
c�Copyright by

WILLIAM MORTON POTTENGER

����

THEORY� TECHNIQUES� AND EXPERIMENTS
IN SOLVING RECURRENCES IN COMPUTER PROGRAMS

BY

WILLIAM MORTON POTTENGER

M�S�� University of Illinois at Urbana�Champaign� ����
B�S�� University of Alaska� Fairbanks� ����

B�A�� Lehigh University� ����

THESIS

Submitted in partial ful	llment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana�Champaign� ����

Urbana� Illinois

THEORY� TECHNIQUES� AND EXPERIMENTS
IN SOLVING RECURRENCES IN COMPUTER PROGRAMS

William Morton Pottenger� Ph�D�
Department of Computer Science

University of Illinois at Urbana�Champaign� ����
David A� Padua� Advisor

The study of theoretical and practical issues in automatic parallelization across application and

language boundaries is an appropriate and timely task� In this work� we discuss theory and techniques

that we have determined useful in solving recurrences in computer programs� In chapter two we present

a framework for understanding parallelism in computer applications based on an approach which models

loop bodies as coalescing loop operators� In chapter three� we perform a case study of a modern C��

semantic retrieval application drawn from the digital library 	eld based on the model presented in chapter

two� In the fourth chapter we present a summary of several techniques that we believe can be applied

in the automatic recognition and solution of recurrences� The techniques have been developed through

performing a manual analysis of applications from benchmark suites which include sparse� irregular�

and regular Fortran codes� In chapter 	ve we discuss the application of the techniques developed in

chapter four on a suite of Fortran codes representative of sparse and irregular computations which we

have developed as part of this work� In the sixth chapter� we consider the application of these same

techniques focused on obtaining parallelism in outer time�stepping loops� In the 	nal chapter� we draw

this work to a conclusion and discuss future directions in parallelizing compiler technology�

iii

ACKNOWLEDGMENTS

There is a person without whom my life would not be possible� Over the years� this person has

steadily guided my wife� myself� and our children� Even now� as we near the end of this seven year

period of study� He is nearer than before� With grateful hearts and thankfulness to Him� we dedicate

this work to our Lord and Savior� Jesus Christ�

I would be remiss not to mention the faithfulness with which my wife and sister in the Lord� Byung

Hee Leem� has supported me throughout the �� years of marriage we have had together� She has been

an excellent wife and mother� far beyond what other women do� What she wrote about others in her

thesis several years ago has become her own testimony
 her vision� perseverance� and long patience will

now be rewarded�

In addition� I would like to thank my parents� John L� and Tavia M� Pottenger� for their long�su�ering

prayers and patience throughout the years�

I must also thank my thesis advisor� Dr� David Padua� for his patience� kindness� and sincere

compassion in helping us to reach this goal� Thank you� Professor Padua�

Lastly� I would like to speci	cally thank Mike P�ugmacher and Nancy Rudins as well as the other

hardworking members of the NCSA Advanced Computing and Technology Management Groups�

There are many who remain unmentioned here� To all of you� thank you�

iv

TABLE OF CONTENTS

CHAPTER PAGE

� Introduction �

� Coalescing Loop Operators �

��� Introduction �

��� Related Work �

����� Run�time Solution of Recurrences �
����� Compile�time Solution of Recurrences �
����� Associative Operations �
����
 Commutative Operations �

��� Associativity in Coalescing Loop Operators �
����� Coalescing Operators in Loops �
����� The De	nition of Associativity ��
����� Associative Coalescing Operators ��
����
 Transforming Associative Coalescing Loop Operators � � � � � � � � � � � � � � � � � ��
����� Theoretical Underpinnings ��
����� Loops that Perform Output Operations ��
����� Loops with Dynamic Last Values ��
����� Operators Involving Arrays in Loop�carried Flow Dependences � � � � � � � � � � � ��
����� Loops with Conditional Exits ��
������ Associativity in Pseudo Random Number Generation � � � � � � � � � � � � � � � � ��
������ Commutativity vs� Associativity ��

��
 Conclusions and Future Work ��

� The Role of Coalescing Operations

in Parallelizing Computer Programs� A Case Study ��
��� Introduction ��
��� The cSpace Application ��

����� The Object Model ��
����� The Algorithm ��
����� The Similarity Function �

����
 The Implementation ��
����� The Data Sets ��
����� cSpace and the SPEChpc Suite ��

��� Coalescing Operations in cSpace ��
����� Phase I ��
����� Phase II �
�

��
 Implementing the Parallelism in cSpace �
�
��
�� Coalescing Loop Operator Associativity �
�

v

��
�� Loop Execution Overhead �
�
��
�� Implementing the Parallelism in Phase II �
�

��� Characterizing the Performance of cSpace �
�
��� Conclusion �
�

� Techniques for Solving Recurrences �
�

�� Introduction �
�

�� The Benchmark Suite �
�

�� General Techniques for the Parallel Solution of Recurrences � � � � � � � � � � � � � � � � �
�

���� Symbolic Computation of Closed�Forms ��

���� Intrinsic Minimum � Maximum Reductions ��

���� Semi�private Transformation ��

���
 Wrap�around Privatization �

���� Do�pipe Parallelization ��

���� Multi�level Parallel Execution ��

�
 Techniques for Recognition and Solution of Recurrences in Sparse � Irregular Codes � � � ��

�
�� Histogram Reductions ��

�
�� Random Number Generator Substitution ��

�
�� Proving Monotonicity of Index Arrays ��

�
�
 Combined Static � Run�time Analysis of Induction Variable Ranges � � � � � � � � ��

�
�� Copy�in and Copy�out �

�
�� Loops with Conditional Exits ��

� Automatic Parallelization of Sparse and Irregular Fortran Codes � � � � � � � � � � � ��
��� Introduction ��
��� The Benchmark Suite ��

����� CHOLESKY ��
����� DSMC�D ��
����� EULER ��
����
 GCCG ��
����� LANCZOS ��
����� MVPRODUCT ��
����� NBFC ��
����� SpLU ��

��� Analysis and Results ��
����� NBFC ��
����� CHOLESKY ��
����� DSMC�D ��
����
 EULER ��
����� GCCG ��
����� LANCZOS ��
����� MVPRODUCT ��
����� SpLU ��

��
 Conclusion ��

� Parallelism in Time�Stepping Loops ��
��� Introduction ��
��� Transformations Employed in su�cor ��

����� Discontinuous Inductions ��
����� Symbolic Computation of Closed�Forms ��
����� Semi�private Variables �

����
 Doacross �

����� Loop Pipelining ��

vi

����� Synchronization ��
����� Multi�level Parallelism ��

��� Transformations Employed in tomcatv ��
����� Min�Max Reductions ��
����� Do�pipe ��

��
 Results ��
��
�� Loops in su�cor ��
��
�� Results for su�cor ��
��
�� Loops in tomcatv ��
��
�
 Results for tomcatv ��

��� Conclusion ���

� Conclusion ���

APPENDIX ���

A Coalescing Loop Operators in cSpace ���

B Coalescing Loop Operators in CHOLESKY ���

BIBLIOGRAPHY �
�

VITA �
�

vii

LIST OF TABLES

��� Wall�clock Execution Times and Speedups for cSpace �
�

�� Benchmark Codes �
�

��� Benchmark Codes ��
��� Speedups
 PFA� Polaris� and Manual ��

��� Loops � ��� of Sequential Time ��
��� Speedups of SWEEP do��� on SGI Challenge ��
��� Su�cor Program Speedups on SGI Challenge ��
��
 Su�cor Program Speedups on HP�Convex Exemplar ��
��� Loops � �� of Sequential Time ��
��� Tomcatv speedups on � processors ���

viii

LIST OF FIGURES

��� Object Model for cSpace ��
��� Speedup and E�ciency for cSpace XLarge Data Set �
�

��� Data Access Pattern in SPEC CFP�� Benchmark su�cor ��

ix

CHAPTER �

Introduction

At a recent seminar held on the campus of the University of Illinois� Director Richard Wirt of the Intel

Microprocessor Research Lab discussed future directions in microprocessors� multiprocessors� compilers�

and applications� As the discussion turned to the automatic parallelization of computer programs� Dr�

Wirt emphasized the following point

The compiler IS the architecture ����

According to Dr� Wirt� automatic parallelization will play a crucial role in compilers for both

existing and upcoming Intel�based multiprocessors� Echoed by Dr� Sam Fuller� Chief Scientist at Digital

Equipment Corporation� this fact underscores a trend in multi�process computing which is expected to

continue into the ��st century �����

In recent years� research in the area of automatic parallelization has focused on numeric programs

written in Fortran� However� new application areas which employ object�oriented programming models

are evolving� and general methods which are applicable across language and application boundaries must

be developed�

For example� 	ve years ago the National Research Council Computer Science and Telecommunications

Board �CSTB� published a landmark report which examined how Computer Science and Engineering

�

teaching and research are conducted on a national scale� The report emphasized the need for research in

the development and construction of application�oriented software systems for parallel computers in an

interdisciplinary environment� Examples of such National Challenge applications of high�performance

computing and communications technologies include many data�intensive applications such as the pro�

cessing of 	nancial transactions� improved access to government information� and digital libraries�

The study of theoretical and practical issues in automatic parallelization across application and lan�

guage boundaries is thus an appropriate and timely task� In this work� we discuss theory and techniques

that we have found useful in recognizing and understanding parallelism in applications expressed in

various languages across several 	elds of science�

In the second chapter of this thesis� we present a framework for understanding parallelism in computer

applications based on an approach which models loop bodies as associative coalescing loop operators�

Although associative operations have been the basis for parallelization in both hardware and software

systems for many years� to our knowledge no one has developed a framework for understanding loop�

level parallelism based on treating the body of the loop as a single associative coalescing operator� The

application of this model has yielded useful results
 we now understand how to automatically parallelize

loops with dynamic last values� and we have also demonstrated that a class of loops with multiple exits

can be successfully parallelized within this framework�

In chapter three� we perform a case study of a modern C�� semantic retrieval application drawn

from the digital library 	eld� We analyze the application based on the model presented in chapter two�

and characterize the performance of the resulting parallelized version�

In the fourth chapter we present a summary of several techniques that we believe can be applied

in the automatic recognition of parallelism� The techniques have been developed through performing

a manual analysis of applications from benchmark suites which include sparse� irregular� and numeric

Fortran codes� Historically� sparse and irregular codes have been considered di�cult to parallelize due

to the complex nature of dependence relationships� The results of our study have revealed� however�

�

that several of these techniques have a signi	cant impact on performance across a range of application

areas�

In chapter 	ve we introduce a suite of Fortran codes representative of sparse and irregular computa�

tions which we have developed as part of this work� We then discuss the application of the techniques

presented in chapters two and four to the codes in this suite� and characterize the performance of the

parallelized versions�

In the sixth chapter� we consider the application of the techniques from chapter four that we have

determined useful in the automatic parallelization of outer� time�stepping loops containing recurrences�

Two applications from the SPEC CFP�� benchmark suite are analyzed and manually parallelized based

on these techniques� and the performance of the resulting parallel versions is characterized�

In the 	nal chapter we draw this work to a conclusion and discuss future directions in parallelizing

compiler technology�

�

CHAPTER �

Coalescing Loop Operators

��� Introduction

In the course of investigating solutions to recurrences in loops the desire to develop a recurrence recog�

nition scheme based on technology more general than pattern�matching arose� This in turn led to an

investigation of the principle property determining the parallelizability of a given operation�

Consider� for example� a loop of the following nature�

do
�� j � search� neqns
node � perm�j�
if �marker�node��lt��� goto
��
ndeg � deg�node�
if �ndeg�le�thresh� goto ���
if �ndeg�lt�mindeg� mindeg � ndeg

�� continue
��� � � �

Here we have conditional expressions guarding updates to scalar variables� This is a classic case of a

loop with reduction semantics� Such patterns commonly occur in computationally important loops in a

wide range of codes ����

�This example is drawn from the HPF�� benchmark cholesky

Many frameworks have been developed for recognizing parallelism of this nature based on both

syntactic and semantic schemes� All of these frameworks have one thing in common� however
 the

enabling factor underlying the transformation is the associative nature of the operation being performed�

In this case� for example� min is an associative operation�

The loop above� however� is slightly di�erent from a �standard� minimum reduction in that the

presence of a conditional exit in the loop impacts the parallelizing transformation� When the above code

is executed serially� there is an invariant point in the iteration space at which the loop will exit� This

point may be an early exit� depending on the conditional if �ndeg �le� thresh�� However� the exit

point may not be invariant when the loop is executed in parallel� To understand the reasons for this�

consider the following parallelized version of the loop

doall
�� j � search� neqns
private node� ndeg
node � perm�j�
if �marker�node��lt��� goto
��
ndeg � deg�node�
if �ndeg�le�thresh� goto ���
critical section

if �ndeg�lt�mindeg� mindeg � ndeg
critical section

�� continue
��� � � �

When this code is executed� the iteration space j � search� neqns will be partitioned amongst the p

processors participating in the computation� However� regardless of the particular partitioning employed�

it is possible that a given processor pi may execute some iteration j which is not executed when the

computation is performed serially� If deg�perm�j�� is a global minimum across the entire iteration space�

the 	nal result will be incorrect�

This presents a puzzle
 we know that min operations are parallelizable� yet the application of a well�

known transformation resulted in parallel code which is conditionally correct� The key to understanding

this lies in realizing the fundamental property which enables parallelism in this loop� Earlier we pointed

out that associativity is the underlying factor which enables parallelism� and indeed min is an associative

�

operation� However� when the conditional exit is added to the mix� we now have an operation which is not

commutative� The key point to realize is that there is a class of loops which perform non�commutative�

associative operations� As a result� any transformation which parallelizes a loop of this nature must not

commute the execution order of the iterations�

In light of this discovery� we have developed a framework for understanding parallelism in a loop

based on the associativity of operations which accumulate� aggregate or coalesce a range of values of

various types into a single conglomerate� In the following section we discuss related work� and then

proceed to the introduction of the concept of an associative operation based on a coalescing operator of

this nature�

��� Related Work

Over the years� the study of loops which perform coalescing operations has often focused on the solution

of recurrence relations� The parallel solution of recurrences in Fortran� for example� has been a topic of

study for several years �e�g�� ���� ��� ���
�� �� ��� ���

��� Early work included parallel recurrence solvers

which were implemented in hardware ���� ���� More recently� techniques based on powerful symbolic

analysis have been employed in the recognition and solution of recurrences statically at compile�time as

well as dynamically at run�time�

����� Run�time Solution of Recurrences

The run�time solution of recurrences also has a fairly rich history� Suganuma� Komatsu� and Nakatani�

for example� recognize and transform scalar reductions based on the detection of reduction semantics

in the data dependence graph ����� Rauchwerger and Padua test for the presence of privatizable arrays

and reduction operations involving arrays in ����� By treating individual array elements as scalars and

recording at run�time whether a use of a given array element occurs outside the expanded reduction

statement �or statements� involving the reduction variable� reduction operations can recognized and

executed in parallel� Fisher and Ghuloum model loop bodies containing reductions and recurrences as

�

composable functions in ����� They determine whether� for a given loop� the composition of the function

representing the loop body yields a function isomorphic to the original model� From this� a parallel pre	x

solution of the reduction�recurrence is generated� They are able to handle both scalar and array�based

recurrences in singly�nested loops�

In our previous work �

� we take a general pattern�matching approach to the recognition and trans�

formation of reductions� This approach has the advantage that complex conditional structures occurring

in multiply�nested loops pose no particular problem� This approach is� however� inherently limited to

the particular patterns programmed into the compiler�

����� Compile�time Solution of Recurrences

Compile�time solutions include ���� in which Harrison and Ammarguellat use abstract interpretation to

map each variable assigned in a loop to a symbolic form� and match these against template patterns

containing the closed�forms for commonly occurring recurrences� They are able to handle both induction

variables and array�based recurrences in singly�nested loops� Haghighat and Polychronopoulos symbol�

ically execute loops and use 	nite di�erence methods in conjunction with interpolation to determine

closed�forms for recurrences involving scalar variables ����� Their approach is capable of multiple scalar

transformations including induction variable substitution� Other compile�time solutions include ���� in

which Wolfe et al derive relations between variables by matching against cycles in the SSA graph� and

then use matrix inversion �among other methods� to determine closed�forms for induction variables�

We also treat the solution of generalized induction variables at compile�time in �

�� A general

pattern�matching approach is employed in the recognition phase of our induction solution algorithm� In

the transformation phase� mathematical closed�forms for inductions are computed across the iteration

spaces of potentially multiply�nested loops enclosing induction sites�

�

����� Associative Operations

Associative operations have been the basis for parallelization of reduction operations in both hardware

and software systems for many years ��
� ��� ���
�� ��� �� ���
�� ���

� ����

In most of these cases� the associativity is limited to a single binary operation involving the operator

� �addition� or � �multiplication�� For example� in �

�� recurrence relations are solved using a run�time

technique that is based on the associativity of the underlying operator within either a single reduction

statement or a group of reduction statements which access the same reduction variable�

Recognition techniques based on the underlying semantics of reduction operations have been imple�

mented in the Velour vectorizing compiler ����� Similar to the techniques implemented in ����� these

approaches identify variables which are computed as recurrent associative functions derived from state�

ments in the body of the loop� Harrison also treats the parallelization of associative inductions� reduc�

tions� and recurrences in functional languages in �����

����� Commutative Operations

In ����� Rinard and Diniz present a framework for parallelizing recursive function calls based on com�

mutativity� Similarly� Kuck has shown that simple expressions �e�g�� right�hand�sides of assignment

statements� can be reordered based on combinations of both associativity and commutativity in tree�

height reduction �����

��� Associativity in Coalescing Loop Operators

In this section we introduce the concept of a coalescing loop operator� Following this� we demonstrate

how associativity in a coalescing loop operator enables loop�level parallelism�

����� Coalescing Operators in Loops

Consider the following de	nition of a loop operator

De	nition �� Loop Operator

�

Given a loop L� a loop operator of L is de	ned as the body of L expressed as a function � of two

arguments
 ��Xi� Xj�� Xi and Xj represent sets of operands� The binary operator � returns the result

of operating on operand sets Xi and Xj �

�

The collection of multiple objects to a single data structure in a loop in an object�oriented language

is an example of a loop operator which coalesces many objects into a conglomerate whole� In this case�

the operand Xi is the data structure used to collect the objects�

To use a real�world example� think about this in terms of how a pot of soup is made� First� many

things go into a pot of soup
 vegetables like carrots and onions� potatos� spices� perhaps some kind of

chicken or beef� and water� If we think of the process of putting things into the pot as a loop� then one

item can be added to the pot each iteration � the loop might look something like

pot � empty
do i � �� number of ingredients

pot � pot add ingredienti
enddo

In the end we have a pot of soup� It�s a collection of objects �vegetables� potatos� etc�� which have

been added one by one � in e�ect� the �many� have been reduced to the �one� �pot of soup�� There are

two operands involved each iteration
 the pot� and the ingredient being added� The operation� or the

reduction of many vegetables etc� to soup� thus involves two operands� The binary operator add is the

act of adding to the soup�

Thus� in a coalescing operation� the 	rst argument Xi to � represents rvalues of conglomerate

operands� The second argument� Xj � is the source set of operands which are agglomerated with Xi� The

new conglomerate is then returned by ��

Suppose now we wished to view the whole process in its entirety at one shot� Then the above job of

making soup might look like this

add� add� � � � add� add�empty water� celery� � � � potatos� salt�

�

This is the same process expanded �or unrolled� for those of you familiar with the terminology�� and

expressed in a functional form� The operator � is add� In each case� � takes two arguments� the left

argument represents the value of the �initially empty� pot� and the right argument is the ingredient

being added��

These concepts can be generalized as follows

De	nition �� Coalescing Loop Operator

Let � be de	ned as the body of loop L where L is represented in the form

L�X�� X�� � � � � Xk��� Xk� � �� �� � � � �� ��X�� X��� X��� � � � Xk���� Xk�

This de	nes L in terms of the loop operator ��Xi� Xj� for the entire iteration space� The binary

operator � is termed a coalescing loop operator� The left operand Xi is the conglomerate operand set�

or simply the conglomerate operand� Each right operand Xj � j � �� k is an assimilated operand set� or

simply an assimilated operand�

�

Let�s re�ect for a moment on this framework� What types of loops can be represented in such a

model Certainly well�known reductions based on operations such as min� max� SUM� etc� can be

represented in a straightforward manner� However� we have determined that indexed data structures

such as arrays can also be viewed as conglomerate operands to coalescing loop operators� We will address

this point in more detail in section ����� following�

We will now move on to consider coalescing loop operators which are associative in nature� First we

de	ne associativity� then proceed to develop a framework for understanding associativity in coalescing

loop operators�

����� The De�nition of Associativity

Given an operator � and operands a� b� and c� � is an associative operator if the following holds

�If all this talk of soup is making you hungry� perhaps we should move on�
�

��

��a� b�� c� � �a� �b� c��

A computation which is based upon an associative operator is termed an associative operation�

����� Associative Coalescing Operators

The concept of associativity can be extended to include coalescing loop operators as associative opera�

tions� The central idea is that a coalescing operator can be considered a single operator consisting of a

collection of associative operations performed within a loop� In this light� the collection of the various

individual operators can be considered a single associative coalescing loop operator�

Let�s now consider the case where we have a coalescing loop operator which is associative� The

central question is �What parallelizing transformation does the property of associativity enable �� If we

consider the case in which � is an associative coalescing loop operator� then the law of associativity may

be applied to L to yield

�� �� � � � �� ��X�� X��� X��� � � � Xk���� ��Xk��� Xk��

In this case we used the fact that � is an associative operator to perform the transformation

��a� b�� c� � �a� �b� c��

to L where a � �� � � � �� ��X�� X��� X��� � � � Xk���� b � Xk��� and c � Xk� This process could be

repeated to� for example� reassociate Xk�� with Xk��� etc�

To understand this transformation more clearly� consider the following example using actual values

for the operands

sum � �
do i � ��

sum � sum� i
enddo

��

Cast in terms of an associative coalescing loop operator �� this loop can be modeled as L � ��

� ��� ��� ��� � �� �� ��
�� Here � is ��� a coalescing loop operator with the semantics �add the

assimilated argument on the right to the conglomerate argument on the left and return the resulting

sum�� The value for k in this case is
� and X��� � �f�g� f�g� f�g� f�g� f
g� are the assimilated operand

sets accessed during execution of the loop��

By assigning a � ��� ��� � �� ��� b � �� and c �
� this expression can be reformulated as

��� ��� ��� � �� �� ��� �
�� using the rule ��� ���a b� c� � ���a ���b c��� Clearly this loop

can be executed in parallel
 in fact� the reassociation of operands can be repeatedly applied to regroup

invocations of � into a form which distributes the iteration space evenly across multiple processors� For

example� if we consider the same loop iterating i � �� � the following is a reassociated order which can

be executed in parallel on four processors

��� ��� ��� ��� ���� �� �� ����
�� ���� ��� ���� ���

In the following section we present a transformation capable of achieving such a reassociation �or

regrouping� of operands�

����� Transforming Associative Coalescing Loop Operators

Traditional parallelizing transformations involve the use of a critical section to guarantee exclusive access

to shared variables� For example� the variable mindeg in the code example given in the introduction is

a shared reduction variable which must be updated atomically�

When a coalescing loop operator is not commutative� however� the parallelizing transformation must

guarantee that di�erent iterations of the loop are not commuted� In other words� when the loop is

executed on more than one processor� the iterations must not be interleaved�

In the following discussion we do not treat the theoretical underpinnings which necessitate the given

transformation
 we save this discussion for section ������

�Note that the function return values implicitly form the remaining conglomerate operands of the
binary operator ���

��

The following four steps are needed in order to transform a loop based on associativity alone

� Privatization of shared variables

� Initialization of private variables

� Block loop scheduling

� Cross�processor reduction

Privatization refers to the creation of thread or process�private copies of shared global variables�����

The second step involves the initialization of the newly created private variables� In the third step� the

iteration space of the loop is broken into contiguous slices� and each processor executes a slice of the

original iteration space� Within each slice on each processor the iterations are executed in the original

serial order� Across processors� the slices are also kept in the original serial order� For example� a loop

with iteration space i � �� � executing on
 processors would be scheduled as follows

�

p�z �� �
�i � �� ��

p�z �� �
�i � ��
�

p�z �� �
�i � �� ��

p�z �� �
�i � �� ����

The 	nal step is a cross�processor reduction� This involves the serial execution of the associative

coalescing loop operator with each of the privatized variables in turn� This operation must also preserve

the original order of execution and thus insure that iterations of the loop are not commuted�

To understand these four steps� let�s consider the following example

do i � �� n
sum � sum� a�i�

enddo

The following is the parallelized version of this example� The language used in this code is based on

IBM�s Parallel Fortran ���� with extensions which we have added to adapt the language to the special

needs of the associative transformation�

��

parallel loop� block i � �� n
private sump

do	rst
sump � �

doevery
sump � sump � a�i�

enddo
do	nal� ordered lock

sum � sum� sump

enddo

The 	rst two steps in the transformation are the privatization and initialization of the shared variable

sum� In the above code� sump is the processor�private copy of sum� If p processors participate in the

computation� then p private copies of sum are made� one on each processor� In an abstract sense�

privatization e�ectively creates an uninitialized conglomerate operand for use on each processor� In the

dofirst section of code� sump is initialized on each processor� dofirst indicates that this section of

code is executed once at the invocation of the parallel loop by each processor�

The doevery clause indicates the section of code that is to be executed every iteration� The majority

of the computation takes place in this loop� Each processor is given a contiguous slice of the iteration

space� For example� assuming
 divides n� if four processors participate in the computation� the iteration

space would be divided as in the previous example

�

p�z �� �
�i � �� n�
�

p�z �� �
�i � n�
 � �� �n�
�

p�z �� �
�i � �n�
 � �� �n�
�

p�z �� �
�i � �n�
 � �� n���

In the above example� �parallel loop� block� refers to a schedule of this nature � i�e�� the slices �or

blocks� are contiguous� and within each block �i�e�� on each processor� the iterations are executed in the

original serial order�

This doevery section of the parallel loop is executed as a dependence�free doall loop ����� Thus the

associative transformation enables the execution of the bulk of the original serial loop consisting of an

associative coalescing loop operator as a fully parallel doall loop�

After each processor has completed executing its slice of the iteration space in the doevery section�

they each compute the dofinal once prior to loop exit� In the above case� this operation updates the

�

shared variable sum� The update is atomic� and is done in the original order in which the slices were

distributed� In other words� according to the schedule just presented� p� will update sum 	rst� followed

by p�� etc� This is the meaning of the �do	nal� ordered lock� directive� and this schedule insures that

the 	nal cross�processor reduction does not interleave �i�e�� commute� the slices of the iteration space�

Before concluding this section� we make the following de	nition

De	nition �� Parallelizing Transformation of an Associative Coalescing Loop

Given a loop L with associative coalescing loop operator body �� we denote L transformed as above Lt�

�

����� Theoretical Underpinnings

In the previous section we brie�y demonstrated how the private copies of recurrent variable operands

must be initialized �prior to loop execution� as part of the parallelizing transformation of an associative

coalescing loop operator� In general� for operand sets which contain recurrent variables to be transformed

as outlined in section ����
 above� there must exist an identity operand set I which satis	es the following

De	nition �� Identity Operand

For each recurrent variable in Xi� there must exist a corresponding identity in I such that

��Xi� I� � Xi

�

In our example loop involving the sum reduction in the preceding section� the member of the identity

operand I corresponding to the addition operation on the recurrent variable sum is the identity for

addition� ��

At this point it is possible to clarify a possible confusion as to how operands are actually reassociated�

When transformation Lt is made� in e�ect private conglomerate operands are created locally on each

processor �as noted in section ����
�� The corresponding general form of the law of associativity for

coalescing loop operators takes the following form

�� ��X� ��I X��� ��I X��� � ��X� �� ��I X�� ��I X����

��

An interesting point that we have not considered is the role the assignment operator plays in coalescing

loop operators� Naturally� when a loop in an imperative language is executed� assignments are made�

As will become clear in section ������ assignment is actually an associative binary coalescing operator�

The identity for assignment is the rvalue of the variable being assigned� E�g�� in terms of our example�

sump � sump leaves sump unchanged� In light of this fact� the initial value of a given private copy

sump is the coalesced identity ��

We summarize these results in the following lemma

Lemma �� Associative Coalescing Loop Operators

Given a loop L with coalescing loop operator � as de	ned in De	nition � above� necessary and

su�cient conditions for the doevery iterations of Lt to be executed as a doall loop are

� � identity operand set I as de	ned in De	nition
 above

� ����Xi� Xj�� Xk� � ��Xi� ��Xj � Xk��

�

In the following sections we present several important cases in which we have identi	ed coalescing loop

operators which are associative in nature� A number of these cases involve loops previously considered

di�cult or impossible to parallelize� however� within the framework presented herein these loops can

indeed be parallelized�

����� Loops that Perform Output Operations

In our research we have determined that output to a sequential 	le is a non�commutative� associative

operation which coalesces output from the program to the 	le� To understand this point� consider a

simple example involving the lisp append operator

append�append���� ���� ����
� append��� �� ����
� �� � ��

append���� append���� �����
� append���� �� ���

��

� �� � ��

Here we are making a simple list of the numbers �� �� and �� The � � enclose lists� The append

operator takes two operands which are lists and creates and returns a new list by appending the second

operand to the 	rst� In the 	rst case above� the list ��� is 	rst appended to the list ���� resulting in the

list �� ��� The list ��� is then appended to this list� resulting in the 	nal list �� � ��� In the second case�

the list ��� is 	rst appended to the list ���� resulting in the list �� ��� This list is then appended to the list

���� resulting in the same 	nal list� The 	nal result is identical in both cases even though the associative

order of the operands di�er�

However� if we now consider a case where we attempt to commute the operands� the results will

di�er

append���� ����
� �� ��

append���� ����
� �� ��

Clearly the append operator is not commutative� This has implications for the parallelization of

output operations in that loops containing sequential output operations must be parallelized based

on associativity alone� In Chapter �� section ��
� we discuss how this is accomplished based on the

transformation presented previously in section ����
�

The speci	c techniques used to parallelize output operations of this nature are applicable gener�

ally in computer programs that perform output� These techniques can be applied to the automatic

parallelization of computer programs in systems such as the Polaris restructurer ����

����	 Loops with Dynamic Last Values

When a loop writes to a variable which is �live�out�� the last value of the variable must be preserved

across loop exit� For example� in the following code segment the variable temp is live�out

��

do i � �� n
� � �
temp � � � �
� � �
� � � � temp
� � �

enddo
� � � � temp

After execution of the loop terminates� the rvalue of the variable temp is referenced in the statement

following the loop� This is what is known as a last value�

Variables are often used as temporaries in loops� and when a loop is parallelized multiple writes

to such shared temporaries create loop�carried output dependences� These are normally broken by

privatizing the temporary� For example

doall i � �� n
private tempp
� � �
tempp � � � �
� � �
� � � � tempp
� � �
if �i�eq�n�temp � � � �

enddo
� � � � temp

However� due to the reference after the loop� the last value must be written to the shared global

variable temp during the last iteration� In this case identifying the last iteration is straightforward since

temp is written every iteration� However� when a live�out shared variable is written conditionally� it is

di�cult to identify exactly when the last value is written� The following exempli	es this situation

do i � �� n
� � �
if �condition�temp � � � �
� � �
if �condition� � � � � temp
� � �

enddo

��

� � � � temp

In this case the variable temp has a dynamic last value� As mentioned� this poses a di�culty for

parallelizing compilers given that condition is loop variant� In the past this problem has been addressed

using timestamps to identify each write� Writes by processors executing iterations later than the current

timestamp are permitted� Processors executing iterations earlier than the current timestamp are not

permitted to update the shared variable ����� This solution incurs additional overhead in terms of both

space to maintain timestamps and computational time to achieve synchronized access to shared variables�

Within the framework of coalescing loop operators however� we have determined that last value

assignment is an associative operation which can be parallelized based on the transformation outlined

in section ����
�

To understand this point� consider the application of the assign operator� the functional equivalent

of assignment

assign��assign � �� ��
� ���

assign�� �assign � ���
� ���

The assign operator simply returns the argument on the right� This is assignment� As can be seen�

assign is associative� However� if we now consider a case where we attempt to commute the operands of

assign� the results di�er

�assign � ��
� ���

�assign � ��
� ���

Clearly assignment is not commutative�� Yet our example loop containing a dynamic last value can

be readily parallelized based on associativity alone

�Discounting the case id � id� self�assignment or the identity operation

��

parallel loop� block i � �� n
private tempp� writtenp
do	rst

writtenp � False
doevery

� � �
if �condition� then

tempp � � � �
writtenp � True

endif
� � �
if �condition� � � � � tempp
� � �

enddo
do	nal� ordered lock

if �writtenp� temp � tempp
enddo

One noteworthy di�erence between this transformation and those encountered previously is the fact

that tempp does not need to be initialized� Recall that the dofirst portion of the loop initializes private

copies of shared variables� In this case� however� we need not be concerned with initialization of tempp

because assignment �like output� does not involve an explicit recurrence relation and no initial value is

needed� Note however that if tempp was read and written under di�ering conditions� the initial value of

temp would have to be copied to tempp in the dofirst section of code�

The above discussion has been based on the determination of dynamic last values of scalar variables�

However� this technique can be easily extended to include the parallelization of loops with dynamic last

values of entire arrays or array sections� Such a case occurs in the SPEC CFP�� benchmark appsp

discussed in Chapter
�

The fact that loops with dynamic last values can be transformed based on associativity alone accen�

tuates once again that the fundamental property enabling parallelism in loops is associativity�

����
 Operators Involving Arrays in Loop�carried Flow Dependences

In this section we consider the parallelization of linear recurrences in the framework of coalescing loop

operators� We address for the 	rst time a case in which operands are array elements with loop�carried

�ow dependences between individual elements�

��

It is well known that recurrences are parallelizable when based on associative binary operators �����

By treating the array used to contain the result as a conglomerate operand� associative recurrence

relations can be modeled as associative coalescing loop operators�

Consider the following functional representation of the non�homogeneous recurrence relation ai �

ai�� � �i where �i is loop�variant�

op�append�op�append�� � � op�append�op�append�a� ��� ��� � � � �n��� �n�

op�append takes the left argument� performs the binary operation � with the right argument� and

returns a list with this result appended to the left argument� The operand a� represents the initial

value of the conglomerate operand� Similarly� �� � � � �n are the operands which will be assimilated into

the conglomerate� In e�ect� we have represented the array a as a conglomerate operand rather than as

multiple individual elements�

As de	ned above� op�append is associative� This can be easily demonstrated in a way similar to

append but with one important additional constraint

op�append� op�append� ��� ���� ����
� op�append� �� ��� ��� ����
� �� ��� �� ���� ��� ���

op�append� ��� op�append� ��� �����
� op�append� ��� �� ��� ����
� �� ��� �� ��� ��� ����

Here items in � � are lists� and � � are used to properly associate the operands of the binary operator

�� Note that if � is associative� then op�append is associative� This is a prototypical example of how

two operators can be coalesced to form a single loop operator�

A straightforward transformation of L to Lt will result in ine�cient code if the linear recurrence

comprises the bulk of the computation in L� In this case� the following well�known variation on Lt can

be substituted in its place

�In Chapter
 section
����� we discuss the closed�form solution of such recurrences when � is loop
invariant�

��

Transformation of op�append

Given a loop L with coalescing loop operator op�append� the algorithm to execute L on p processors

involves the following four steps

� Divide the iteration space of L into p contiguous slices

� Each processor computes the recurrence ai � ai�� � �i for its given slice� using as an initial value
the identity for the coalescing loop operator

� Serially compute the last values of each slice ��� p� ��

� Each processor ��� p� combines the last value from the preceding slice with each element in its slice
using �

�

Here we have taken advantage of the indexable nature of the array a to treat each element as a scalar�

This enables us to parallelize the loop without privatizing a�

The ability to optimize the parallelization of op�append in this way exempli	es the utility of the

framework of coalescing loop operators
 we get the best of both worlds in that we view a as a conglomerate

for the purposes of identifying parallelism� but optimize the parallel performance by accessing a as

multiple individual elements�

����� Loops with Conditional Exits

In our study of applications from several 	elds of science� we have determined another case of operations

which are associative but conditionally non�commutative in nature� Let�s return to the original example

presented in the introduction� a loop with a conditional exit� Here we have duplicated the original

parallel version of this loop

doall
�� j � search� neqns
private node� ndeg
node � perm�j�
if �marker�node��lt��� goto
��
ndeg � deg�node�
if �ndeg�le�thresh� goto ���
critical section

if �ndeg�lt�mindeg� mindeg � ndeg
critical section

��

�� continue
��� � � �

We determined in the introduction that the incorrect minimum will be returned when a processor

p executes an iteration j which is not executed serially and at the same time deg�perm�j�� is a global

minimum across the entire iteration space�

In the past� loops such as these were considered di�cult to parallelize� However� within the framework

of coalescing loop operators� this loop can be parallelized� The key lies in recognizing that the loop body�

including the conditional exit� is a non�commutative� associative coalescing loop operator� The following

portrays this same loop parallelized based on the transformation discussed in section ����

parallel loop� block j � search� neqns
private nodep� ndegp�mindegp� exitp
do	rst

mindegp � MAX
exitp � False

doevery
nodep � perm�j�
if �marker�nodep��ge��� then

ndegp � deg�nodep�
if �ndegp�le�thresh� then

exitp � True
goto ���

endif
if �ndegp�lt�mindegp� then

mindegp � ndegp
endif

endif
enddo
��� continue
do	nal� ordered lock

mindeg � MIN�mindeg�mindegp�
if �exitp� then

lock�exit
endif

enddo

The coalescing loop operator in this example consists of a thresholded minimum operation performed

across deg�perm�j��� Each processor computes the minimum accessed in its slice of the iteration space

��

and stores the result in mindegp� When an early exit is taken� the condition is noted in the private

variable exitp and the doevery is exited�

In the dofinal section of the parallel loop� the minimum of each slice is taken� However� if the

processor corresponding to a given slice took an early exit� the lock�exit routine is called and any

remaining processors waiting for entry into the dofinal critical section are discharged� This has the

result that execution of the dofinal section of code ceases for all processors�

Several points of interest are noteworthy here� However� an overriding concern is that if the loop

actually takes an early exit� it may exhibit little or no speedup� Why is this The above transformation

executes each slice regardless of whether the loop exited in an earlier iteration� This may result in a

considerable amount of unnecessary computation�

What is needed is global communication that provides for the noti	cation of an exit condition by

processors executing slices which occur before other slices� This would enable all processors to cease

execution when the condition is 	rst true for the processor executing the �lowest order� slice �i�e��

the slice occurring 	rst in the iteration space�� This optimization is implemented in a transformation

discussed in Chapter
� section
�
���

A second concern has to do with the partitioning of the iteration space� Consider the case where an

early exit is taken in the 	rst slice� If the entire iteration space is divided evenly amongst the processors�

even after the optimization just mentioned� the parallel execution time could be the same as the serial�

However this problem can be alleviated by employing a schedule which distributes the slices in smaller

pieces while still maintaining the original order of execution� An example of this optimization can be

found in the HPF�� benchmark cholesky in Appendix B� subroutine GENQMD� loop
���

Not surprisingly� while and goto loops pose a similar problem� The following example demonstrates

this point

�� continue
sum � sum� a�i�
if �condition� goto ��

goto ��
�� continue

�

Control �ow will exit this goto loop depending on the value of condition� Traditionally� loops of this

nature have been considered di�cult to parallelize due to the unknown size of the iteration space� In

this sense the problem is similar to that discussed previously in that unwanted side�e�ects may cause

the computation to be incorrect� However� unlike the case discussed above� goto and while loops will be

non�commutative whenever the iteration space is �overshot� by any one processor participating in the

computation� This follows from the same reasons as those discussed for the multiple�exit do loop�

The discussion to this point has been limited to conditionally exited loops in which the exit condi�

tion contains no references to conglomerate operands of coalescing operations which involve recurrent

variables�� In the event that an exit condition references such an operand� transformation Lt may need

to be modi	ed in order to attain appreciable speedups�

Essentially there are two tractable cases
 the 	rst� in which a closed�form exists for the coalescing

operation �as discussed in Chapter
� section
������ or second� no closed�form exists but the coalescing

operation is associative� In the former case parallelization is straightforward since the loop bounds are

obtainable from the closed�form� i�e�� the conditional exit has no e�ect on the parallelizability of L since

L has e�ectively become a do loop with a known iteration space� If the loop operator is associative� the

loop can be transformed using Lt�

In the latter case� transformation Lt may still be applied with a slight modi	cation� Following �
���

the doevery loop of Lt can be strip�mined and executed for a pre�determined number of iterations after

which the �accumulated� exit conditions for each slice can be checked� This can be repeated until the

loop exits�

A 	nal note on the application of Lt to conditionally exited loops relates to the privatization step of

the transformation� When a loop is �overshot�� non�privatized operands may be altered� This may be

solved by privatizing all operands and employing copy�in and copy�out as discussed in Chapter
�

�I�e�� exit conditions do not reference variables with loop�carried �ow dependences

��

������ Associativity in Pseudo Random Number Generation

As a 	nal example of an associative coalescing loop operator� we consider operations which can be viewed

as associative in an abstract sense� For example� many computer applications make use of pseudo�random

number generators �RNGs� as part of algorithmic solutions to scienti	c problems� We have determined

that RNGs occur frequently in computationally important loops in the sparse and irregular benchmark

suite discussed in Chapter �� Such generators commonly employ recurrence relations of various sorts

including� for example� linear homogeneous relations� As noted� calls to generators of this nature often

occur within computationally important loops� However� due to the recurrent nature of these relations�

such calls can serialize a loop�

Although the generation of pseudo�random numbers is not an associative operation per se� it can be

thought of as an associative operation if we consider the fact that the particular pseudo�random number

returned by a generator is not important as long as it is truly �random�� In other words� numbers are

random only in association with other numbers� In this sense� the generation of a stream of random

numbers can be considered a coalescing operation
 each new random number generated represents a new

operand to be assimilated into the conglomerate stream of random numbers�

The substitution of RNGs can thus be viewed as the replacement of a non�associative� single�threaded

RNG with an associative RNG� In Chapter
 we will further discuss this issue� and in Chapter � we

present several examples of cases in which single�threaded RNGs can be successfully substituted by

thread�parallel RNGs�

������ Commutativity vs� Associativity

In the introduction we highlighted the fact that a distinction must be made between associativity verses

commutativity as the basis for parallelization� Simple operators such as � and � are both commuta�

tive and associative and expressions involving such operators can often be parallelized based either on

associativity� commutativity� or some combination thereof ����� In the preceding sections� we�ve seen

several examples of coalescing loop operators which were non�commutative� As a result� the question

��

remains open as to what role commutativity plays in parallelizing coalescing loop operators� In order to

answer this question we must consider the parallel execution of a coalescing loop operator which is both

commutative and associative�

In order for a coalescing loop operator to be commutative� the following must hold
 ��Xi� Xj� �

��Xj � Xi�� This is simply the de	nition of commutativity applied to �� Consider the the following loop

sum � �
do i � �� �

sum � sum� i
enddo

The coalescing loop operator � is �� as de	ned in section ������ and the reduction is on the variable

sum� However� � is both an associative and commutative operator� By Lemma �� this loop can be

transformed into Lt and the resulting doevery doall loop executed on four processors as follows

p�z �� �
��� ���� �� ��

p�z �� �
��� ���� ��
�

p�z �� �
��� ���� �� ��

p�z �� �
��� ���� �� ��

It appears that commutativity cannot be applied to much e�ect in this loop� However� that is not

quite true� In fact� if we wished to schedule iterations � and � on p� and iterations � and � on p��

the commutativity of �� would allow us to do so� Why To understand this� consider the following

reassociated form of L

��� ��� ��� ��� ���� �� �� ��� ���� ��
�� ��� ���� �� ��� ��� ���� �� ���

This expression depicts the actual order of execution in the Lt doevery and dofinal� ordered lock

sections� Commutativity clearly allows us to commute the two operands ��� ��� ��� ���� �� �� ��

� ���� ��
�� ��� ���� �� ��� and ��� ���� �� ���

What this means in general is that commutativity enables the use of more �exible processor schedul�

ing� The order in which the assimilated operands are reduced into the conglomerate whole does not

a�ect the 	nal result�

��

We thus conclude that two types of coalescing loop operators exist
 operators which are both com�

mutative and associative� and operators which are associative but not commutative� We term the latter

ordered associative coalescing loop operators� and the former unordered associative coalescing loop op�

erators� This choice of terminology re�ects the fact that non�commutative� associative coalescing loop

operators have an intrinsic order in which they must be computed�

��� Conclusions and Future Work

It has been an interesting task �chasing the tail� of the principle property determining the parallelizability

of a given operation� However� it is our conclusion that associativity is fundamentally the only property

necessary to parallelize loops with coalescing loop operators�

An open question is �Exactly what class of loops can be represented as coalescing loop operators ��

This remains to be seen� however� based on our research to date� the framework is applicable to numerous

loops� Further investigation is needed to determine how widely applicable the model is in theoretical

terms� and this will necessarily involve a precise categorization of the types of operators which occur in

loops�

In the introduction to this chapter we discussed the need for a recurrence recognition scheme more

general than the current pattern�matching techniques implemented in the Polaris restructurer� We

believe an approach which tests for associativity of coalescing loop operators may be a reasonable solution

to the problem of recognizing parallelism in loops containing recurrences�

The following is a high�level view of one form an algorithm for determining associativity in loops

could take� It is based on the Gated�SSA representation of a program ����

Given a loop L

Transform L to GSA form
For each � function variable v at the header of L

back substitute�variable e from loop�carried edge�
Topologically sort � functions into directed acyclic graph G

based on non�loop carried �ow�dependences

��

�� This DAG is the operator representing the loop body
if �is associative coalescing op�G�� mark parallel�L�

void back substitute�expression�
if �expression is one of � function variables� return
else if �expression is invariant� return
else if �expression occurs on the lhs of assignment statement S�

expression � right hand side�S�
for each subexpression in expression

back substitute�subexpression�

boolean is associative coalescing op�DAG G�
Bind initial values to � function variables which are

�ow�predecessors of other � function variables
if ��GA � GB�� GC � GA � �GB � GC��

�� G is associative
return True

else return False

There are many issues to address in the implementation of an algorithm such as the one sketched

above� One interesting issue relates to the need to develop a representation capable of modeling loop

bodies in a form that can be recognized as a coalescing loop operator� This presents a challenging

problem in the 	eld of parallelizing compilers�

In the following chapter we continue the discussion of associative coalescing loop operators with a

case study of a modern C�� information retrieval application� We analyze this application based on the

concepts presented in this chapter and demonstrate the applicability of the framework in the emerging

Digital Library 	eld�

��

CHAPTER �

The Role of Coalescing Operations

in Parallelizing Computer Programs�

A Case Study

��� Introduction

This chapter treats the issue of determining parallelism in computer programs based on a general ap�

proach which models loops as coalescing loop operators as presented in Chapter �� We perform a case

study of the semantic retrieval application cSpace �
�� in order to evaluate the e�ectiveness of this

model� The performance of cSpace is characterized on a modern shared�memory multi�processor in

order to demonstrate the the applicability of this approach�

In the following section we introduce the cSpace application and provide an overview of the algorithm

to compute Concept Spaces� In section ���� we analyze the parallelism present in cSpace based on the

model presented earlier in Chapter �� In section ��
� we outline the implementation of the parallelism

��

present in cSpace� and in the 	nal section we characterize the performance of cSpace on a shared�

memory multi�processor�

��� The cSpace Application

The cSpace application benchmark represents an area of growing importance in the 	eld of computa�

tional science� Developed as part of the federal NII Digital Library Initiative �DLI� at the University of

Illinois ����� cSpace is a hybrid symbolic�numeric application which determines relationships between

terms in a collection of documents� The resulting map between terms is designated a Concept Space and

is useful in the re	nement of queries presented to the collection� Concept Spaces are used� for example�

in interactive query sessions as part of the DLI testbed at the University of Illinois� Urbana�Champaign

����� Algorithms to perform iterative search re	nement which incorporate the computation of Concept

Spaces are also under development as part of the Digital Library Research Program �DLRP� at Illinois�

����� The Object Model

Figure ��� depicts the cSpace object model using the Object Model Technique� OMT ��
�� Four object

classes exist in the system
 Term� Document� Cooccurrence� and ConceptSpace� The � symbol

represents the aggregation operation� A ConceptSpace� for example� aggregates a group of Terms� The 	

symbol on the link connecting Term to ConceptSpace indicates that aConceptSpace aggregates � or

more Terms� The link from Term to Term labeled similarity touches the Cooccurrence object with

a partial loop� This link represents the association of Terms to other Terms in a similarity mapping�

Similarity is a mapping from one term to another which indicates how similar they are semantically� based

on their occurrence and co�occurrence across a document collection� When a Term occurs together with

another Term in a document� the terms are said to co�occur� and a Cooccurrence object is formed�

The use of a � indicates a mapping involving many objects� Many Cooccurrence objects� for example�

are aggregated in Term objects� The small fog indicates that the collection of objects is ordered� and

�� quali	es the aggregation operation to mean that one or more objects are being aggregated�

��

Object Model

Term

ConceptSpace

Cooccurrence

Document

similarity

1+

1+

{O}

{O}

{O}

{O}

Figure �
�
 Object Model for cSpace

��

����� The Algorithm

Algorithms to compute Concept Spaces have been under development for several years� cSpace is a

parallel C�� shared�memory implementation based in part on algorithms described in ���� ��� ����

The computation proceeds in phases� The 	rst phase is symbolic in nature and accounts for less

than �� of the sequential execution time� The second phase combines symbolic and numeric aspects�

and accounts for the remaining ��� of the serial execution time�

�
�
�
� Phase I

The following pseudo�code depicts the computation in Phase I of the algorithm�

For each input document
Create Doc object doc and insert in global Docs collection
Extract noun phrases from doc

For each noun phrase in doc
If phrase has not been entered in global Terms collection

Create Term object term and insert in global Terms collection
Else

Return reference to term associated with phrase
Increment term�sum term freq
Increment term�term freq for doc
If this is the 	rst occurrence of noun phrase in doc

Increment term�doc freq
Insert reference to doc in term�docs
Append reference to term to doc�terms in doc

In this phase documents are read from input� noun phrases are extracted� and occurrence frequencies

for each noun phrase in each document� and across all documents in the collection� are recorded in a

global database of terms� The complexity of this computation is O�DT � where D is the total number of

documents and T is the total number of noun phrases across the collection�

��

�
�
�
� Phase II

The second phase computes term co�occurrence and similarity� As mentioned in section ������ similarity

is a mapping from one term to another which indicates how similar they are semantically� The following

pseudo�code depicts the computation in Phase II�

For each terma in Terms
For each doc in terma�docs

For each termb in doc�terms in doc
If termb has not been entered in collection of co�occurrences associated with terma

Create Cooccurrence object cooc and insert in terma�cooccurrences
Else

Return reference to cooc associated with termb

Increment cooc�sum intersections
Increment cooc�sum min term freqs

For each cooc in terma�cooccurrences
Compute cooc�similarity�terma� termb�

Perform subset operation on terma�cooccurrences
Output terma�similarities

The output consists of a one�to�many mapping where each term is associated with a list of related

terms ranked by similarity� The complexity of this computation is O�T DC� where T is the total number

of terms� D is the number of documents in which T occurs� and C is the number of co�occurring terms

in D�

����� The Similarity Function

The similarity computation is based on an asymmetric �Cluster Function� developed by Chen and Lynch

����� The authors show that the asymmetric cluster function represents term association better than the

popular cosine function�

ClusterWeight�Tj� Tk� �

Pn
i�� d

i
jkPn

i�� d
i
j

WeightingFactor�Tk�

�

ClusterWeight�Tk� Tj� �

Pn
i�� d

i
kjPn

i�� d
i
k

WeightingFactor�Tj�

These two equations indicate the cluster weights� or similarity� from term Tj to term Tk �the 	rst

equation� and from term Tk to term Tj �the second equation�� dij and dik are the product of term

frequency and inverse document frequency and are de	ned in a similar manner� dij � for example� is

de	ned as

dij � tf ij
 log�� �
N
dfj

 wj�

where N represents the total number of documents in the collection� tf ij is the frequency of occurrence

of term Tj in document i� dfj is the number of documents �across the entire collection of N documents�

in which term Tj occurs� and wj is the number of words in term Tj �

dijk and dikj represent the combined weights of both terms Tj and Tk in document i and are also

de	ned in a similar manner� dijk � for example� is de	ned as follows

dijk � tf ijk
 log�� �
N
dfjk

 wj�

Here tf ijk represents the minimum number of occurrences of term Tj and term Tk in document i�

dfjk represents the number of documents �in a collection of N documents� in which terms Tj and Tk

occur together� The 	nal expression� wj � is the number of words in term Tj �

In order to penalize general terms which appear in many places in the co�occurrence analysis� the

authors develop a weighting scheme similar to the inverse document frequency function� Tj � for example�

has the following weighting factor

��

WeightingFactor�Tj� �
log��

N
dfj

log��N

Terms with a higher value for dfj �i�e�� more general terms� have a smaller weighting factor� which

results in a lower similarity� Co�occurring terms are ranked in decreasing order of similarity� with the

result that more general terms occur lower in the list of co�occurring terms�

����� The Implementation

cSpace is based upon a collection hierarchy derived from the Polaris Project� a research project investi�

gating the automatic parallelization of Fortran codes ���� The collection hierarchy provides an extensive

set of templatized data structures including lists� trees� and sets� The data structures are templatized in

the sense that they may contain many di�erent types of objects� Any object derived from the base class

Listable may be referred to by a collection� Key data structures employed by cSpace include red�black

balanced binary trees which are used to alphabetically order both terms and co�occurring terms�

����� The Data Sets

cSpace currently has four input data sets� Each set consists of a list of noun phrases extracted from

various sources� including an email�based discussion list on computer programming� abstracts from the

Medline database� and abstracts from the Compendex science and engineering collection�

The 	rst of these data sets� dubbed the �Small� set� consists of ��� documents each approximately

the size of an abstract� The total size of this data set is ���
� terms and the source 	le containing the

documents is ����
�� bytes� This input was chosen speci	cally because this is the number of documents

which is considered manageable in a response to a query to a bibliographic database ����� The output

size for this input data set is ��������� bytes�

��

The second data set consists of ���� documents and ������ terms and is dubbed the �Medium� data

set� This data set is representative of a small personal repository ����� The document source 	le is

��������
 bytes in size and the output produced is ��������
� in size�

The third data set consists of ����� documents and ����
�� terms� This set is dubbed the �Large�

data set� and is representative of a collection of personal repositories� The document source 	le for this

input set is ���������� bytes in size and the output produced is ��
�������� bytes in size�

The fourth and 	nal data set consists of ����

 documents and ��������� terms� It is dubbed the

�XLarge� data set� and is representative of a collection of documents from a particular discipline �e�g��

information retrieval�� The document source 	le for this data set is ����������� bytes in size and the

output produced is ������������� bytes in size�

����� cSpace and the SPEChpc Suite

The process of establishing applicable benchmarks and characterizing their performance on supercom�

puter systems is an important step in evaluating language and machine environments which are being

used to solve computationally challenging problems� The SPEChpc benchmark suite has been estab�

lished under the auspices of the Standard Performance Evaluation Corporation �SPEC� in order to

accomplish this goal �����

SPEChpc is de	ned by a joint e�ort of industrial members� high�performance computer vendors� and

academic institutions� The primary goal is to determine a set of industrially signi	cant applications

that can be used to characterize the performance of high�performance computers across a wide range of

machine organizations� A secondary goal is to identify a representative workload for high�performance

machines which will be made available for scienti	c study� SPEChpc includes multiple program versions

for each benchmark� each targeted at a di�erent class of machine architecture� Multiple data sets are also

included for each benchmark� In a departure from other SPEC benchmark suites� SPEChpc speci	cally

permits benchmark tuning within prescribed limits� This philosophy is designed to prevent algorithmic

changes while at the same time permit each architecture�s capabilities to be used to best advantage�

��

The cSpace application benchmark is currently undergoing evaluation for membership as part of

an information retrieval benchmark in the SPEChpc benchmark suite� As such cSpace represents an

important class of application which is not yet represented in the SPEChpc suite�

��� Coalescing Operations in cSpace

Coalescing operations in cSpace can be broken down into one of two general categories� The 	rst

category includes operations which involve a statistical reduction of select characteristics of the input

set� For example� the number of occurrences of a given term in a given document may be tabulated and

recorded� The second category includes operations used in reducing a collection of objects by grouping

objects together which are related in some way� For example� multiple documents containing references

to the same term may be collected into a single data structure associated with that term�

Both of these operations are iterative in nature in that they are executed in loops which perform the

operation on numerous objects� Due to the fact that these coalescing loop operators are associative� the

loops can be parallelized�

In the following discussion� we often must consider the individual operations which comprise the loop

operator� Thus at times we refer to particular coalescing operations without speci	cally mentioning the

loop operators to which these operations belong�� The following sections outline the parallelism present

in the two phases of cSpace discussed in section ������

����� Phase I

The 	rst coalescing operation is a histogram reduction across terms in a document� The variable

term�term freq is unique for each term�document pair� and records the number of times term oc�

curs in doc� The second operation is also a histogram reduction� but this time across all documents in

the collection� This sum is recorded in the variable term�sum term freq� and is unique for each term�

�The actual loop operator can be determined from the context of the discussion by considering the
pseudo�code of the algorithm�

��

The third operation is a histogram reduction which records the occurrence of each term once per docu�

ment� The variable term�doc freq stores this value� and is unique for each term� These three reductions

correspond to the three increment operations in the pseudo�code for Phase I �repeated below�� All

three reductions are based on addition ���� and can be parallelized due to the fact that the increment

operation is an example of an associative coalescing operator�

For each input document
Create Doc object doc and insert in global Docs collection
Extract noun phrases from doc

For each noun phrase in doc
If phrase has not been entered in global Terms collection

Create Term object term and insert in global Terms collection
Else

Return reference to term associated with phrase
Increment term�sum term freq
Increment term�term freq for doc
If this is the 	rst occurrence of noun phrase in doc

Increment term�doc freq
Insert reference to doc in term�docs
Append reference to term to doc�terms in doc

Several coalescing operations remain which have not been discussed� In all cases these operations

involve the collection of objects into various data structures� One of the data structures employed by

cSpace consists of a one�to�one mapping of keys to objects� When an object is inserted into such a

structure� it will overwrite an existing object with the same key� Thus� if keys are not unique� the

operation is not commutative� To understand this point� consider the case where a given term TA occurs

at least twice in a collection which will be indexed alphabetically by term� If the computation is executed

in parallel� TA will be inserted twice into the collection� However� the resulting race condition will leave

the collection in an indeterminate state
 one of the objects will be stored� and the other overwritten�

Despite this fact� in both cases involving insertion into an indexed data structure in Phase I� keys

are guaranteed to be unique by the coalescing loop operator represented by the loop body� The If�Else

conditional control �ow construct in the above pseudo�code� for example� guarantees that keys are unique

and thus that term insertion is an unordered associative coalescing operation� Similarly� the insertion

��

of document references into term objects is an unordered associative coalescing operation guaranteed by

the uniqueness of the address of the document object being referenced�

The 	nal operation in Phase I involves a computation which� although associative� is not commu�

tative� It is summarized by the pseudo�code �Append reference to term to doc�terms in doc� above�

To understand this point� consider a simple example involving the lisp append operator drawn from

Chapter �

append�append���� ���� ����
� append��� �� ����
� �� � ��

append���� append���� �����
� append���� �� ���
� �� � ��

Here we are making a simple list of the numbers �� �� and �� The append operator takes two operands

which are lists and creates a new list by appending the second operand to the 	rst� In the 	rst case

above� the list ��� is 	rst appended to the list ���� resulting in the list �� ��� The list ��� is then appended

to this list� resulting in the 	nal list �� � ��� In the second case� the list ��� is 	rst appended to the list

���� resulting in the list �� ��� This list is then appended to the list ���� resulting in the same 	nal list�

The 	nal result is identical in both cases even though the associative order of the operands di�er�

However� as was demonstrated in Chapter �� if we now consider a case where we attempt to commute

the terms� the results will di�er

append���� ����
� �� ��

append���� ����
� �� ��

Clearly the append operator is not commutative� As presented in Chapter �� section ����
� loops

containing coalescing operations of this nature must be parallelized based on Lt�

�

����� Phase II

Phase II of the computation initially involves two reductions across the data set� both of which occur

in associative coalescing loops� The 	rst is a histogram reduction across all terms which co�occur with

a given term� In the pseudo�code below� the statement �Increment cooc�sum intersections� records the

number of times that terma occurs together with termb� The second operation is likewise a histogram

reduction which sums the minimum term frequencies of co�occurring terms across the entire collection�

This reduction is summed in the variable cooc�sum min term freqs� and is unique to each co�occurring

pair of terms� Similar to the histogram reductions in Phase I� these reductions also have their basis in

an associative coalescing operation based on the increment operator� and can be parallelized as a result�

For each terma in Terms
For each doc in terma�docs

For each termb in doc�terms in doc
If termb has not been entered in collection of co�occurrences associated with terma

Create Cooccurrence object cooc and insert in terma�cooccurrences
Else

Return reference to cooc associated with termb

Increment cooc�sum intersections
Increment cooc�sum min term freqs

For each cooc in terma�cooccurrences
Compute cooc�similarity�terma� termb�

Perform subset operation on terma�cooccurrences
Output terma�similarities

Several additional associative coalescing operations are performed in Phase II� For example� one such

operation takes place in the subset computation during execution of the statement �Perform subset

operation on terma�cooccurrences�� This operation involves a simple heuristic designed to increase the

precision of the resulting list of co�occurring terms� The computation involves the traversal of the list

of co�occurring terms� Terms are selected for comparison based on the actual number of words which

make up the term� if a term is made up of two words� for example� and occurs as an initial substring of a

three�word term with a lower similarity� the two�word term will be removed from the list of co�occurring

terms� This operation e�ectively reduces �noise� from the resulting list of co�occurring terms�

�

The process of traversing a list and conditionally removing entries is an operation which occurs in

other computer programs as well� For example� in the irregular Fortran benchmark DSMC�D �Discrete

Simulation Monte Carlo�� a similar operation is performed ���� Instead of terms� however� the list

contains molecules� Both of these operations can be modeled as coalescing operations in which the list

is being reduced in size� In ���� we reduce sections of the list in parallel� and the actual recombination of

the reduced sections takes place in a dofinal section which follows the doall execution of the doevery

portion of the loop� Thus� within the framework of coalescing loop operators� list reduction is associative

and can be parallelized�

Similar to term insertion in Phase I� the insertion of co�occurrence objects into the co�occurrence

data structure is an unordered associative coalescing operation� The 	nal operation in Phase II that

we will discuss is an append similar to that described previously in section ������ In this case� the

operation takes place during disk 	le output� When the statement �Output terma�similarities� in the

above pseudo�code is executed� terms and their co�occurring �related� terms are output to a sequential

disk 	le� This operation is a list append� and the outermost loop in Phase II can thus be parallelized

based on transformation Lt presented in Chapter ��

��� Implementing the Parallelism in cSpace

In determining how to take best advantage of the loop�level parallelism in computer programs in light

of the model we have presented in Chapter �� two important factors must be considered

� Coalescing Loop Operator Associativity

� Loop Execution Overhead

����� Coalescing Loop Operator Associativity

In sections ����� and ������ multiple operations were discussed without explicitly tying operations to

speci	c loops� This is due to the fact that multiple levels of parallelism exist across loops in the program�

Term insertion� for example� is an associative coalescing operation in both the outermost loop which

�

iterates across the input document set and the inner loop which iterates across noun phrases in a given

document� In fact� all of the coalescing operations discussed in section ��� are associative in their

respective enclosing loops�

����� Loop Execution Overhead

As noted in section ������ Phase I accounts for less than �� of the sequential execution time and Phase

II for the remaining ��� of the execution time� When manually parallelizing a computer program� the

overhead of implementing parallelism must be considered� Sources of overhead include the startup cost

of spawning parallel processes and synchronization of access to global data structures� As a result� there

is a trade�o� between the available parallelism and a given architecture�s ability to take advantage of

that parallelism� For the experimental results reported in this chapter� Phase II was parallelized and

Phase I executed serially� This choice was made purely as a practical matter based on their relative

proportions of the sequential execution time�

����� Implementing the Parallelism in Phase II

At a high level Phase II of the cSpace application consists of the following loops

For each terma in Terms
For each doc in terma�docs

For each termb in doc�terms in doc
� � �

As mentioned above� these loops perform associative coalescing operations and can be parallelized at

any level� In fact� ample parallelism exists in this phase to support parallel execution of multiple loops

simultaneously� However� our implementation was done on an architecture which supports only a single

level of parallelism� As a result� we chose to parallelize the outermost loop�

Several techniques are needed in order to accomplish the parallelization of this loop� As an example of

these techniques� in the following section we outline the steps necessary to perform output in parallel� The

�

speci	c techniques used to parallelize output are applicable generally in computer programs that perform

output� As noted in Chapter �� these techniques can also be applied in the automatic parallelization of

computer programs in systems such as the Polaris restructurer ����

�
�
�
� Parallel Output Operations

As discussed in section ������ the output operation is associative but not commutative� As a result�

the parallelizing transformation must retain the original non�commuted order of execution� As outlined

in Chapter �� four steps are needed in order to accomplish this
 privatization of shared variables�

initialization of private variables� block scheduling� and cross�processor reduction�

Privatization refers to the creation of thread or process�private copies of global variables�� The

privatization of the global output stream was accomplished by creating multiple thread�private output

streams� one for each processor participating in the computation�

The second step in the transformation is the initialization of the newly created private variables� As

discussed in Chapter � however� this was unnecessary due to the fact that the output stream pointer is

not a recurrent variable�

The third step involves the determination of how iterations of the loop are to be distributed to

the processors participating in the computation� Many possible processor schedules may be employed�

however� the schedule must insure that the original� non�commuted order of execution is retained� In

our case we employed a block schedule� In a block schedule� each processor is given a contiguous block

of iterations which are executed in the original serial order� This insures that the execution of iterations

of the loop are not interleaved �i�e�� are not commuted�� The block schedule was presented in detail in

Chapter �� section ����
�

The 	nal step is a cross�processor reduction� This involves the serial execution of the associative

coalescing loop operator with each of the privatized variables in turn� In the case of the output operation�

�This was not necessary in our example of the list append operation in section ����� for the simple
reason that the append example was written in the functional language lisp� and did not employ any
global shared variables

this involved an append of the process�private output 	les to the 	nal result 	le� This operation also

preserved the original order of execution and thus insured that the operands were not commuted�

As discussed in Chapter �� the 	rst two steps take place in the dofirst section of Lt� The body of

the loop is executed in the third step as a doall loop in the doevery section of Lt� The fourth step in

which the private output 	les are serially appended takes place in the dofinal section of code� This

was performed manually in our experiments�

The bulk of the source code for cSpace is contained in Appendix A�

��� Characterizing the Performance of cSpace

The shared�memory multi�processor employed in our experiments is an SGI Power Challenge� The Power

Challenge is a bus�based shared�memory cache�coherent NUMA �non�uniform�memory�access� multi�

processor� The particular machine used in the experiments described in this chapter is a ���processor

model with
GB of RAM� The �
�bit processors are based on the MIPS R����� CPU and R����� FPU

clocked at ��
MHz� Primary data and instruction caches are ��KB in size� with a �MB uni	ed secondary

cache� The translation lookaside bu�er �TLB� has a ��� entry capacity� Peak bandwidth on the ����bit

bus is ���GB�second�

num
procs

Small
m
 s

Small

Sp
Medium
m
 s

Medium

Sp
Large

h
 m
 s
Large

Sp
XLarge

h
 m
 s
XLarge

Sp

Serial � �
�� �

�� � �
��
�� � ��
��
�� �

Parallel � �
�� ���� �
�� ���� �
��
�� ���
 �
��

� ����

 �
�� ���� �
�� ���� �
�

�� ���
 �
��
�� ���

� �
��
��� �

� ���� �
��

� ���� �
��
�� ����
�� �
��
��� �
�� ���� �
��

 ���
� �
��
�� �����

Table �
�
 Wall�clock Execution Times and Speedups for cSpace

Table ��� summarizes the performance and scalability of cSpace across all data sets� For each data

set� the serial version of cSpace was executed on one processor� and the parallelized version on ��
�

�� and �� processors in order to determine the scalability of the application� The reported execution

times are elapsed �wall�clock� times in hours� minutes� and seconds� The Sp columns report speedup for

�

0

2

4

6

8

10

12

14

16

18

2 4 8 16

Processors

S
p

ee
d

u
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
ff

ic
ie

n
cy

Speedup
Efficiency

Figure �
�
 Speedup and E�ciency for cSpace XLarge Data Set

the given execution� Figure ��� portrays speedup and e�ciency graphically for the largest data set� All

experiments were conducted on a dedicated machine in single�user mode�

Several interesting trends are revealed in Table ���� First� several runs resulted in super�linear

speedups� This is an indirect result of the poor performance of multi�threaded dynamic memory alloca�

tion in C�� on the SGI Power Challenge �
��� The parallel version of cSpace used in these experiments

employs a customized memory manager which alleviates much of the overhead associated with multi�

threaded dynamic memory allocation� However� this also provides an unexpected bene	t in that the

overhead of numerous calls to malloc �i�e�� operator new� is entirely eliminated� As a result� for example�

the parallel version of cSpace which employs the customized memory manager executes approximately

��� faster than the serial version when both are executed on a single processor using the Large input

set�

Figure ��� con	rms that cSpace scales well up to �� processors with the given input sets� The

e�ciency of the computation is calculated as Sp�p where p is the number of processors participating in

�

the computation� As can be seen from the 	gure� cSpace achieved ���� e�ciency for all runs made

using the XLarge data set�

��� Conclusion

In Chapter � we presented a model for determining parallelism in computer programs based on the

concept of associativity in coalescing loop operators� In this chapter� we applied the model to a modern

information retrieval application� cSpace� and demonstrated its validity by characterizing the perfor�

mance of cSpace on a late�model� shared�memory multi�processor�

This work represents a melding of several 	elds in computational science
 research in parallelizing

compilation technology� research in high�performance benchmarking� and research into the parallelization

of National Challenge digital library applications� As such� it represents a signi	cant step towards the

realization of the goals outlined in the National Research Council report Computing The Future �����

In the following chapters we will turn our attention to the parallelization of scienti	c Fortran and

hybrid Fortran�C codes� However� as will be seen� the concepts presented in Chapters � and � carry

over into this realm as well�

�

CHAPTER �

Techniques for Solving Recurrences

��� Introduction

Extensive analysis of applications from a number of benchmark suites has revealed the presence of many

loops in which recurrences prevent doall ���� parallelization�

During a recent review of the Polaris restructurer ��� approximately ��� loops from programs in

the aforementioned suites were identi	ed as serial� Although the current Polaris parallelizer is able to

solve a wide variety of recurrences involving induction variables and reductions� approximately ��� of

these loops involve an explicitly coded recurrence� reduction� or induction for which Polaris is unable to

determine a parallel form� Approximately ��� of the loops in this ��� subset were determined to be

partially or fully parallelizable based on a manual inspection of the codes�

This chapter extends the solution techniques discussed in �
�� to include additional compile�time and

run�time techniques for solving recurrences in parallel� In the following sections we present an overview

of the benchmark codes on which we have based our analysis� and then move on to detail the various

techniques which have proven e�ective in parallelizing programs containing recurrences�

�

��� The Benchmark Suite

As mentioned in the Introduction to this chapter� the evaluation of the Polaris restructurer involved

benchmarks from several suites� In this section we provide a brief overview of these suites which include

Grand Challenge codes from the National Center for Supercomputing Applications �NCSA�� codes from

the Standard Performance Evaluation Corporation �SPEC CFP���� and codes from the Perfect Club

���� Table
�� gives a brief synopsis of each code� including its origin� the number of lines of code� and

the serial execution time on a R

���based SGI Challenge� In the course of our investigation of various

solutions to recurrences presented in this chapter� we have manually analyzed patterns in several of these

benchmarks�

Serial exec
Program Description Origin Lines �seconds�
APPLU Parabolic�elliptic PDE solver� SPEC ���� ����
APPSP Gaussian elimination system solver� SPEC

�� ��
�
ARC�D Implicit �nite�di�erence code for �uid �ow� PERFECT
��
 ���
BDNA Molecular dynamics simulation of biomolecules� PERFECT
��� ��
CMHOG �D ideal gas dynamics code� NCSA ����� ����
CLOUD�D �D model for atmospheric convective applications� NCSA ���� ��
�

FLO�� �D analysis of transonic �ow past an airfoil� PERFECT ���� ��
HYDRO�D Navier Stokes solver to calculate galactical jets� SPEC
��� �
�

MDG Molecular dynamics model for water molecules� PERFECT �
�� ���
OCEAN �D solver for Boussinesq �uid layer� PERFECT ���� ���
SU�COR Quantum mechanics with Monte Carlo simulation� SPEC ���� ���
SWIM Finite di�erence solver of shallow water equations� SPEC
�� ����
TFFT� Collection of FFT routines from NASA codes� SPEC �
� �
�
TOMCATV Generates �D meshes around geometric domains� SPEC ��� ����
TRFD Kernel for quantum mechanics calculations� PERFECT ��� ��
WAVE� Solves particle and Maxwell�s equations� SPEC ���
 ���

Table �
�
 Benchmark Codes

��� General Techniques for the Parallel Solution of Recurrences

This section presents an overview of parallelizing techniques for solving recurrences� Each technique in

the following list will be brie�y discussed and exempli	ed�

� Symbolic Computation of Closed�Forms

�

� Intrinsic Minimum � Maximum Reductions

� Semi�private Transformation

� Wrap�around Privatization

� Do�pipe Parallelization

� Multi�level Parallel Execution

����� Symbolic Computation of Closed�Forms

�
�� discusses a variety of techniques employed in the solution of reductions and inductions� These

techniques include� for example� the use of computer algebra in the determination of closed�forms for

scalar induction variables� Techniques of this nature can be extended to the solution of linear recurrences�

Consider the following example

a��� � �
do i � �� n

a�i� � a�i� �� � �
enddo

Here we have a recurrence involving the array a� Techniques for solving linear non�homogeneous

recurrences of this nature are well known ����� The closed�form for this recurrence is a�i� � i� resulting

in the following parallel form

a��� � �
doall i � �� n

a�i� � i
enddo

This transformation has been found useful in the NCSA Grand Challenge code cmhog�

A second pattern determined to be of importance involves induction variables which have disconti�

nuities in the sequence of values which they compute� For example

k � �
do i � �� n

��

k � k � �
if�k�eq�m�

k � �
use of k

enddo

Assuming m � n� the scalar induction variable k takes on the values ���m� n�m times� resulting in

n�m discontinuities in its sequence of values� The solution of this pattern employs the mod operator in

the closed�form

k � �
doall i � �� n

k � mod�i�m�
use of k

enddo

A third pattern which has arisen in a suite of sparse and irregular codes discussed in Chapter �

involves conditionally incremented induction variables� The following exempli	es this pattern

m � �
do i � �� n

if �m�lt�maxm� then
m � m� �
pp���m� � � � �

endif
enddo

This particular pattern can be easily transformed into a parallel form� The following steps are

involved in the transformation

� Determine the closed�form for the induction on m ignoring the conditional guard

� Privatize m and assign the closed�form to the private version at the loop header

� Substitute the privatized copy of m for all uses of m in the body of the loop

� Assign the last value m � min�maxm� n� if m is live�out

The transformed code looks like this

��

do i � �� n
mp � i� �
if �mp�lt�maxm� then

pp���mp� � � � �
endif

enddo
m � min�maxm� n�

The closed�form of m is i � � at the header of the loop� The variable mp is a loop�private copy of

the induction variable m� The original statement m � m � � has been deadcoded and all remaining

uses of m have been substituted by mp� Finally� the last value of m is assigned at the loop exit� In

order to simplify the presentation� the example assumes no zero�trip loops �

�� However� the technique

is applicable in the presence of zero�trip loops with a proper guard on the last value assignment of m�

����� Intrinsic Minimum
 Maximum Reductions

The recognition of reductions of the general form

A���� ��� � � �� � A���� ��� � � �� � �

is discussed in �
��� Here � represents an arbitrary expression and A may be a multi�dimensional array

with subscript vector f��� ��� � � �g which may contain both loop�variant and invariant terms� Neither �i

nor � may contain a reference to A� and A must not be referenced elsewhere in the loop outside other

reduction statements� Of course f��� ��� � � �g may be null �i�e�� A is a scalar variable��

These techniques have been implemented in a recognizer in the Polaris restructurer� However� these

techniques can be readily extended to include the recognition of calls to intrinsic min and max functions�

Once such intrinsics have been recognized� they can be automatically parallelized based on techniques

described in �

�� In section ��� of Chapter � we discuss the parallelization of an intrinsic max reduction

of this nature�

��

����� Semi�private Transformation

In the following example loop�carried dependences on the scalar a prevent doall parallelization� and the

loop�variant expression b�i� precludes a closed�form solution of the recurrence� In addition� the use of

a in the loop outside the reduction statement prevents use of a parallelizing reduction transformation

such as described in �

��

do i � �� n
a � a� b�i�
� � � � � � � a � � �

enddo

The traditional approach to solving this recurrence involves expansion and loop distribution as fol�

lows

a��� � �
do i � �� n

a�i� � a�i� �� � b�i�
enddo
doall i � �� n

� � � � � � � a�i� � � �
enddo

A second� run�time solution is the doacross loop ����

post���
doacross i � �� n
P
 wait�i�
Q
 a � a� b�i�
S
 � � � � � � � a � � �
T
 post�i� ��
enddo

Access to the variable a in statement S creates a loop�carried anti�dependence which can be resolved

by privatizing a as follows

��

post���
doacross i � �� n
P
 wait�i�
Q
 a � a� b�i�
R
 aprivate � a
T
 post�i� ��
S
 � � � � � � � aprivate � � �
enddo

The post operation has been �oated up past the use of a in statement S� thereby allowing doacross

computation to proceed with the next iteration� The privatization is from statement R onward� and a

is termed a semi�private variable�

This transformation is generally applicable wherever expansion and loop distribution ���� are used�

We have found this technique of importance in the CFP SPEC�� code su�cor� In the CFP SPEC��

code tomcatv a similar transformation was implemented to partially privatize arrays� thereby breaking

loop�carried anti�dependences�

����� Wrap�around Privatization

Wrap�around privatization involves the privatization of variables through partial peeling of the 	rst and

	nal iterations of a loop� Consider the following example

do i � �� n
� � � � � � � a � � �
body
a � � � �

enddo

The loop�carried �ow dependence on a can be resolved as follows

� � � � � � � a � � �
body
doall i � �� n� �

a � � � �
� � � � � � � a � � �
body

�

enddo
a � � � �

In essence� one complete iteration is peeled� with part of the iteration peeled into the loop prologue�

and the remainder peeled into the epilogue� The scalar a above is now privatizable� and the resulting

loop executes the remaining n� � iterations as a doall loop�

In the SPEC CFP�� benchmark applu several loop�carried dependences exist in the main time�

stepping loop in subroutine ssor� However� an important dependence involving the array rsd can be

broken through the application of wrap�around privatization� This same technique can be applied in the

SPEC CFP�� benchmark turb�d�

����� Do�pipe Parallelization

In the following example� the assignment a��� � a�n� prevents doall parallelization of the outer i loop�

However� a speedup can be achieved by pipelining the outer i loop �
��� The following exempli	es this

transformation

a��� � �
do i � �� n

do j � �� n
a�j� � a�j � �� � �

enddo
a��� � a�n�
do k � �� n

� � � � � � � a�k� � � �
enddo

enddo

process�
a��� � �
do i � �� n

do j � �� n
a�j� � a�j � �� � �

enddo
a��� � a�n�

��

aprivate � a
post�i�

enddo
process�

do i � �� n
wait�i�
do k � �� n

� � � � � � � aprivate�k� � � �
enddo

enddo

The outer loop has been broken into a ��stage pipeline which is executed on two di�erent processors�

The synchronization on a enforces �ow�dependences� thereby allowing the computation to proceed in

parallel�

Several codes in our test suite are amenable to the pipelining transformation� In all cases these involve

outermost time�stepping loops which cannot be solved as e�ciently with other techniques� Although the

pipelining technique has been known for some time� no empirical study has decisively demonstrated the

e�ectiveness of this technique on actual application codes�

����� Multi�level Parallel Execution

Parallelism within loops can be loosely characterized as either doall ����� doacross ����� or functional in

nature� Loop pipelining� as discussed in the previous section� is an example of functional parallelism�

Functional parallelism of various sorts has been a topic of study for some time ����� �
� ���
����

However� to date no empirical study has been conducted with a set of real programs to determine if

functional parallelism can be e�ectively combined with doall or doacross parallelism� In Chapter �� we

characterize the performance of multi�level parallelism by combining the doall� doacross� and do�pipe

transformations�

��

��� Techniques for Recognition and Solution of Recurrences in

Sparse � Irregular Codes

In this section we present an overview of parallelizing techniques for solving recurrences in sparse and

irregular codes� Each technique in the following list will be discussed and exempli	ed�

� Histogram Reductions

� Random Number Generator Substitution

� Proving Monotonicity of Index Arrays

� Combined Static � Run�time Analysis of Induction Variable Ranges

� Copy�in and Copy�out

� Loops with Conditional Exits

����� Histogram Reductions

The following code portrays a reduction on the array A which involves a loop�variant subscript function

f�i� j��

do i���n

do j � �� m

k � f�i�j�

a�k� � a�k� � expression

enddo

enddo

Due to the loop�variant nature of the subscript function f � loop�carried dependences may be present

at run�time� This pattern occurs commonly in many codes� both sparse and non�sparse� and is termed

a histogram reduction �

� ����

The parallelizing transformation takes one of three forms
 critical section� privatized� or expanded�

Each approach is discussed and exempli	ed below� As before� the language used in the examples is based

on IBM�s Parallel Fortran �����

� Critical Section

��

The 	rst approach involves the insertion of synchronization primitives around each reduction state�

ment� making the sum operation atomic� In our example the reduction statement would be enclosed by

a lock�unlock pair

parallel loop i���n

do j � �� m

k � f�i�j�

call lock e�k�

a�k� � a�k� � expression

call unlock e�k�

enddo

enddo

This is an elegant solution on architectures which provide fast synchronization primitives�

� Privatized

In privatized reductions� duplicates of the reduction variable that are private to each processor are

created and used in the reduction statements in place of the original variable� The following code

exempli	es this transformation

parallel loop i���n

private a�p�sz�

dofirst

a�p��	sz� �

doevery

do j � �� m

k � f�i�j�

a�p�k� � a�p�k� � expression

enddo

dofinal lock

a��	sz� � a��	sz� � a�p��	sz�

enddo

Each processor executes the dofirst section of the parallel loop once at the beginning of its slice of

the iteration space� The doevery section of the loop is executed every iteration� The dofinal section

of the code is executed once by each processor after completion of its slice of the iteration space� The

lock argument to dofinal indicates that the code be enclosed in a critical section�

��

� Expanded

The third approach employs expansion to accomplish the same functionality as the privatizing trans�

formation� Rather than allocating loop�private copies of the reduction variable� the variable is expanded

by the number of threads participating in the computation� All reduction variables are replaced by ref�

erences to this new� global array� and the newly created dimension is indexed by the processor number

executing the current iteration�

The initialization and cross�processor sums take place in separate loops preceding and following the

original loop� respectively� In this approach there is no need for synchronization� and both loops can be

executed in parallel

global a�e�n�threads�

parallel loop j���threads

do i���n

a�e�i�j� �

enddo

enddo

parallel loop i � �� n

private tid � thread�id��

do j � �� m

k � f�i�j�

a�e�k�tid� � a�e�k�tid� � expression

enddo

enddo

parallel loop i���n

do j���threads

a�i� � a�i� � a�e�i�j�

enddo

enddo

In our study of the benchmark suite discussed in Chapter �� we have found that histogram reductions

occur in key computational loops in all four of the benchmarks derived from the HPF�� motivating suite

NBFC� CHOLESKY� DSMC�D� and EULER� The parallelization of histogram reductions is based on

a run�time technique which depends on the associativity of the operation being performed� The Polaris

parallelizing restructurer recognizes histogram reductions based on the techniques discussed in �

�� A

more detailed study which compares and contrasts the performance of these three transformations is

contained in �����

��

����� Random Number Generator Substitution

One approach to breaking dependences caused by calls to pseudo�random number generators is to sub�

stitute thread�parallel generators which produce a robust stream of random numbers� Recent work by

Bailey and Mascagni involves the development and standardization of thread�parallel pseudo�random

number generators based on lagged Fibonacci series �
�� ����

As discussed in Chapter �� the substitution of robust thread�parallel pseudo�random number gen�

erators can be considered to enable the parallel execution of loops based on the associativity of the

operation� In our study of the benchmark suite discussed in Chapter � as well as other benchmark

suites� we have come across several cases involving RNGs

� Calls to Single�threaded Library Routines

� Calls to Single�threaded User Routines

� Linear Congruential Generators

� Lagged Fibonacci Generators

�
�
�
� Single�threaded Library Routines

We have determined that calls to RNG library routines occur in two computationally important loops

in a test suite used in the evaluation of the FALCON MATLAB compiler ��
�� In addition� random��

is called in INITIA DO���� in the Perfect Club benchmark MDG ���� The CHOLESKY benchmark

in our sparse � irregular suite also calls the rand�� library routine in an important loop� In three of

these cases� the RNG call is the only factor preventing parallelization of the loop after application of

the techniques implemented in the current Polaris restructurer� In CHOLESKY� compile�time analysis

of the array access pattern reveals a straightforward test which is su�cient to prove independence if

the random number generation can be parallelized �see section
�
�� below�� In each of these cases� the

loop�carried dependence can be broken by replacing these calls with a thread�parallel RNG�

��

�
�
�
� User Implemented Single�threaded RNGs

Several codes in well�known test suites contain implementations of RNGs of various types� The Perfect

Club benchmark QCD� for example� contains the routines PRANF� LADD� and LMULT which together

implement a linear congruential pseudo�random number generator ����� Similarly� the DSMC�D bench�

mark in our sparse � irregular suite implements a linear congruential generator based on work described

in ����� A third example occurs in the SPEC CFP�� benchmark su�cor which implements a lagged

Fibonacci generator as described previously in this section�

Lagged Fibonacci generators such as that implemented in su�cor take the form of a homogeneous

linear recurrence� Such relations can be automatically detected using pattern recognition techniques

���� General techniques for solving linear recurrences of this type are well known ����� and closed�forms

for such recurrences can be computed at compile�time as discussed in section
���� above� An example

of the closed�form solution of such a generator from the SPEC CFP�� suite is discussed in Chapter ��

section ������

����� Proving Monotonicity of Index Arrays

One of the major di�culties in automatically parallelizing sparse codes involves the analysis of sub�

scripted array subscripts� The use of subscripted subscripts normally causes data dependence tests to

draw overly conservative conclusions� The following portrays an example of such patterns

do i � �� n

k � ia�i�

a�k� � ���

end do

In the general case the subscript array ia must contain distinct indices if the outermost i loop is to

be executed as a doall loop� Another pattern which occurs commonly in our suite involves the use of

subscripted array subscripts in loop bounds

��

do i � �� n

do j � ia�i�� ia�i�����

a�j� � ���

end do

end do

To parallelize the outermost loop in this case� the range �ia�i�� ia�i���� �� must be non�overlapping

for all i� Although this condition may not hold generally� we have found that the index arrays in several

of our sparse codes are monotonic in nature� This is due to the fact that matrices in sparse codes are

often represented in a row�wise or column�wise format in which the values of non�zero elements of the

matrix are stored in a one dimensional array and pointers to the 	rst and last elements of each row or

column are stored in an index array� When this representation is used� the index array is non�decreasing�

The analysis of such access patterns has been considered di�cult to accomplish at compile�time�

However� using a combination of static� compile�time analysis and simple run�time tests� it is possible to

prove that these index arrays are non�decreasing� In the CHOLESKY benchmark discussed in Chapter ��

for example� it can be statically proven that the index array isu �initialized in SPARCHOL GOTO����

satis	es the somewhat stronger strictly�increasing condition� This proof is possible due to the fact that

the values assigned to isu are taken from a loop induction variable which is unconditionally incremented

in the body of loop ���� This in turn is su�cient to prove that SPARCHOL DO����� a loop which uses

isu in the bounds of an inner loop �as exempli	ed in the latter pattern above�� can be executed as a

doall loop�

In cases where the index array is read from input� the test for monotonicity can be done as the index

array is initialized� If the test cannot be performed on input� the overhead is still quite small� This is

due to the fact that the data representation employed in the codes studied in our suite guarantees that

n � m� �� where n is the size of the index array and m is the number of columns or rows� In practice

n �� �� where � is the number of non�zero entries in the matrix� As a result� the cost of testing the

condition ia�i����ge�ia�i� for i � ��n is insigni	cant�

When possible� this test should be inserted as part of the initial input operation� However� since this

loop is essentially a reduction across ia� it can also be executed in parallel� Using techniques for handling

��

loops with conditional exits discussed in section
�
��� the loop execution time may be decreased even

further�

We have found this pattern occurs in key computational loops in codes in the test suite discussed in

Chapter ��

����� Combined Static
 Run�time Analysis of Induction Variable Ranges

We have determined cases which require run�time assistance in the resolution of loop�carried dependences

involving induction variables� The following exempli	es one such pattern

m � miv

do i � k�j�� k�j � ��
a�m� � a�i�
m � m� �

enddo

This example is representative of copy operations within a workspace� In this particular case� a

closed�form can be computed at compile time for the induction variable m� The resulting closed�form

range of uses of m is �miv �miv � �k�j � �� � k�j��� given that k�j � �� � k�j� � ��� This loop can

be executed as a doall parallel loop if one of two conditions is satis	ed
 either miv � k�j � �� or

miv � �k�j � ��� k�j�� � k�j � ���

In the 	rst case� the lower bound of the range of m is greater than the largest value taken by the

loop index i� and the two ranges do not overlap� In the second case� if miv � �k�j � �� � k�j�� is also

� k�j�� the upper bound of m is less than the lower bound of i and again the ranges do not overlap�

If� on the other hand� miv � �k�j � �� � k�j�� � k�j � ��� then miv � k�j�� This in turn implies that

m � i is a loop�invariant condition and no loop�carried dependences hinder parallel execution� Finally�

if k�j� � miv ��k�j ���� k�j�� � k�j ���� the loop can be parallelized by creating a read�only copy of

the range a�k�j�
 miv � �k�j � ��� k�j��� and substituting reads of this copy for reads of the original

array� This has the e�ect of removing anti�dependences via variable renaming� The remaining case in

�This is the exact zero�trip test discussed in �

�

��

which miv ��k�j���� k�j�� � k�j��� and miv � k�j��� contains true loop�carried �ow dependences

and cannot be executed in a doall fashion�

A second example requiring similar analysis combined with the run�time estimation of the range of

an induction variable is discussed in Chapter �� section ������

����� Copy�in and Copy�out

It is often necessary to break loop�carried anti and output dependences by privatizing both scalar and

array variables which are de	ned and used within a single iteration ����� However� many such variables

have initial values which must be copied into each processor�s local copy of the variable prior to the start

of parallel execution� This process is known as �copy�in��

Corresponding to copy�in is an operation in which variables� values are copied out on the 	nal

iteration of each processor�s slice of the iteration space� Termed �copy�out�� this transformation is

necessary whenever local variables have a last value which is used outside the parallel region�

The following example exhibits a case where copy�in is necessary

do i � �� n
� � �
do j � ��m

a�j� � � � � a�j � �� � � �
� � � � � � � a�j� � � �

enddo
� � �

enddo

In this case� a��� is read 	rst and never written �although never being written is not a requirement��

If there is nothing else which precludes parallelization of the outer loop� a��
 m� can be privatized

and the value of a��� can be copied�in to each of the private copies� The following exempli	es this

transformation

doall i � �� n
private ap��
 m�

�

ap��� � a���
� � �
do j � ��m

ap�j� � � � � ap�j � �� � � �
� � � � � � � ap�j� � � �

enddo
� � �

enddo

Although the Polaris restructurer implements copy�out operations� support for copy�in operations is

lacking� An additional example of a case where both copy�in and copy�out are necessary for parallelization

is discussed in Chapter �� section ������

����� Loops with Conditional Exits

In various cases in our test suite� while loops and loops with multiple exits are used to conditionally

construct and manipulate data structures� As discussed at length in Chapter �� such loops present

di�culties in parallelization due to side�e�ects of iterations which are executed in parallel but would

not be executed serially� Nonetheless� such loops can be parallelized if their bodies form associative

coalescing loop operators�

One implementation di�culty which arises when parallelizing loops with conditional exits is the need

for each processor to ��ush� its remaining iterations once the exit has been taken� On the SGI Challenge

no mechanism is provided to explicitly take an early exit from a parallel loop� In order to provide an

early exit� we strip�mine the loop by creating a new� outer loop which executes one iteration on each

processor� In the inner loop� iterations are logically interleaved so that processors execute relatively

small slices of the iteration space� This enables exits to be detected with an e�ciency proportional to

the size of each slice� However� the transformation guarantees that iterations are not commuted�� A

global� shared variable is used to store the minimum iteration in which the break condition is true� Any

iteration greater than this minimum will take an early exit out of the loop� The following depicts this

transformation at a high level

�If this is confusing� please turn to Appendix B

��

geti � n��

stagesize � blocksize � maxproc

do �

 k � �� maxproc

do j � �k����blocksize��� n� stagesize

do i � j� j�blocksize��

if � i � geti � then goto �

���

if � exit condition � then

call lock

if � i
 geti � then geti � i

call unlock

goto �

end if

privatized reduction operation

���

end do

end do

�

 end do

This transformation as shown involves the following 	ve steps

�� The iteration space is divided into stages�

�� Each stage is divided into blocks with one block assigned per processor� For simplicity� we assume
here that the iteration space can be evenly divided by the blocksize�

�� Each processor goes through all stages� at each stage it executes the iterations in the block assigned
to it�

� Once a processor 	nds the exit condition true� it sets geti atomically to its current iteration� Note
that once geti is set� it can only be reset to iterations less than geti due to the if �i
 geti�

statement�

�� If a processor 	nds that it is working on an iteration beyond geti� it will exit to ���� thereby �ushing
its remaining iterations�

This transformation has been somewhat simpli	ed to illustrate the main idea� A detailed example of

the parallelization of an associative� multiple�exit coalescing loop is contained in Appendix B� Chapter �

further discusses the application of this technique in the sparse code cholesky�

In the following chapter we discuss a suite of sparse and irregular codes which we have developed in

the course of our work� We then analyze this suite based on the techniques presented in this chapter�

��

CHAPTER �

Automatic Parallelization of Sparse

and Irregular Fortran Codes

��� Introduction

Irregular memory access patterns have traditionally caused di�culties in the automatic detection of

parallelism� and in many cases parallelization is prevented� These problems are nonetheless important

in that a signi	cant fraction of current applications are irregular in nature�

In this chapter we present a benchmark suite representative of sparse and irregular codes which we

have developed as part of this work� We consider how well the parallelization techniques presented in

Chapter
 apply to this collection of codes�

In conducting this work� we compare existing technology in the commercial parallelizer PFA from

SGI with the Polaris restructurer ���� In cases where performance is poor� we perform a manual analysis

and determine the techniques necessary for automatic parallelization�

��

Serial exec
Benchmark Description Origin ! lines �seconds�

CHOLESKY Sparse Cholesky Factorization HPF�� ���
 ���
DSMC�D Direct Simulation Monte Carlo HPF�� ���

��
EULER Euler equations on ��D grid HPF�� ���� ��

GCCG Computational �uid dynamics Vienna
�� ���
LANCZOS Eigenvalues of symmetric matrices Malaga ��� ���
MVPRODUCT Basic matrix operations Malaga �
�
��
NBFC Molecular dynamics kernel HPF�� ��� ���
SpLU Sparse LU Factorization HPF�� ���
��

Table �
�
 Benchmark Codes

��� The Benchmark Suite

Table ��� summarizes the eight codes in the benchmark suite employed in our experiments� The suite

consists of a collection of sparse and irregular application programs as well as several kernels represent�

ing key computational elements present in sparse codes� Several of the benchmarks in our suite are

derived from the set of motivating applications for the HPF�� e�ort ����� Exceptions include the kernels

MVPRODUCT and LANCZOS which were developed as part of this project� The sparse CFD code

GCCG was developed at the Institute for Software Technology and Parallel Systems at the University

of Vienna� Austria�

����� CHOLESKY

The sparse cholesky factorization of a symmetric positive de	nite sparse matrix A produces a lower

triangular matrix L such that A � LLT � This factorization is used in direct methods to solve systems

of linear equations� An example of the type of access pattern seen in CHOLESKY is depicted below

do s � ��nsu

do j � isu�s��isu�s�����

snhead�j� � isu�s�

nafter�j� � isu�s��� � � � j

enddo

enddo

The indirectly referenced loop bounds of the inner j loop vary across iterations of the outer i loop�

The Harwell�Boeing matrix BCSSTK�� was used as input for this benchmark �����

��

����� DSMC�D

DSMC�D is a modi	cation of the DSMC �Direct Simulation Monte Carlo� benchmark in � dimensions�

DSMC implements a simulation of the behavior of particles of a gas in space using the Monte Carlo

method ���� An example of one of the access patterns occurring in this irregular application is abstracted

below

do i � �� NM

if �mcell�i��� �eq� ncell�i�� then

cellx�mcell�i�� � cellx�mcell�i�� � �

endif

enddo

In the above accumulation into cellx� subscripted subscripts occur on both the left and right�hand

sides of assignment statements�

����� EULER

EULER is an application which solves the Euler equations on an irregular mesh� The computation

is based on an indirectly referenced description of the grid� In addition� indirection is employed on

both sides of assignment statements� The following code abstract exempli	es this two�level pattern of

indirection

do ng���ndegrp

do i�ndevec�ng����ndevec�ng���

n� � nde�i���

n� � nde�i���

pw�n���� � pw�n���� � qw�n�����eps�i�

pw�n���� � pw�n���� � qw�n�����eps�i�

enddo

enddo

����� GCCG

GCCG is an example of a computational �uid dynamics solver� The access pattern is similar to that

found in 	nite element methods where the value of an element is determined by the contribution of

��

neighbors selected using subscripted subscripts� As a result� indirection occurs on the right�hand�side of

the computed expressions�

do nc�nintci�nintcf

direc��nc��bp�nc��direc��nc�

� �bs�nc��direc��lcc�nc����

� �bw�nc��direc��lcc�nc����

� �bl�nc��direc��lcc�nc����

enddo

����� LANCZOS

The lanczos algorithm with full reorthogonalization determines the eigenvalues of a symmetric matrix

��
�� LANCZOS is an implementation of the lanczos algorithm for sparse matrices� The key computa�

tional elements are the calculation of a sparse matrix�vector product and the reorthogonalization of a

dense work matrix� Access patterns include subscripted subscripts on the right�hand�side of assignment

statements as the following excerpt demonstrates

do j���a�nr

do k�ar�j��ar�j�����

r�j��r�j��ad�k��q�ac�k��i�

enddo

enddo

The matrix ���� BUS of Harwell�Boeing collection was used as input for this benchmark�

����� MVPRODUCT

MVPRODUCT is a set of basic sparse matrix operations including sparse matrix�vector multiplication

and the product and sum of two sparse matrices �
� �
�� The representation of the sparse matrices

employs two di�erent schemes
 compressed row storage �CRS� and compressed column storage �CCS�

����� The access pattern is demonstrated by the following code abstract

��

do i���a�nr

do k���b�nc

do ja�ar�i��ar�i�����

do jb�bc�k��bc�k�����

if �ac�ja��eq�br�jb�� THEN

c�i�k��c�i�k�

� � ad�ja��bd�jb�

endif

enddo

enddo

enddo

enddo

Here indirection occurs on the right�hand�side of the computed expressions� The matrix BCSSTK�

from the Harwell�Boeing collection has been used as input to this benchmark�

����	 NBFC

The calculation of non�bonded forces forms a key element of many molecular dynamics computations

���� NBFC computes an electro�static interaction between particles where the forces acting on an atom

are calculated from a list of neighboring atoms� Similar to the DSMC�D benchmark� the data access

pattern in this sparse code has indirection on both sides of the computed expressions

do k � �� ntimestep

do i � �� natom

do j � inblo�i��inblo�i�����

dx�jnb�j�� � dx�jnb�j�� � �x�i� � x�jnb�j���

dx�i� � dx�i� � �x�i� � x�jnb�j���

enddo

enddo

enddo

����
 SpLU

SpLU computes the LU factorization of a sparse matrix� The LU factorization is used in several methods

which solve sparse linear systems of equations� The factorization of a matrix A results in two matrices�

L �lower triangular� and U �upper triangular�� and two permutation vectors � and 	 such that
 A�i�j �

�LU�ij �

��

The pattern of access to arrays in SpLU includes indirectly referenced loop bounds across an iteration

space traversed by a loop induction variable

do i�cptr��j��cptr��j�

a�shift��a�i�

r�shift��r�i�

shift � shift � �

enddo

SpLU is a right�looking sparse LU factorization based on the CCS data structure� This algorithm

is somewhat slower than the MA
� code from Harwell Subroutine Library ����� a left�looking standard

benchmark for factorization� The motivation for developing a right�looking algorithm derived from the

lack of signi	cant parallelism in MA
�� This led to the inclusion of the original C version of SpLU in

the suite of HPF�� motivating applications� The version of SpLU included in our benchmark suite is a

Fortran implementation by the authors of the original HPF�� version ���� The sparse matrix lns ����

from the Harwell�Boeing collection was used as input for the results reported in this chapter�

��� Analysis and Results

In Chapter
 we discussed several techniques that we found important in parallelizing sparse and irregular

Fortran codes� In this section� we categorize the transformations applicable to each benchmark�

Polaris PFA Manual Polaris PFA Manual
Benchmark Tseq Tpar Tpar Tpar Speedup Speedup Speedup

CHOLESKY

�� �

�

�� �

� ���� ���� ����
DSMC�D �
�� �
�� �
�� �

� ���� ����
���
EULER �
�� �
��

�� ���� ����
GCCG ��
�� �
�� �
�� ��
� ����
LANCZOS �

�� �
�� �
�� ���� ����
MVPRODUCT �
�� �

� �
��
��� ����
NBFC �
�� �
�� �
�� ���� ����
SpLU �
�
 ��
�� �

 �
�� ���� ���
 ���

Table �
�
 Speedups
 PFA� Polaris� and Manual

Table ��� presents a comparison of the speedups obtained by Polaris with those of the commercial

parallelizing compiler PFA� provided by SGI� With the exception of the Polaris�transformed version

��

of EULER� the programs were executed in real�time mode on eight processors on a ���processor SGI

Challenge with ��� MHz R

�� processors� The Polaris�transformed version of EULER was executed in

real�time mode on a
�processor SGI Challenge with ��� MHz R

�� processors due to the unavailability

of the �� processor ���MHz machine� The table shows that Polaris delivers� in several cases� substantially

better speedups than PFA�

The table also portrays� in the manual column� additional speedups obtained using new techniques

discussed in Chapter
� section
�
� In these cases the techniques were manually implemented and the

resulting transformed program executed in parallel�

In general our results indicate that histogram reductions are one of the most important transforma�

tions applied in our suite� Other techniques which proved crucial to the process of parallelization include

both sophisticated analysis of index array and induction variable access patterns� and the substitution

of pseudo�random number generators�

In the following sections� techniques applied to each benchmark both manually and automatically

will be outlined and compared to those applied by PFA�

����� NBFC

NBFC contains one computationally key loop which accounts for over ��� of the sequential execution

time� Both histogram and single�address reductions occur in the loop� When a given array is involved

in both types of reduction statement� it may be parallelized by applying the histogram reduction trans�

formation at all reduction sites involving the array� The histogram reduction technique was su�cient to

parallelize this loop� and excellent speedups were obtained� PFA� however� does not implement histogram

reductions and therefore achieved no speedup on this benchmark�

����� CHOLESKY

The following techniques were applied to CHOLESKY

� Histogram reductions

��

� Loops with conditional exits

� Proving monotonicity of index arrays

� Random number generator substitution

Histogram reductions are performed in the main update loop indexed by the variable kk in UP�

DATE DO!�� This loop accounts for approximately ��� of the serial execution time� The transforma�

tion� however� did not yield signi	cant speedups� This is due to the additional overhead incurred during

the initialization and cross�processor reduction phases of the expanded transformation employed� We

speculate that this may be due �at least in part� to the fact that little work other than the reduction

is done in this loop� As a result� the initialization and 	nal cross�processor reduction phases of the

transformed loop essentially repeat the computation performed in the doall portion of the transformed

loop�

Loops with conditional exits occur in GENQMD DO
��� UPDATE DO!�� and UPDATE DO!��

The transformation discussed in Chapter
 section
�
�� was applied to GENQMD DO
��� a loop which

performs a reduction across nodes to determine the minimum degree node� The reduction is terminated

by a threshold condition which causes an early exit to be taken from the loop� The loop accounts for

about ��� of the sequential execution time� Loop�level speedups of ��� were achieved on four processors�

The techniques outlined in section
�
�� of Chapter
 apply in the SPARCHOL DO���� and SPAR�

CHOL DO���� loops in CHOLESKY� Together these loops account for approximately �
� of the serial

execution time� A loop�level speedup of ���
 was obtained in SPARCHOL DO���� on four processors�

The 	nal transformation involved the substitution of a parallelized pseudo�random number generator

for the library call in SPARCHOL DO����� This loop accounts for approximately ���� of the serial

execution time� The call to the random number generator is the primary work done in the loop� and a

loop�level speedup of ��� was achieved on eight processors�

Although both Polaris and PFA 	nd a large number of loops parallel in this code� little high�level

parallelism is available due to the nature of the supernode algorithm employed� This is re�ected in the

results for all three versions of the benchmark
 Polaris� PFA� and the manually transformed code�

�

����� DSMC�D

The following techniques were applied to DSMC�D

� Histogram Reductions

� Random Number Generator Substitution

� Combined Static � Run�time Analysis of Induction Variable Ranges

� List Reduction in Coalescing Loop Operators

Histogram reductions� discussed in Chapter
� section
�
��� are important in several loops
 IN�

DEXM DO���� INDEXM DO���� COLLMR DO���� MOVE� DO!�� and MOVE� GOTO���� To�

gether these 	ve loops account for approximately �
� of the sequential execution time� Random num�

ber generator substitution� discussed in Chapter �� section ������� is important in COLLMR DO����

MOVE� GOTO���� INIT� DO���� and ENTER� do
� Together these four loops account for almost

��� of the serial execution time� There are two other loops which contain conditionally incremented

induction variables� ENTER� DO
 and INIT� DO���� Together these loops account for approximately

���� of the sequential execution time�

Both of the latter loops are parallelizable using techniques outlined in �

� for determining the closed�

form of induction variables if the induction can be proven to be monotonically increasing� However� the

conditional increment poses a problem in that monotonicity may not hold and the induction variable

ranges may overlap as a result� Through static analysis of the pattern in these loops� a simple run�time

test can be abstracted which determines that the induction variable ranges do not overlap and that the

loops may be executed in parallel� This transformation was portrayed in Chapter
� section
�����

�
�
�
� List Reduction in Coalescing Loop Operators

DSMC�D contains a while loop in the MOVE� subroutine which accounts for approximately ��� of the

sequential execution time� This loop computes the movement phase� the 	rst of three phases executed

each iteration of the outermost time�stepping loop� Molecules involved in the movement phase are stored

in lists comprised of two global arrays� These arrays are indexed almost without exception by the loop

��

induction variable� However� when a molecule leaves the �ow� it is deleted from the list and replaced by

the last molecule in the list� This creates loop�carried dependences in the loop� However� the deletion

of molecules can be deferred until after the entire list has been processed ���� ��� Based on this fact� the

following transformation can be made

i � �
j � n
while �i � j�

if �cond�a�i�� then
a�i� � a�j�
j � j � � �

else
i � i � �

endif
endwhile

parallel loop i � �� n
if �cond�a�i�� then

a�i� � mark
endif

enddo
call remove marked�a�

The current molecule in a�i� is marked for later removal� After exit from the parallel loop� marked

elements are removed and the array a is packed� E�ectively� the operation of removing and replacing

elements in a is an example of list reduction as discussed previously in Chapter � section ������ and can

be modeled as a parallelizable associative coalescing loop operator�

The combination of these techniques in the loops mentioned above contributed to the overall program

speedup of
��� in the manually parallelized version� The speedups reported for Polaris include the

histogram reduction in MOVE� DO!�� PFA� however� does not implement any of these techniques and

therefore achieved less of a speedup than Polaris� although both were low�

����� EULER

EULER contains 	ve time�consuming loops which are computationally important
 DFLUX DO����

DFLUX DO���� EFLUX DO���� EFLUX DO���� and PSMOO DO��� Together these loops account

for over ��� of the serial execution time of the program� In all 	ve loops� the histogram reduction

transformation is the only transformation necessary to parallelize the loop�

The speedups for this benchmark are also fairly good� with an overall program speedup of ��� on

processors �based on the same e�ciency �Sp�p�� the speedup on � processors would be
�
�� No speedup

��

was achieved with PFA due to the fact that PFA does not recognize and solve histogram reductions� In

comparison� Polaris did considerably better�

����� GCCG

The primary access pattern in GCCG involves indirections which occur on the right�hand�sides of as�

signment statements� as discussed in section ���� These pose no particular dependence problem due to

the fact that the array locations are read but not written� Many reductions occur in GCCG� but they

are all scalar or single�address reductions in which the reduction variable is a single element of an array�

Current parallelizing technology is capable of recognizing and transforming such reductions into parallel

form� This fact is re�ected in the speedup results for PFA as well as Polaris�

����� LANCZOS

LANCZOS presents a situation similar to that found in GCCG in that the primary access pattern

involves indirection on assignment statements� right�hand�sides during a sparse matrix�vector product

operation� The reorthogonalization is computed using dense matrices� and arrays are accessed via loop

indices� As a result� no loop�carried dependences prevent parallelization� This fact is re�ected in the

good speedups achieved by both Polaris and PFA�

����	 MVPRODUCT

MVPRODUCT has been implemented such that dense matrices result from the combination of sparse

matrices� Due to this fact� indirection arises only on the right�hand�sides of assignment statements� This

type of indirection poses no particular problem to parallelization� and the speedups achieved by both

PFA and Polaris re�ect this fact�

����
 SpLU

The parallelization of SpLU involved the following techniques

��

� Proving monotonicity of index arrays

� Combined Static � Run�time Analysis of Induction Variable Ranges

� Copy�in and Copy�out

Loop DPFAC DO�� in SpLU accounts for almost ���� of the serial execution time of this benchmark�

This loop involves access to arrays via an induction variable which is conditionally incremented� In this

case� static analysis of the code reveals conditions which can be tested at run�time to prove that ranges are

independent �non�overlapping�� Consider the following example abstracted from SpLU DPFAC DO��

do �
 i���n

ia���i� � ia���i�

�
 continue

do �

 k���n

shift�mod�k����lfact��

do �
 j�k���n

c��shift

do �
 i�ia���j��ia���j�

a�shift��a�i�

shift�shift��

�
 continue

c��shift��

if �fill�in� then

c��c���

a�shift	shift�positive�inc�� ���

shift�shift�positive�inc

endif

do �� i�ia���j����ia���j�����

a�shift��a�i�

shift�shift��

�� continue

ia���j��c�

ia���j��c�

�
 continue

ia�n����shift

�

 continue

Loop ��� is the outermost loop� and is executed for the n columns in array a� ia � and ia � are index

arrays� shift is an induction variable which is also used as an index into a� Two facts are su�cient to

show that the do �� loop may execute in parallel
 one� for each j in do ��� the range of shift must not

��

overlap the range ia ��j�� ia ��j ���� � for iterations of do �� executed on other processors�� and two�

the range of shift must not overlap the same range of shift for iterations executed on other processors��

In order to prove these two points we must 	rst determine that ia � and ia � are non�decreasing�

These index arrays are reassigned in each iteration of do ��� thereby complicating the analysis of the

access pattern� However� it is possible to determine statically at compile time simple conditions under

which these arrays will be non�decreasing� First� note that the induction variable shift is never decre�

mented in the loop� It is conditionally incremented under the �	ll�in� condition by a positive amount�

Likewise� the initial conditions �loop ��� guarantee that do �� will execute at least one iteration� Thus�

one of the invariant conditions of this loop is that the induction variable shift is strictly increasing� If

ia � and ia � are initially non�decreasing� by induction this invariant condition is su�cient to guaran�

tee that they will remain non�decreasing across the entire execution of the outermost loop ���� Thus�

our task of proving that these index arrays are non�decreasing has been reduced to the complexity of

executing the test ia�i����ge�ia�i� for i � ��n once at run�time�

As a side�e�ect of this analysis we have proven that no output dependences exist across iterations of

the do �� loop� This is a result of the fact that shift is strictly increasing in do ���

Given that ia � and ia � are non�decreasing� the next step is to show that for each j in do ��� the

range of shift does not overlap the range �ia ��j�� ia ��j � �� � �� for iterations of do �� executed on

other processors �in e�ect� we are proving that there are no �ow or anti�dependences across iterations of

do ���� This can be accomplished using a simple test which compares the upper bound of shift to the

lower bound of ia � and the lower bound of shift to the upper bound of ia �� As before� the presence

of a conditional �	ll�in� increment to shift complicates the analysis� However� we can use an estimate

of the maximum value of shift by determining an upper bound across the entire iteration space of the

do �� loop� Based on the initial conditions and the strictly increasing nature of shift� ia ��j� � ia ��j��

Thus we know the tripcount of do ��� and we can conservatively assume that the �	ll�in� is always true�

�I�e�� no �ow or anti�dependences are present
�I�e�� no output dependences

��

Together these facts lead to the following run�time test to con	rm the non�overlapping nature of reads

and writes to a

min�i�ia�k���

max�i�ia�n�����

min�shift�shift

max�shift�shift��max�i�min�i����n�k��positive�inc�

if�min�shift�gt�max�i �or� max�shift�lt�min�i� then

parallel��true�

else

parallel��false�

end if

This test is placed outside the do �� loop� and as a result incurs little overhead� When it is true�

do �� may be executed in parallel� When false� it must �conservatively� be executed serially� What this

test actually proves is that writes to a are independent of reads to a across all iterations of do ��� This

concludes the development of a test capable of proving that the iterations of do �� are independent�

The 	nal transformation applied in DPFAC DO�� involved the copy�in and copy�out of the privatized

arrays a� r� cptr� and cptr�� Each of these variables have initial values which must be copied into each

processor�s privatized copy of the variable prior to the start of parallel execution�

Neither PFA nor Polaris implement the functionality present in these three techniques� and the corre�

sponding speedups re�ect this fact� Polaris� in particular� applied the histogram reduction transformation

to an inner loop with a low tripcount� This resulted in a signi	cant slowdown�

��� Conclusion

In our study of our sparse and irregular benchmark suite we have determined that indirection on the

right�hand�sides of assignment statements is not a hindrance to automatic parallelization� We have also

identi	ed several new techniques which begin to point to the fact that� although much work remains to

be done� automatic parallelization of sparse and irregular codes is feasible�

In the following chapter we consider the application of the techniques presented in Chapter
 on

Fortran application benchmarks containing outer time�stepping loops�

��

CHAPTER �

Parallelism in Time�Stepping Loops

��� Introduction

The Polaris restructurer recognizes much doall parallelism at both the outer and inner loop level ����

However� few experiments have been conducted on actual application codes to determine whether e�ec�

tive advantage can be taken of additional non�doall parallelism�

In this chapter we perform an analysis of two applications from the SPEC CFP�� benchmark suite in

order to determine whether signi	cant non�doall parallelism is present and whether this can be e�ectively

combined with doall parallelism to achieve parallelism on multiple levels�

��� Transformations Employed in su�cor

In this section we discuss the application of several of the techniques presented in Chapter
 on the

SPEC CFP�� benchmark su�cor� The SPEC CFP�� Benchmark su�cor is a quantum physics program

which computes the masses of elementary particles based on a monte carlo method� Transformations

employed in parallelizing su�cor include the following

� Discontinuous Inductions

��

� Symbolic Computation of Closed�forms

� Semi�private Variables

� Doacross

� Loop Pipelining

� Synchronization Schemes

� Multi�level Parallelism

Some of these transformations are not discussed in Chapter
� and we assume the reader is familiar

with these techniques �e�g�� doacross ��� Examples of the application of each of these transformations

follows�

����� Discontinuous Inductions

The example given in Chapter
� section
���� typi	es two induction variables found in SU�COR do���

These induction variables� ifreq and ipr� were solved using the transformation depicted in the example

in Chapter
�

����� Symbolic Computation of Closed�Forms

The following example portrays a section of code from the routine TRNGV which implements a lagged

Fibonacci pseudo�random number generator

IFIRST��
IMAX���
�
���
�
DO ��� N���N���

DO �� I�IFIRST�IFIRST����
IREG�I������IREG�I��
���IREG�I�
IF �IREG�I������LE��� IREG�I������IREG�I������IMAX

�� CONTINUE
IFIRST�IFIRST����

��� CONTINUE
DO �� I�IFIRST�IFIRST�LEFT��

IREG�I������IREG�I��
���IREG�I�
IF �IREG�I������LE��� IREG�I������IREG�I������IMAX

�� CONTINUE
RNORM�R�"RMAX

�Readers seeking background material may consult ����

��

DO �� I���LVEC
RANVEC�I��RNORM"IREG�I��
��

�� CONTINUE
DO
� I����
�

IREG�I��IREG�I�LVEC�

� CONTINUE

TRNGV is called from within a nest of the major serial loops� including the outermost time�stepping

loop SU�COR do�� as well as SWEEP do���� This section of code has an explicit recurrence relation of

the form ai � ai�����ai���� mod ���� �� It is an implementation of a lagged�Fibonacci pseudorandom

number generator with recursion parameters of ����� ���� �
��� Note that the conditional subtraction

performs a modulo operation which results in an integer in the range ��� ������� In theoretical terms� this

is the representative residue class of the ring which contains equivalence classes of the integers modulo

��� � ��

The recurrence is computed in loops ��� and �� in the above code� Loop �� de	nes the storage

variable ranvec which is returned to the caller� Loop
� reinitializes the recurrence variable ireg with

the 	nal ��� values computed in loops ��� and ��� As a result� the sequence of values computed by the

recurrence is mathematically continuous�

One approach to solving linear homogeneous recurrences of this nature is to symbolically calculate

the closed�form of the recurrence during compilation as was discussed in the Chapter
� section
�����

Although a closed�form was determined for this recurrence� the actual computation of the sequence

requires more precision than that available in the double precision �oating�point representation� As a

result� loop distribution was employed to break the dependence arcs in two enclosing loops in the calling

subroutine SWEEP�

The loop distribution transformation required that ranvec be expanded by one dimension for each

of the enclosing loops from within which the computation was hoisted� Choosing the level of loop

distribution involved a tradeo� between the increase in space complexity due to expansion and the

advantage of breaking dependence arcs at outer loop levels� Initially the recurrence was hoisted three

levels to a point outside of loop SWEEP do������ but this exceeded the available memory on the

��

machine� As a result� a compromise was made and the recurrence was hoisted out only two levels to

SWEEP do������ a perfectly nested loop inside SWEEP do������

����� Semi�private Variables

Section
���� of Chapter
 discussed semi�private variables in the general case� Such a pattern occurs in

the main program unit SU�COR in the outermost time�stepping loop SU�COR do��� In this case� the

semi�private variable is the main data structure u� a double precision�
�dimensional structure of size

�
����
����
�� u is semi�private from the call to CORR onwards in SU�COR do��� allowing CORR to

execute in tandem with SWEEP� Code depicting this transformation is outlined in section ����� below�

and is based on the loop pipelining technique�

����� Doacross

The loop SWEEP do��� in su�cor is a candidate for doacross parallelism for two reasons
 one� there

is work done at the head of the loop which does not involve accesses to variables with loop�carried

dependences� and two� since the loop�carried dependences present in this loop are conditional in nature�

it is possible to dynamically take advantage of the case�s� where no actual dependences exist�

A doacross loop was implemented for do������ the outermost of a perfect nest of two loops� This was

accomplished using synchronization to enforce the dependence relationships on sections of the main data

structure u� a double precision�
�dimensional structure of size �
����
����
�� The issue of granularity

of synchronization arose� and it was determined empirically that synchronization should be done on

�panels� of u� To understand this choice� consider Figure ����

In this 	gure� u is divided up into �ndim lattices in the k dimension� Each lattice consists of ndim

�panels� in the j dimension and each panel consists of lvec elements in the i dimension� Each element

is a group of four double�precision �oating�point numbers�

The computation proceeds as pictured below

do su�cor �� it � �� nmeas

�

2
ndim

ndim

lvec

i

j

k

Figure �
�
 Data Access Pattern in SPEC CFP�� Benchmark su�cor

��

doacross sweep ����� ilat � �� �ndim

do sweep ����� i� � �� ndim
� � �
conditionally read multiple panels of u
� � �
conditionally write multiple elements of panel i�� lattice ilat of u
� � �

��� continue
enddo ��

The loop SWEEP do����� is the outermost loop in the SWEEP subroutine� The SWEEP subroutine

is called from within SU�COR do�� in the SU�CORmain program unit �the call has been replaced by the

body of SWEEP in order to simplify the example above�� Each iteration of the main time�stepping loop

SU�COR do�� conditionally reads and writes panels and elements� respectively� in the �ndim lattices�

As mentioned earlier� su�cor is based on a monte carlo method� As a result� the reads of panels

of u in SWEEP do����� span the entire data structure � i�e�� panels from several di�erent lattices are

read in each iteration of SWEEP do������ Writes of u� on the other hand� are limited to elements in

lattice ilat� panel i� in loop ������ As a result� synchronization on u is done on a panel�by�panel basis�

Section ����� provides additional detail�

In order to implement the doacross transformation� synchronization was required for the computation

of pseudo�random numbers discussed in Section ����� above as well� This was a result of the choice to

hoist the computation only two levels due to the complexity of space usage when three level hoisting

was employed� An outline of the synchronization is given in the code example in the following section�

����� Loop Pipelining

In order to take advantage of the semi�private variable u in su�cor� the loop pipelining technique was em�

ployed� In this case� the outermost time�stepping loop SU�COR do�� was coalesced with the outermost

loop in the subroutine SWEEP� do������ The resulting loop was executed as a doacross as exempli	ed

in section ����
� However� SU�COR do�� actually includes a call to the subroutine CORR which was

not pictured in the previous example� As was discussed in section ������ the main data structure u is

semi�private in the context of this call to CORR within SU�COR do��� As a result� access to u was

��

synchronized and u was partially privatized in the coalesced �������� loop� An outline of the code

depicting these transformations follows

post�ireg���
post�u���
doacross �������� ki � �� �ndim � nmeas

i � mod�ki� �� �ndim� � �
initialize privatized reductions
wait�ireg�ki�

precomputation of iregexp
post�ireg�ki� ��
do ����� j � �� ndim

� � �
wait�upanelz �ki�

conditional reads of

upanelz
uprevpanelz
uprevprevpanelz

� � �
accumulate reductions
� � �
uprevprevpanelz � uprevpanelz
uprevpanelz � upanelz
conditional update of upanelz

post�upanelz �ki� ��
enddo
if �i�eq�n� then

reduce reductions across processors
� � �
output intermediate results
copy u to uprivate
fork corr

endif
enddo

The semantics of the wait and post operations are as follows
 the 	rst argument indicates the data

structure for which access is being synchronized and the second is the timestep of the computation� Much

detail in terms of synchronization has been abstracted to make the example understandable� However�

section ����� provides additional detail�

In essence the transformed code combines the doacross parallelism in loop ����� with the do�pipe

parallelism exposed by the semi�privatization of u in loop ��� Although we have not explicitly stated so�

��

in fact the combination of the doacross loop with loop pipelining represents an example of multi�level

parallelism� This issue is further explored in section ������

����� Synchronization

The implementation of the four techniques discussed above in sections ������ ������ ����
� and �����

required various synchronization schemes� The coalesced doacross loop ��������� for example� employed

a non�blocking barrier to improve the performance�

Due to the nature of the su�cor application� access to panels of the main data structure u involve

potential loop�carried �ow� anti� and output dependences� Flow dependences were resolved using explicit

synchronization� Anti and output dependences were resolved using variable renaming �
��� The renamed

variables in the transformed code depicted in section ����� are uprev and uprevprev� shorthand for the

values of u in the preceding two timesteps� Here� a timestep is de	ned as one iteration of the original loop

SU�COR do��� Recall from section ����
 that SU�COR do�� encloses SWEEP do������ Therefore� one

timestep of the coalesced �������� loop is equivalent to the execution of the entire iteration space of the

original SWEEP do������ The choice of a two�timestep �bu�er� was based on empirical observations

of the amount of parallelism in the loop for the given input set�

Each of the �ndim lattices of u has an associated timestep� If a processor p wishes to update a given

panel z in lattice l� it 	rst ascertains the current minimum global timestep for all lattices �i�e�� the

minimum iteration of the original time�stepping loop SU�COR do�� still being computed for any given

lattice�� If the minimum global timestep is more than two steps behind the timestep that processor p is

computing� p must wait� Otherwise� p updates elements in panel z of u� uprev� and uprevprev� In this

way� processor pi is never allowed to get more than two timesteps ahead of processor pj for all i� j of the

processors participating in the computation�

Similarly� if processor p wishes to read a panel z� it 	rst determines whether there is a potential

�ow or anti dependence� However� as a result of the write�access pattern in SWEEP do������ certain

dependences are automatically ruled out� This is a consequence of the fact that a given panel of u is

��

conditionally updated only once each timestep� Suppose� for example� panel z is updated in iteration

ilati� i�j by processor p�� Furthermore� suppose that processor p� wishes to read panel z and p� is

currently computing in panel ilatm� i�n such that ilatm � ilati and i�n � i�j � If both p� and p� are

computing in the same timestep� no �ow�dependence can exist� As mentioned earlier� this is a direct

result of the access pattern to u within SWEEP do������

In the event that a �ow�dependence is possible� �e�g�� ilatm � ilati and i�n � i�j�� processor p� waits

for panel z to be updated by p�� As soon as panel z reaches p��s timestep� p� reads upanelz
�� On the

other hand� if the potential exists for an anti�dependence� a test is made to determine if p��s timestep

is less than� greater than� or equal to z�s timestep� This is done in order to determine how many times

z has been updated� If p��s timestep is equal to z�s� upanelz is read� If z�s timestep exceeds that of p�

by one� uprevpanelz is read� Similarly� if z�s timestep exceeds that of p� by two steps� uprevprevpanelz is

read�

The synchronization implementation is based on test�set and add then test primitives provided by

the architecture� Nine functions were written in C to provide support for the synchronization schemes

discussed above� Primary support for the non�blocking barrier was provided by tstepper� a function which

employs what is conceptually a monitor to provide access to the global minimum timestep� Likewise�

reader and writer� which provide dynamic support for handling �ow� anti� and output dependences�

employ similar constructs�

The synchronization schemes employ busy�waiting� At a low level� all synchronization variables are

mapped on cacheline boundaries� This provides clean busy�waiting for variables which are shared across

processors �i�e�� no false sharing of synchronization variables�� As an optimization� exponential backo�

is employed while processors spin�wait at synchronization points �
���

�Recall that updates to u are conditional
�If� while p� was waiting for z� z was updated twice �i�e�� z was updated again by another processor

p� before p� could read it�� p� reads uprevpanelz

��

����	 Multi�level Parallelism

Section ����� depicted the pipelining and doacross transformations which were applied to the coalesced

loops SWEEP do��� and SU�COR do��� This coalesced loop is the outermost loop in the su�cor

benchmark� and these two types of parallelism have been combined to produce the speedups reported

in section ��
�� below�

However� additional doall parallelism exists in subroutines called from within this loop� Speci	cally�

INTACT and LOOPS are in the call tree rooted in SWEEP do���� and both of these routines make

multiple calls to compute�intensive doall parallel loops� Examples of such loops include MATMAT do���

which performs matrix multiplication�

In order to take advantage of additional loop�level parallelism in su�cor� an architecture which sup�

ports such parallelism was required� This posed an implementation di�culty in that few architectures

support more than a single level of parallelism for loops� For several of the results reported in sec�

tions ��
�� and ��
�
� we have employed an SGI Challenge� The Challenge currently supports only a

single level of loop parallelism�� In order to take advantage of doall loops inside the doacross loop� it was

necessary to port su�cor to the Convex�HP Exemplar� the only architecture that we are aware of that

provides support for more than one level of loop parallelism� As a result� the version of su�cor which

was parallelized on the SGI Challenge was ported to the Convex�HP Exemplar�

The Exemplar currently supports two types of parallelism
 symmetric and asymmetric� Symmetric

parallelism includes two types of loop�level parallelism which correspond to execution of multiple threads

either within a tightly�coupled cluster �hypernode� or across hypernodes� Threads executing under this

model of computation all execute the same instruction stream� Asymmetric parallelism� on the other

hand� is akin to the Unix fork command in that only a single thread is spawned�

Cross�cluster symmetric parallelism is termed node�wise parallelism� and intra�cluster symmetric

parallelism is referred to as thread�wise parallelism� Compiler directives are available for identifying loops

�Note that the implementation of loop pipelining in a doacross loop made use of only a single�level
of loop parallelism in the doacross loop itself

��

and tasks which are to execute with multiple threads at either of these levels� Asymmetric parallelism can

be invoked for a single process from within either node or thread�parallel constructs� Likewise� symmetric

parallelism can be invoked from within an asymmetric thread� Consider the following example

c#dir loop parallel �nodes� ivar � i�
do i � �� n

c#dir loop parallel �threads� ivar � j�
do j � �� n

� � �
enddo

enddo

Here we have two levels of parallelism in the i and j loops� At runtime the iterations of the outer

i loop will be distributed across the available hypernodes in a node�wise parallel fashion� The iteration

space of each invocation of the the inner j loop� however� will be divided amongst the processors on a

given hypernode in a thread�wise fashion��

Now we will add an asymmetric thread to the example

c#dir loop parallel �nodes� ivar � i�
do i � �� n

c#dir loop parallel �threads� ivar � j�
do j � �� n

� � �
enddo
if �condition� then

call cps thread create�sub�
endif

enddo
subroutine sub

c#dir loop parallel �threads� ivar � k�
do k � �� n

� � �
enddo

�Eight processors are clustered on each hypernode in the SPP����� employed in our experiments

��

We have now added a third dimension to the parallelism in that an asymmetric thread executing sub

is conditionally spawned each iteration of the outer i loop� A 	nal� fourth dimension of parallelism is

created when sub encounters the thread�parallel k loop during execution�

This is� in essence� the transformation employed in the coalesced ������ loop in su�cor on the

Exemplar
 node�wise and thread�wise parallelism are combined in the doacross execution of loop �������

and asymmetric and thread�wise parallelism are combined in the pipelined execution of the same loop�

Section ��
�� reports speedup results for these transformations on the Exemplar�

��� Transformations Employed in tomcatv

In this section we discuss the application of one of the techniques presented in Chapter
 on the SPEC

CFP�� benchmark tomcatv� In addition� we discuss the solution of min�max reductions in parallel in

the context of this benchmark�

The SPEC CFP�� Benchmark tomcatv is a computational �uid dynamics program based on a solver

employing LU decomposition� Transformations employed in parallelizing tomcatv include the following

� Min�Max Reductions

� Loop Pipelining

Examples of the application of each of these transformations follows�

����� Min�Max Reductions

The current implementation in Polaris does not support the recognition of reduction operations which

involve intrinsic min or max operators� Nonetheless� the parallelization of such reductions can be ac�

complished based on the transformation described in �

�� An example of such a reduction occurs in

loop�nest MAIN do�� in tomcatv� The following portrays this loop

DO �� J � ��N��

��

DO �� I � ��N��
RXM�ITER� � MAX�RXM�ITER�� ABS�RX�I�J���
RYM�ITER� � MAX�RYM�ITER�� ABS�RY�I�J���

�� CONTINUE

As can be seen from this example� do�� is a max reduction on two variables� rx and ry� ITER is

the index of the outermost time�stepping loop �MAIN do�
���

do j � �� procs
rxm e�j� � ���
rym e�j� � ���

enddo
doall k � �� n��

do i � �� n��
rxm e�thread�num��� � max�rxm e�thread�num����abs�rx�i� k���
rym e�thread�num��� � max�rym e�thread�num����abs�ry�i� k���

enddo
enddo
do m � �� procs

rxm�iter� � max�rxm�iter��rxm e�m��
rym�iter� � max�rym�iter��rym e�m��

enddo

In the above� rxm e and rym e are expanded versions of the original single�address reduction variables

rxm�iter� and rym�iter��� They are expanded by the number of concurrent threads� initialized to zero�

and indexed by the thread�id of each thread participating in the computation� Following the parallel

reduction in the k loop� the partial results are summed across threads in the 	nal m loop�

����� Do�pipe

The loop pipelining transformation discussed in section ����� has a corresponding application in tomcatv�

Consider the following example abstracted from tomcatv loop �
�

DO �
� ITER���ITACT
� � �
DO �� J���N��

�Note that the index iter is invariant in the do�� loop nest

��

DO �� I���N��
� � �
RX�I�J� � A"PXX�B"PYY�C"PXY
RY�I�J� � A"QXX�B"QYY�C"QXY

�� CONTINUE
�� CONTINUE
DO �� J���N��

DO �� I���N��
RXM�ITER� � MAX�RXM�ITER�� ABS�RX�I�J���
RYM�ITER� � MAX�RYM�ITER�� ABS�RY�I�J���

�� CONTINUE
� � �

�
� CONTINUE

Both the do�� and do�� loops access rx and ry in their entirety during each step of the outermost

loop �
� �index ITER�� The dependences on rxm and rym in do�
� are not loop�carried � i�e�� rxm and

rym are loop�private variables which are written in do�� and read prior to the exit of do�
��

As a result� it is possible to overlap the access to rx and ry in do�� and do�� such that these two

loops can be executed concurrently� This is accomplished by synchronizing on columns of rx and ry as

pictured below

DO �
� ITER���ITACT
� � �

process�
DO parallel �� J���N��

DO �� I���N��
� � �
RX�I�J� � A"PXX�B"PYY�C"PXY
RX p�I�J� � RX�I�J�
RY�I�J� � A"QXX�B"QYY�C"QXY
RY p�I�J� � RY�I�J�

�� CONTINUE
post�j�

�� CONTINUE
process�

DO �� J���N��
wait�j�
DO �� I���N��

RXM�ITER� � MAX�RXM�ITER�� ABS�RX p�I�J���
RYM�ITER� � MAX�RYM�ITER�� ABS�RY p�I�J���

�� CONTINUE
� � �

�
� CONTINUE

�

In this example� loops do�� and do�� are executed as two separate processes which share the same

address space� The term �loop pipelining� illustrates the nature of the access pattern of the two loops

do�� executes one iteration �writing one entire column of both RX p and RY p�� then posts to notify

do�� that these private variables are available� Loop do�� waits for the post then accesses the same

columns of RX p and RY p in turn� with the result that access to the Jth columns of rx and ry are

�pipelined�� In much the same way that vector chaining enhances performance in a vector processor�

loop pipelining hides the execution time of the do�� loop almost entirely�

The multi�level parallelism discussed in section ��� has also been implemented in tomcatv� When

do�� is executed as a parallel� doall loop� the overlapped execution of do�� implies that two levels of

parallelism exist
 one level at the pipelined outermost loop do�
�� and the second level at the parallel

loop do��� In addition� loop do�� may be executed either as a parallel reduction loop or as a serial

loop depending on the ratio of the respective execution times for the loops� Results for the execution of

tomcatv are discussed in section ��
�
�

��� Results

In this section performance results will be discussed for the two benchmarks from the SPEC CFP��

suite which have been manually transformed using the techniques described in sections ��� and ���� The

discussion will be organized on a loop�by�loop basis for the computationally important loops in these

codes�

����� Loops in su�cor

The computationally key loops in su�cor are delineated in Table ����

The S�P markings in Table ��� denote whether the given loop is parallel �P� or serial �S�� The Depth

column designates the �interprocedural� nesting level of the given loop� and � Tseq is the percentage

of the sequential execution time for the loop �including nested loops�� As these 	gures indicate� many

time�consuming outer loops are serial in nature�

��

Subroutine Loop Depth � Tseq S�P
SU�COR do�� � ������� S
SWEEP do��� � ����
�� S
LOOPS do��� � ������
 S
SWEEP do���
 �
����
 P
LOOPS do
�� � ������� P

MATMAT do�� � ������
 P
SWEEP do���
 ������� S
INT�V do��� � ������� S
SWEEP do��� � ������� P

Table �
�
 Loops � ��� of Sequential Time

����� Results for su�cor

Speedups for the loop SWEEP do��� on the SGI Challenge are displayed in Table ���� These include

two di�erent transformations and their cumulative e�ect on loop�level speedups� Experiments were

conducted on eight processors on an R

���based Challenge in dedicated mode�

Transformation speedup

No transformations ���
Doacross transformation ���
Doacross with non�blocking barrier ���

Table �
�
 Speedups of SWEEP do��� on SGI Challenge

Table ��� outlines whole program speedups for su�cor on the SGI Challenge� As noted in sec�

tion ���� these results are based on a combination of doacross and do�pipe parallelism in the coalesced

sweep do����su�cor do�� loop� Experiments were conducted in dedicated mode using �� of the �� pro�

cessors available on the machine� Eight of the ten processors were assigned to the doacross loop pictured

in the code example in section ������ In the same code example� the routine corr is conditionally forked

when i�eq�n� When corr is forked� an additional processor is utilized to execute corr� Lastly� one 	nal

processor is utilized to enforce synchronization in the do�pipe�

Table ��
 portrays whole program speedups for experiments with multi�level loop�based parallelism

on the HP�Convex Exemplar� The experiments compare the performance of the various transformations

��

Transformations speedup

No transformations ���
Doacross � Pipelining ����

Table �
�
 Su�cor Program Speedups on SGI Challenge

discussed in section ���� Experiments were conducted on a two�hypernode� �� processor subcomplex in

dedicated mode�

Transformations p � � p � � p � � p � �� p � ��
No transformations ��� ��� ��� ��� ���
Doall Only ���� ���� ���� ���� ����
Multi�level Doacross�Doall � Pipelining ��
� ���� ���� ���� ����

Table �
�
 Su�cor Program Speedups on HP�Convex Exemplar

The columns in Table ��
 are labeled with the number of processors used in each experiment� They

are integer multiples of three �i�e�� �� �� �� ��� ��� because a minimum of three processors were needed

to execute su�cor
 two processors �one on each hypernode� for the doacross loop and one additional

processor to execute corr as an asymmetric thread in the do�pipe� For the experimental results reported

here� an equal number of doall sub�threads were assigned to each of these three �main� threads� The

results recorded in each column are speedups as compared with the serial execution of the benchmark�

In the �Doall Only� experiment neither doacross nor pipelined parallelism were enabled� This gives

a basis for comparison in that single�level doall parallelism is the standard on most parallel architectures

today� The second experiment employed doacross and pipelined parallelism in conjunction with doall

parallelism� In this experiment� the set of doall loops executed was the same as the set of doall loops

used in the �Doall Only� experiment�

The su�cor benchmark does not perform as well on the Exemplar as it does on the Challenge� This is

primarily due to the distributed� shared�memory nature of the Exemplar architecture� For applications

such as su�cor with an irregular access pattern� cross�hypernode cache coherence has an impact on

performance� This fact is re�ected in the results for the �Doall Only� experiments in Table ��
� As can

be seen from these results� the doall version of su�cor does not scale well� In particular� when executed

��

on more than eight processors� there is a drop�o� in performance due to the increased coherence tra�c

between hypernodes �as noted earlier� the SPP����� employed in these experiments has eight processors

per hypernode��

This reveals one of the strengths of loop�based multi�level parallelism as it was applied in su�cor�

The inter�hypernode schedule that we employed allocated a single node�wise thread to each hypernode�

Due to the write�access pattern in su�cor �discussed earlier in section ������� it was possible to create

duplicates of the main data structure u which were local to each hypernode� In e�ect� write accesses

to u by a given thread were local to the hypernode on which the thread was executing� Reads� on

the other hand� were either local or remote depending on the location accessed� This �privatizing�

transformation was made possible by the fact that the Exemplar provides for the allocation of di�erent

classes of memory� Among the classes available are thread�private� node�private� far�shared� near�shared�

etc� The near�shared memory class allows for the allocation of globally shared� hypernode�local memory�

and it was this class of memory that was used in duplicating u�

For the the multi�level experiments conducted on �� and �� processors� a similar trend to the doall

experiments is exhibited in that no additional speedup was obtained� We speculate that the cause of

this lack of speedup is a result of the schedule employed� With �� processors� the two� node�wise threads

each executed four thread�wise threads on each of the two hypernodes� This left four free processors

on each hypernode� When corr is spawned in the do�pipe� the asymmetric thread also goes thread�wise

parallel �as explained in section ������� and spawns four additional threads on one of the hypernodes�

This hypernode then has a total of eight threads active� In our experiments� we allocated at most one

thread per processor� As a result� when doacross� do�pipe� asymmetric� and doall parallelism were all

active� no more then �� processors could participate in the computation and still maintain local write

access to the �privatized� versions of u� Consequently� with �� processors at least two of the threads

had to be scheduled on a hypernode which did not write to the local copy of u�

As re�ected by the results in Table ��
� the combination of loop�based multi�level parallelism with

functional do�pipe parallelism resulted in better speedups and scaling than the �Doall Only� version�

��

����� Loops in tomcatv

The computationally key loops in tomcatv are delineated in Table ����

Subroutine Loop Depth � Tseq S�P
MAIN do�
� � ���
��� S
MAIN do�� � �
����� P
MAIN do��� � ������� S
MAIN do��� � ������� S
MAIN do��� � ���
��� P
MAIN do�� � ������� S

Table �
�
 Loops � �� of Sequential Time

The S�P markings in Table ��� denote whether the given loop is parallel �P� or serial �S�� The Depth

column designates the �interprocedural� nesting level of the given loop� and � Tseq is the percentage of

the sequential execution time for the loop �including nested loops�� As these 	gures indicate� many of

the more time�consuming loops in tomcatv are serial in nature�

����� Results for tomcatv

The performance of the initial implementation of parallel reductions on the SGI Challenge was very poor

due to false�sharing of reduction variables between threads running on di�erent processors� A second

version solved this problem by making each element in the expanded reduction variables rxm e and

rym e the size of a cacheline	� The performance of this version was quite good� with a speedup of over

��� for the loop� and an overall program speedup of
���� Table ��� summarizes these results�

The second transformation involved pipelining the outermost time�stepping loop into two stages� In

conjunction with the partial privatization of two arrays� the granularity of synchronization was decreased

in order to enable the execution of the two stages to be overlapped ��
�� Performance results for do�pipe

vs� privatized reductions also appear in Table ���� The speedup for the do�pipe technique exceeds that

achieved for the parallel reductions� This result is partially due to better cache utilization in the do�pipe

version�

	��� bytes on the Challenge

��

Transformation speedup

Polaris ��
�
Polaris �do�� reduction in parallel�
���
Polaris �loop do�pipe transformation�
���

Table �
�
 Tomcatv speedups on � processors

��� Conclusion

We have identi	ed several new techniques which result in a signi	cant increase in performance when

applied to outer� time�stepping loops in the benchmark codes we have studied� In addition� we have

demonstrated that functional� doacross� and doall parallelism can be e�ectively combined in real scienti	c

applications� As a whole� the results indicate that signi	cant additional parallelism� both beyond and

in conjunction with doall parallelism� is available in real application codes�

���

CHAPTER �

Conclusion

In the introduction to this thesis we highlighted the importance of parallelizing compiler technology

for both present and coming multi�processor systems� In the course of our study of automatic paral�

lelization� we have determined several techniques which can be integrated into a parallelizing compiler�

We have demonstrated the applicability and relevance of these techniques in experiments based on the

transformation of programs from a cross�section of scienti	c 	elds� We have also established the fact

that many of these techniques cross computer language boundaries�

In the opening chapter of this work we presented a formalism based on the concept of an associative

coalescing loop operator� A central result of this research is the development of a general framework in

which a wide variety of loop�based computations can be successfully modeled� A second result is the

discovery of a number of loops which compute functions which although associative are not commutative�

Several possibilities exist for extending the theory of coalescing operators� As discussed in the Chap�

ter �� one such extension involves the development and implementation of algorithms which automatically

recognize associative coalescing loop operators in a parallelizing compiler such as Polaris� This holds

promise of enabling the identi	cation of parallelism based on the symbolic execution of as few as three

iterations of a loop�

���

In Chapter
 we presented a virtual smorgasbord of parallelizing techniques which signi	cantly im�

prove the performance of representative benchmarks from several 	elds of science� These techniques were

developed with automatability in mind� and one clear research area which lies ahead is the development

and implementation of additional algorithms for those techniques which have not yet been automated�

A 	nal note worth mentioning in terms of future research has to do with the computation of closed�

forms� As discussed in Chapter
� the symbolic computation of closed�forms of recurrences applies in

more than one application area� In studying this particular method of solving recurrences� it has become

clear that a recurrence relation expressed in a program has a fundamental mathematical identity which

transcends the particulars of a given implementation expressed using a given language� In other words�

a recurrence in a computer program is in fact just an instance of a mathematical formulation for the

solution of a problem in science��

This observation opens up a very interesting area of research� Think for a moment what a computer

program really is��� a computer program takes certain inputs and computes outputs which are a function

of those inputs� It may involve multiple loops within various subroutines computed over a given period

of time�steps� but for a large class of scienti	c applications fundamentally the output is simply a function

of the input�

But wait a moment��� This is the de�nition of a recurrence��� What are the implications of this

realization Only this
 many computer programs can be understood as complex recurrence relations

packaged in a deterministic context�free language wrapper� and that just like linear recurrences with

constant coe�cients� it may be possible to compute closed�forms for entire programs�

�Modulo numerical considerations of the 	nite representation of course�

���

APPENDIX A

Coalescing Loop Operators in cSpace

In this appendix we include the C�� source code �minus the header 	les� of the cSpace semantic

indexing application� This code c�Copyright William Morton Pottenger�

�include �ConceptSpace�h�

�include �String�h�

extern int dbx�warn�overflow�

static String version��ConceptSpace��
���

int

main�int argc� char �argv���

�

�� HeapStats		start���

if �argc �� � �� argc �� � �� argc �� �� �

cerr

 �Usage	 cSpace � name num�procs input�file output�file��

cerr

 � � idx�file � ��n��

exit����

�

dbx�warn�overflow � ��

if �argc �� �� �

ConceptSpace cs�

String o�rname � �cout��

cs�compute�o�rname��

�

���

else if �argc �� �� �

String name � argv����

int threads � atoi�argv�����

String ifile � argv����

String ofile � argv����

String idx�ofile � ���

ConceptSpace cs�name� ifile� ofile� idx�ofile��

String o�rname � ofile�

cs�compute�o�rname� threads��

�

else if �argc �� �� �

String name � argv����

int threads � atoi�argv�����

String ifile � argv����

String ofile � argv����

String idx�ofile � argv����

ConceptSpace cs�name� ifile� ofile� idx�ofile�

sO�NOSTORE� dF�RAW� dF�INDEXED��

String o�rname � ofile�

cs�compute�o�rname� threads��

�

�� HeapStats		stop���

�� HeapStats		report�cout��

�� HeapStats		print�memory�leaks�cout��

�

�� module ConceptSpace

�include �ConceptSpace�h�

�include
strstream�h�

�include �Collection�BaseMapIter�h�

�include �Collection�Iterator�h�

�include �Collection�KeyDatabase�h�

�� KeyDatabase of Term objects

KeyDatabase
String� Term� Terms�

�� List of Doc objects

List
Doc� Docs�

��

�ifndef ��SUNPRO�CC

�� Template instantiations for KeyDatabase
String� Term�

template class KeyDatabase
String� Term��

template class ProtoDatabase
String� Term��

template class TypedBaseMap
String� Term��

template class KeyIterator
String� Term��

�endif

�� Implementation

�� Constructors

�ifdef ��SUNPRO�CC

�� Sun�specific iostreams code

�� Create a concept space from cin� output to cout� nothing saved

ConceptSpace		ConceptSpace��

�

�istream � cin�rdbuf���

�ostream � cout�rdbuf���

�iformat � �oformat � dF�RAW�

�max�term�length �
�

�sopt � sO�NOSTORE�

�

�� Create a named concept space from input in ifile using

�� iformat� output to ofile with oformat� and

�� save as directed by the argument sopt

ConceptSpace		ConceptSpace�String �name� String �ifile� String �ofile�

String �idx�ofile� saveOpt sopt GIV�sO�NOSTORE��

docFormat iformat GIV�dF�RAW��

docFormat oformat GIV�dF�RAW��

�

�� assign input � output streams

�ifile�open�ifile�ios		in��

�istream � �ifile�rdbuf���

�ofile�open�ofile�ios		out��

�ostream � �ofile�rdbuf���

�iformat � iformat�

�oformat � oformat�

�name � name�

�max�term�length �
�

�sopt � sopt�

if ��oformat �� dF�INDEXED��

���

�idx�ofile�open�idx�ofile�ios		out��

�idx�ostream � �idx�ofile�rdbuf���

�

�

�else

�� Proposed standard iostreams code

�� Create a concept space from cin� output to cout� nothing saved

ConceptSpace		ConceptSpace�� 	 �istream�cin�rdbuf���� �ostream�cout�rdbuf���

�

�iformat � �oformat � dF�RAW�

�max�term�length �
�

�sopt � sO�NOSTORE�

�

�� Create a named concept space from input in ifile using

�� iformat� output to ofile with oformat� and

�� save as directed by the argument sopt

ConceptSpace		ConceptSpace�String �name� String �ifile� String �ofile�

String �idx�ofile� saveOpt sopt GIV�sO�NOSTORE��

docFormat iformat GIV�dF�RAW��

docFormat oformat GIV�dF�RAW��

�

�� assign input � output streams

�ifile�open�ifile�ios		in��

�istream�rdbuf��ifile�rdbuf����

�ofile�open�ofile�ios		out��

�ostream�rdbuf��ofile�rdbuf����

�iformat � iformat�

�oformat � oformat�

�name � name�

�max�term�length �
�

�sopt � sopt�

if ��oformat �� dF�INDEXED��

�idx�ofile�open�idx�ofile�ios		out��

�idx�ostream�rdbuf��idx�ofile�rdbuf����

�

�

�endif

ConceptSpace		�ConceptSpace��

�

if ��ifile�rdbuf����is�open���

�ifile�close���

���

if ��ofile�rdbuf����is�open���

�ofile�close���

if ��idx�ofile�rdbuf����is�open���

�idx�ofile�close���

�

�� Return the name of the concept space

String �

ConceptSpace		name��

�

return �name�

�

extern �C� int m�lock�void��

extern �C� int m�unlock�void��

extern �C� void m�sync�void��

extern �C� int m�set�procs�int��

extern �C� int m�get�myid�void��

extern �C� int m�get�numprocs�void��

extern �C� int m�fork�void ����void �� void �� void �� void ��������

extern �C� int usconfig�int� int��

extern �C� int schedctl �int cmd� int arg���

extern �C� void perror �const char �s��

void �pmem�size�t� void �� int� size�t� int��

�� Compute and output concept space

void

ConceptSpace		compute�String �o�rname� int threads GIV����

�

�� cout

 �Single threaded malloc status was ��

�� int status � usconfig����
��

�� if �status �� ��� cout

 �on��n��

�� else cout

 �off��n��

�� Input documents� extract � count terms

int doc�count �
�

int term�count �
�

while ���istream�eof��� �

List
StringElem� nps�in�doc�

Doc �doc � new Doc��iformat��sopt��

Docs�ins�last�doc��

doc��read��istream� nps�in�doc� term�count��

doc��index�doc�count� nps�in�doc� �max�term�length��

�

�� Initialize custom memory manager

���

pmem�
� �void �� NULL� ���
�
��

�� Set the number of threads

if �m�set�procs �threads� �� ���

perror��ConceptSpace		compute	 failed m�set�procs���

�� Fork the similarity computation

void simComp�void �� void �� void �� void ���

if �m�fork�simComp� �void �� �doc�count� �void �� �o�rname�

�void �� ��oformat� �void �� ��max�term�length� �� ���

perror��ConceptSpace		compute	simComp	 failed m�fork���

�

�include
stdio�h�

�include
fcntl�h�

�define MMAP�FILE ��dev�zero�

�define MMAP�PERM �O�RDWR�

�� Compute the similarities

void

simComp�void �doc�count� void �r�oname� void �oformat� void �max�term�length�

�

�� Code to set the schedule to SGS�GANG on the SGI PC

�� if �schedctl������ �� ��� perror��simComp		schedctl failed���

�� Allocate slices of the term�space to each thread

int myid � m�get�myid���

int threads � m�get�numprocs���

int entries � Terms�entries���

int slice � entries � threads�

int terms�slice�myid�

�� Assign the leftover iterations to the last thread

if �myid�� �� threads�

slice �� entries ! threads�

�� Open thread�private output stream

strstream s�

s

 myid

 �
 �

char �buf � s�str���

String p�oname � ��String �� r�oname � ��� � buf�

String p�idx�oname � ��String �� r�oname � ��idx�� � buf�

String p�coocs�oname � ��String �� r�oname � ��coocs�� � buf�

delete buf�

���

FILE �p�ofile � fopen��const char �� p�oname��w���

FILE �p�idx�ofile � fopen��const char �� p�idx�oname��w���

FILE �p�coocs�ofile � fopen��const char �� p�coocs�oname��w���

�� ofstream p�ofile�

�� p�ofile�open��const char �� p�oname�ios		out��

�� ostream p�ostream � p�ofile�rdbuf���

BaseMapIter titer�Terms��

�� Each thread iterates to the starting point of its slice

for �int term�cnt�
� titer�valid�� �� term�cnt
terms� ��titer���term�cnt� �

�� BMNode �start � titer�current�node���

�� Obtain an upper bound on the total number of cooccurrences

�� int cooc�count �
�

�� for �term�cnt�
� titer�valid�� �� term�cnt
 slice� ��titer���term�cnt� �

�� Term �term � ��Term �� titer�current�data���

�� cooc�count �� term�cooc�count���

�� �

�� for �titer�reset�start��term�cnt�
�

m�lock���

cerr

 �Similarity start	 �

 �tid	 �

 myid

 � slice	 �

 slice�

cerr

 � terms	 �

 terms

 � num procs	 �

 threads

 ��n��

�� cerr

 � cooc count	 �

 cooc�count

 ��n��

m�unlock���

�� Open �dev�zero for custom memory allocation

int memfd � open�MMAP�FILE�MMAP�PERM��

if �memfd

� �

m�lock���

cerr

 �Error opening �dev�zero on thread �

 myid

 ���n��

perror���dev�zero���

exit����

m�unlock���

�

int totcoocs �
�

�� Each thread computes the similarity for the terms in its slice

size�t alloc�
�

int term�id � terms�

for �term�cnt�
� titer�valid�� �� term�cnt
 slice�

��titer���term�cnt���term�id� �

Term �termA � ��Term �� titer�current�data���

�� Set up a private memory pool for cooccurrence and similarity data

alloc � �"���termA�cooc�count�����
��

���

pmem�
� �void �� NULL� �� alloc� memfd��

�

Database
String� Cooccurrence� cooccurrences�

BaseMapIter diter�termA�docs����

for � � diter�valid��� ��diter� �

Doc �doc � ��Doc �� diter�current�key����keyptr�

int termA�freq � ��IntElem �� diter�current�data���

Iterator
Term� citer�doc�terms�in�doc����

for � � citer�valid��� ��citer� �

Term �termB � citer�current���

if ��termA �� �termB� �

int termB�freq � �termB�docs���find�ref�doc��

int min�term�freq � termA�freq
 termB�freq #

termA�freq 	 termB�freq�

Cooccurrence �cooc�ref �

cooccurrences�find�ref�termB�key�phrase����

if �cooc�ref�

cooc�ref��update�min�term�freq��

else �

��totcoocs�

�� enclose in transaction which allocates

�� loop�private memory

cooccurrences�ins�termB�key�phrase���

new Cooccurrence�termB�min�term�freq���

�

�

�

�

fprintf�p�coocs�ofile��!s	 !d�n�� termA�phrase�ref���

cooccurrences�entries����

BaseMapIter citer�cooccurrences��

for � � citer�valid��� ��citer� �

Cooccurrence �coocAB � ��Cooccurrence �� citer�current�data���

Term �termB � coocAB�termB���

�� enclose in transaction which allocates shared memory

coocAB�similarity�termA� termB� ��int �� doc�count��

�

���

�� enclose in transaction which allocates loop�private memory

termA�subset���int �� max�term�length��

termA�output�p�ofile� p�idx�ofile� term�id� ��docFormat �� oformat��

�� cooccurrences�clear���

�� termA�similarities���clear���

�

�� Release private memory

pmem�
� �void �� NULL� �� alloc�
��

�

fprintf�p�coocs�ofile���nTerms	 !d Total Coocs	 !d�n�� terms� totcoocs��

�� if �p�ofile�rdbuf����is�open���

�� p�ofile�close���

fclose�p�ofile��

fclose�p�idx�ofile��

fclose�p�coocs�ofile��

m�lock���

cerr

 �Similarity finish	 �

 �tid	 �

 myid�

cerr

 � output file	 �

 p�oname

 ��n��

m�unlock���

�

�� Example exception	

�� if ����� throw returnCode�returnCode		FAIL��

�� Code to set the schedule to SGS�GANG on the SGI PC

�� extern �C� int schedctl �int cmd� int arg���

�� if �schedctl������ �� ��� perror��simComp		schedctl failed����

�� Code to assign each thread to a specific processor

�� extern �C� int sysmp�int� int��

�� int proc � m�get�myid���

�� int status � sysmp����proc��

�� if �status �� ��� perror��simComp		sysmp failed����

�� module Term

�include
ctype�h�

�include
strstream�h�

�include �Collection�BaseMapIter�h�

�include �Collection�BaseMapNode�h�

�include �Collection�Iterator�h�

�include �Collection�KeyDatabase�h�

�include �Collection�RefDatabase�h�

�include �Collection�RefMap�h�

�include �Term�h�

���

�� Global KeyDatabase of Term objects �defined in ConceptSpace�cc�

extern KeyDatabase
String� Term� Terms�

�� Implementation

Term		Term�char �phrase� int words�in�phrase� int doc�count� Doc �doc�

�

�phrase � new String�

�phrase��absorb�phrase��

�words�in�phrase � words�in�phrase�

�current�doc � doc�count�

�id �
�

�doc�freq � ��

�sum�term�freq � ��

�� �lock �
�

�term�freq � new IntElem����

�docs�ins�doc� �term�freq��

�w�factor � �weight � ���
�

�

�� Term		Term�const Term �term�

�� �

�� �words�in�phrase � term��words�in�phrase�

�� �current�doc � term��current�doc�

�� �id � term��id�

�� �doc�freq � term��doc�freq�

�� �sum�term�freq � term��sum�term�freq�

�� �lock �
�

�� �term�freq � term��term�freq�

�� �w�factor � term��w�factor�

�� �weight � term��weight�

�� �

Term		�Term��

�

if ��docs�entries��� �

�� �docs�clear���

�� if ��cooccurrences�entries��� �

�� �cooccurrences�clear���

if ��similarities�entries��� �

�� �similarities�clear���

�

�� Lock �this in preparation for synchronized access

�� void

�� Term		lock��

�� �

�� while �test�and�set���lock� �unsigned long� �� ��
� �

�� �

���

�� Unlock �this

�� void

�� Term		unlock��

�� �

�� test�and�set���lock� �unsigned long�
��

�� �

�� Return reference to cooccurrences

�� Database
String� Cooccurrence� �

�� Term		cooccurrences��

�� �

�� return �cooccurrences�

�� �

�� Return an upper bound on the number of cooccurring terms

int

Term		cooc�count��

�

int cooc�count �
�

BaseMapIter diter��docs��

for � � diter�valid��� ��diter� �

Doc �doc � ��Doc �� diter�current�key����keyptr�

cooc�count �� doc�terms�in�doc���entries���

�

return cooc�count�

�

�� Return reference do docs

Map
Doc� IntElem� �

Term		docs��

�

return �docs�

�

�� Return reference to similarity data structure

Database
int� RefList
Term� � �

Term		similarities��

�

return �similarities�

�

Term �

Term		clone�� const

�

return new Term��this��

�

Listable �

���

Term		listable�clone�� const

�

return new Term��this��

�

�� Term		output�ostream � o� ostream �idx�o� docFormat oformat GIV�df�RAW��

�� Output co�occurrences of �this

void

Term		output�FILE �o� FILE �idx�o� int term�id GIV�
��

docFormat oformat GIV�df�RAW��

�

�� static int term�id � sid�

switch �oformat� �

case dF�INDEXED	

�� p�assert�term�id�ref��Term		output��	 NULL term�id�ref��n���

if ���id� �

�id � ��term�id�

�� idx�o

 phrase�ref��

 ��n��

fprintf�idx�o��!s�n�� phrase�ref����

�

�� o

 �

 �id��

 ��n��

fprintf�o���!d�n���id����

break�

default	

�� o

 phrase�ref��

 ��n��

fprintf�o��!s�n�� phrase�ref����

�

int cooc�count �
�

BaseMapIter simi��similarities��

simi�reset�last���

for � � simi�valid�� �� cooc�count
 MAXCOOCOUT� ��simi� �

RefList
Term� �sterms � ��RefList
Term� �� simi�current�data���

if �sterms�entries��� �

BMKey �similarity�key � simi�current�key���

switch �oformat� �

case dF�INDEXED	

��

break�

default	

�� o

 � �

 ���int �� similarity�key��keyptr�

 ��n��

fprintf�o�� !d�n�����int �� similarity�key��keyptr���

break�

�

Iterator
Term� ctermi�sterms��

for � � ctermi�valid�� �� cooc�count
 MAXCOOCOUT� ��ctermi� �

cooc�count���

Term �termB � ctermi�current���

switch �oformat� �

case dF�INDEXED	

if ��termB��id� �

termB��id � ��term�id�

�� idx�o

 termB�phrase�ref��

 ��n��

fprintf�idx�o��!s�n�� termB�phrase�ref����

�

�� o

 termB��id��

 � ��

�� o

 ���int �� similarity�key��keyptr�

 ��n��

fprintf�o��!d !d�n�� termB��id���

���int �� similarity�key��keyptr���

break�

default	

�� o

 � �

 termB�phrase�ref��

 ��n��

fprintf�o�� !s�n�� termB�phrase�ref����

break�

�

�

�

�

�

�� Return reference to original �mixed�case� phrase

const String �

Term		phrase��

�

return ��phrase�

�

�� Return char � reference to phrase which makes up �this

���

const char �

Term		phrase�ref��

�

return �const char �� phrase���

�

�� Return reference to String which makes up �this �the phrase is used

�� as the key for the node holding �this in the global Terms database�

const String �

Term		key�phrase��

�

return ���String �� Terms�key�ref��this���

�

�� Return pointer to phrase which makes up �this

�� String �

�� Term		grab�phrase��

�� �

�� if ��phrase� �

�� String �phrase � �phrase�

�� �phrase � NULL�

�� return phrase�

�� �

�� else

�� return NULL�

�� �

void

Term		print�ostream � o� const

�

�� o

 �Term	 �

 phrase��

 ��n��

�

�� As indicated by sopt� store the concept spaces � documents�ids

�� void

�� Term		save�docinfo�Doc �doc� saveOpt sopt� int doc�count�

�� �

�� if �sopt � sO�STOREOSMASK� �

��

�� �� Store in object store

��

�� switch �sopt� �

��

�� case sO�STOREALLOS	 sO�STOREDOCOS	

��

�� �� allocate with ostore new to save Doc objects

�� break�

��

�� case sO�STORECSDOCIDOS	 sO�STOREDOCIDOS	

��

���

�� �� allocate with ostore new to save Doc ids only

�� break�

��

�� default	

��

�� �� do nothing

�� break�

�� �

�� �

��

��

�� if �sopt � sO�STORESTMASK� �

��

�� �� Store for later output to ostream

��

�� String id�

�� strstream s�

��

�� switch �sopt� �

��

�� case sO�STOREALLST	 sO�STOREDOCST	

��

�� id�absorb�doc��id���grab����

��

�� if ��id�defined��� �

��

�� s

 doc�count�

�� id � s�str���

�� �

�� �docs�ins��id� new Doc�doc���

�� break�

��

�� case sO�STORECSDOCIDST	 sO�STOREDOCIDST	

��

�� id�absorb�doc��id���grab����

��

�� if ��id�defined��� �

��

�� s

 doc�count�

�� id � s�str���

�� �

�� �docs�ins��id� �Doc �� NULL��

�� break�

��

�� default	

��

�� �� do nothing

�� break�

�� �

�� �

�� �

���

�� Perform subset operation on �this term

void

Term		subset�int max�term�length�

�

int terms�out �
�

BaseMapIter simiA��similarities��

BaseMapIter simiB��similarities��

RefMap
Term� RefList
Term� � pruned�terms�

for �simiA�reset�last��� simiA�valid�� �� terms�out
 MAXCOOCOUT� ��simiA� �

RefList
Term� �termsA � ��RefList
Term��� simiA�current�data���

Iterator
Term� termAi�termsA��

for � � termAi�valid�� �� terms�out
 MAXCOOCOUT� ��termAi� �

Term �termA � termAi�current���

const String �phraseA � termA�key�phrase���

Boolean pruned � False�

int terms�compared �
�

for �simiB�reset�last���

simiB�valid�� �� terms�compared
 max�term�length�MAXCOOCOUT�

��simiB� �

RefList
Term� �termsB � ��RefList
Term��� simiB�current�data���

Iterator
Term� termBi�termsB��

for � � termBi�valid�� ��

terms�compared��
 max�term�length�MAXCOOCOUT�

��termBi� �

Term �termB � termBi�current���

const String �phraseB � termB�key�phrase���

if �termA��words�in�phrase
 termB��words�in�phrase� �

if ��strncmp�phraseA� phraseB� phraseA�len���� �

pruned�terms�ins�termA�termsA��

pruned � True�

break�

�

�

�

if �pruned� break�

�

if ��pruned� ��terms�out�

�

�

���

BaseMapIter piter�pruned�terms��

for � � piter�valid��� ��piter� �

Term �term � ��Term �� piter�current�key����keyptr�

RefList
Term� �terms � ��RefList
Term� �� piter�current�data���

terms�del�term��

�

�

�� Return term frequency

int

Term		term�freq��

�

return ��term�freq�

�

�� Update term � doc frequencies

void

Term		update�char �phrase� int doc�count� Doc �doc�

�

if �doc�count �� �current�doc� �

�doc�freq���

�current�doc � doc�count�

�term�freq � new IntElem�
��

�docs�ins�doc� �term�freq��

�

�term�freq��value���term�freq����

�sum�term�freq���

�� Simple heuristic to choose the phrase which starts

�� with a capital and maximizes lower case letters

if �isupper�phrase�
���

if ��isupper����phrase��
�� $$ ��phrase
 phrase� �

delete �phrase�

�phrase � new String�

�phrase��absorb�phrase��

�

else

delete phrase�

else

delete phrase�

�

�� module Doc

���

�include
ctype�h�

�include �Doc�h�

�include �Term�h�

�include �Collection�Database�h�

�include �Collection�RefDatabase�h�

�include �Collection�BaseMapIter�h�

�include �Collection�Iterator�h�

�include �Collection�Mutator�h�

�� Global KeyDatabase of Doc objects �defined in ConceptSpace�cc�

extern KeyDatabase
String� Term� Terms�

�ifndef ��SUNPRO�CC

�endif

�� Implementation

Doc		Doc�docFormat iformat� saveOpt sopt�

�

�iformat � iformat�

�sopt � sopt�

�

Doc		Doc�Doc �doc�

�

�iformat � doc���iformat�

�sopt � doc���sopt�

�title�absorb�doc���title�grab����

�body�absorb�doc���body�grab����

Iterator
StringElem� aui�doc���authors��

for � � aui�valid��� ��aui� �

StringElem �se � new StringElem�

se��absorb�aui�current���grab����

�authors�ins�last�se��

�

�

Doc		�Doc��

�

if ��authors�entries��� �

�authors�clear���

if ��terms�in�doc�entries��� �

�terms�in�doc�clear���

�

�� Return reference to id of �this

���

String �

Doc		id��

�

return �doc�id�

�

�� Return reference to �terms�in�doc

RefList
Term� �

Doc		terms�in�doc��

�

return �terms�in�doc�

�

�� Perform indexing

void

Doc		index�int �doc�count� List
StringElem� �nps�in�doc� int �max�term�length�

�

��doc�count�

Mutator
StringElem� termi�nps�in�doc��

for � � termi�valid��� ��termi� �

char �phrase � termi�current���grab���

String �term�key � new String�upcase�ch�phrase���

Term �term�ref � Terms�find�ref��term�key��

if �term�ref� �

term�ref��update�phrase� doc�count� �this��

if ���terms�in�doc�member��term�ref��

�terms�in�doc�ins�last��term�ref��

delete term�key�

�

else �

int num�words � �� char �ptr � phrase�

while ��ptr�

if �isspace��ptr���� ��num�words�

if �num�words � max�term�length� max�term�length � num�words�

num�words �� num�words�

Term �term � Terms�ins�term�key�

new Term�phrase� num�words� doc�count� �this���

�terms�in�doc�ins�last�term��

�

�

�

�� Required clone�� method

Listable �

Doc		listable�clone�� const

�

���

�� stub

return NULL�

�

�� Required print�� method

void

Doc		print�ostream � o� const

�

o

 �Doc	 �

 �doc�id

 ��n��

�

�� At this point in time� the input is expected to be a list of terms�

�� one per line� where each group of terms �from a single document�

�� is separated from the next group by a single �blank� line�

�� Input one document

void

Doc		read�istream �i� List
StringElem� �nps�in�doc� int �term�count�

�

char buf�MAXLINE��

buf�
� � �
 �

i�getline�buf�MAXLINE��

while �buf�
�� �

��term�count�

StringElem �np � new StringElem�buf��

nps�in�doc�ins�last�np��

buf�
� � �
 �

i�getline�buf�MAXLINE��

�

�

�� module Cooccurrence

�include
math�h�

�include �Collection�RefList�h�

�include �Cooccurrence�h�

�include �Term�h�

�� Global KeyDatabase of Term objects �defined in ConceptSpace�cc�

extern KeyDatabase
String� Term� Terms�

�ifndef ��SUNPRO�CC

�endif

�� Implementation

���

Cooccurrence		Cooccurrence�Term �termB� int min�term�freq�

�

�termB�ref � �termB�

�intersect�count � ��

�sum�min�term�freq � min�term�freq�

�invalid � False�

�

Cooccurrence		�Cooccurrence��

�

�� nothing to do

�

�� Invalidate �this

void

Cooccurrence		invalidate��

�

�invalid � True�

�

�� Required clone�� method

Listable �

Cooccurrence		listable�clone�� const

�

�� stub

return NULL�

�

�� Required print�� method

void

Cooccurrence		print�ostream � o� const

�

cout

 �Cooccurrence	 �

 �this

 ��n��

�

�� Compute similarity

void

Cooccurrence		similarity�Term �termA� Term �termB� int doc�count�

�

if �termA��weight

 �� termA��w�factor

� �

�� calculate termA s weight and weighting factor

double oratio � �double� doc�count � �double� termA��doc�freq�

termA��weight � termA��sum�term�freq �

log�
�oratio � �double� termA��words�in�phrase��

termA��w�factor � log�
�oratio� � log�
��double� doc�count��

�

double termB�wf � termB��w�factor�

���

if �termB�wf

� �

�� calculate a private copy of termB s weighting factor

double oratio � �double� doc�count � �double� termB��doc�freq�

termB�wf � log�
�oratio� � log�
��double� doc�count��

�

double iratio � �double� doc�count � �double� �intersect�count�

double similarityAB � �

�

� �double� �sum�min�term�freq �

log�
�iratio � �double� termA��words�in�phrase�

�

� termA��weight

�

� termB�wf

��

if �similarityAB � SIMTHRESH� �

int �similarity � �int� � �double� SIMULT � similarityAB ��

RefList
Term� �siml � termA��similarities�find�ref��similarity��

if ��siml� �

siml� new RefList
Term��

termA��similarities�ins��similarity� siml��

�

siml��ins�last�termB��

�

�

�� Return a reference to co�occurring term

�� Term �

�� Cooccurrence		termB�const String �termB�phrase�

�� �

�� if ���termB�ref�

�� �termB�ref � Terms�find�ref�termB�phrase��

�� return ��termB�ref�

�� �

�� Return a reference to co�occurring term

Term �

Cooccurrence		termB��

�

return ��termB�ref�

�

��

�� Update �intersect�count � �sum�min�term�freq

void

Cooccurrence		update�int min�term�freq�

�

�intersect�count���

�sum�min�term�freq �� min�term�freq�

�

���

APPENDIX B

Coalescing Loop Operators in

CHOLESKY

In this appendix we include a partial listing of the sparse HPF�� benchmark CHOLESKY� The purpose

of including this code is to demonstrate the parallelization of an associative coalescing loop operator in

a multiple�exit loop� In the listing below� loop
�� in subroutine GENQMD has been transformed based

on the algorithms described in Chapter � section ����
 and Chapter
 section
�
���

� This is a modification of cholesky�f by Bill Pottenger and Yuan Lin

c

c Finds the Cholesky factor of a sparse symmetric matrix

program sparchol

c

��bp Doubled sizes of MAXN� MAXNROWI� MAXNADJ� and MAXNZ

��bp See http	��math�nist�gov�MatrixMarket for additional input files

integer

� MAXN� MAXNROWI� MAXNADJ� MAXNSUB� MAXNZ

parameter

� �

� MAXN��

� MAXNROWI��
�

� MAXNADJ��
�

�

� MAXNSUB��

� MAXNZ��

�

� �

c

���

character

� title�%�� key�"� mxtype��� ptrfmt���� indfmt����

� valfmt��
� rhsfmt��

integer

� totcrd� ptrcrd� indcrd� valcrd� rhscrd� nrow� ncol�

� nnzero� neltlvl

integer

� colptr�MAXN���� rowind�MAXNROWI�� nu�MAXN�� lp�MAXN��

� neqns� xadj�MAXN���� xadjc�MAXN���� adjncy�MAXNADJ��

� adjncyc�MAXNADJ�� xlnz��MAXN���� xnzsub��MAXN��

� nzsub��MAXNSUB�� xlnz��MAXN���� xnzsub��MAXN��

� nzsub��MAXNSUB�� fstdau�MAXN�� ndaugh�MAXN�� sister�MAXN��

� mother�MAXN�� stk�MAXN�� post�MAXN�� postinv�MAXN��

� nsu� isu�MAXN�� snhead�MAXN�� nafter�MAXN�� xmylnz�MAXN���

integer

� deg�MAXN�� qsize�MAXN�� marker�MAXN�� nbrhd�MAXN��

� perm�MAXN�� invp�MAXN�� rchset�MAXN�� nofsub�

� rchlnk�MAXN�� mrglnk�MAXN�� qlink�MAXN�� flag

real

� mylnz�MAXNZ�� denupd�MAXN�

integer

� i� j� k� adjp� nsub� nlnz� pp� node� sp� ii� jj� iii�

� s� inzsub� l� tgtnum� jp� ksize� tmp

real

� rand

c

real tstart� tend

ccc used by the runtime test

ccc

pointer �ptrposmylnz�posmylnz�

integer�� posmylnz�������

ccc �	 read min �	 read max �	 write min �	 write max

integer threadid

integer numthreads

integer failed

logical boo�� boo�

ccc

c Read in symmetric structure from Boeing�Harwell file

read ��� �a%��a"��i���a����x��i����a����a�
� �

� title� key� totcrd� ptrcrd� indcrd� valcrd� rhscrd�

� mxtype� nrow� ncol� nnzero� neltlvl� ptrfmt� indfmt� valfmt�

� rhsfmt

if �mxtype��	�� �ne� SA � then

write������ Bad matrix type	 �mxtype

stop

���

end if

if �ncol �gt� MAXN� then

write������ ncol too big	 �ncol

stop

end if

if �nnzero �gt� MAXNROWI� then

write������ nnzero too big	 �nnzero

stop

end if

read ���ptrfmt� �colptr�i�� i���ncol���

read ���indfmt� �rowind�i�� i���nnzero�

c

cTTT

call my�time�tstart�

cTTT

c Find adjacency structure

neqns � ncol

do �

� j � ��neqns

nu�j� �

�

� continue

do �

� j � ��neqns

call SORTS��colptr�j����colptr�j��rowind�colptr�j���

if �rowind�colptr�j�� �ne� j� then

write������ Unable to find diagonal in col �j

stop

end if

do �

� i � colptr�j����colptr�j�����

k � rowind�i�

nu�k� � nu�k� � �

�

� continue

�

� continue

xadj��� � �

do �

� j � ��neqns

xadj�j��� � xadj�j� � colptr�j��� � colptr�j� � � � nu�j�

lp�j� � xadj�j� � nu�j�

nu�j� �

�

� continue

if �xadj�neqns����� �gt� MAXNADJ� then

write������ Not enough room in adjncy� need	 �xadj�neqns�����

stop

end if

do �

� j � ��neqns

adjp � lp�j�

do �

� i � colptr�j����colptr�j�����

k � rowind�i�

adjncy�xadj�k��nu�k�� � j

nu�k� � nu�k� � �

adjncy�adjp� � k

adjp � adjp � �

�

� continue

�

� continue

���

do �

% j � ��neqns��

xadjc�j� � xadj�j�

�

% continue

do �

" j � ��xadj�neqns�����

adjncyc�j� � adjncy�j�

�

" continue

c

c Find new order

call GENQMD�neqns�xadj�adjncy�perm�invp�deg�

� marker�rchset�nbrhd�qsize�qlink�nofsub�

c

c Determine fill�in

nsub � MAXNSUB

call SMBFCT�neqns�xadjc�adjncyc�perm�invp�

� xlnz��nlnz�xnzsub��nzsub��nsub�

� rchlnk�mrglnk�marker�flag�

if �flag �gt�
� then

write������ Not enough room in nzsub	 �nsub

stop

end if

if �nlnz �gt� MAXNZ� then

write������ Not enough room in lnz	 �nlnz

stop

end if

c

c Find e�tree

do �

� j � ��neqns

fstdau�j� �

ndaugh�j� �

�

� continue

do �
�
 j � ��neqns��

mother�j� � nzsub��xnzsub��j��

if �ndaugh�mother�j�� �ne�
� then

sister�j� � fstdau�mother�j��

else

sister�j� �

end if

fstdau�mother�j�� � j

ndaugh�mother�j�� � ndaugh�mother�j�� � �

�
�
 continue

mother�neqns� �

sister�neqns� �

c

c Find postorder

pp �

node � neqns

sp �

��
 if �ndaugh�node� �ne�
� go to �%

go to ��

��
 if �sister�node� �ne�
� go to ��

if �sp �eq�
� go to �"

node � stk�sp�

���

sp � sp � �

��
 pp � pp � �

post�pp� � node

go to ��

��
 node � sister�node�

go to ��

�%
 sp � sp � �

stk�sp� � node

node � fstdau�node�

go to ��

�"
 continue

c

c Find supernodes

nsu � �

ii � �

c

c Consider a supernode with leading node post�ii�

��
 isu�nsu� � ii

jj � ii � �

iii � ii

c

c Try to add j to the supernode

��
 if �jj �gt� neqns� go to ��

j � post�jj�

i � post�iii�

if �j �ne� mother�i� �or� i �ne� fstdau�j� �or� sister�i� �ne�
�

� go to ��

if �xlnz��i����xlnz��i� �ne� xlnz��j����xlnz��j���� go to ��

l � xnzsub��j�

do ��
 k � xnzsub��i����xnzsub��i��xlnz��i����xlnz��i���

if �nzsub��k� �ne� nzsub��l�� go to ��

l � l � �

��
 continue

c

c Everything succeeded	 we can add to the supernode

jj � jj � �

iii � iii � �

go to ��

c

c We can t add any more to the supernode

��
 if �jj �gt� neqns� go to �"

ii � jj

nsu � nsu � �

go to ��

c

c Done	 wrap up

�"
 isu�nsu��� � neqns��

c

c Find postinv

do �
�� j � ��neqns

postinv�post�j�� � j

�
�� continue

���

c

c Determine structure with new postorder numbering

xlnz���� � �

inzsub � �

xmylnz��� � �

c

c Consider each supernode

do �
�� s � ��nsu

j � isu�s�

xnzsub��j� � inzsub

jj � post�j�

do �
�� k � xnzsub��jj��xnzsub��jj��xlnz��jj����xlnz��jj���

nzsub��inzsub� � postinv�nzsub��k��

inzsub � inzsub � �

�
�� continue

c

c Consider each column in the supernode

do �
�� j � isu�s��isu�s�����

jj � post�j�

xlnz��j��� � xlnz��j� � xlnz��jj��� � xlnz��jj�

xmylnz�j��� � xmylnz�j� � xlnz��jj��� � xlnz��jj� � �

xnzsub��j� � xnzsub��isu�s�� � j � isu�s�

�
�� continue

�
�� continue

c

c Initialize matrix with random values

do �
�� j � ��neqns

do �
�� i � xmylnz�j����xmylnz�j�����

�e

if �i�le�
� then

print �� i� �i�

 � in j� �j

stop

endif

�e

mylnz�i� � ��
 � rand�
� � ��

�
�� continue

�e

if �xmylnz�j��le�
� then

print �� i� �i�

 � in j� �j

stop

endif

�e

mylnz�xmylnz�j�� � "�
 � float�neqns�j�

�
�� continue

c

c Write out matrix

��bp do j � ��neqns

��bp write��� ��e�
��
� � �mylnz�i��i�xmylnz�j��xmylnz�j������

��bp end do

��bp write����� BETWEEN

� skip deadcode

print �� �	mylnz	 �mylnz���

���

�

c

c Determine head of each supernode and number after each node

do �
�% s � ��nsu

do �
�" j � isu�s��isu�s�����

snhead�j� � isu�s�

nafter�j� � isu�s��� � � � j

�
�" continue

�
�% continue

c

c Perform Cholesky factorization

do �
�� i � ��neqns

denupd�i� �
�

�
�� continue

ccc

ccc runtime test version

ccc

ccc

ccc

numthreads � mp�numthreads��

c print �� numthreads� � threads avaiable�

ccc

ptrposmylnz � malloc�numthreads�������

do �
�� k � ��neqns

ccc print �� k

call normalize�k�xmylnz�mylnz�

if �nafter�k� �ne�
� then

ksize � xlnz��k��� � xlnz��k� � �

c print �� �getsize�

do i � �� numthreads

posmylnz���i� � MAXNZ��

posmylnz���i� � MAXNZ��

posmylnz���i� � ���

posmylnz���i� � ���

enddo

c print �� �getsize ��

C&DOACROSS

do j � k��� k�nafter�k�

call sizeupdd�j�k���ksize�

� xmylnz�k��xmylnz�j��

� posmylnz���mp�my�threadnum������

���

enddo

failed �

do i � �� numthreads

c print ����������������

c print ��minposmylnz���i��maxposmylnz���i�

c print ��minposmylnz���i��maxposmylnz���i�

c print ����������������

do j � �� numthreads

cc i write �� j read

if � i �ne� j � then

boo�� posmylnz���i��lt�posmylnz���j�

boo�� posmylnz���i��gt�posmylnz���j�

if � boo� �or� boo� � then

else

failed � �

goto ����

endif

endif

cc i write �� j write

if � j �gt� i � then

boo�� posmylnz���i��lt�posmylnz���j�

boo�� posmylnz���i��gt�posmylnz���j�

if � boo� �or� boo� � then

else

failed � �

goto ����

endif

endif

enddo

enddo

���� continue

CC print �� �failed	�� failed

C&DOACROSS IF �failed �eq�
�� local�j�

do �
�
 j � k���k�nafter�k�

call upddense�mylnz�xmylnz�k���mylnz�xmylnz�j���

� j�k���ksize�

�
�
 continue

else

do i � �� numthreads

posmylnz���i� � MAXNZ��

posmylnz���i� � MAXNZ��

posmylnz���i� � ���

posmylnz���i� � ���

���

enddo

tmp � xnzsub��k�

C&DOACROSS local�jp�j�tgtnum�

do jp � xnzsub��k��xnzsub��k��xlnz��k����xlnz��k���

tgtnum � jp�tmp��

j � nzsub��jp�

call szupdate�k�j�xmylnz�snhead�k���

� xmylnz�j��tgtnum�snhead�xlnz��

� xnzsub��nzsub��nafter�

� posmylnz���mp�my�threadnum������

enddo

failed �

do i � �� numthreads

do j � �� numthreads

cc i write �� j read

if � i �ne� j � then

boo�� posmylnz���i��lt�posmylnz���j�

boo�� posmylnz���i��gt�posmylnz���j�

if � boo� �or� boo� � then

else

failed � �

c print ���w�r��i�j�minposmylnz���i��maxposmylnz���i�

c print �� � �� minposmylnz���j��maxposmylnz���j�

goto ����

endif

endif

cc i write �� j write

if � j �gt� i � then

boo�� posmylnz���i��lt�posmylnz���j�

boo�� posmylnz���i��gt�posmylnz���j�

if � boo� �or� boo� � then

else

failed � �

c print ���w�w��i�j�minposmylnz���i��maxposmylnz���i�

c print ��� �� minposmylnz���j��maxposmylnz���j�

goto ����

endif

endif

enddo

enddo

���� continue

cc print �� �failed �
��	�� failed

tmp � xnzsub��k�

C&DOACROSS if � failed �eq�
 �� local�jp�j�tgtnum�denupd�

��

do �
�� jp � xnzsub��k��xnzsub��k��xlnz��k����xlnz��k���

tgtnum � jp � tmp ��

j � nzsub��jp�

call update�k�j�mylnz�xmylnz�snhead�k����

� mylnz�xmylnz�j���tgtnum�snhead�xlnz��

� xnzsub��nzsub��nafter�denupd�

�
�� continue

end if

�
�� continue

ccc Free CParray � SHarray

ccc

ccc

call free�ptrposmylnz�

ccc wcnt should not be freed until program ends

cTTT

call my�time�tend�

print �� Time	 �tend�tstart� sec�

cTTT

c

c Write out factor

c do j � ���

c write��� ��e�
��
� � �mylnz�i��i�xmylnz�j��xmylnz�j������

c end do

c

� skip deadcode

print �� �	mylnz	 �mylnz���

�

end

C����� SUBROUTINE GENQMD

C�� ��

C�� ��

C���������� GENQMD ����� QUOT MIN DEGREE ORDERING ��������� ��

C�� ��

C�� ��

C ��

C PURPOSE � THIS ROUTINE IMPLEMENTS THE MINIMUM DEGREE %�

C ALGORITHM� IT MAKES USE OF THE IMPLICIT REPRESENT� "�

C ATION OF THE ELIMINATION GRAPHS BY QUOTIENT GRAPHS� ��

C AND THE NOTION OF INDISTINGUISHABLE NODES� �
�

C CAUTION � THE ADJACENCY VECTOR ADJNCY WILL BE ���

C DESTROYED� ���

C ���

C INPUT PARAMETERS � ���

���

C NEQNS � NUMBER OF EQUATIONS� ���

C �XADJ� ADJNCY� � THE ADJACENCY STRUCTURE� ���

C �%�

C OUTPUT PARAMETERS � �"�

C PERM � THE MINIMUM DEGREE ORDERING� ���

C INVP � THE INVERSE OF PERM� �
�

C ���

C WORKING PARAMETERS � ���

C DEG � THE DEGREE VECTOR� DEG�I� IS NEGATIVE MEANS ���

C NODE I HAS BEEN NUMBERED� ���

C MARKER � A MARKER VECTOR� WHERE MARKER�I� IS ���

C NEGATIVE MEANS NODE I HAS BEEN MERGED WITH ���

C ANOTHER NODE AND THUS CAN BE IGNORED� �%�

C RCHSET � VECTOR USED FOR THE REACHABLE SET� �"�

C NBRHD � VECTOR USED FOR THE NEIGHBORHOOD SET� ���

C QSIZE � VECTOR USED TO STORE THE SIZE OF �
�

C INDISTINGUISHABLE SUPERNODES� ���

C QLINK � VECTOR TO STORE INDISTINGUISHABLE NODES� ���

C I� QLINK�I�� QLINK�QLINK�I�� ��� ARE THE ���

C MEMBERS OF THE SUPERNODE REPRESENTED BY I� ���

C ���

C PROGRAM SUBROUTINES � ���

C QMDRCH� QMDQT� QMDUPD� �%�

C �"�

C�� ���

C �
�

SUBROUTINE GENQMD � NEQNS� XADJ� ADJNCY� PERM� INVP� DEG� ���

� MARKER� RCHSET� NBRHD� QSIZE� QLINK� ���

� NOFSUB � ���

C ���

C�� ���

C �%�

INTEGER ADJNCY���� PERM���� INVP���� DEG���� MARKER���� �"�

� RCHSET���� NBRHD���� QSIZE���� QLINK��� ���

INTEGER XADJ���� INODE� IP� IRCH� J� MINDEG� NDEG� �
�

� NEQNS� NHDSZE� NODE� NOFSUB� NP� NUM� NUMP�� ���

� NXNODE� RCHSZE� SEARCH� THRESH ���

integer cpunum� loopsize� upper� lower

integer subsize� subnum� blocksize� blocknum

integer start� last

integer ith�jth�kth� lastith� lastjth

integer geti

volatile geti� node� lastith� lastjth

integer mindeg
����

�

integer nnode� nndeg

C ���

C�� ���

C ���

C ��� ���

C INITIALIZE DEGREE VECTOR AND OTHER WORKING VARIABLES� �%�

C ��� �"�

���

MINDEG � NEQNS ���

NOFSUB �
 �
�

DO �

 NODE � �� NEQNS ���

PERM�NODE� � NODE ���

INVP�NODE� � NODE ���

MARKER�NODE� �
 ���

QSIZE�NODE� � � ���

QLINK�NODE� �
 ���

NDEG � XADJ�NODE��� � XADJ�NODE� �%�

DEG�NODE� � NDEG �"�

IF � NDEG �LT� MINDEG � MINDEG � NDEG ���

�

 CONTINUE %
�

NUM �
 %��

C ��� %��

C PERFORM THRESHOLD SEARCH TO GET A NODE OF MIN DEGREE� %��

C VARIABLE SEARCH POINTS TO WHERE SEARCH SHOULD START� %��

C ��� %��

�

 SEARCH � � %��

THRESH � MINDEG %%�

MINDEG � NEQNS %"�

�

 NUMP� � NUM � � %��

IF � NUMP� �GT� SEARCH � SEARCH � NUMP� "
�

cly DO �

 J � SEARCH� NEQNS "��

cly NODE � PERM�J� "��

cly IF � MARKER�NODE� �LT�
 � GOTO �

 "��

cly NDEG � DEG�NODE� "��

cly IF � NDEG �LE� THRESH � GO TO �

 "��

cly IF � NDEG �LT� MINDEG � MINDEG � NDEG "��

cly �

 CONTINUE "%�

lower � search

upper � neqns

cpunum � mp�numthreads��

c cpunum � �

loopsize � upper � lower � �

subsize � ��

blocksize � subsize � cpunum

subnum � � loopsize � subsize � � � � subsize

last � mod� subnum� cpunum �

if � last �eq�
 � last � cpunum

geti � upper � �

lastith � last

lastjth � �subnum � cpunum � ���cpunum

if � lastjth �gt� �

 � stop

C&DOACROSS LOCAL�ith�jth�kth�start�nnode�nndeg�

do ith � �� cpunum

start � subsize � �ith��� � lower

if � ith �ne� last � then

do jth � �� �subnum�cpunum�ith��cpunum

���

mindeg
�ith�jth� � mindeg

do kth � start� start � subsize � �

if � kth �ge� geti � goto ���

nnode � perm�kth�

if � marker�nnode� �lt�
 � goto �
�

nndeg � deg�nnode�

if � nndeg �le� thresh � then

call mp�setlock��

if � kth �lt� geti� then

geti � kth

lastith � ith

lastjth � jth

node � nnode

end if

call mp�unsetlock��

goto ���

end if

if � nndeg �lt� mindeg
�ith�jth� � then

mindeg
�ith�jth� � nndeg

c if �thresh �eq� ��� print ��ith�jth�kth�nndeg

end if

�
� continue

end do

start � start � blocksize

end do

else

do jth � �� �subnum�cpunum�ith��cpunum��

mindeg
�ith�jth� � mindeg

do kth � start� start � subsize � �

if � kth �ge� geti � goto ���

nnode � perm�kth�

if � marker�nnode� �lt�
 � goto �
�

nndeg � deg�nnode�

if � nndeg �le� thresh � then

call mp�setlock��

if � kth �lt� geti� then

geti � kth

lastith � ith

lastjth � jth

node � nnode

end if

call mp�unsetlock��

goto ���

end if

if � nndeg �lt� mindeg
�ith�jth� � then

mindeg
�ith�jth� � nndeg

c if �thresh �eq� ��� print ��ith�jth�kth�nndeg

end if

�
� continue

end do

start � start � blocksize

end do

���

mindeg
�ith�jth� � mindeg

do kth � start� upper

if � kth �ge� geti � goto ���

nnode � perm�kth�

if � marker�nnode� �lt�
 � goto �
�

nndeg � deg�nnode�

if � nndeg �le� thresh � then

call mp�setlock��

if � kth �lt� geti� then

geti � kth

lastith � ith

lastjth � jth

node � nnode

end if

call mp�unsetlock��

goto ���

end if

if � nndeg �lt� mindeg
�ith�jth� � then

mindeg
�ith�jth� � nndeg

c if �thresh �eq� ��� print ��ith�jth�kth�nndeg

end if

�
� continue

end do

end if

��� continue

end do

j � geti

mindeg � mindeg
�����

do jth � �� lastjth � �

do ith � �� cpunum

if � mindeg
�ith�jth� �lt� mindeg � then

mindeg � mindeg
�ith�jth�

c if � thresh �eq� �� � print �� i�j �ith�jth�mindeg

end if

end do

end do

do ith � �� lastith

if � mindeg
�ith�jth� �lt� mindeg � then

mindeg � mindeg
�ith�jth�

c if � thresh �eq� �� � print �� i�j �ith�jth�mindeg

end if

end do

c print �� �������������

c print �� j� mindeg� thresh�nndeg

c print �� lower� upper� last� subnum

if � geti �le� neqns � then

���

c print �� j� mindeg� node

goto �

end if

GO TO �

 ""�

C ��� "��

C NODE HAS MINIMUM DEGREE� FIND ITS REACHABLE SETS BY �
�

C CALLING QMDRCH� ���

C ��� ���

�

 SEARCH � J ���

c print �� j� mindeg� node

c print �� ''''''''

NOFSUB � NOFSUB � DEG�NODE� ���

MARKER�NODE� � � ���

CALL QMDRCH �NODE� XADJ� ADJNCY� DEG� MARKER� ���

� RCHSZE� RCHSET� NHDSZE� NBRHD � �%�

C �� �"�

C ELIMINATE ALL NODES INDISTINGUISHABLE FROM NODE� ���

C THEY ARE GIVEN BY NODE� QLINK�NODE�� ���� �

�

C �� �
��

NXNODE � NODE �
��

�

 NUM � NUM � � �
��

NP � INVP�NXNODE� �
��

IP � PERM�NUM� �
��

PERM�NP� � IP �
��

INVP�IP� � NP �
%�

PERM�NUM� � NXNODE �
"�

INVP�NXNODE� � NUM �
��

DEG�NXNODE� � � � ��
�

NXNODE � QLINK�NXNODE� ����

IF �NXNODE �GT�
� GOTO �

 ����

C ����

IF � RCHSZE �LE�
 � GO TO "

 ����

C �� ����

C UPDATE THE DEGREES OF THE NODES IN THE REACHABLE ����

C SET AND IDENTIFY INDISTINGUISHABLE NODES� ��%�

C �� ��"�

CALL QMDUPD � XADJ� ADJNCY� RCHSZE� RCHSET� DEG� ����

� QSIZE� QLINK� MARKER� RCHSET�RCHSZE���� ��
�

� NBRHD�NHDSZE��� � ����

C ��� ����

C RESET MARKER VALUE OF NODES IN REACH SET� ����

C UPDATE THRESHOLD VALUE FOR CYCLIC SEARCH� ����

C ALSO CALL QMDQT TO FORM NEW QUOTIENT GRAPH� ����

C ��� ����

MARKER�NODE� �
 ��%�

DO %

 IRCH � �� RCHSZE ��"�

INODE � RCHSET�IRCH� ����

IF � MARKER�INODE� �LT�
 � GOTO %

 ��
�

MARKER�INODE� �
 ����

NDEG � DEG�INODE� ����

�
�

IF � NDEG �LT� MINDEG � MINDEG � NDEG ����

IF � NDEG �GT� THRESH � GOTO %

 ����

MINDEG � THRESH ����

THRESH � NDEG ����

SEARCH � INVP�INODE� ��%�

%

 CONTINUE ��"�

IF � NHDSZE �GT�
 � CALL QMDQT � NODE� XADJ� ����

� ADJNCY� MARKER� RCHSZE� RCHSET� NBRHD � ��
�

"

 IF � NUM �LT� NEQNS � GO TO �

 ����

RETURN ����

END ����

�
�

BIBLIOGRAPHY

��� Zahira Ammarguellat and Luddy Harrison� Automatic Recognition of Induction � Recurrence
Relations by Abstract Interpretation� Proceedings of Sigplan ����� Yorktown Heights� �����
���$
���� June �����

��� R� Asenjo� M� Ujald%on� and E� L� Zapata� SpLU � Sparse LU Factorization	 HPF�
	 Scope of Activ�
ities and Motivating Applications� High Performance Fortran Forum� version ��� edition� November
���
�

��� Rafael Asenjo� Eladio Gutierrez� Yuan Lin� David Padua� Bill Pottenger� and Emilio Zapata� On
the Automatic Parallelization of Sparse and Irregular Fortran Codes� Technical Report ����� Univ�
of Illinois at Urbana�Champaign� Center for Supercomputing Res� � Dev�� December �����

�
� Richard Barrett� Michael Berry� Tony F� Chan� James Demmel� June Donato� Jack Dongarra� Victor
Eijkhout� Roldan Pozo� Charles Romine� and Henk van der Vorst� Templates for the Solution of
Linear Systems� Building Blocks for Iterative Methods� SIAM� Philadelphia� PA� ���
�

��� M� Berry� D� Chen� P� Koss� D� Kuck� L� Pointer� S� Lo� Y� Pang� R� Rolo�� A� Sameh� E� Clementi�
S� Chin� D� Schneider� G� Fox� P� Messina� D� Walker� C� Hsiung� J� Schwarzmeier� K� Lue� S� Orszag�
F� Seidl� O� Johnson� G� Swanson� R� Goodrum� and J� Martin� The Perfect Club Benchmarks

E�ective Performance Evaluation of Supercomputers� Int�l	 Journal of Supercomputer Applications�
Fall ��
�� ����
�$
�� Fall �����

��� G�A� Bird� Molecular Gas Dynamics and the Direct Simulation of Gas Flows� Oxford University
Press� Oxford� England� ���
�

��� Graeme Bird� Personal communication with author� �����

��� William Blume� Ramon Doallo� Rudolf Eigenmann� John Grout� Jay Hoe�inger� Thomas Lawrence�
Jaejin Lee� David Padua� Yunheung Paek� Bill Pottenger� Lawrence Rauchwerger� and Peng Tu�
Parallel Programming with Polaris� IEEE Computer� ������
��$��� December �����

��� B�R� Brooks� R�E� Bruccoleri� B�D� Olafson� D�J� States� S� Swaminathan� and M� Karplus�
CHARMM
 A Program for Macromolecular Energy� Minimization� and Dynamics Calculations�
J	 Comp	 Chem	�

���$���� �����

���� H� Chen and K� J� Lynch� Automatic Construction of Networks of Concepts Characterizing Doc�
ument Databases� IEEE Transactions on Systems� Man and Cybernetics� �����
���$���� Septem�
ber�October �����

���� Hsinchun Chen� Bruce Schatz� Tobun Ng� Joanne Martinez� Amy Kirchho�� and Chienting Lin� A
Parallel Computing Approach to Creating Engineering Concept Spaces for Semantic Retrieval
 The
Illinois Digital Library Initiative Project� IEEE Transactions on Pattern Analysis and Machine
Intelligence� �����

���� S� C� Chen� D� J� Kuck� and A� H� Sameh� Practical Parallel Band Triangular System Solvers� ACM
Trans	 on Mathematical Software�
���
���$���� Sept�� �����

���� Ronald Gary Cytron� Compile�Time Scheduling and Optimization for Asynchronous Machines�
PhD thesis� Univ� of Illinois at Urbana�Champaign� Dept� of Computer Sci�� Oct�� ���
�

�
�

��
� Luiz DeRose� Kyle Gallivan� Bret Marsolf� David Padua� and Stratis Gallopoulos� FALCON
 A
MATLAB Interactive Restructuring Compiler� Proceedings of the
th International Workshop on
Languages and Compilers for Parallel Computing� Columbus� OH� pages ����$������ August �����

���� Iain Du�� Nick Gould� John Reid� Jennifer Scott� and Linda Miles� Harwell Subroutine Library�
Technical Report http
��www�rl�ac�uk�departments�ccd�numerical�hsl�hsl�html� Council for the
Central Laboratory of the Research Councils� Department for Computation and Information� Ad�
vanced Research Computing Division�

���� Rudolf Eigenmann and Siamak Hassanzadeh� Evaluating High�Performance Computer Technology
through Industrially Signi	cant Applications� IEEE Computational Science � Engineering� Spring
�����

���� A� Fisher and A� Ghuloum� Parallelizing Complex Scans and Reductions� Proceedings of the
SIGPLAN��� Conference on Programming Language Design and Implementation� June ���
�

���� Ian Foster� Rob Schreiber� and Paul Havlak� HPF�� Scope of Activities and Motivating Applications�
Technical Report CRPC�TR�

��� Rice University� November ���
�

���� William B� Frakes and Ricardo Baeza�Yates� Information Retrieval Data Structures � Algorithms�
Prentice Hall� Englewood Cli�s� New Jersey� �����

���� Dr� Sam Fuller� Seminar Presented at UIUC� October �����

���� D� D� Gajski� D� J� Kuck� and D� A� Padua� Dependence Driven Computation� Proceedings of the
COMPCON
� Spring Computer Conf	� pages ���$���� Feb�� �����

���� Michael P� Gerlek� Eric Stoltz� and Michael Wolfe� Beyond Induction Variables
 Detecting and
Classifying Sequences Using a Demand�driven SSA Form� To appear in TOPLAS�

���� Milind Baburao Girkar� Functional Parallelism Theoretical Foundations and Implementation� PhD
thesis� Univ� of Illinois at Urbana�Champaign� Center for Supercomputing Res� � Dev�� December
�����

��
� G�H� Golub and C�F� van Loan� Matrix Computations� The Johns Hopkins University Press� �����

���� Mark D� Guzzi� David A� Padua� Jay P� Hoe�inger� and Duncan H� Lawrie� Cedar Fortran and
Other Vector and Parallel Fortran Dialects� Journal of Supercomputing�
���
��$��� March �����

���� Mohammad R� Haghighat and Constantine D� Polychronopoulos� Symbolic Program Analysis and
Optimization for Parallelizing Compilers� Presented at the �th Annual Workshop on Languages and
Compilers for Parallel Computing� New Haven� CT� August ���� �����

���� Luddy Harrison� Compiling Lisp for Evaluation on a Tightly Coupled Multiprocessor� Technical
Report ���� Univ� of Illinois at Urbana�Champaign� Center for Supercomputing Res� � Dev�� Mar�
��� �����

���� John E� Hopcroft and Je�rey D� Ullman� Introduction to Automata Theory� Languages� and Com�
putation� Addison�Wesley� Reading� MA� �����

���� IBM� Parallel FORTRAN Language and Library Reference� March �����

���� P� Jouvelot and B� Dehbonei� A Uni	ed Semantic Approach for the Vectorization and Parallelization
of Generalized Reductions� In Proceedings of the ��
� International Conference on Supercomputing�
Crete� Greece� June ���� ����� ACM�

���� Jee Myeong Ku� The Design of an E�cient and Portable Interface Between a Parallelizing Com�
piler and its Target Machine� Master�s thesis� Univ� of Illinois at Urbana�Champaign� Center for
Supercomputing Res� � Dev�� �����

���� D� Kuck� P� Budnik� S�C� Chen� Jr� E� Davis� J� Han� P� Kraska� D� Lawrie� Y� Muraoka�
R� Strebendt� and R� Towle� Measurements of Parallelism in Ordinary FORTRAN Programs�
Computer� ����
��$
�� Jan�� ���
�

���� D� J� Kuck� The Structure of Computers and Computations�� volume I� John Wiley � Sons� Inc��
NY� �����

�
�

��
� David Kuck and Yoichi Muraoka� Bounds on the Parallel Evaluation of Arithmetic Expressions
Using Associativity and Commutativity� Acta Informatica� �� Fasc� �
���$���� ���
�

���� David J� Kuck and Richard A� Stokes� The Burroughs Scienti	c Processor �BSP�� Special Issue on
Supersystems� IEEE Trans	 on Computers� C������
���$���� May� �����

���� D�H� Lehmer� Mathematical Methods in Large�scale Computing Units� In
nd Symposium on Large�
Scale Digital Calculating Machinery� pages �
�$�
�� Cambridge� MA� ����� Harvard University
Press�

���� P�A�W� Lewis� A�S� Goodman� and J�M� Miller� A Pseudo�Random Number Generator for the
System����� IBM Systems Journal� ����
���$�
�� May �����

���� G� Lueker� Some Techniques for Solving Recurrences� Computing Surveys� Vol	 �
� No	 �� December
�����

���� Michael Mascagni and David Bailey� Requirements for a Parallel Pseudorandom Number Genera�
tor� Technical Report http
��olympic�jpl�nasa�gov�SSTWG�lolevel�msgs�html� Center for Comput�
ing Sciences� I�D�A� and NASA Ames Research Center� June �����

�
�� John M� Mellor�Crummey and Michael L� Scott� Algorithms for Scalable Synchronization on Shared�
Memory Multiprocessors� ACM Transactions on Computer Systems� Vol �� No �� pages ��$���
February �����

�
�� Jose Eduardo Moreira� On the Implementation and E�ectiveness of Autoscheduling for Shared�
Memory Multiprocessors� PhD thesis� Univ� of Illinois at Urbana�Champaign� Center for Supercom�
puting Res� � Dev�� February �����

�
�� D� Padua and M� Wolfe� Advanced Compiler Optimization for Supercomputers� CACM�
������
���
$����� December� �����

�
�� D� A� Padua� D� J� Kuck� and D� H� Lawrie� High�Speed Multiprocessors and Compilation Tech�
niques� Special Issue on Parallel Processing� IEEE Trans	 on Computers� C������
���$���� Sept��
�����

�

� Bill Pottenger and Rudolf Eigenmann� Idiom Recognition in the Polaris Parallelizing Compiler�
Proceedings of the �th ACM International Conference on Supercomputing� Barcelona� Spain� pages

$

�� July �����

�
�� Bill Pottenger and Bruce Schatz� cSpace
 A Parallel C�� Information Retrieval Benchmark�
Technical Report ����� Univ� of Illinois at Urbana�Champaign� Center for Supercomputing Res� �
Dev�� January �����

�
�� Bill Pottenger and Bruce Schatz� On the Evaluation of C�� in a Parallel Programming Environment�
Technical Report ����� Univ� of Illinois at Urbana�Champaign� Center for Supercomputing Res� �
Dev�� November �����

�
�� William Morton Pottenger� Induction Variable Substitution and Reduction Recognition in the
Polaris Parallelizing Compiler� Master�s thesis� Univ of Illinois at Urbana�Champaign� Cntr for
Supercomputing Res � Dev� December ���
�

�
�� Daniel V� Pryor� Steven A� Cuccaro� Michael Mascagni� and M� L� Robinson� Implementation of a
Portable and Reproducible Parallel Pseudorandom Number Generator� Proceedings of Supercom�
puting ���� Nov� ���
�

�
�� Lawrence Rauchwerger� Run�Time Parallelization� A Framework for Parallel Computation� PhD
thesis� Univ� of Illinois at Urbana�Champaign� Center for Supercomputing Res� � Dev�� August
�����

���� Lawrence Rauchwerger and David Padua� The LRPD Test
 Speculative Run�Time Parallelization of
Loops with Privatization and Reduction Parallelization� Proceedings of the SIGPLAN��� Conference
on Programming Language Design and Implementation� June �����

�

���� Martin C� Rinard and Pedro C� Diniz� Commutativity Analysis
 A New Analysis Framework
for Parallelizing Compilers� In Programming Language Implementation and Design �PLDI�� pages
�
$��� ACM� �����

���� L�F� Romero and E�L� Zapata� Data Distributions for Sparse Matrix Vector Multiplication� J	
Parallel Computing� ���
�
���$���� April �����

���� Dmitri Roussinov� Personal communication with author� �����

��
� James Rumbaugh� Michael Blaha� William Premerlani� Frederick Eddy� and William Lorensen�
Object�Oriented Modeling and Design� Prentice Hall� Englewood Cli�s� New Jersey� �����

���� B� Schatz� E� Johnson� P� Cochrane� and H� Chen� Interactive Term Suggestion for Users of Dig�
ital Libraries
 Using Subject Thesauri and Co�occurrence Lists for Information Retrieval� In �st
International ACM Conference on Digital Libraries� pages ���$���� Bethesda� MD� ����� ACM�

���� Bruce Schatz� Interactive Retrieval in Information Spaces Distributed across a Wide�Area Network�
PhD thesis� University of Arizona Computer Science Department� December �����

���� Bruce Schatz and Hsinchun Chen� Building Large�Scale Digital Libraries� IEEE Computer� May
�����

���� NRC Computer Science and Telecommunications Board� Computing The Future� National Academy
Press� Washington� D�C�� �����

���� T� Suganuma� H� Komatsu� and T� Nakatani� Detection and Global Optimization of Reduction
Operations� Proceedings of ICS���� Philadelphia� PA� USA� July �����

���� Peiyi Tang� Pen�Chung Yew� and Chuan�Qi Zhu� Compiler Techniques for Data Synchronization in
Nested Parallel Loops� Proceedings of ICS���� Amsterdam� Holland� �
���$���� May �����

���� Peng Tu� Automatic Array Privatization and Demand�Driven Symbolic Analysis� PhD thesis� Univ�
of Illinois at Urbana�Champaign� Center for Supercomputing Res� � Dev�� May �����

���� Peng Tu and David Padua� Automatic Array Privatization� In Utpal Banerjee� David Gelernter�
Alex Nicolau� and David Padua� editors� Proc	 Sixth Workshop on Languages and Compilers for
Parallel Computing� Portland� OR	 Lecture Notes in Computer Science	� volume ���� pages ���$����
August ����
� �����

���� Peng Tu and David Padua� Gated SSA�Based Demand�Driven Symbolic Analysis for Parallelizing
Compilers� Proceedings of the �th ACM International Conference on Supercomputing� Barcelona�
Spain� pages
�
$
��� July �����

��
� Alexander Veidenbaum� Compiler Optimizations and Architecture Design Issues for Multiprocessors�
PhD thesis� Univ� of Illinois at Urbana�Champaign� Dept� of Comput� Sci�� May �����

���� Guhan Viswanathan and James R� Larus� User�de	ned Reductions for E�cient Communication in
Data�Parallel Languages� Technical Report ����� Univ� of Wisconsin�Madison� Computer Sciences
Department� Aug� �����

���� Dick Wilmoth� Personal communication with author� �����

���� Dr� Richard Wirt� Seminar Presented at UIUC� September �����

���� Hans Zima with Barbara Chapman� Supercompilers for Parallel and Vector Computers� ACM Press�
New York� NY� �����

�
�

VITA

William Morton Pottenger

www�ncsa�uiuc�edu�People�billp

William Morton �Bill� Pottenger was born in February of ���� in Chicago Illinois� Bill completed a

Bachelor of Arts in Religion Studies at Lehigh University in ����� After working in the computer 	eld

for several years� Bill returned to the University of Alaska to obtain a Secondary Teaching Certi	cate as

well as a Bachelor of Science in Computer Science� While at the University of Alaska Bill was inducted

into the Phi Kappa Honor Society� appeared on the Chancellor�s List multiple times� and in ���� was

distinguished Outstanding Student of the Year in Computer Science�

Following matriculation from the University of Alaska� Bill continued his education at the University

of Illinois at Urbana�Champaign� In ���� Bill completed a Master of Science in Computer Science� and

in May of ���� completed a Doctor of Philosophy in Computer Science�

Bill�s research interests lie in the 	elds of semantic information retrieval� high�performance bench�

marking� and automatic parallelization of computer programs� Publications and technical reports which

Bill has jointly authored include the following

�� Polaris
 Improving the E�ectiveness of Parallelizing Compilers� Lecture Notes in Computer Science

�
� Springer�Verlag� pages �
�$��
� August ���
� also in Proceedings of the Workshop on Lan�
guages and Compilers for Parallel Computing� Ithaca� New York� pages ���� $ ������ August ���

�joint author�

�� Idiom Recognition in the Polaris Parallelizing Compiler� Proceedings of the �th ACM International
Conference on Supercomputing� Barcelona� Spain� July ���� �primary co�author�

�� E�ective Automatic Parallelization with Polaris� International Journal of Parallel Programming�
May ���� �joint author�

�
�

� Targeting a Shared Address Space version of the Seismic Benchmark Seis���� www	specbench	org
�hpg�sas	ps� January ���� �primary co�author�

�� Parallel Programming with Polaris� IEEE Computer� December ���� �joint author�

�� Real�time Semantic Retrieval on Parallel Computers� Center for Supercomputing Research and
Development� Technical Report ����� January ���� �primary co�author�

�� Seismic
 A Hybrid C�Fortran Seismic Processing Benchmark� Center for Supercomputing Research
and Development� Technical Report ����� January ���� �primary co�author�

�� cSpace
 A Parallel C�� Information Retrieval Benchmark� Center for Supercomputing Research
and Development� Technical Report ����� January ���� �primary co�author�

�� On the Automatic Parallelization of Sparse and Irregular Fortran Codes� Center for Supercomputing
Research and Development� Technical Report ����� January ���� �primary joint author�

Bill currently holds a position as an Adjunct Assistant Professor in the Computer Science Department

at the University of Illinois in Urbana�Champaign� He is also a Research Scientist at the National Center

for Supercomputing Applications �NCSA�� as well as holding a research appointment in the Digital

Library Research Program in the University Library at Illinois�

�
�

