with frequency in the true set higher than a threshold 
λtag. 
 
Root: The first element discovered by our algorithm in a 
RRE. 
  
Rand: The RRE learned after completion of the “AND” 
learning process. 
 
N: An input parameter to our algorithm that fixes the 
maximum number of elements in a given RRE. N is an 
integer greater than or equal to one. 
 
S: S is the set of word tokens in the lexicon employed in 
our approach combined with the part-of-speech tag tokens 
in the Penn tag set (Manning & Schütze, 2000). |S| is the 
total number of tokens in S. 
 
4. A Semi-supervised learning Approach 

 
In this section we present our semi-supervised 

approach to the discovery of RREs from a small set of 
labeled training segments. The process begins with pre-
processing. Following this we apply a greedy algorithm to 
discover RREs. We detail these steps in what follows.  
 
4.1. Pre-Processing 
 

Our semi-supervised learning algorithm requires three 
pre-processing steps: segmentation, segment labeling, and 
part-of-speech tagging.  

4.1.1. Segmentation   
 

Each incident report is split into segments at this 
stage. Each segment becomes an instance in our system. 
The first step splits the input into sentences using the 
technique presented in (Reynar & Ratnaparkhi, 1997) to 
detect sentence boundaries. The police incident report input 
is further split on commas. As mentioned in section 3, there 
are a small number of cases where commas are not segment 
boundaries. We also assume that no features cross segment 
boundaries. This assumption is practical for a number of 
important attributes, including those discussed in section 6. 
 
4.1.2. Segment Labeling 
 

Prior to the start of the labeling stage, domain experts 
must identify the attributes that will be extracted. For 
instance, if the high-level goal is to extract physical 
descriptions of suspects, the list should include Height, 
Weight, Eye Color, etc. During training set development, 
each segment is evaluated manually and assigned one or 
more labels. For example, if a segment includes Height and 
Weight information, the domain expert assigns both of 
these labels to the segment. After labeling, each attribute 
has its own true set and false set. 
 
4.1.3. Part-of-speech Tagging 
 

Part-of-speech tags are also used in our reduced 
regular expression discovery algorithm. Each word in the 
training set must be assigned its correct part-of-speech tag 
before the learning process begins. Currently, we are using 
Eric Brill’s (1995) part-of-speech tagger to tag our training 
sets. Brill’s tagger uses the Penn tag set (Manning & 
Schütze, 2000) (Table 2 contains some examples of Penn 
tags). We have enhanced our lexicon to include extra tags 
for feature extraction from police incident reports. For 
example, {CDS} is used for plural numbers such as 
“twenties”.  

 
TABLE 2.  Example tags from Penn tag set  

Tag Category Example 

CD Cardinal number 3, fifteen 

IN Preposition in, for 

PRP Pronoun they, he 

PRP$ Determiner, possessive their, your 

DT Determiner, article the, both 

CC Conjunction and, or 

RB Adverb ago, very 

JJ Adjective happy, bad 

NN Noun, singular aircraft, data 

NNP Proper Noun London, 
Reston 

NNS Plural Noun books, years 
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VBG Verb, present participle taking, living 

VBP Verb, base present are, take 

VBD Verb, auxiliary be, past was, were 

VBZ Verb, auxiliary be, present is 

 
 
4.2. Learning Reduced Regular Expressions 
 

The goal of our algorithm is to discover sequences of 
words and/or part-of-speech tags that have high frequency 
in the true set, while having low frequency outside the true 
set. The algorithm first discovers the most common 
element of a RRE, termed the root of the RRE. The 
algorithm then extends the RRE using an “AND” operator, 
after which it discovers the gaps between elements of the 
RRE. Finally, the start and the end of the RRE are learned. 
Figure 1 depicts the entire learning process. Figure 2 
portrays the same process in algorithmic form. An example 
(in section 4.3) explains how the algorithm works at each 
stage of the learning process. 

 

 
 

FIG. 1.  RRE Discovery 
 
 

 
Do { 

Find the ROOT 
“AND” learning 
“GAP” learning 
“RRE Start/End” learning 
Prune true set 

} While True Positives ≥ δ 
 

FIG. 2.  RRE Discovery in Algorithmic Form 
 
 

Our approach employs a covering algorithm. After a 
RRE is discovered, the algorithm removes all segments 

covered by the RRE from the true set. The remaining 
segments become a new true set and the steps in Figure 1 
repeat. The learning process stops when the number of 
segments left in the true set is less than or equal to a 
threshold δ. We use this threshold because overfitting 
results if too few segments are used to discover a RRE. δ is 
a parameter in our system, and must be an integer. By 
default δ is set to two 

Our approach is a semi-supervised learning method. 
Instead of labeling the exact location of features in a 
training set, the training-set developer need only record 
whether a specific feature of interest occurs in a segment. 
Nonetheless, the RRE learned by the algorithm precisely 
matches the feature of interest – no more and no less. We 
depict the details of each step of the algorithm in what 
follows. 
 
4.2.1. Discovering the Root of a RRE 
 

In this step, each word and/or part-of-speech tag 
(specified as a simple RRE) in each true set segment is 
matched against all segments. The performance of each 
such RRE in terms of Fβ from Van Rijsbergen (1979) 
(Equation 1 below) is considered. In this formula, P = 
precision = TP/(TP+FP) and R = recall = TP/(TP+FN), 
where TP are true positives, FP are false positives, and FN 
are false negatives. The parameter β is the ratio of recall to 
precision and enables one to place greater or lesser 
emphasis on recall versus precision depending on the needs 
of the application. 
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The element with maximum Fβ is chosen as the root of 

the RRE. The algorithm discovers a word or part-of-speech 
tag that has a high frequency of occurrence in segments 
containing the desired feature. It must also have low 
frequency in segments that do not contain the desired 
feature. For example, the root discovered for the attribute 
Age in the example given in section 4.3 is the part-of-
speech tag “{IN}”. Because each element in each and every 
segment in the true set must be tested during root 
discovery, the time complexity of root discovery is equal to 
the number of elements in the true set. 

Our approach places less emphasis on precision and 
more on recall during the root discovery process. We use 
the parameter βroot (by default set to six) to control this. 
Naturally this results in a larger set of segments that match 
the root. These segments, however, are not necessarily all 
true positives. As a result, the “AND”, “GAP”, and 
“Start/End” learning phases all prune false positives from 
the set of segments that match the root RRE. As will 
become evident, the result is both high precision and high 
recall.  
 

Discover the 
Root 

“AND” 
Learning 
Process 

“GAP” 
Learning 
Process 

RRE Start and 
End Learning 
Process 
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4.2.2. “AND” Learning Process 
 

After the root is discovered, the algorithm tests 
additional words and/or part-of-speech tags before and after 
the root. The algorithm places new candidate elements 
immediately before and after the root, thereby forming two 
new RREs. The RRE with the highest Fβ replaces the 
previous RRE. For example, starting with the root “{IN}” 
for the attribute Age, the RRE “years <GAP> {IN}” may be 
discovered after the first pass of the “AND” learning 
process, where <GAP> is the gap discovered between these 
two elements1. Intuitively, element adjacency implies the 
use of an “AND” operator: thus the name ‘AND learning 
process’. 

The new RRE is then extended in the same way. As 
before, candidate elements are inserted before and after the 
current RRE. The algorithm measures the performance of 
each extended RRE, and the RRE with the maximum Fβ is 
selected. In this sense our algorithm is greedy. Continuing 
the previous example, the RRE after the second pass of the 
“AND” learning process may be “{CD} <GAP> years 
<GAP> {IN}”, where “{CD}”, “years”, and “{IN}” are 
elements of the RRE and <GAP> represents the gaps that 
have been learned. 

Candidate elements consist not only of words and 
part-of-speech tags, but also can be ‘numeric’ tokens 
composed of the digits [0-9]. The lengths of such tokens 
provide clues useful in RRE discovery. For example, two 
digit tokens such as “23” are often a person’s age, whereas 
four digit tokens such as “2003” are likely to be a year. 
Similarly, a person’s height always has one digit for feet 
and one or two digits for inches, and a person’s weight 
usually has three digits. 

The overall complexity of the “AND” learning 
process depends on both the number of candidate elements 
and the maximum number of elements in Rand. Equation 2 
depicts CAND, the complexity of the “AND” process, where 
Sij is the set of candidate elements for the jth position in the 
ith pass of the “AND” learning process in a single iteration 
of Figure 2. Although Sij can contain many elements, there 
are only two positions to test in each pass of the “AND” 
learning process. One is the position before the current 
RRE and the other is the position after the current RRE. An 
example of how Sij changes during the “AND” learning 
process is depicted in Figure 3. The actual size of Sij 
depends on the number of candidate elements for each 
position j=1 and j=2 in a segment. The algorithm is data-
driven in this regard. 

Generalizing from this example, we can see that in the 
“AND” learning process there are at most N-1 passes 
required to test the N-1 positions between a maximum of N 
elements. Thus the “AND” learning process ends when at 
least one of the two following conditions is met: either the 
number of elements in the RRE reaches the maximum N, or 

                                                
1 The details of gap discovery will be discussed in section 4.2.3. 

all candidate elements in the segment have been tested in 
all allowable positions. 

 
FIG. 3.  “AND” learning example for the Age attribute 

 
Given that 0 ≤ |Sij| ≤ |S|, we have 0 ≤ CAND ≤ 2(N-

1)|S|. Therefore, the complexity CAND is bounded by O(0) ≤ 
CAND ≤ O(N|S|). 
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The fact that the algorithm is data-driven improves its 

performance – this can be deduced by comparing the actual 
complexity in Equation 2 with the upper bound 2(N-1)|S|. 
In other words, due to the fact that a given segment does 
not contain many words, in practice |Sij| << |S|. In fact we 
have found a value of 10 to work well for the maximum 
number of elements N allowed in an RRE. 
 
4.2.3. “GAP” Learning Process 
 

In the “GAP” learning process our algorithm learns the 
length of the gap between elements of an RRE. For 
example, suppose a RRE learned for the Date attribute is 
“{CD} {MONTH}”, where {MONTH} is the part-of-
speech tag for January through December. Because our 
algorithm is designed to learn gaps between adjacent 
elements automatically, it can for example learn that a gap 
of zero to two elements between {CD} and the following 
{MONTH} is optimal. An example of this type of RRE is 
“{CD} {token}{0,3} {MONTH}”, where {token} is a 
word or part-of-speech tag in ∑. This RRE allows at most 
three elements between a number and a following month, 
e.g., “the{DT} 5th{CD} of{IN} January{MONTH}”.  In 
this case, the word “of” followed by its part-of-speech tag 
followed by the word “January” form a gap that is three 
elements in size. 

In this simple Date attribute example we assumed that 
gaps are measured in terms of elements – in fact, the 
execution time performance of our algorithm is 
significantly improved if gaps are measured in terms of 

S21 years {IN} S22 

S31 {CD} years {IN} S32 

S41 [0-9] {CD} years {IN} S42 

S51 [0-9] [0-9] {CD} years {IN} S52 

 [0-9] [0-9] {CD} years {IN} {NN} 

S11 {IN} S12 
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characters. As a result, we measure gaps in terms of 
characters and use an input parameter ψ to control the 
maximum gap allowed between any two adjacent elements 
in a RRE. Our system initializes ψ = 100 based on the 
observation that no adjacent elements are separated by 
more than 100 characters in our training data. For each gap, 
our algorithm first determines φ = min(ψ, ω), where ω is 
the longest gap in any segment in the true set between the 
two elements under consideration. For example, in the 
segment “the{DT} 5th{CD} of{IN} January{MONTH}”, 
including spaces there are 15 characters between ‘{CD}’ 
and ‘{MONTH}’, and φ = min(100,15), which is 15. 

Once φ has been determined, the algorithm tests “.{0, 
φ}” as the gap. In this expression, the ‘.’ represents any 
single character member of Σ. The syntax “.{0, φ}” means 
that any single character member of Σ can occur between 0 
and φ times. The algorithm in turn tests gaps of “.{0, φ-1}”, 
“.{0, φ-2}”, …, “{0,0}”. The smallest gap that does not 
decrease the current RRE’s performance is used as the final 
gap between two elements of the RRE. Gaps between 
different elements can differ in size. 

The time complexity for the “GAP” learning process 
is depicted in Equation 3, where Gi is the number of 
comparisons to identify the optimal gap between RRE 
element i and element i+1. 0 ≤ Gi ≤ ψ. Given N, the 
maximum number of elements in a RRE, the complexity of 
gap discovery CGAP is thus 0 ≤ CGAP ≤ (N-1)ψ. Therefore, 
O(0) ≤ CGAP ≤ O(Nψ). 
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4.2.4. Start and End Learning 
 

The start symbol “^” and end symbol “$” of a segment 
are also useful in RRE discovery. As a result, our algorithm 
tests whether the current RRE should include the start 
symbol and/or the end symbol. We first insert the start 
symbol at the beginning of the RRE to form a new RRE. If 
it has equal or better performance compared to the previous 
RRE, then the new RRE with the start symbol replaces the 
previous one. We deal with the end symbol in a similar 
manner.  In addition, if the initial element of a RRE is a 
part-of-speech tag, our algorithm ensures that the RRE also 
covers the word before the tag. 

The time complexity of this learning process is O(1) 
since only two candidate RREs are tested. 
 
4.3. Example 
 

In this section we use the Age attribute to illustrate our 
semi-supervised learning algorithm in detail. Tables 3 and 
4 contain the initial true and false sets respectively. The 
characters between “{” and “}” are part-of-speech tags. 
{MALE} is a special tag for words of male gender, and 
{FEMALE} is the tag for words of female gender. 

There are two distinct Age patterns in the true set. One 
is illustrated by the feature “in her twenties”, the other by 
“25 years of age”. Our semi-supervised algorithm discovers 
two distinct RREs, one based on each Age pattern. In other 
words, in this example our covering algorithm completes 
two iterations of Figure 2 during RRE discovery. 
 
TABLE 3.  True set for example 

Segment 
Number 

True segments 

1 six{CD} feet{NNS} tall{JJ} and{CC} 
25{CD} years{NNS} of{IN} age{NN} 

2 both{DT} 30{CD} years{NNS} of{IN} 
age{NN} with{IN} cornrows{NNS} 

3 in{IN} his{MALE} twenties{CDS} 
standing{VBG} six{CD} feet{NNS} tall{JJ} 

4 they{PRP} are{VBP} in{IN} their{PRP$} 
thirties{CDS} 

5 she{FEMALE} was{VBD} in{IN} 
her{FEMALE} twenties{CDS} 

6 Tom{NNP} is{VBZ} in{IN} his{MALE} 
early{JJ} teens{CDS} 

 
TABLE 4.  False set for example 

Segment 
Number False segments 

1 
the{DT} first{JJ} man{MALE} is{VBZ} 
in{IN} his{MALE} car{NN}  

2 
in{IN} the{DT} roaring{VBG} 
twenties{CDS}  

3 in{IN} the{DT} 111{CD} block{NN} 

4 25{CD} years{NNS} ago{RB}  

5 
5{CD} feet{NNS} 8{CD} inches{NNS} 
tall{JJ} with{IN} a{DT} tall{JJ} thin{JJ} 
build{NN}  

6 weighing{VBG} 180{CD} pounds{NNS}  

 
In the first iteration of the algorithm, the root “{IN}” 

of the first RRE is discovered with Fβ=6.0 of 0.98. Next, the 
“AND” learning process extends this root to the five RREs 
portrayed in Figure 4 in sequence. In order to prune the 
false positives covered by the root, β is set to 0.5 in this 
example (by default it is set to two in our system). As noted 
previously, greater emphasis is placed on precision during 
“AND” learning in this way. Each of these five RREs has 
Fβ=0.5 of 0.71. Thus, in this example Rand is learned after 
five passes in the “AND” learning process.  
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FIG. 4.  The first iteration of RRE discovery 

 
After Rand is discovered, the “GAP” learning process 

takes place and tailors Rand to further improve precision. 
The process is depicted for our example in the “GAP” 
learning process in Figure 4. This process involves five 
steps, one for each of the five gaps between the six 
elements in Rand.  Each intermediate RRE produced during 
“GAP” learning in this example has Fβ=0.5 of 0.71. 

In this case inclusion of either the start or the end 
symbol in the RRE decreases Fβ=0.5, so the RRE discovered 
after “GAP” learning remains unchanged. This RRE is 
depicted at the bottom of Figure 4 and covers segments 1 
and 2 in the true set. To prepare for the second iteration of 
the algorithm, segments 1 and 2 are thus removed from the 

true set. Therefore, the second iteration begins with 
segments 3, 4, 5, and 6 in the true set, and segments 1, 2, 3, 
4, 5, and 6 in the false set. The steps to learn the second 
RRE are portrayed in Figure 5. 

 

 
 

FIG. 5.  The second iteration of RRE discovery 
 
As before, the addition of either the start or the end 

symbol decreases Fβ=0.5. As a result, the final RRE for the 
second iteration is the RRE depicted at the bottom of 
Figure 5. The covering algorithm terminates after the 
second iteration because there are no true segments left in 
the true set – all have been covered by the two RREs 
discovered. 

This example highlights a distinguishing characteristic 
of our algorithm – features of a given attribute can be 
extracted precisely from a training set in which the features 
are imprecisely labeled. For instance, the RRE “in 
(.){0,0}{IN} (.){0,26} {CDS}” precisely matches only the 
Age feature “in{IN} his{MALE} twenties{CDS}” from the 
segment “in{IN} his{MALE} twenties{CDS} 
standing{VBG} six{CD} feet{NNS} tall{JJ}”.  Although 
this segment contains both Age and Height information and 
was labeled as such during training set development, our 
algorithm discovers an expression that precisely matches 
and extracts only Age features. Although we have not 
exemplified the discovery of a RRE for extracting Height, 
the same holds true. I.e., features for Height are also 
precisely matched and extracted despite the fact that the 
source segments are imprecisely labeled. To summarize, 
precise labeling of features is tedious and time-consuming, 

Root Discovery 

{IN} Fβ=6.0 = 0.98 

“AND” Learning Process 

years {IN} 

{CD} years {IN} 

[0-9] {CD} years {IN} 

 [0-9] [0-9] {CD} years {IN} {NN} 

 [0-9] [0-9] {CD} years {IN} (.){0,4} {NN} 

“GAP” Learning Process 

 [0-9] [0-9] {CD} years (.){0,8}  {IN} 
(.){0,4} {NN} 

 [0-9] [0-9] {CD} (.){0,1} years (.){0,8}  
{IN} (.){0,4} {NN} 

 [0-9] [0-9] (.){0,0}  {CD} (.){0,1} years 
(.){0,8}  {IN} (.){0,4} {NN} 

 [0-9] (.){0,0} [0-9] (.){0,0}  {CD} (.){0,1} 
years (.){0,8}  {IN} (.){0,4} {NN} 

Rand 
[0-9] [0-9] {CD} years {IN} 

Root Discovery 

{CDS} Fβ=6.0  = 0.99 

“AND” Learning Process 

{IN} {CDS} 

in {IN} {CDS} 

 in {IN} (.){0,26}  {CDS} 
 

“GAP” Learning Process 

 in (.){0,0} {IN} (.){0,26}  {CDS} 
 

Rand 
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and this technique reduces training set development time 
without impacting performance. 
 
4.4. Biases 
 

In this section we discuss various biases inherent in the 
use of RREs in information extraction. This includes 
language biases, search biases, and overfitting biases 
inherent in our RRE discovery algorithm. 

Our semi-supervised learning algorithm is a top-down 
search algorithm. It starts with a general description, the 
root of a RRE, and then extends it to a more specific RRE. 
This is a general-to-specific search bias. A more crucial 
search bias is that the algorithm attempts to identify words 
or part-of-speech tags that occur most often in the true set 
while having low frequency in the false set. Another search 
bias is that the algorithm attempts to discover the first and 
last elements of an RRE rather than every detail of a given 
attribute’s features. When the first and last elements of an 
RRE are discovered, the extension process terminates. 

Our semi-supervised learning algorithm employs 
forward pruning2. The algorithm begins with the simplest 
search, i.e., the search to find the root of the RRE. 
Subsequently only segments in the true and false sets 
containing the root element are used in the next step to 
extend the RRE. Therefore, certain complex descriptions 
are pruned without being considered. In this way, some 
overfitting problems can be avoided (Witten & Frank, 
1999). 

Our approach is clearly a greedy search algorithm. In 
each step to extend the RRE during the “AND” learning 
process, the algorithm chooses a word or part-of-speech tag 
such that Fβ of the extended RRE is greater than or equal to 

Fβ for the previous RRE. In other words, ,1+≤ ii FF where 

iF is Fβ of the RRE after the ith extension, and 1+iF is Fβ of 

the RRE after the (i+1)th extension (we refer to this 
relationship below as Equation 4). 

There are many such greedy algorithms used in 
information extraction that are not globally optimal (e.g., 
decision tree algorithms, transformation-based learning, 
etc.). Indeed, our approach is no different in this respect, 
yet greedy algorithms often achieve excellent results. The 
results portrayed in section 6 provide evidence that our 
approach indeed achieves near-optimal performance. 

Another bias of our algorithm is that the recall of a 
RRE monotonically decreases during extension of the RRE 
in the “AND” learning process. The proof of this fact is 
contained in Figure 6. As a result, our approach initially 
places less emphasis on precision and more on recall during 
the root discovery process. In this way we avoid overfitting 
during the “AND” learning process. 

                                                
2 Forward pruning uses simplest-first search and stops when a 

sufficiently complex concept description is found (please refer 
to section 1.5 of (Witten & Frank, 1999). 

There is also a precision bias in our algorithm:  during 
the “AND” learning process, the precision of a RRE 
monotonically increases. We simplify the proof of this fact 
in Figure 7 by substituting the symbol ‘F’ for Fβ. 

 

FIG. 6.  The proof of monotonically decreasing recall 
 

It is important that each RRE discovered have high 
precision. This is due to the fact that the overall precision 
of an expression is always greater than or equal to the 

� Suppose iRRE is the RRE after the ith extension, and 

1+iRRE is the RRE after the (i+1)th extension for a given 

attribute in the “AND” learning process. 
 

� We first show that all segments covered by 1+iRRE  must 

also be covered by iRRE . 

 

In the “AND” learning process, iii RREERRE 11 ++ =  or 

11 ++ = iii ERRERRE where 1+iE is the element (a simple 

RRE) discovered in the (i+1)th extension. Therefore, any 

string accepted by 1+iRRE will either take the 

form
'

11 ++ ii SS or 1
'

1 ++ ii SS where 1+iE  accepts 

,1+iS
iRRE  accepts

'
1+iS , and 1+iS and

'
1+iS are 

substrings of the strings accepted by 1+iRRE . This implies 

that any segment containing a substring accepted by 

1+iRRE must also include substrings accepted by iRRE . 

Since the discovery of the start and end of a RRE is a 
special form of the “AND” learning process, the same 
conclusion holds. 
 
In the “GAP” learning process, the gap learned is the 
smallest one. Thus, strings accepted by the RRE with the 
smallest gap discovered must also be accepted by a RRE 
containing the same elements but having larger gaps 
between elements. 
 
Based on the above, we conclude that all segments covered 

(i.e., containing strings accepted) by 1+iRRE  must also be 

covered by iRRE .  

 

� Obviously, all true-set segments covered by 1+iRRE  must 

thus be covered by iRRE . This implies that .1+≥ ii TPTP  

Furthermore, we have 11 ++ +=+ iiii FNTPFNTP . 

 

� Thus 
)()( 11

1

++

+

+
≥

+ ii

i

ii

i

FNTP

TP

FNTP

TP
 

� Or )5(1+≥ ii RR  
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lowest precision of its constituent RREs. In other words, 
the overall precision will be high if all constituent RREs 
have high precision. Thus, this bias aids in ensuring that, 
overall, precision is high. 

Our target is to discover RREs that overall have both 
high precision and high recall. From the above analysis, it 
is clear that there is an inverse relationship between 
precision and recall (Cleverdon, 1972) during RRE 
discovery. 
 

FIG. 7.  The proof of monotonically increasing precision 
 

Our semi-supervised learning algorithm is however a 
covering algorithm. The RREs discovered are used in 
sequence to extract features in previously unseen data. If 
any single constituent RRE matches a feature, recall 
improves overall without sacrificing precision. This is due 
to the fact that for a given attribute every RRE covers at 
least δ true positives, where δ>0. As a result, when the 
RREs are used in sequence, true positives increase, and 
false negatives decrease. In general, the precision and recall 

biases in our algorithm enable the algorithm to discover 
expressions with both high precision and high recall as 
measured by Fβ. 
 
5. An Active Learning Approach 
 

Although the training-set developer does not need to 
label the exact location of features in segments, as with all 
supervised machine learning algorithms our approach still 
involves manual labeling of segments. In order to further 
reduce training-set development overhead, we have 
extended our semi-supervised learning algorithm with an 
active learning method. 

Our active learning algorithm is seeded with an often-
used description of an attribute. For example, “six feet tall” 
may be a seed for Height. Based on such choices for seeds, 
our semi-supervised learning algorithm discovers RREs 
representing the contexts surrounding the seeds.  All 
segments with similar contexts become candidates for 
inclusion in the true set for a given attribute.  

 
FIG. 8.  Active learning flow chart 

 
The training-set developer need only select those 

candidates that actually contain a description of the given 
attribute. After this active learning phase, our semi-
supervised learning algorithm is once again applied to 
discover RREs for each attribute per the process described 
in section 4 above. Figure 8 portrays a flowchart of the 
active learning process. 

This approach is based on the observation that there is 
local context that can be leveraged to aid in the discovery 
process. For example, a person’s Age may often follow 
Race and precede Height in a suspect’s physical description. 
Therefore, if a segment occurs between Race and Height, it 

� Suppose iP and 1+iP are the precisions 

of iRRE and 1+iRRE  in the ith and (i+1)th extensions 

respectively of the “AND” learning process.  
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From Equations 4 and 5, we have 

1+≤ iFiF � )1(1)12(0 +−++≥ iFiFiRiRβ   

1+≥ iRiR � 0)1(1
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�
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Since 00= , the assumption is incorrect. 

�  Thus 1+≤ iPiP . 

 

Input a seed 

 
Discover the context segments around 

the seed, Sprefix, Scontent and Ssuffix 

 

Combine Rprefix and Rsuffix to form 
contextual rules 

 
Extract candidate true-set segments 

using the contextual rules 

 

Generate rules for prefix and suffix 

Apply RRE Discovery algorithm to 
discover RREs for current feature 

 

Form true and false sets in preparation 
for RRE Discovery (Active Learning 

Phase) 
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is likely an Age segment. In what follows we provide the 
details of our approach. 

 
5.1. Context Pattern Discovery 
 

There are several steps involved in the discovery of the 
context of the seed. First, all segments containing the seed 
in the training dataset are extracted. Let the set Scontent = {x | 
x is a segment containing the seed}. Second, let all 
segments immediately preceding each member of Scontent be 
defined as Sprefix = {y | y is a segment and the segment 
immediately following y contains the seed}. Third, let all 
segments immediately following each member of Scontent be 
defined as Ssuffix = {z | z is a segment and the segment 
immediately preceding z contains the seed}. 

 After forming Sprefix, Scontent, and Ssuffix, we employ our 
semi-supervised learning algorithm to discover RREs for 
Sprefix and Ssuffix. We then combine the prefix pattern with 
the suffix pattern to form a complete contextual pattern 
using the “AND” operator. 

To discover the RREs for the prefix, we use Sprefix as 
the true set, and suffixcontent  S S U  as the false set. The RREs 

discovered by our semi-supervised learning algorithm form 
the set Rprefix = {p | p is a prefix RRE}. 

To discover the suffix RREs, we use Ssuffix as the true 
set, and prefixcontent  S S U  as the false set. The RREs 

discovered by our semi-supervised learning algorithm form 
the set Rsuffix = {s | s is a suffix RRE}. 

Combinations of members of Rprefix and Rsuffix form 
contextual patterns that are used to discover candidates for 
the true set for the attribute under consideration. Since not 
all possible combinations of such members occur in the 
training data, our algorithm employs a data-driven 
approach that ensures that only combinations that actually 
occur in the input text are used. As noted, the final 
expression for extracting candidate true-set segments 
consists of the logical “AND” of members of Sprefix and 
Ssuffix with a one-segment gap between. We refer to this 
final expression as a contextual expression in what follows. 

 
5.2. Active selection of true segments 
 

In this step, our active learning algorithm identifies all 
candidates for a given attribute using the contextual 
expression discovered as described above in section 5.1. Of 
course not all such candidates are actually true positive 
segments, so at this point the training set developer selects 
the segments that form the final true set. We define the true 
set Ta = {t | t is a segment accepted by the contextual 
expression for attribute a in which a actually occurs}. The 
remaining segments that are not selected become the false 
set Fa = {f | f is a segment accepted by the contextual 
expression that does not contain attribute a}.  

For a given attribute, the ratio of true to false segments 
in these two sets is generally greater than the ratio of true to 
false segments in the training data overall. In other words, 
substantially less effort is required to develop these two 

sets using our semi-supervised active learning approach 
than would be required if these sets were manually 
generated by labeling every single segment in the training 
data. In fact, as will be seen in section 6, the reduction in 
effort is as great as 99%. As will also be seen in section 6, 
the performance of the RREs discovered with these sets is 
competitive with the performance of RRE discovery using 
all of the (manually labeled) training data. 

The final true set for a given attribute a is 

contenta ST U and the final false set is 

asuffixprefix FSS UU . As noted, once these true and false 

sets have been generated with our active learning algorithm 
for a given attribute, our semi-supervised learning 
algorithm is once again applied, this time to discover an 
expression that extracts features for the attribute of interest.  

In summary, in this section, we described how an 
active learning algorithm is combined with our semi-
supervised learning algorithm. In our experimental results 
reported in section 6 following we provide evidence that 
this approach significantly reduces training set 
development effort while at the same time preserving 
performance in terms of Fβ. 
 
6. Experimental Results 
 

In this section, we first depict the results of the 
application of our semi-supervised learning algorithm using 
10-fold cross validation based on 100 police incident 
reports consisting of 1404 segments. The average number 
of training examples is 1264 and the average number of test 
examples is 140 for the attributes evaluated in the first 
experimental results reported below. Following this, we 
present the results of the application of our combined semi-
supervised active algorithm based on a training dataset (404 
items with 2983 segments) and an independent test dataset 
(149 items with 1462 segments). Finally, we compare the 
results obtained using these two approaches. 

Table 5 summarizes the results of our semi-supervised 
learning algorithm without active learning. As noted, we 
employed 10-fold cross-validation. There are ten different 
attributes evaluated in Table 5 (first column). Eye Color. 
Gender and Weekday have perfect performance (100% Fβ) 
in part because we have modified the lexicon as noted in 
section 4.1.3. The performance of Age, Date, Hair Color, 
Height, and Race are also excellent (Fβ=1.0 ≥ 90%). Even 
though the performance of Time and Weight is not as good 
as other attributes, they still achieve over 85% Fβ. As a 
result, we conclude that the RREs discovered for these ten 
features are overall of very high quality. 
 
TABLE 5.  Results of semi-supervised non-active learning 
Attribute Average 

Precision 
Average 
Recall 

Average 
Fβ (β=1) 

Average 
true 

positives 
Age 97% 89% 93% 12.6 
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Date 100% 95% 97% 8.9 

Time 88% 83% 85% 7.7 
Eye 

Color 
100% 100% 100% 1.00 

Gender 100% 100% 100% 33.6 
Hair 

Color 
90% 90% 90% 0.9 

Height 100% 94% 96% 2.2 

Race 97% 90% 91% 3 
Week 
day 

100% 100% 100% 9.8 

Weight 90% 85% 87% 1.7 

 
Table 6 depicts the reduction in training set 

development effort gained by the use of our active learning 
algorithm.  These results show that our active learning 
algorithm significantly reduces labeling effort for nine of 
the ten attributes. The second column of the table is the 
ratio of true segments to false segments that are generated 
by the active learning algorithm described in section 5. The 
third column is the ratio of true segments to false segments 
overall in the training dataset. The fourth column is the 
reduction in labeling effort and is calculated as C4=1.0–
C3/C2, where C4 is the value in the fourth column, C3 is the 
value in the third column, and C2 is the value in the second 
column. 

 
TABLE 6.  Labeling effort saved 

Attribute Ratio of 
|Ta|/|Fa| 

Ratio of 
true/false 
segments 
overall 

Reduction 
in 

labeling 
effort 

Training 
examples 
in active 
learning 

Age 85 : 340 539 : 2444 11.78% 492 

Date 9 : 1 222 : 2761 99.11% 22 

Time 38 : 41 419 : 2564 82.37% 97 
Eye 

Color 
6 : 6 28 : 2955 99.05% 60 

Gender 599:2168 1003:1980 -83.34% 2969 
Hair 
Color 

10 : 17 51 : 2932 97.04% 74 

Height 27 : 36 93 : 2890 95.71% 117 

Race 34 : 60 127 : 2856 92.15% 224 
Week 
day 

127 : 211 401 : 2582 74.20% 497 

Weight 10 : 15 66 : 2917 96.61% 54 

 
The results for Age and Gender in Table 6 are due to 

the fact that these two attributes occur in many different 
contexts in the training data. In particular Gender occurs in 
almost every possible context. In other words, our context-
based active learning approach is not efficient when the 
attribute is widely distributed among several contexts in the 
training data. Note that this does not necessarily imply that 

the performance of extraction will be degraded – as noted 
in Table 7, Gender maintains Fβ of 100%. 

 
TABLE 7.  Results of semi-supervised active learning 

Attribute Precision Recall Fβ 
(β=1) 

Number of 
true positives 

Age 76% 60% 67% 124 

Date 100% 93% 96% 94 

Time 98% 97% 98% 127 
Eye 

Color 
100% 100% 100% 5 

Gender 100% 100% 100% 467 
Hair 

Color 
77% 83% 80% 10 

Height 89% 89% 89% 16 

Race 73% 84% 78% 16 
Week 
day 

100% 100% 100% 139 

Weight 73% 73% 73% 11 

 
One disadvantage of our active learning approach is 

that the size of the true set is generally smaller than the true 
set would be if all of the training data were used. For the 
Time attribute, for example, the true set generated by the 
active learning process contains only 44 segments (38 in Ta, 
and 6 in Scontent) while there are 419 true segments in the 
training set overall. In this particular case, however, our 
semi-supervised active learning algorithm exceeds the 
performance of the semi-supervised learning algorithm 
alone (98% vs. 85%). Nonetheless, in several other cases 
the performance of our semi-supervised active learning 
algorithm is degraded compared to the semi-supervised 
learning algorithm alone. This result is due in part to the 
aforementioned bias of our active learning algorithm – the 
number of segments in the true set generated by the active 
learning process tend to be fewer than the actual number of 
true segments in the training data overall. 

Table 7 summarizes the test-set results for the ten 
attributes of interest using our semi-supervised active 
learning algorithm. As before, Eye Color, Gender, and 
Weekday have 100% Fβ=1.0. This implies that the RREs for 
these three attributes are stable. As noted, the Time attribute 
has a better test result than for the semi-supervised learning 
algorithm alone. The performance of Date in Table 7 is 
nearly identical to its performance in Table 5. Thus for Eye 
Color, Time, Date, and Weekday, our semi-supervised 
active learning algorithm not only achieves a significant 
reduction of labeling effort (≥74%), but also maintains Fβ 

performance equivalent to the performance of our semi-
supervised algorithm alone. 

The test performances of Hair Color, Height, Race, 
and Weight in Table 7 are not as good as the performance 
achieved using our semi-supervised algorithm alone (Table 
5). Nonetheless, the labeling effort was reduced 
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dramatically for all four of these attributes (≥90%). Given 
that the reduction in Fβ for these same attributes is less than 
14%, we see that a tradeoff exists between training set 
development cost and performance of extraction. 

Our semi-supervised active learning approach does not 
work as well for the Age attribute because there is an 
important sub-pattern of Age that is not discovered during 
the active learning phase. The seed that we used for this 
sub-pattern only covers a few segments. Therefore, the 
contextual patterns generated are not general enough to be 
used to find other similar patterns. As a result, the test 
performance of Age is degraded compared to our semi-
supervised algorithm alone. 

We also evaluated our semi-supervised active learning 
algorithm on a collection of narrative text university crime 
reports. The training set consisted of 74 reports with 160 
segments, and the test set contained 48 reports with 117 
segments. Four attributes of interest were considered in our 
experiments: Date, Time, Item Value, and Gender. The 
fourth column of Table 8 portrays the reduction of labeling 
effort for these four attributes. The reduction is dramatic for 
the Date, Item Value, and Gender attributes (≥70%). The 
test performance of these four attributes is also quite good 
as depicted in Table 9. All have 100% precision. Date and 
Gender also have 100% recall. Time has almost perfect 
recall at 99%. In general, our semi-supervised active 
learning algorithm performed well on these attributes 
extracted from online university crime reports. 
 
TABLE 8.  Labeling effort saved 

Attribut
e 

Ratio of 
| Ta | / | 

Fa | 

Ratio of 
true/false 
segments 
overall 

Reduction in 
labeling effort 

Date 46 :1 92 : 68 97.06% 

Time 27 : 28 72 : 88 15.15% 
Item 

Value 2 : 3 21 :139 77.34% 

Gender 75 : 64 40 : 120 71.56% 

 
TABLE 9.  Results of semi-supervised active learning 

Attribut
e 

Precisio
n 

Recall Fβ 
(β=1) 

Number of 
true 

positives 
Date 100% 100% 100% 67 

Time 100% 98% 99% 47 
Item 

Value 100% 82% 90% 9 

Gender 100% 100% 100% 37 

 
In summary, in this section we have presented 

experimental results for our semi-supervised and semi-
supervised active learning algorithms. Our semi-supervised 
algorithm achieved Fβ ≥ 85% (Table 5) for all ten attributes 
of interest. Our combined semi-supervised active learning 

algorithm achieved significant reductions in training set 
development effort for all of the attributes considered 
across both collections of training data3. There is however a 
trade-off for certain attributes between the reduction in 
training set development effort and extraction performance. 
Nonetheless, for six of the attributes of interest our 
algorithm achieved Fβ ≥ 89% (Table 7), three of which 
achieved Fβ = 100%. 

In the following section we deal with related 
information extraction efforts in both academic research 
projects and commercial products. 
 
7. Related Work 
 

Although much work has been done in the field of 
information extraction, relatively little has focused on the 
automatic discovery of regular expressions. In this section, 
we highlight a few efforts that are related to regular 
expression discovery. We also touch on related work in 
relevance statistics and make a comparison with three 
existing commercial products. 

Stephen Soderland (1999) developed a supervised 
learning algorithm, WHISK, which uses regular 
expressions as patterns to extract features from semi-
structured and narrative text. WHISK is an active learning 
system. In each iteration of the learning process, WHISK 
requires that a human expert label specific features in 
instances and then the system generates rules based on 
these labels. WHISK uses segments such as clauses, 
sentences, or sentence fragments as its instances. A crucial 
difference between WHISK and our approach is that 
WHISK requires the user to identify the precise location of 
features for labeling while our approach requires only the 
selection of a small number of seeds. As noted this 
represents a significant reduction in the effort required to 
develop a training set. 

Eric Brill (2000) applied his transformation-based 
learning (TBL) framework to learn reduced regular 
expressions for correction of grammatical errors in text. 
Although Brill does not perform explicit information 
extraction, the correction process involves identifying 
grammatical errors. There are two major differences 
between Brill’s approach and ours. First, like the 
aforementioned work by Soderland, Brill’s approach 
requires intensive feature-specific labeling to create the 
ground truth used in TBL. Secondly, our approach does not 
require domain experts to create templates because it is not 
based on TBL. 

Michael Chau, Jennifer J. Xu, and Hsinchun Chen 
have published results of research on extracting entities 
from narrative police reports (Chau, Xu, & Chen, 2002). 
They employed a neural network to extract persona names, 
addresses, narcotic drugs, and items of personal property 
from these reports. Noun phrases are candidates for name 

                                                
3  Fairfax County, Virginia police incident reports and online 

university crime reports. 
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entities. Although not readily apparent in (Chau, Xu, & 
Chen, 2002), they evidently employ a similar approach as 
other researchers in that feature-specific labeling is 
required in training set development. Their cross-validation 
results vary from a low of 46.8% to a high of 85.4% for 
various entities. In our approach, however, we achieve 
significantly better results without limiting ourselves to 
noun phrases. For instance, an example of a feature 
extracted for the Height attribute that is not a noun phrase 
is “from five feet eight inches to six feet tall”. 

Ellen Riloff (1996) developed AutoSlog-TS, a system 
that discovers patterns based on relevance statistics without 
exact labeling of attributes. Her approach first extracts all 
noun-phrases from the training data. Next it generates all 
possible patterns based on a set of pre-defined templates. It 
then tests a given pattern’s performance according to its 
relevance statistics. Finally, human experts review and 
select the most important patterns. 

The active learning component of our semi-supervised 
active learning algorithm can also be thought of as using 
relevance statistics. On the other hand, our approach does 
not require pre-defined templates, and as noted the 
attributes extracted are not limited to noun phrases. 
Furthermore, our approach does not generate a superfluity 
of patterns. It is quite possible for AutoSlog-TS to generate 
tens of thousands of patterns. Our approach usually has less 
than 50 patterns per attribute. 

There are several commercial tools that support 
information extraction. The more advanced of these 
systems are (NetOwl), (ClearForest), (AeroText™), and 
(IBM Intelligent Miner for Text). At the time of this 
writing, the deficiency in IBM Intelligent Miner for Text is 
that the system does not support user-defined feature 
extraction. This severely limits the types of attributes that 
can be extracted – for example, it is not possible to use the 
NCIC (2000) codes as a basis for information extraction 
with these tools despite the fact that these codes form the 
basis for one of the nation’s most advanced Criminal 
Justice Information Systems. NetOwl, ClearForest and 
AeroText™, on the other hand, only support the manual 
creation of user-defined attribute extraction rules. This 
results in a very high knowledge engineering (training set 
or rule development) cost for users of such tools. In 
contrast our approach supports the automatic discovery of 
user-defined attributes based on our semi-supervised active 
learning algorithm. This significantly reduces the 
knowledge engineering (training set development) cost of 
using our system. 

In addition, our segmentation algorithm is more 
flexible than that provided, for example, in AeroText™. 
AeroText™ supports only the use of sentences and 
paragraphs as segments, but in our research we have 
determined that sub-sentence (i.e., segment) segmentation 
is required to precisely extract certain attributes. As a 
result, our segmentation algorithm enables users to define 
their own segmentation methods.  

Another key capability that distinguishes our approach 
from other tools such as AeroText™ is the use of reduced 
regular expressions to represent patterns. AeroText™, for 
example, uses a manual pattern formation method based on 
assigning words in the input text to bins in the pattern. 
Theoretically, the rules created using AeroText™ are not as 
powerful as the reduced regular expressions defined in 
section 3, and although we have not conducted experiments 
to empirically verify this fact, our algorithm is as a result 
theoretically able to represent a wider range of patterns. 

There are few if any published results relating to 
criminal justice that measure the performance of currently 
available commercial systems. Of the commercial systems 
we surveyed, results have been published for NetOwl, 
ClearForest and AeroText™. Based on the widely 
employed Fβ metric (Van Rijsbergen, 1979), NetOwl 
(Isoquest, Inc, 1998) achieved a performance of 93.99% on 
the template-element extraction task of MUC-7 (1998). 
MUC-7, however, is a collection of newspaper articles. 
Results have been published for ClearForest as the winner 
of the 2002 KDD Challenge Cup competition in the 
biomedical domain (Regev, Finkelstein-Landau, & 
Feldman, 2002). In addition, AeroText™ results were 
presented in a technical report at the 2002 NIH Biomedical 
Computing Interest Group (BCIG) seminar (Childs & Weir, 
2002). Based on our search of the publicly available 
information, however, we found no published information 
extraction performance results in terms of precision, recall, 
or F-measure related to the criminal justice domain for any 
of the commercial products we surveyed. This is not to say 
that these products are not being used effectively in the 
criminal justice domain – only that we were unable to 
identify publicly available materials that report 
performance in terms of these metrics. 
 
8. Future Work 
 

One of the tasks ahead is to further leverage contextual 
information surrounding a segment to improve the 
performance of RRE discovery. Currently, the RREs 
discovered cannot cross segments. Nearby segments, 
however, contain information helpful in determining 
whether a feature accepted by an RRE is valid. For 
example, the RRE discovered for a person’s Race is 
“described as {JJ}”. This RRE, however, also covers the 
description of an animal’s color. One of false positives 
accepted by the RRE is “described as a large red” from the 
segment “described as a large red Boxer” in the sentence 
“The dog, described as a large red Boxer, bit the boy on the 
right arm.” We hypothesize that if our algorithm can 
discover and make use of contextual rules such as “if the 
previous segment contains an animal, then the attribute 
identified as Race is not a Race”, the false positive rate will 
be reduced. In fact, we have developed an approach to the 
automatic discovery of rules of this nature termed Error-
Driven Boolean-Logic-Rule-Based Learning (BLogRBL) 
(Wu, Khan, Fisher, Shuler, & Pottenger, 2002). In future 
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work we plan to use BLogRBL to discover contextual rules 
that will improve the overall performance of RREs 
discovered by our semi-supervised active learning 
algorithm. 

We have also applied our semi-supervised algorithm to 
the extraction of the ‘problem solved’ in US patents (Wu & 
Pottenger, 2003b). The ‘problem solved’ in a patent 
identifies the particular solution to an insufficiency in prior 
art that the patent addresses. Our current results are still 
preliminary in nature. We have achieved 56% average 
precision, 38% average recall, and 45% average Fβ (β=1) in 
10-fold cross-validation. Considering the complexity of 
natural language expressions used in patents, we consider 
this result promising. In addition, based on feedback from 
the corporate sponsor of this work, we have developed a 
metric that measures the number of patents for which we 
discover at least one true positive ‘problem solved’. Our 
performance using this metric is 100%. This research in the 
patent domain is ongoing. 

A drawback of the semi-supervised approach to 
learning is the difficulty in splitting sub-rules when they 
overlap. For example, “under the age of 17” and 
“approximately 25 years of age” are two different 
expressions of a person’s Age. If the word “age” is 
discovered by the algorithm as the root of a RRE in a 
situation where both of these representations occur with 
equal frequency, the algorithm must make an uninformed 
choice as to which direction to extend the RRE during the 
“AND” learning phase. As a result, the final expression 
may contain only the single word “age” with poor overall 
performance in terms of Fβ. The solution to this problem is 
an open question that must be addressed in the course of 
future work. 
 
9. Conclusion 
 

We have presented a semi-supervised active learning 
algorithm as an extension to our semi-supervised algorithm 
for information extraction from police incident reports and 
United States patents. Our experiments demonstrate that 
reduced regular expressions extract information useful in 
law enforcement applications with high degrees of 
precision and recall. Furthermore, our algorithm 
significantly reduces the knowledge engineering (training 
set or rule development) cost of performing information 
extraction. 
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