
Link Analysis of Higher-Order Paths in Supervised Learning Datasets 
 

Murat C. Ganiz, William M. Pottenger and Xiaoning Yang 
Lehigh University 

{mug3, billp, xiy204}@lehigh.edu 
 
Keywords: Link Analysis, Link Mining, Higher-Order Links/Paths, Supervised Learning, Decision Trees 
 

Abstract 
Due to recent concerns with security and 

terrorism there has been an increasing focus on 
techniques that discover links and relations in data. 
Several efforts that employ “data mining” 
techniques have contributed to this field, but few 
focus on discovering patterns in sets of 
higher-order links, which can reveal hidden or 
indirect relationships in data. In this work we focus 
on the discovery and analysis of higher-order path 
patterns in a supervised learning dataset. We first 
analyze higher-order links in the leaf nodes of a 
decision tree and find evidence for distinguishing 
between nodes of different classes. Based on these 
results we next focus on the training data itself used 
to build the tree. Our results indicate that classes of 
instances in labeled training data may be separable 
based on the characteristics of higher-order paths. 
This technique has potential applications in 
cybersecurity and cyberforensics, as well as text 
mining and analytics. 

 
Introduction 

Due to recent concerns with terrorism and 
security there has been an increasing focus on 
techniques that discover links and relations in data. 
Numerous efforts that employ “data mining” 
techniques have contributed to this field, and of 
these several focus on higher-order links, which 
can reveal hidden or indirect relationships in data. 
Of these, however, few if any have studied the 
patterns or characteristics in sets of higher-order 
links to discover meaningful relationships. 

To give a proper context for our work it is 
useful to consider efforts that employ higher-order 
link analysis in security, counterterrorism and law 
enforcement applications. One example is given in 
[18], in which algorithms for discovering shortest 
paths are used to assist in fighting organized crime 
through identifying associations in criminal 
networks. This work first applies named entity 
extraction [5] to extract entities from unstructured 
textual data. It then constructs a semantic network 
[4], a technique used in COPLINK® Detect [9]. As 
noted, the technique then employs a shortest-path 
algorithm to discover important relations between 
given entities. This approach has been tested on 
Phoenix Police department crime reports, and 
results in [18] indicate that the relations mined are 
useful about 70% of the time. 

A related effort that also provides context for 
our own work employs a Link Discovery algorithm 

in a counterterrorism application [21]. This work is 
part of the DARPA Evidence Extraction and Link 
Discovery (EELD) program, and aims to discover 
links (patterns) from multi-relational data. This 
approach employs an Inductive Logic 
Programming (ILP) covering algorithm and a 
labeled training dataset to discover significant links. 
The solution has been tested on nuclear smuggling 
and contract killing data sets and shown in [21] to 
have better performance than a baseline. 

In this paper, we focus on discovering 
higher-order link patterns in data based on a 
co-occurrence relationship between entities. In this 
context, a higher-order link can be represented as a 
chain of co-occurrences of entities in different 
records. We also refer to such a link as a 
higher-order path. Given a supervised learning 
dataset (i.e., labeled training data), we attempt to 
discover patterns in sets of higher-order links that 
distinguish between the classes in the labeled data.  

The work in [18] has some similarity with ours. 
Both employ co-occurrence as the relationship 
between entities and concentrate on the higher 
order co-occurrence relations or paths. The order of 
the relation (i.e., the length of the path) ranges from 
second order (e.g., as in [14]) on up. The approach 
in [18], however, is focused on discovering 
significant paths between entities such as a link 
between two terrorism suspects. In contrast, our 
approach focuses on discovering patterns in sets of 
the higher-order links themselves. In other words, 
we study the characteristics of sets of higher-order 
paths with the overall goal of performing 
classification of labeled instances based on the 
characteristics of these higher-order path sets.         

As noted the effort discussed in [21] employs a 
supervised machine learning algorithm and labeled 
training data. Our work is similar in that we also 
employ labeled training data. The goal in [21] is to 
learn higher-order link rules; i.e., rules that are 
themselves higher-order links between sets of 
entities. In contrast, as noted our goal is to discover 
the characteristics of sets of higher-order paths with 
the goal of leveraging these characteristics in 
classification. Naturally, such a technique would 
have wide application in supervised machine 
learning, including the link analysis research field. 
Our preliminary results are based on a labeled 
training dataset from the UCI repository [12], but 
our technique can be extended for use with various 
supervised learning datasets in security, law 
enforcement and counterterrorism applications. 



Related Work 
In this article we often refer to the terms 

“higher-order path,” “higher-order link” or 
“higher-order co-occurrence.” In order to 
understand the meaning of these terms, consider 
figure 1 below (reproduced from [11]). This figure 
depicts three documents, D1, D2 and D3, each 
containing two terms, or entities, represented by the 
letters A, B, C and D. Below the three documents is 
a higher-order path that links entity A with entity D 
through B and C. This is a third-order path since 
three links, or “hops,” connect A and D. 

In what follows D1, D2 and D3 are not always 
documents – they might be records in a database or 
instances in a labeled training dataset. Likewise, 
the entities A, B, C etc. need not be terms – they 
may be values in a database record, or items 
(attribute-value pairs) in an instance. 

  

 
Figure 1: Higher-order co-occurrences [11] 

 
Higher-order co-occurrences play a key role in 

the effectiveness of systems used for information 
retrieval and text mining. One example is 
Literature Based Discovery (LBD), which employs 
second-order co-occurrence to discover 
connections between concepts (entities). A 
well-known example is the discovery of a novel 
migraine-magnesium connection in the medical 
domain [14]. The authors of [14] found that in the 
Medline database some terms co-occur frequently 
with “migraine” in article titles, e.g. “stress” and 
“calcium channel blockers.” They also discovered 
that “stress” co-occurs frequently with 
“magnesium” in other titles. As a result, they 
hypothesized a link between “migraine” and 
“magnesium,” and some clinical evidence has been 
obtained that supports this hypothesis. In LBD a 
second-order link of this nature is represented as 
A�B�C where in this example A is “migraine,” C 
is “magnesium” and B is one of several possible 
connecting terms such as “stress.” 

In our previous work in [11], we proved 
mathematically that Latent Semantic Indexing 
(LSI), a well-known approach to information 
retrieval, implicitly depends on higher-order 
co-occurrences. We also demonstrated empirically 
that higher-order co-occurrences play a key role in 
the effectiveness of systems based on LSI. 

LSI can reveal hidden or latent relationships 

among terms, as terms semantically similar lie 
closer to each other in the LSI vector space. This 
can be demonstrated using the LSI term-term 
co-occurrence matrix. Let’s assume a simple 
document collection where D1 is {human, interface} 
and D2 is {interface, user}. Clearly the terms 
“human” and “user” do not co-occur in the 
co-occurrence matrix of this simple two-document 
collection. After applying LSI, however, the 
reduced representation co-occurrence matrix may 
have a non-zero entry for “human” and “user” thus 
implying a similarity between the two terms. This 
is an example of second-order co-occurrence; in 
other words, there is a second-order path between 
“human” and “user” through “interface.” 

The results of experiments reported in [11] 
show that there is a strong correlation between 
second-order term co-occurrence, the values 
produced by the Singular Value Decomposition 
(SVD) algorithm used in LSI, and the performance 
of LSI measured in terms of F�, the harmonic mean 
of precision and recall. As noted, [11] also provides 
a mathematical analysis which proves that LSI in 
fact depends on higher-order term co-occurrence. 

The results of this prior work persuade us that 
higher-order paths may be important in other 
domains as well, such as supervised machine 
learning. We discuss this in the Approach section 
below. Before exploring this possibility further, 
however, it is worth noting that higher-order 
co-occurrence plays an important role in many 
other systems used for information retrieval and 
text mining. In what follows we describe a few 
applications that either explicitly or implicitly use 
higher order co-occurrence. 

In [7], Edmonds uses co-occurrence to solve a 
component of the problem of lexical choice, which 
identifies synonyms in a given context. The 
approach uses second- or higher-order 
co-occurrence to predict the most likely synonym. 
Relations between synonyms are represented in a 
lexical co-occurrence network such as that depicted 
in figure 2. Starting with a given root term, 
significant co-occurring terms are added to the tree 
as children of the root term. This process continues 
recursively, each level of the tree increasing the 
order of co-occurrence with the root term.  

Figure 2: A fragment of a lexical co-occurrence 
network. The dashed line is an example of a 

second-order path implied by the network [7] 
 

Zhang et al. [20] use second-order 



co-occurrence to improve the runtime performance 
of LSI. Although LSI has been shown to perform 
well in terms of precision and recall, due to the 
high execution time of SVD, the authors apply 
information filtering to improve the runtime 
performance. In [20], they narrow the term and 
document space, starting from the query, by 
following second-order paths between the query 
and the collection. The resulting set of documents 
is then expanded by repeating the process and 
following second-order paths between the selected 
documents and the remainder of the collection. As 
a result, a much smaller subset of the original 
collection is extracted for each query, and the 
resulting term by document matrix contains only 
about 27% of the original non-zero entries on 
average. Based on this approach the new matrix 
achieved 65% reduction of the original non-zero 
entries on average, and only a 5% loss in precision 
for most collections. 

Second- and higher-order co-occurrence has 
also been used in a number of other applications 
including word sense disambiguation [13] and in a 
stemming algorithm [19]. 

 
One of the challenges facing us in this work is 

the complexity of enumerating the various 
higher-order paths. In this area too, fortunately, 
there has been prior work on which we can build. 
In the link mining domain, for example, 
Chakrabarti et al. [3] use the notion of a directed 
bipartite graph to discover communities in such 
graphs that have a large density of edges. They 
predict that many of these graphs will contain 
smaller bipartite complete subgraphs: e.g., each 
node in subgraph A has a link to each node in 
subgraph B. Using a variety of pruning algorithms 
they enumerate all such complete bipartite 
matchings. In a related effort, Sun et al. [22] use a 
bipartite representation of several different 
applications including P2P systems and research 
publications. They introduce two operations on 
bipartite graphs; first, the identification of similar 
nodes used for relevance search, and second, the 
discovery of edges connecting irrelevant nodes for 
anomaly detection. 

In [8] Galil surveys techniques used for 
designing efficient algorithms for finding a 
maximum cardinality or weighted matching in 
(general or bipartite) graphs. For a bipartite graph 
G = (V, E), perfect matchings are defined as 
matchings such that all vertices are incident to 
some matching edge. On the other hand, maximum 
matchings are defined as matchings whose 
cardinalities are maximum among all matchings, 
and maximal matchings are matchings which are 
contained in no other matching. Uno [15] also 
presents enumerating algorithms for perfect, 
maximum and maximal matchings in bipartite 
graphs. An algorithm that has a time complexity of 

O(n) per matching is proposed for maximal 
matchings in bipartite graphs. 

Another way to view the challenge of 
enumerating higher-order paths is to view the paths 
of interest as a system of distinct representatives 
(SDRs). An SDR of the sets A0, …, An-1 is defined 
as a sequence of n distinct elements a0, …, an-1 with 
ai∈ Ai, 0 � i � n-1 [16]. A system of distinct 
representatives is equivalent to a maximal 
matching on some bipartite graph [1]. 

These efforts serve to highlight the fact that the 
enumeration of higher-order paths can be 
approached from at least two different perspectives, 
and as we show in the Approach section following, 
it is also possible to leverage the 
inclusion/exclusion principle [16]. In addition, 
although enumeration of higher-order paths is in 
general number-complete (i.e., p-sharp), this 
related work reveals that less complex algorithms 
exist for partial enumeration. 
 
Approach 

Our definition of a higher-order path is similar 
to that found in graph theory, which states that 
given a non-empty graph G = (V, E) of the form V 
= {x0, x1, … , xk }, E = { x0x1, x1x2, …, xk-1xk } 
with nodes xi distinct, two vertices xi and xk are 
linked by a path P where the number of edges in P 
is its length. Such a path is often referred to by the 
natural sequence of its vertices x0x1…xk. [6]. Our 
definition of a higher-order path differs from this in 
a couple of respects. First, vertices V = {e0, e1, …, 
ek} represent entities, and edges E = {r0, r1, …, rm} 
represents records, documents or instances. Several 
edges may exist between given entities. Finally and 
most importantly, in a higher-order path both 
vertices and edges must be distinct. Figure 3 gives 
an example of several higher-order paths such as 
e1-r1-e2, e2-r2-e3-r3-e4, e2-r6-e5, etc. We are interested 
in enumerating all such paths. 

  

 
Figure 3: An example of a fourth-order path 

between e1 and e5, as well as several shorter paths 
 
Co-occurrence relations in a record or instance 

set can be represented as an undirected graph G = 
(V, E) such that V is a finite set of vertices (i.e., 
entities) and E is the set of edges representing 
co-occurrence relations. In other words, if two 
entities co-occur in a record then there is an edge 
between the corresponding vertices and this edge is 
labeled with the records(s) in which they co-occur. 
It is not straightforward, however, to depict 
higher-order paths with conventional graph 
structures because multiple paths may connect two 
given entities: for example, e1-r1-e2 and e1-r2-e2 are 



both valid paths between entities e1 and e2. A 
conventional graph can nonetheless be modified to 
represent paths of this nature by maintaining a data 
structure that contains lists of records for each edge. 
We term this a path group. Path groups are 
extracted directly from the co-occurrence graph G. 
Using this representation, the higher-order paths 
correspond to a complete matching in the bipartite 
graph formed from the set of entities and the set of 
lists of records. Likewise, higher-order paths 
defined in this manner are the system of distinct 
representatives of the sets of records for each edge.  

Both theory and experiments reveal that even 
with a small dataset of a couple hundred records 
each containing less than ten entities, the number of 
higher-order paths can be very large. This naturally 
raises severe time and space complexity issues 
when enumerating higher-order paths. To 
demonstrate this point, assume that we have 100 
records each containing seven entities in a dataset; 
for simplicity we also assume that each record is 
identical. For an nth-order path, we need to select 
n+1 entities out of the seven available 
(combinations) and these can be arranged in (n+1)! 
ways (permutations). This leads to the following 
formula enumerating all of the higher-order paths 
in this dataset: 
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In all, there are 2,079,000 second-order paths, 

814,968,000 third-order paths, 237,155,688,000 
fourth-order paths, and so on up to sixth-order. In 
order to address these complexity issues, we must 
limit the size of the datasets explored. As our 
results in the next section indicate, however, we 
nonetheless have discovered interesting patterns in 
the higher-order path data. 

As stated in the introduction, our goal is to 
characterize the set of higher-order paths – in other 
words, we are seeking patterns in the higher-level 
path data itself. As a result, we need to enumerate 
and possibly store all the paths in a given dataset. 
This required the development of special data 
structures. We based our implementation on the 
Text Mining Infrastructure (TMI) developed by the 
Parallel and Distributed Text Mining Lab at Lehigh 
University [10]. The TMI is an open-source 
framework designed for high-end, scalable text 
mining, and aims to provide a robust software core 
for research and development of text mining 
applications. The TMI has an inverted index class 
that provides an easy and efficient way to extract 
co-occurrence relations between entities. 

In our first approach to the problem we 
represented higher-order paths as chains of 
co-occurrences such as that depicted in figure 4. 
Based on this representation we developed a 

recursive algorithm that takes two distinct entities 
and a stop level as a parameter and enumerates all 
the higher-order paths up to the stop level. Due to 
the need to store paths on disk efficiently for 
post-processing, however, we modified the data 
structure to directly represent path groups. This 
provided a reasonably efficient framework within 
which to conduct experiments. 

 
Figure 4: Fourth-order path as a chain of 

first-order co-occurrences 
  
Once a path group is formed for a given order, 

the number of paths in a given group must be 
enumerated. As noted this is a complex 
computation, which led us to explore the possibility 
of representing this count in a closed form. To 
investigate this possibility, we leveraged the 
well-known inclusion-exclusion principle. 

Given that A and B are subsets of S and one 
wishes to count the elements of S\{A U B}, then 
the idea of inclusion-exclusion is to compute |S| - 
|A| - |B| + |A�B| [16]. (Interestingly, the sum is not 
the more straightforward |S| - |A| - |B| because the 
elements of A�B would be subtracted twice.) 

Based on this principle we developed the 
following closed-forms for enumerating second- 
and third-order paths in path groups: 

 
Second-order: |A| * |B| - | A�B| 
Third-order: |A| * |B| * |C| - (|A�B| * |C| + 
|A�C| * |B| + |B�C| * |A|) + 2 * |A�B�C| 
 
Here the letters A, B and C represent sets of 

records for each edge in a third-order path group 
(e.g. e1-{2,3,4}-e2-{1,3,5}-e3-{2,3,5}-e4, A={2,3,4}, 
B={1,3,5}, C={2,3,5}) Although our application is 
not completely analogous to the enumeration of 
sets using the inclusion-exclusion principle, we 
were able to successfully develop these two 
closed-forms using inclusion-exclusion as a starting 
point. However, when enumerating fourth- and 
higher order paths from the path groups, our 
extension of the inclusion-exclusion principle 
cannot be applied in the same way. As a result, we 
have taken a different tack and are developing 
closed-forms for fourth- and higher-order paths 
based on both SDR and bipartite graph 
representations. This work is ongoing, and at the 
time of writing we are close to discovering the 
closed-form for fourth-order paths. 

Since our goal is to discover patterns in the 
higher-order paths, we first employed an 
association rule mining algorithm to discover rules 
correlating entities in higher-order paths. We 
modified the code developed by Borgelt and Kruse 

e1 e2 
r1 

e2 e3 r2 

e4 e5 r4 
e3 e4 r3 



[2] to read path groups from a file and extract all 
valid paths. Each path is considered a transaction 
and the output is frequent itemsets and rules. Due 
to the very large number of higher-order paths in 
our datasets, however, the algorithm was unable to 
compute the rules on a 32-bit architecture. As a 
result, we implemented our own method to 
discover frequent itemsets in the higher-order paths. 
However, our definition of frequent itemsets is a bit 
different from the standard definition used in 
association rule mining. Itemsets in our framework 
are ordered, and must appear in order in a given 
supporting path (transaction). Additionally, the 
items (entities) in an itemset must be adjacent in 
the higher-order path. 

During computational enumeration of the 
paths, statistics are gathered. Specifically, in order 
to characterize a given set of records/instances, we 
compute frequencies of the various second- and 
higher-order itemsets in the set of all higher-order 
paths generated from the set of instances. When 
dealing with labeled training data used in 
supervised machine learning, we divide the 
instances by class and then characterize the 
resulting sets by higher-order itemset frequency. In 
the case of decision tree models, we take one or 
more nodes of each class, group nodes of the same 
class together, and characterize the resulting groups. 
The end result is a distribution of itemset 
frequencies for a given class. These distributions 
can be compared using simple statistical measures 
such as a t-test to determine independence. If two 
distributions are statistically significantly different, 
we conclude that the higher-order path patterns (i.e., 
itemset frequencies) distinguish the classes. 

 
Results, Analysis and Discussion 

As noted previously, the implementation of our 
algorithm is based on the TMI [10] and thus 
implemented in C++. We performed the 
experiments to discover the higher-order path 
statistics on the National Center for 
Supercomputing Applications (NCSA) Tungsten 
Supercluster (Xeon Linux). Tungsten is composed 
of Intel 3.06GHz Xeon DP processor-based 
systems running Red Hat 9.0, with Myrinet 2000 
interconnects, an I/O subcluster with more than 120 
terabytes of DataDirect storage. Tungsten provides 
Intel 8.0 icc and GNU gcc 3.2.2 for compilation, 
the Load Sharing Facility (LSF) batch system for 
job control and ChaMPIon/Pro for the MPI runtime 
environment. The GNU C++ compiler was used 
with aggressive optimization parameters.  

The supervised machine learning dataset 
employed was drawn from the UCI machine 
learning repository. This is a repository of training 
sets, domain theories and data generators that are 
used by the machine learning community for the 
empirical analysis of machine learning algorithms 
[12]. The dataset includes mushroom records 

drawn from The Audubon Society Field Guide to 
North American Mushrooms, described in terms of 
physical characteristics. This data contains 
descriptions of samples corresponding to 23 
species of gilled mushrooms in the Agaricus and 
Lepiota Family.  Each species is identified as 
edible (E class) or poisonous (P class). The dataset 
contains 8,124 instances and 22 nominal attributes. 
The class distribution is 4208 edible (51.8%) and 
3916 poisonous (48.2%). It is a relatively large 
training set that performs quite well on a standard 
C4.5-based decision tree induction algorithm. In 
addition, we selected this dataset for our initial 
experiments because all the attributes are nominal, 
making it straightforward to use the TMI to 
represent the higher-order paths. The choice to 
employ the TMI also opens the way to explore 
patterns in higher-order paths in textual data 
sources in the future. Finally, this dataset has only 
two different classes, simplifying the process of 
grouping instances by class and increasing the 
representation of each class.  

As noted in the Approach, we initially applied 
a decision tree algorithm to the dataset. We 
employed the J4.8 classifier in the WEKA 
Workbench, a collection of machine learning 
algorithms [17]. Since the TMI has the ability to 
invoke a WEKA classifier via the Java Native 
Interface (JNI), we designed our code to read 
instances from the leaf nodes of the decision tree 
learned from the mushroom training data. As noted, 
our goal was to see whether the characteristics of 
the higher-order paths could distinguish between E 
(edible) and P (poisonous) leaf nodes. 

Our preliminary results indicated that the 
number of higher-order paths may be correlated 
with the number of unique attribute-value pairs 
(AVPs) in the dataset. Thus, due to the 
computational complexity of the enumeration, we 
selectively removed attributes which had many 
values. For example, the cap-color and gill-color 
attributes had 10 and 12 distinct values respectively 
and were removed. Other attributes with two or 
three distinct values were retained. Proceeding in 
this way we reduced the number of attributes from 
22 to seven, including the class attribute (E or P). 
Despite this quite significant reduction in the 
dataset, the 10-fold cross-validation performance in 
WEKA was still about 93%. The resulting decision 
tree had 27 nodes of which 17 were leaf nodes. 
This reduction in the number of attributes 
drastically lessened the running time of our path 
enumeration algorithm. 

As an example of the enumeration results, one 
of the E class leaf nodes with 96 instances 
contained 1,094,400 second-order paths and 
308,620,800 third-order paths. Similarly, another 
pure E leaf node with 192 instances had 4,400,640 
second-order and 2,508,364,800 third-order paths. 
As can be seen from this example, when the 



number of instances doubles, the number of 
second-order paths increases about four times and 
third-order paths increase about eight times. Thus 
the number of instances in a set also has a direct 
impact on the number of higher-order paths. 

Due to the computational complexity of the 
enumeration, we selected three small leaf nodes 
from each class and analyzed the higher-order 
paths by class. All of these nodes were pure, and 
together yielded a set of 304 E instances composed 
of 12 unique AVPs and 292 P instances composed 
of 10 AVPs. Table 2 depicts the outcome of these 
experiments. In tabulating the results in table 1, we 
disallowed first-order co-occurrence between the 
first and last items in a given higher-order path. It 
is worth noting that although the P instances 
contain only 10 unique AVPs, the second- and 
third-order paths in table 2 are more numerous than 
those discovered in the E instances. 

 
Table 1: Path counts with restriction applied 

Paths E-leaf paths P-leaf paths 
2nd order 912,384 491,688 
3rd order 465,315,840 154,773,504 
4th order 225,364,561,920 42,780,856,320 

 
Table 2: Path counts without restriction 

Paths E-leaf paths P-leaf paths 
2nd order 7,062,912 9,053,352 
3rd order 1,269,611,136 1,555,160,112 
4th order 285,724,593,216 282,781,502,748 

 
Enumerating the higher-order paths is actually 

just a step towards our goal of characterizing the 
paths. To gather statistics from the path groups 
discussed earlier, we created a list of 3-itemsets 
from the fourth-order paths ranked by their 
frequencies. This frequency is similar to the 
support statistic used in association rule mining. 
For a given 3-itemset, the frequency is the number 
of fourth-order paths that the itemset occurs in. 
Each fourth-order path contains three such 
3-itemsets. In the process of tabulating these 
statistics, we discovered that several itemsets have 
the same frequency. Thus, we formed a ranked list 
of itemset frequencies as well as a count of itemsets 
of each frequency. A count greater than one 
indicates more than one itemset occurred with the 
same frequency. As noted in the Approach, we then 
applied a simple statistical test, the t-test, to the 
lists of 3-itemsets same-frequency counts for the E 
and P datasets respectively using paths without 
restriction (table 2). We found that these two 
distributions are statistically significantly different 
with a confidence greater than 95%: the results of 
the t-test are given in table 3 below. 

These results indicate that we may be able to 
distinguish between classes in leaf nodes of 
decision trees based on the characteristics of the 

higher-order paths. A similar result was obtained 
for the counts of frequencies of 3-itemsets from 
third-order paths, each of which contain two 
3-itemsets. Again, this time with greater than 99% 
confidence, the E-leaves and P-leaves from our test 
dataset could be separated based only on the 
characteristics of the higher-order paths (table 4). 

 
Table 3: Two-sample t-test applied to the counts of 

3-itemset frequencies from fourth-order paths 
 E-leaves P-leaves 

Mean 8.357142857 6.491228 
Variance 33.68831169 11.682957 

Observations 56 57 
Hypothesized 

Diff 
0  

Degrees freedom 89  
t Stat 2.077679424  

P(T<=t) one-tail 0.020309856  
t Critical one-tail 1.662155326  
P(T<=t) two-tail 0.040619712  
t Critical two-tail 1.986978657  

 
Table 4: Two-sample t-test applied to the counts of 

3-itemset frequencies from third-order paths 
 E-leaves P-leaves 

Mean 15.09677419 8.409090909 
Variance 107.6903226 34.85200846 

Observations 31 44 
Hypothesized Diff 0  
Degrees freedom 44  

t Stat 3.237924166  
P(T<=t) one-tail 0.001146178  
t Critical one-tail 1.680229977  
P(T<=t) two-tail 0.002292356  
t Critical two-tail 2.015367547  

 
Based on these results we extended our scope 

to obtain statistics not only from decision tree leaf 
nodes but directly from the labeled training data 
itself. Since our experimental dataset has a large 
number of instances, we divided it into ten folds. 
To accomplish this, the dataset first had to be 
randomized using an instance randomization filter. 
Following this, we randomly selected instances 
from each class to form folds. Each resulting fold 
had 391 E and 391 P instances. We created folds of 
the same size in order to mitigate the effect of the 
number of instances on the number of higher-order 
paths. We enumerated the number of higher-order 
paths for each fold for each class. The results are 
depicted in tables 5, 6 and 7. Following this we 
gathered statistics on the frequency of 3-itemsets in 
fourth-order paths with no restriction on the paths. 
Finally, we counted the number of same-frequency 
itemsets for each unique frequency. 

 
 



 
Table 5: Second-order paths in E and P instances 

Fold E-instances P-instances 
0 13374796 14963992 
1 13802640 14807288 
2 14149972 15128396 
3 14140364 15014408 
4 13658568 14806900 
5 13623148 14909464 
6 14027660 14962836 
7 13609504 14896052 
8 13786768 14837246 
9 13756428 14806690 

 
Table 6: Third-order paths in E and P instances 

Fold E-instances P-instances 
0 12376281978 14921747380 
1 13087031162 14669936660 
2 13644072116 15211709372 
3 13615318426 15028870504 
4 12808481968 14656258974 
5 12794667846 14830395830 
6 13441211064 14921668250 
7 12760275832 14822502030 
8 13058138066 14723983262 
9 13005820302 14648564880 

 
Table 7: Fourth-order paths in E and P instances 

Fold E-instances P-instances 
0 8.90419E+12 1.11037E+13 
1 9.47334E+12 1.08798E+13 
2 9.94377E+12 1.13544E+13 
3 9.92627E+12 1.11849E+13 
4 9.27069E+12 1.08781E+13 
5 9.23824E+12 1.10276E+13 
6 9.777E+12 1.11057E+13 
7 9.21041E+12 1.10071E+13 
8 9.45475E+12 1.09242E+13 
9 9.40945E+12 1.08777E+13 

 
Table 8: Unique AVPs in E and P instances 

Fold AVPs in E AVPs in P 
0 12 13 
1 12 13 
2 12 13 
3 12 13 
4 12 13 
5 12 13 
6 12 13 
7 12 13 
8 12 13 
9 12 12 

 
As can be seen from these results, there is a 

discernable pattern in the higher-order path 
frequencies tabulated for each class – there are 
consistently more paths in the P-instances. 
However, as noted previously there are factors that 

influence the number of higher-order paths: the 
number of instances, and the number of AVPs. We 
ruled out the number of instances as a factor by 
creating folds with equal numbers of E and P 
instances. In our empirical studies, however, we 
found that the number of distinct AVPs in a dataset 
may also impact the number of higher-order paths. 
Thus, in order to evaluate the potential impact of 
differing numbers of AVPs in P and E sets, we 
tabulated (table 8) and analyzed them. 

We observe that there is again a different 
pattern between the E and P classes. In all folds 
except one, there are more AVPs in the P instances. 
Since each dataset has the same number of 
instances, the difference in the number of 
higher-order paths might be due to the number of 
AVPs. In fold 9, however, both the E and P 
instances have the same number of instances and 
AVPs. Yet the pattern in the number of paths holds 
for fold nine. I.e., the number of higher-order paths 
is greater for the P-instances in fold nine, 
continuing the trend found in the other folds. The 
fact that the trend holds encouraged us to proceed 
to analyze the 3-itemset frequencies in the 
higher-order paths as we had done before.  

Unlike the previous experiment with the 
decision tree leaf nodes, however, in this 
experiment (with the E and P instances drawn 
directly from the labeled training data) we found 
that the counts of same-frequency itemsets yielded 
no significant information. In other words, we were 
unable to distinguish between the E and P classes 
using the counts of same-frequency itemsets. As a 
result, again using the t-test we compared the E and 
P distributions using the 3-itemset frequencies 
themselves. The results of these comparisons are 
depicted in table 9. 

 
Table 9: Two-sample t-test assuming unequal 

variances between E and P instances 

 
As can be seen from the table 9, six of the 10 

folds had a confidence of 95% or greater that the E 
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0 -2.684 0.0037 1.6471 0.0074 1.9634 

1 -1.357 0.0875 1.6467 0.1751 1.9629 

2 -1.554 0.0603 1.6468 0.1205 1.9629 

3 -2.924 0.0018 1.6472 0.0036 1.9636 

4 -1.908 0.0284 1.6469 0.0568 1.9631 

5 -2.047 0.0205 1.6469 0.041 1.9631 

6 -1.455 0.073 1.6467 0.146 1.9629 

7 -2.023 0.0217 1.6469 0.0434 1.9631 

8 -2.795 0.0027 1.6471 0.0053 1.9635 

9 -2.71 0.0034 1.647 0.0069 1.9633 



and P instances are significantly statistically 
different. In order to ascertain whether this pattern 
also holds when comparing like instances, we also 
performed both E-to-E and P-to-P statistical tests. 
These results are depicted in tables 10 and 11, and 
show that in no case was there a statistically 
significant difference between two folds when 
comparing instances of the same class. Thus we 
again draw the tentative conclusion that the 
frequency distributions of itemsets of higher-order 
paths may capture distinguishing characteristics of 
the classes in supervised machine learning training 
datasets. Although these results are preliminary in 
nature and hold only for the experimental dataset 
we evaluated, as noted they indicate that classes of 
instances in labeled training data may be separable 
using the characteristics of higher-order paths. 
 

Table 10: Two-sample t-test assuming unequal 
variances between E and E instances 
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0-1 -0.627 0.2654 1.6467 0.5308 1.963 

0-2 -1.083 0.1395 1.6467 0.279 1.963 

0-3 -1.074 0.1416 1.6467 0.2832 1.963 

0-4 -0.425 0.3353 1.6466 0.6706 1.963 

0-5 -0.382 0.3515 1.6467 0.7029 1.962 

0-6 -0.931 0.176 1.6467 0.352 1.963 

0-7 -0.351 0.3627 1.6467 0.7254 1.963 

0-8 -0.61 0.2709 1.6467 0.5417 1.963 

0-9 -0.563 0.2867 1.6467 0.5733 1.963 

 
Why do patterns in higher-order paths seem to 

correlate with the class? In a sense it hearkens back 
to our prior work with Latent Semantic Indexing 
(LSI) [11] – in that work, as noted, we determined 
that the ‘Latent’ aspects of term similarity that LSI 
reveals are dependent on the higher-order paths 
between terms. Likewise, in real-world supervised 
machine learning datasets, the goal is to learn the 
relation between the attributes and the class. It is 
noteworthy that attributes are certainly not equally 
important. In addition, neither attributes nor 
instances are independent of one another, given the 
class. As we found with LSI, it is our contention 
that the ‘latent semantics’, if you will, of 
attribute-attribute relations also depend on the 
higher-order paths linking attribute-value pairs. By 
taking attribute-value pairs as our base unit of 
‘semantics’ and linking them via higher-order 
co-occurrence relations, we reveal these latent 
semantics, or patterns, that distinguish instances of 
different classes. These preliminary results are 
extremely interesting given that we have uncovered 
evidence of separability without the use of a 

supervised machine learning algorithm! We 
consider this achievement significant, and 
something that can be exploited in many different 
applications using a variety of datasets as long as 
there is a meaningful context of entities that allows 
us to leverage co-occurrence relations. In the 
following section we discuss some potential 
applications of this work. 
 

Table 11: Two-sample t-test assuming unequal 
variances between P and P instances 
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0-1 0.6937 0.244 1.6467 0.4881 1.9629 

0-2 -0.002 0.4991 1.6467 0.9983 1.9629 

0-3 -1.349 0.0889 1.647 0.1778 1.9633 

0-4 0.4156 0.3389 1.6467 0.6778 1.9629 

0-5 0.2655 0.3953 1.6467 0.7907 1.9629 

0-6 0.2879 0.3867 1.6467 0.7735 1.9629 

0-7 0.3029 0.381 1.6467 0.762 1.9629 

0-8 -0.704 0.2408 1.6469 0.4816 1.9631 

0-9 -0.532 0.2974 1.6468 0.5948 1.963 

 
Conclusions and Future Work 

Due to the recent concerns about security and 
terrorism, there has been an increasing focus on 
techniques that discover links and relations in data. 
Several efforts employ machine learning 
approaches to link analysis, but few consider 
mining meta-level patterns in higher-order links. In 
this work we focus on the discovery of such 
patterns in higher-order paths generated from 
supervised machine learning data. We use a dataset 
from the UCI machine learning repository for our 
analysis, and develop both theoretical and 
algorithmic approaches to enumerating and 
characterizing higher-order paths between 
attribute-value pairs. Based on statistical 
comparisons of distributions of higher-order path 
itemset frequencies, we discovered evidence that 
classes of instances in labeled training data may be 
separable based on the characteristics of 
higher-order paths. 

These are preliminary results and we are 
researching more effective ways, both theoretical 
and algorithmic in nature that will aid us in mining 
higher-order path data. We are for example 
investigating more efficient algorithms to cope with 
the immense number of higher-order paths even in 
relatively small datasets. These efforts include 
enumeration algorithms for paths in co-occurrence 
graphs as well as approaches to enumerate SDRs in 
a bipartite graph representation of path groups. As 
noted we are in addition exploring the formulation 
of closed-form representations of path data within 



the framework of SDRs. 
In the experiments reported herein, 

higher-order path patterns revealed differences 
among the instances of different classes.  In 
ongoing work, we are analyzing higher-order path 
patterns in data generated during interdomain 
routing. Our aim is to distinguish whether Border 
Gateway Protocol (BGP) traffic is caused by an 
anomalous event such as a power failure, a worm 
attack or a node/link failure. We represent the data 
as a machine learning dataset composed of 
instances that correspond to one minute samples of 
BGP traffic. Specific to BGP routing data, we 
observe that the data differs from traditional 
machine learning datasets because each instance 
represents a particular snapshot in time. This 
implies that a partial order may be imposed on the 
co-occurrence graph formed from the BGP data. 

Our higher-order path analysis technique may 
have applications in text mining as well. For 
instance, by considering a document or paragraph 
as an instance, we may determine higher-order path 
characteristics that aid in classifying text. In fact 
this approach may have an important application in 
security, counterterrorism and law enforcement. In 
order to evaluate this approach, in future work we 
also plan to explore the application of these 
techniques on textual datasets such as the Enron 
email dataset. 
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