
A Semi-supervised Algorithm for Pattern Discovery in
Information Extraction from Textual Data

Tianhao Wu and William M. Pottenger

Computer Science and Engineering, Lehigh University
{tiw2, billp}@lehigh.edu

Abstract. In this article we present a semi-supervised algorithm for pattern dis-
covery in information extraction from textual data. The patterns that are discov-
ered take the form of regular expressions that generate regular languages. We
term our approach ‘semi-supervised’ because it requires significantly less effort
to develop a training set than other approaches. From the training data our algo-
rithm automatically generates regular expressions that can be used on previously
unseen data for information extraction. Our experiments show that the algorithm
has good testing performance on many features that are important in the fight
against terrorism.

1 Introduction

Criminal Justice is an important application domain of data mining. There are thou-
sands of incident reports generated daily around the world, many of them in narrative
(unstructured) textual form. Information extraction techniques can be used to identify
relational data in such unstructured text, which in turn is used in a variety of computa-
tional knowledge management applications such as link analysis.

After studying hundreds of incident reports, we find that regular expressions can
be readily employed to express patterns of features. For example, a suspect’s height
might be recorded as “{CD} feet {CD} inches tall”, where {CD} is the part of speech
tag for a numeric value. We have developed a semi-supervised algorithm for automatic
discovery of regular expressions of this nature.

We term our approach ‘semi-supervised’ because it requires significantly less effort
to develop a training set than other approaches. Instead of labeling the exact location
of features in a training set, the training-set developer need only record whether a
specific feature of interest occurs in a sentence segment. For instance, if a segment is
“A 28 year old woman was walking from the store to her car.”, and the feature of inter-
est is Age, then the training-set developer need only assign this segment the label
Age. Using this training data, our algorithm discovers a regular expression for a per-

son’s age. For example, “{CD} year old” might be found as a regular expression1 for a

1 Currently, only words and English part of speech tags are used in the discovery process.

person’s age in this particular example. The automatically generated regular expre s-
sions can be used to extract various features from previously unseen data. Our experi-
ments show that the algorithm has good testing performance on many features that are
important in homeland defense.

Although much work has been done in the field of information extraction, relatively
little has focused on the automatic discovery of regular expressions. Stephen Soder-
land developed a supervised learning algorithm, WHISK [1], which uses regular ex-
pressions as patterns to extract features from semi-structured and narrative text. Eric
Brill [2] applied his transformation-based learning framework to learn reduced regular
expressions for correction of grammatical errors in text. A crucial difference between
these two approaches and ours is that WHISK and Brill’s approach require the user to
identify the precise location of features for labeling while our approach requires only
that instances (segments) be labeled. Moreover, our regular expressions are more
general since our approach supports the inclusion of the logical “OR” operator in
regular expressions, while Brill’s approach does not.

Michael Chau, Jennifer J. Xu, and Hsinchun Chen have published results of re-
search on extracting entities from narrative police reports [5]. They employed a neural
network to extract names, addresses, narcotic drugs, and items of personal property.
Their cross-validation accuracy results vary from a low of 46.8% to a high of 85.4%. In
our approach, however, we achieve significantly better results without limiting our-
selves to noun phrases. In addition, we are able to extract a greater variety of textual
features that can be used, for example, in link analysis of modus operandi.

The article is organized as follows. In section 2, we provide a framework for under-
standing our algorithm. Our approach is described in section 3, and in section 4 we
detail preliminary experimental results. Finally, we present our conclusions, discuss
future work, and give our acknowledgements in section 5.

2 Definitions

In this section, we start with the standard definition of a regular expression, and then
define a reduced regular expression as used in our algorithm.

Regular expression: “Given a finite alphabet Σ , the set of regular expressions over

that alphabet is defined as:
Σ∈∀α , a is a regular expression and denotes the set {a}.

if r and s are regular expressions denoting the languages R and S, respectively, then
(r+s), (rs), and (r*) are regular expressions that denote the sets R ∪ S, RS and R* re-
spectively.” [2] [7]

Reduced regular expression (RRE): Our reduced regular expression is at first
glance similar to that defined in [2]. However, there are some significant differences.
Given a finite alphabet Σ , our reduced regular expression is defined as a set:

Σ∈∀α , a is a RRE and denotes the set {a}.
~a* is a RRE and denotes the Kleene closure of the set α−Σ .

Σ⊂)\\\\$,,̂(WwSs , where ^ is the start of a line, $ is the end of a line, \s is any

white space, \S is any character except white space, \w is any alphanumeric character,
and \W is any non-alphanumeric character.

(\w)* is a RRE denoting the Kleene closure of the set {\w}.
(\w){i,j} is a RRE denoting that \w is repeated between i and j times, where ji≤≤0 .

a? is a RRE and denotes that a is an optional part of the RRE.
if r and s are RREs denoting the languages R and S, respectively, then (r+s) and (rs)

are RREs that denote the sets R ∪ S and RS, respectively.

Some examples of regular expressions that are not RREs are: “a*”, “(ab)*”, and
“a+”. We have not found it necessary to support these regular expressions to achieve
high accuracies.

3 Approach

In this section we present our approach to the discovery of RREs from a small set of
labeled training segments. The process begins with the processing of datasets. Next, a
greedy algorithm is applied. Finally, RREs for the same feature are combined to form a
single RRE.

Pre-Processing Pre-processing includes segmentation, feature identification, segment
labeling, and part of speech tagging. Each incident report is split into segments at this
stage and becomes an instance in our system. We assume that no features cross seg-
ments. This assumption is practical for a number of important features, including those
listed in Table 1. A domain expert must identify features that will be extracted such as
‘Height’, ‘Weight’, ‘Eye Color’, etc. Each segment is then assigned labels that corre-
spond to the set of features present. After labeling, each feature has a true set corre-
sponding to tru e positive segments and false set corresponding to true negative seg-
ments. Finally, each word is (automatically) assigned its part of speech [3].

Learning Reduced Regular Expressions The goal of our algorithm is to discover se-
quences of words and/or part of speech tags that, for a given feature, have high fre-
quency in the true set of segments and low frequency in the false set. The algorithm
first discovers the most common element of an RRE, termed the root of the RRE. The
algorithm then extends the ‘length’ of the RRE in an “AND” learning process. During
the “OR” learning process, the ‘width’ of the RRE is extended. Next, optional elements
are discovered during the “Optional” learning process. The algorithm then proceeds
with the “NOT” learning process, and finally discovers the start and the end of the
RRE. Figure 1 depicts the entire learning process.

Figure 1: RRE Discovery Process

Our approach employs a covering algorithm. After one RRE is generated, the alg o-
rithm removes all segments covered by the RRE from the true set. The remaining seg-
ments become a new true set and the steps in Figure 1 repeat. The learning process
stops when the number of segments left in the true set is less than or equal to a
threshold d. We describe the details of the first three steps of the algorithm in what
follows. [6] describes the details of the other steps.

To discover the root of a RRE, the algorithm matches each word and/or part of
speech tag (specified as a simple RRE) in each true set segment against all segments.
The performance of each such RRE in terms of the metric
Fβ)RP()PR)1((22 ++= ββ (from [4]) is considered. In this formula, P = precision =

TP/(TP+FP) and R = recall = TP/(TP+FN), where TP are true positives, FP are false
positives, and FN are false negatives. The parameter β enables us to place greater or
lesser emphasis on precision, depending on our needs. The word or part of speech tag
with the highest score is chosen as the root of the RRE. In other words, the algorithm
discovers the word or part of speech tag that has a high frequency of occurrence in
segments with the desired feature (the true set). Meanwhile, it must also have low
frequency in segments that do not contain the desired feature (the false set).

After the root is discovered, the algorithm places new candidate elements immedi-
ately before and after the root, thereby forming two new RREs. Any word or part of
speech tag (other than the root itself) can be used in this step. The RRE with the hig h-
est score will replace the previous RRE. The new RRE is then extended in the same
way. Adjacency implies the use of an “AND” operator. As before, candidate words
and parts of speech are inserted into all possible positions in the RRE. The algorithm
measures the performance of each new RRE and the one with the highest score is
selected if its score is greater than or equal to the previous best score. In this sense
our algorithm is greedy. The RRE learned after this step is termed RAND. The overall
complexity of this step is O(N2), where N is the number of elements in RAND [6].

After the “AND” learning process is complete, the algorithm extends the RRE with
words and part of speech tags using the “OR” operator. For each element in RAND , the
algorithm uses the “OR” operator to combine it with other words and/or part of speech
tags. If the newly discovered RRE has a better F-measure than the previous RRE, the
new RRE will replace the old one. The complexity of “OR” learning pro cess is O(N).

The “Optional” learning process and the “NOT” learning process are then applied.
Each of them has complexity O(N). Finally the algorithm discovers the start and the
end of the current RRE. For details on these three steps, please refer to [6].

Post Processing During each iteration in Figure 1, one RRE is generated. This RRE is
considered a sub-pattern of the current feature. After all RREs have been discovered
for the current feature (i.e., all segments labeled by the feature are covered), the sys tem
uses the “OR” operator to combine the RREs.

In this section we have described a greedy covering algorithm that discovers a RRE
for a specific feature in narrative text. In the following section we present our experi-
mental results.

4 Experimental Results

In this section, we describe the datasets for training and testing. We use domain ex-
pert labeled segments for training. We employ two different methods to evaluate the
training results. The first method tests whether segment labels are correctly predicted.
We term this segment evaluation. The second method evaluates the performance of
the model with respect to an exact match of the feature of interest. The metric Fβ (with
β=1 to balance precision and recall) is used to evaluate the test performance with both
methods. We use the widely employed technique of 10-fold cross-validation to evalu-
ate our models.

Our training set consists of 100 incident reports obtained from Fairfax County, USA.
These reports were automatically segmented into 1404 segments. The first column of
Table 1 depicts 10 features supported by our system. Eye Color and Hair Color are
not well represented in our dataset due to their infrequent appearance in the Fairfax
County data.

The result of the training process is one RRE for each feature. For example, “(CD
(NN)? old)|(in IN (MALE)? CDS)” is a high-level abstraction of the RRE for the feature
Age . In this example, “NN” is the part of speech tag for noun, “MALE” is the tag for
words of male gender such as “his”, and “CDS” is the tag for the plural form of a num-
ber (e.g., “twenties” or “teens”).

After completing 10-fold cross-validation, there are 10 test results for each feature.
The average precision, recall and Fβ (β=1) for these ten results is depicted in Tables 1
and 2. Table 1 contains the results based on segment evaluation, and Table 2 depicts
the result of testing for an exact match. We also include a column for the average a b-
solute number of true positives covered by each RRE.

Table 1. 10-fold cross-validation test performance based on segment evaluation

Feature Precision Recall Fβ Avg. TP
Age 97.27% 92.38% 94.34% 13
Date 100% 94.69% 97.27% 8.8
Time 100% 96.9% 98.32% 8.9
Eye Color 100% 100% 100% 1
Gender 100% 100% 100% 33.6
Hair Color 60% 60% 60% 0.8
Height 100% 98% 98.89% 2.4
Race 95% 96.67% 94.67% 3.3
Weekday 100% 100% 100% 9.8
Weight 90% 90% 90% 1.9

In Table 1, Eye Color, Gender and Weekday have perfect test performance (100%)
in part because we have modified the lexicon used in part of speech tagging to label
these features during pre-processing. The performance of Age, Date, Time, Height,
Race, and Weight are also excellent (Fβ =90%). Although we also modified the lexicon
to include a special “month” tag, which is a part of Date, the performance of Date is
not perfect. This is a result of the fact that “2001” and “2002” cover over 95% of the

years in our dataset, so the algorithm discovers “2001” or “2002” as a sub-pattern in
Date. As a result, years other than “2001” and “2002” were not recognized as such
during testing. This caused a slight drop in performance for the Date feature.

In order to address this issue we developed a more complete training set and re-
evaluated our algorithm on the Date feature. In the new training set, there were ten
“2002”, ten “2001”, ten “2000”, ten “1999” elements, as well as a few “none” year ele-
ments. In this case our algorithm discovered the RRE “ ̂([0-9a-zA-Z]){4} CD $”. This
is a more general pattern for detection of the year in the Date feature.

The performance of Hair Color is, however, not as good. As noted, this is due to
the lack of Hair Color segments in test sets (2, 4, 5, 8). However, the test performance
on sets (1, 3, 6, 7, 9, 10) is perfect for Hair Color (Fβ of 100%). Therefore, we conclude
that the RRE discovered for the feature Hair Color is optimal.

In a practical application, a user is interested in the exact feature extracted from nar-
rative text rather than the segment. Therefore, it is necessary to evaluate our RREs
based on their ability to exactly match features of interest. An exact match is defined
as follows: “If a sub-string extracted by an RRE is exactly the same as the string that
would be identified by a domain expert, then the sub-string is an exact match.” An
example of an exact match is as follows: if a human expert labels “28 year old” as an
exact match of the feature Age in “A 28 year old woman was walking from the store to her
car.”, and an RRE also discovers “28 year old” as an age, then “28 year old” is an exact
match. The result of our experiments in exactly matching features of interest is de-
picted in Table 2.

Table 2. 10-fold cross-validation test performance based on exact match

Feature Precision Recall Fβ Avg. TP
Age 92.61% 88% 89.83% 12.4
Date 100% 94.69% 97.27% 8.8
Time 87.87% 85.01% 86.32% 7.8
Eye Color 100% 100% 100% 1
Gender 100% 100% 100% 33.6
Hair Color 60% 60% 60% 0.8
Height 95% 93.5% 94.17% 2.2
Race 90% 91.67% 89.67% 3
Weekday 100% 100% 100% 9.8
Weight 82.5% 82.5% 82.5% 1.7

In the exact match results in Table 2, Age, Time, Height, Race, and Weight have
slightly lower performance than in segment evaluation. Sometimes the string accepted
by a RRE is a sub-string of the actual feature. For example, suppose that the correct
value for a particular instance of the Time feature is “ from/IN 9/CD :/: 00/CD p/NN ./.
m/NN ./. until/IN 3/CD :/: 00/CD a/DT ./. m/NN ./NN”, but the string accepted by the
RRE is “from/IN 9/CD :/: 00/CD p/NN ./. m/NN ./.”. In this case, the algorithm failed to
match the feature exactly. Nevertheless, these features still have very good perform-
ance, with high precision and recall (both of them are greater than 80%). On the other
hand, Date, Gender, Eye Color, Hair Color, and Weekday all have the same perform-

ance as that achieved during segment evaluation. In fact, it turns out that the RREs
discovered automatically for these five features are exactly the same patterns devel-
oped manually by human experts who studied this same dataset. Based on these exact
match results, we conclude that our approach to RRE discovery has good performance
on all ten features supported in our current system.

5 Conclusion

We have presented a semi-supervised learning algorithm that automatically discovers
Reduced Regular Expressions based on simple training sets. The RREs can be used to
extract information from previously unseen narrative text with a high degree of accu-
racy as measured by a combination of precision and recall. Our experiments show that
the algorithm works well on ten features that are often used in police incident reports.

One of the tasks ahead is to develop more sophisticated segment boundary detec-
tion techniq ues (similar to existing sentence boundary detection techniques). Other
future work includes the application of our techniques to extract additional features of
interest such as those used in describing modus operandi. We plan to focus on these
two tasks in the coming months.

This work was funded by the Pennsylvania State Police (PSP) under a subcontract
with the Lockheed-Martin Corporation. We gratefully acknowledge the Lockheed-
Martin/PSP team, co-workers, and our families for their support. Finally, we gratefully
acknowledge our Lord and Savior, Yeshua the Messiah (Jesus Christ), for His many
answers to our prayers. Thank you, Jesus! ☺

References

[1] S. Soderland: Learning information extraction rules for semi-structured and free text. Ma-
chine Learning, 34(1-3):233-272. (1999)

[2] Eric Brill: Pattern-Based Disambiguation for Natural Language Processing. Proceedings of
Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very
Large Corpora. (EMNLP/VLC-2000)

[3] Christopher D. Manning and Hinrich Schütze: Foundations of Statistical Natural Language
Processing, MIT Press. (2000)

[4] Van Rijsbergen: Information Retrieval. Butterworths, London. (1979)
[5] Michael Chau, Jennifer J. Xu, Hsinchun Chen: Extracting Meaningful Entities from Police

Narrative Reports. Proceedings of the National Conference for Digital Government Research.
Los Angeles, California. (2002)

[6] Tianhao Wu, and William M. Pottenger: An extended version of “A Semi-supervised Algo-
rithm for Pattern Discovery in Information Extraction from Textual Data”. Lehigh Univer-
sity Computer Science and Engineering Technical Report LU-CSE-03-001. (2003)

[7] Hopcroft, J. and J. Ullman: Introduction to Automata Theory, Languages and Computation.
Addison-Wesley. (1979)

