
Link Analysis of Higher-Order Paths in Supervised Learning Datasets

Murat C. Ganiz, William M. Pottenger and Xiaoning Yang
Lehigh University

{mug3, billp, xiy204}@lehigh.edu

Keywords: Link Analysis, Link Mining, Higher-Order Links/Paths, Supervised Learning, Decision Trees

Abstract
Due to recent concerns with security and

terrorism there has been an increasing focus on
techniques that discover links and relations in data.
Several efforts that employ “data mining”
techniques have contributed to this field, but few
focus on discovering patterns in sets of
higher-order links, which can reveal hidden or
indirect relationships in data. In this work we focus
on the discovery and analysis of higher-order path
patterns in a supervised learning dataset. We first
analyze higher-order links in the leaf nodes of a
decision tree and find evidence for distinguishing
between nodes of different classes. Based on these
results we next focus on the training data itself used
to build the tree. Our results indicate that classes of
instances in labeled training data may be separable
based on the characteristics of higher-order paths.
This technique has potential applications in
cybersecurity and cyberforensics, as well as text
mining and analytics.

Introduction

Due to recent concerns with terrorism and
security there has been an increasing focus on
techniques that discover links and relations in data.
Numerous efforts that employ “data mining”
techniques have contributed to this field, and of
these several focus on higher-order links, which
can reveal hidden or indirect relationships in data.
Of these, however, few if any have studied the
patterns or characteristics in sets of higher-order
links to discover meaningful relationships.

To give a proper context for our work it is
useful to consider efforts that employ higher-order
link analysis in security, counterterrorism and law
enforcement applications. One example is given in
[18], in which algorithms for discovering shortest
paths are used to assist in fighting organized crime
through identifying associations in criminal
networks. This work first applies named entity
extraction [5] to extract entities from unstructured
textual data. It then constructs a semantic network
[4], a technique used in COPLINK® Detect [9]. As
noted, the technique then employs a shortest-path
algorithm to discover important relations between
given entities. This approach has been tested on
Phoenix Police department crime reports, and
results in [18] indicate that the relations mined are
useful about 70% of the time.

A related effort that also provides context for
our own work employs a Link Discovery algorithm

in a counterterrorism application [21]. This work is
part of the DARPA Evidence Extraction and Link
Discovery (EELD) program, and aims to discover
links (patterns) from multi-relational data. This
approach employs an Inductive Logic
Programming (ILP) covering algorithm and a
labeled training dataset to discover significant links.
The solution has been tested on nuclear smuggling
and contract killing data sets and shown in [21] to
have better performance than a baseline.

In this paper, we focus on discovering
higher-order link patterns in data based on a
co-occurrence relationship between entities. In this
context, a higher-order link can be represented as a
chain of co-occurrences of entities in different
records. We also refer to such a link as a
higher-order path. Given a supervised learning
dataset (i.e., labeled training data), we attempt to
discover patterns in sets of higher-order links that
distinguish between the classes in the labeled data.

The work in [18] has some similarity with ours.
Both employ co-occurrence as the relationship
between entities and concentrate on the higher
order co-occurrence relations or paths. The order of
the relation (i.e., the length of the path) ranges from
second order (e.g., as in [14]) on up. The approach
in [18], however, is focused on discovering
significant paths between entities such as a link
between two terrorism suspects. In contrast, our
approach focuses on discovering patterns in sets of
the higher-order links themselves. In other words,
we study the characteristics of sets of higher-order
paths with the overall goal of performing
classification of labeled instances based on the
characteristics of these higher-order path sets.

As noted the effort discussed in [21] employs a
supervised machine learning algorithm and labeled
training data. Our work is similar in that we also
employ labeled training data. The goal in [21] is to
learn higher-order link rules; i.e., rules that are
themselves higher-order links between sets of
entities. In contrast, as noted our goal is to discover
the characteristics of sets of higher-order paths with
the goal of leveraging these characteristics in
classification. Naturally, such a technique would
have wide application in supervised machine
learning, including the link analysis research field.
Our preliminary results are based on a labeled
training dataset from the UCI repository [12], but
our technique can be extended for use with various
supervised learning datasets in security, law
enforcement and counterterrorism applications.

Related Work
In this article we often refer to the terms

“higher-order path,” “higher-order link” or
“higher-order co-occurrence.” In order to
understand the meaning of these terms, consider
figure 1 below (reproduced from [11]). This figure
depicts three documents, D1, D2 and D3, each
containing two terms, or entities, represented by the
letters A, B, C and D. Below the three documents is
a higher-order path that links entity A with entity D
through B and C. This is a third-order path since
three links, or “hops,” connect A and D.

In what follows D1, D2 and D3 are not always
documents – they might be records in a database or
instances in a labeled training dataset. Likewise,
the entities A, B, C etc. need not be terms – they
may be values in a database record, or items
(attribute-value pairs) in an instance.

Figure 1: Higher-order co-occurrences [11]

Higher-order co-occurrences play a key role in

the effectiveness of systems used for information
retrieval and text mining. One example is
Literature Based Discovery (LBD), which employs
second-order co-occurrence to discover
connections between concepts (entities). A
well-known example is the discovery of a novel
migraine-magnesium connection in the medical
domain [14]. The authors of [14] found that in the
Medline database some terms co-occur frequently
with “migraine” in article titles, e.g. “stress” and
“calcium channel blockers.” They also discovered
that “stress” co-occurs frequently with
“magnesium” in other titles. As a result, they
hypothesized a link between “migraine” and
“magnesium,” and some clinical evidence has been
obtained that supports this hypothesis. In LBD a
second-order link of this nature is represented as
A�B�C where in this example A is “migraine,” C
is “magnesium” and B is one of several possible
connecting terms such as “stress.”

In our previous work in [11], we proved
mathematically that Latent Semantic Indexing
(LSI), a well-known approach to information
retrieval, implicitly depends on higher-order
co-occurrences. We also demonstrated empirically
that higher-order co-occurrences play a key role in
the effectiveness of systems based on LSI.

LSI can reveal hidden or latent relationships

among terms, as terms semantically similar lie
closer to each other in the LSI vector space. This
can be demonstrated using the LSI term-term
co-occurrence matrix. Let’s assume a simple
document collection where D1 is {human, interface}
and D2 is {interface, user}. Clearly the terms
“human” and “user” do not co-occur in the
co-occurrence matrix of this simple two-document
collection. After applying LSI, however, the
reduced representation co-occurrence matrix may
have a non-zero entry for “human” and “user” thus
implying a similarity between the two terms. This
is an example of second-order co-occurrence; in
other words, there is a second-order path between
“human” and “user” through “interface.”

The results of experiments reported in [11]
show that there is a strong correlation between
second-order term co-occurrence, the values
produced by the Singular Value Decomposition
(SVD) algorithm used in LSI, and the performance
of LSI measured in terms of F�, the harmonic mean
of precision and recall. As noted, [11] also provides
a mathematical analysis which proves that LSI in
fact depends on higher-order term co-occurrence.

The results of this prior work persuade us that
higher-order paths may be important in other
domains as well, such as supervised machine
learning. We discuss this in the Approach section
below. Before exploring this possibility further,
however, it is worth noting that higher-order
co-occurrence plays an important role in many
other systems used for information retrieval and
text mining. In what follows we describe a few
applications that either explicitly or implicitly use
higher order co-occurrence.

In [7], Edmonds uses co-occurrence to solve a
component of the problem of lexical choice, which
identifies synonyms in a given context. The
approach uses second- or higher-order
co-occurrence to predict the most likely synonym.
Relations between synonyms are represented in a
lexical co-occurrence network such as that depicted
in figure 2. Starting with a given root term,
significant co-occurring terms are added to the tree
as children of the root term. This process continues
recursively, each level of the tree increasing the
order of co-occurrence with the root term.

Figure 2: A fragment of a lexical co-occurrence
network. The dashed line is an example of a

second-order path implied by the network [7]

Zhang et al. [20] use second-order

co-occurrence to improve the runtime performance
of LSI. Although LSI has been shown to perform
well in terms of precision and recall, due to the
high execution time of SVD, the authors apply
information filtering to improve the runtime
performance. In [20], they narrow the term and
document space, starting from the query, by
following second-order paths between the query
and the collection. The resulting set of documents
is then expanded by repeating the process and
following second-order paths between the selected
documents and the remainder of the collection. As
a result, a much smaller subset of the original
collection is extracted for each query, and the
resulting term by document matrix contains only
about 27% of the original non-zero entries on
average. Based on this approach the new matrix
achieved 65% reduction of the original non-zero
entries on average, and only a 5% loss in precision
for most collections.

Second- and higher-order co-occurrence has
also been used in a number of other applications
including word sense disambiguation [13] and in a
stemming algorithm [19].

One of the challenges facing us in this work is

the complexity of enumerating the various
higher-order paths. In this area too, fortunately,
there has been prior work on which we can build.
In the link mining domain, for example,
Chakrabarti et al. [3] use the notion of a directed
bipartite graph to discover communities in such
graphs that have a large density of edges. They
predict that many of these graphs will contain
smaller bipartite complete subgraphs: e.g., each
node in subgraph A has a link to each node in
subgraph B. Using a variety of pruning algorithms
they enumerate all such complete bipartite
matchings. In a related effort, Sun et al. [22] use a
bipartite representation of several different
applications including P2P systems and research
publications. They introduce two operations on
bipartite graphs; first, the identification of similar
nodes used for relevance search, and second, the
discovery of edges connecting irrelevant nodes for
anomaly detection.

In [8] Galil surveys techniques used for
designing efficient algorithms for finding a
maximum cardinality or weighted matching in
(general or bipartite) graphs. For a bipartite graph
G = (V, E), perfect matchings are defined as
matchings such that all vertices are incident to
some matching edge. On the other hand, maximum
matchings are defined as matchings whose
cardinalities are maximum among all matchings,
and maximal matchings are matchings which are
contained in no other matching. Uno [15] also
presents enumerating algorithms for perfect,
maximum and maximal matchings in bipartite
graphs. An algorithm that has a time complexity of

O(n) per matching is proposed for maximal
matchings in bipartite graphs.

Another way to view the challenge of
enumerating higher-order paths is to view the paths
of interest as a system of distinct representatives
(SDRs). An SDR of the sets A0, …, An-1 is defined
as a sequence of n distinct elements a0, …, an-1 with
ai∈ Ai, 0 � i � n-1 [16]. A system of distinct
representatives is equivalent to a maximal
matching on some bipartite graph [1].

These efforts serve to highlight the fact that the
enumeration of higher-order paths can be
approached from at least two different perspectives,
and as we show in the Approach section following,
it is also possible to leverage the
inclusion/exclusion principle [16]. In addition,
although enumeration of higher-order paths is in
general number-complete (i.e., p-sharp), this
related work reveals that less complex algorithms
exist for partial enumeration.

Approach

Our definition of a higher-order path is similar
to that found in graph theory, which states that
given a non-empty graph G = (V, E) of the form V
= {x0, x1, … , xk }, E = { x0x1, x1x2, …, xk-1xk }
with nodes xi distinct, two vertices xi and xk are
linked by a path P where the number of edges in P
is its length. Such a path is often referred to by the
natural sequence of its vertices x0x1…xk. [6]. Our
definition of a higher-order path differs from this in
a couple of respects. First, vertices V = {e0, e1, …,
ek} represent entities, and edges E = {r0, r1, …, rm}
represents records, documents or instances. Several
edges may exist between given entities. Finally and
most importantly, in a higher-order path both
vertices and edges must be distinct. Figure 3 gives
an example of several higher-order paths such as
e1-r1-e2, e2-r2-e3-r3-e4, e2-r6-e5, etc. We are interested
in enumerating all such paths.

Figure 3: An example of a fourth-order path

between e1 and e5, as well as several shorter paths

Co-occurrence relations in a record or instance

set can be represented as an undirected graph G =
(V, E) such that V is a finite set of vertices (i.e.,
entities) and E is the set of edges representing
co-occurrence relations. In other words, if two
entities co-occur in a record then there is an edge
between the corresponding vertices and this edge is
labeled with the records(s) in which they co-occur.
It is not straightforward, however, to depict
higher-order paths with conventional graph
structures because multiple paths may connect two
given entities: for example, e1-r1-e2 and e1-r2-e2 are

both valid paths between entities e1 and e2. A
conventional graph can nonetheless be modified to
represent paths of this nature by maintaining a data
structure that contains lists of records for each edge.
We term this a path group. Path groups are
extracted directly from the co-occurrence graph G.
Using this representation, the higher-order paths
correspond to a complete matching in the bipartite
graph formed from the set of entities and the set of
lists of records. Likewise, higher-order paths
defined in this manner are the system of distinct
representatives of the sets of records for each edge.

Both theory and experiments reveal that even
with a small dataset of a couple hundred records
each containing less than ten entities, the number of
higher-order paths can be very large. This naturally
raises severe time and space complexity issues
when enumerating higher-order paths. To
demonstrate this point, assume that we have 100
records each containing seven entities in a dataset;
for simplicity we also assume that each record is
identical. For an nth-order path, we need to select
n+1 entities out of the seven available
(combinations) and these can be arranged in (n+1)!
ways (permutations). This leads to the following
formula enumerating all of the higher-order paths
in this dataset:

∏
−

=

−++
1

0

)100()!*1(*)1,7(
n

i

innC

In all, there are 2,079,000 second-order paths,

814,968,000 third-order paths, 237,155,688,000
fourth-order paths, and so on up to sixth-order. In
order to address these complexity issues, we must
limit the size of the datasets explored. As our
results in the next section indicate, however, we
nonetheless have discovered interesting patterns in
the higher-order path data.

As stated in the introduction, our goal is to
characterize the set of higher-order paths – in other
words, we are seeking patterns in the higher-level
path data itself. As a result, we need to enumerate
and possibly store all the paths in a given dataset.
This required the development of special data
structures. We based our implementation on the
Text Mining Infrastructure (TMI) developed by the
Parallel and Distributed Text Mining Lab at Lehigh
University [10]. The TMI is an open-source
framework designed for high-end, scalable text
mining, and aims to provide a robust software core
for research and development of text mining
applications. The TMI has an inverted index class
that provides an easy and efficient way to extract
co-occurrence relations between entities.

In our first approach to the problem we
represented higher-order paths as chains of
co-occurrences such as that depicted in figure 4.
Based on this representation we developed a

recursive algorithm that takes two distinct entities
and a stop level as a parameter and enumerates all
the higher-order paths up to the stop level. Due to
the need to store paths on disk efficiently for
post-processing, however, we modified the data
structure to directly represent path groups. This
provided a reasonably efficient framework within
which to conduct experiments.

Figure 4: Fourth-order path as a chain of

first-order co-occurrences

Once a path group is formed for a given order,

the number of paths in a given group must be
enumerated. As noted this is a complex
computation, which led us to explore the possibility
of representing this count in a closed form. To
investigate this possibility, we leveraged the
well-known inclusion-exclusion principle.

Given that A and B are subsets of S and one
wishes to count the elements of S\{A U B}, then
the idea of inclusion-exclusion is to compute |S| -
|A| - |B| + |A�B| [16]. (Interestingly, the sum is not
the more straightforward |S| - |A| - |B| because the
elements of A�B would be subtracted twice.)

Based on this principle we developed the
following closed-forms for enumerating second-
and third-order paths in path groups:

Second-order: |A| * |B| - | A�B|
Third-order: |A| * |B| * |C| - (|A�B| * |C| +
|A�C| * |B| + |B�C| * |A|) + 2 * |A�B�C|

Here the letters A, B and C represent sets of

records for each edge in a third-order path group
(e.g. e1-{2,3,4}-e2-{1,3,5}-e3-{2,3,5}-e4, A={2,3,4},
B={1,3,5}, C={2,3,5}) Although our application is
not completely analogous to the enumeration of
sets using the inclusion-exclusion principle, we
were able to successfully develop these two
closed-forms using inclusion-exclusion as a starting
point. However, when enumerating fourth- and
higher order paths from the path groups, our
extension of the inclusion-exclusion principle
cannot be applied in the same way. As a result, we
have taken a different tack and are developing
closed-forms for fourth- and higher-order paths
based on both SDR and bipartite graph
representations. This work is ongoing, and at the
time of writing we are close to discovering the
closed-form for fourth-order paths.

Since our goal is to discover patterns in the
higher-order paths, we first employed an
association rule mining algorithm to discover rules
correlating entities in higher-order paths. We
modified the code developed by Borgelt and Kruse

e1 e2
r1

e2 e3 r2

e4 e5 r4
e3 e4 r3

[2] to read path groups from a file and extract all
valid paths. Each path is considered a transaction
and the output is frequent itemsets and rules. Due
to the very large number of higher-order paths in
our datasets, however, the algorithm was unable to
compute the rules on a 32-bit architecture. As a
result, we implemented our own method to
discover frequent itemsets in the higher-order paths.
However, our definition of frequent itemsets is a bit
different from the standard definition used in
association rule mining. Itemsets in our framework
are ordered, and must appear in order in a given
supporting path (transaction). Additionally, the
items (entities) in an itemset must be adjacent in
the higher-order path.

During computational enumeration of the
paths, statistics are gathered. Specifically, in order
to characterize a given set of records/instances, we
compute frequencies of the various second- and
higher-order itemsets in the set of all higher-order
paths generated from the set of instances. When
dealing with labeled training data used in
supervised machine learning, we divide the
instances by class and then characterize the
resulting sets by higher-order itemset frequency. In
the case of decision tree models, we take one or
more nodes of each class, group nodes of the same
class together, and characterize the resulting groups.
The end result is a distribution of itemset
frequencies for a given class. These distributions
can be compared using simple statistical measures
such as a t-test to determine independence. If two
distributions are statistically significantly different,
we conclude that the higher-order path patterns (i.e.,
itemset frequencies) distinguish the classes.

Results, Analysis and Discussion

As noted previously, the implementation of our
algorithm is based on the TMI [10] and thus
implemented in C++. We performed the
experiments to discover the higher-order path
statistics on the National Center for
Supercomputing Applications (NCSA) Tungsten
Supercluster (Xeon Linux). Tungsten is composed
of Intel 3.06GHz Xeon DP processor-based
systems running Red Hat 9.0, with Myrinet 2000
interconnects, an I/O subcluster with more than 120
terabytes of DataDirect storage. Tungsten provides
Intel 8.0 icc and GNU gcc 3.2.2 for compilation,
the Load Sharing Facility (LSF) batch system for
job control and ChaMPIon/Pro for the MPI runtime
environment. The GNU C++ compiler was used
with aggressive optimization parameters.

The supervised machine learning dataset
employed was drawn from the UCI machine
learning repository. This is a repository of training
sets, domain theories and data generators that are
used by the machine learning community for the
empirical analysis of machine learning algorithms
[12]. The dataset includes mushroom records

drawn from The Audubon Society Field Guide to
North American Mushrooms, described in terms of
physical characteristics. This data contains
descriptions of samples corresponding to 23
species of gilled mushrooms in the Agaricus and
Lepiota Family. Each species is identified as
edible (E class) or poisonous (P class). The dataset
contains 8,124 instances and 22 nominal attributes.
The class distribution is 4208 edible (51.8%) and
3916 poisonous (48.2%). It is a relatively large
training set that performs quite well on a standard
C4.5-based decision tree induction algorithm. In
addition, we selected this dataset for our initial
experiments because all the attributes are nominal,
making it straightforward to use the TMI to
represent the higher-order paths. The choice to
employ the TMI also opens the way to explore
patterns in higher-order paths in textual data
sources in the future. Finally, this dataset has only
two different classes, simplifying the process of
grouping instances by class and increasing the
representation of each class.

As noted in the Approach, we initially applied
a decision tree algorithm to the dataset. We
employed the J4.8 classifier in the WEKA
Workbench, a collection of machine learning
algorithms [17]. Since the TMI has the ability to
invoke a WEKA classifier via the Java Native
Interface (JNI), we designed our code to read
instances from the leaf nodes of the decision tree
learned from the mushroom training data. As noted,
our goal was to see whether the characteristics of
the higher-order paths could distinguish between E
(edible) and P (poisonous) leaf nodes.

Our preliminary results indicated that the
number of higher-order paths may be correlated
with the number of unique attribute-value pairs
(AVPs) in the dataset. Thus, due to the
computational complexity of the enumeration, we
selectively removed attributes which had many
values. For example, the cap-color and gill-color
attributes had 10 and 12 distinct values respectively
and were removed. Other attributes with two or
three distinct values were retained. Proceeding in
this way we reduced the number of attributes from
22 to seven, including the class attribute (E or P).
Despite this quite significant reduction in the
dataset, the 10-fold cross-validation performance in
WEKA was still about 93%. The resulting decision
tree had 27 nodes of which 17 were leaf nodes.
This reduction in the number of attributes
drastically lessened the running time of our path
enumeration algorithm.

As an example of the enumeration results, one
of the E class leaf nodes with 96 instances
contained 1,094,400 second-order paths and
308,620,800 third-order paths. Similarly, another
pure E leaf node with 192 instances had 4,400,640
second-order and 2,508,364,800 third-order paths.
As can be seen from this example, when the

number of instances doubles, the number of
second-order paths increases about four times and
third-order paths increase about eight times. Thus
the number of instances in a set also has a direct
impact on the number of higher-order paths.

Due to the computational complexity of the
enumeration, we selected three small leaf nodes
from each class and analyzed the higher-order
paths by class. All of these nodes were pure, and
together yielded a set of 304 E instances composed
of 12 unique AVPs and 292 P instances composed
of 10 AVPs. Table 2 depicts the outcome of these
experiments. In tabulating the results in table 1, we
disallowed first-order co-occurrence between the
first and last items in a given higher-order path. It
is worth noting that although the P instances
contain only 10 unique AVPs, the second- and
third-order paths in table 2 are more numerous than
those discovered in the E instances.

Table 1: Path counts with restriction applied

Paths E-leaf paths P-leaf paths
2nd order 912,384 491,688
3rd order 465,315,840 154,773,504
4th order 225,364,561,920 42,780,856,320

Table 2: Path counts without restriction

Paths E-leaf paths P-leaf paths
2nd order 7,062,912 9,053,352
3rd order 1,269,611,136 1,555,160,112
4th order 285,724,593,216 282,781,502,748

Enumerating the higher-order paths is actually

just a step towards our goal of characterizing the
paths. To gather statistics from the path groups
discussed earlier, we created a list of 3-itemsets
from the fourth-order paths ranked by their
frequencies. This frequency is similar to the
support statistic used in association rule mining.
For a given 3-itemset, the frequency is the number
of fourth-order paths that the itemset occurs in.
Each fourth-order path contains three such
3-itemsets. In the process of tabulating these
statistics, we discovered that several itemsets have
the same frequency. Thus, we formed a ranked list
of itemset frequencies as well as a count of itemsets
of each frequency. A count greater than one
indicates more than one itemset occurred with the
same frequency. As noted in the Approach, we then
applied a simple statistical test, the t-test, to the
lists of 3-itemsets same-frequency counts for the E
and P datasets respectively using paths without
restriction (table 2). We found that these two
distributions are statistically significantly different
with a confidence greater than 95%: the results of
the t-test are given in table 3 below.

These results indicate that we may be able to
distinguish between classes in leaf nodes of
decision trees based on the characteristics of the

higher-order paths. A similar result was obtained
for the counts of frequencies of 3-itemsets from
third-order paths, each of which contain two
3-itemsets. Again, this time with greater than 99%
confidence, the E-leaves and P-leaves from our test
dataset could be separated based only on the
characteristics of the higher-order paths (table 4).

Table 3: Two-sample t-test applied to the counts of

3-itemset frequencies from fourth-order paths
 E-leaves P-leaves

Mean 8.357142857 6.491228
Variance 33.68831169 11.682957

Observations 56 57
Hypothesized

Diff
0

Degrees freedom 89
t Stat 2.077679424

P(T<=t) one-tail 0.020309856
t Critical one-tail 1.662155326
P(T<=t) two-tail 0.040619712
t Critical two-tail 1.986978657

Table 4: Two-sample t-test applied to the counts of

3-itemset frequencies from third-order paths
 E-leaves P-leaves

Mean 15.09677419 8.409090909
Variance 107.6903226 34.85200846

Observations 31 44
Hypothesized Diff 0
Degrees freedom 44

t Stat 3.237924166
P(T<=t) one-tail 0.001146178
t Critical one-tail 1.680229977
P(T<=t) two-tail 0.002292356
t Critical two-tail 2.015367547

Based on these results we extended our scope

to obtain statistics not only from decision tree leaf
nodes but directly from the labeled training data
itself. Since our experimental dataset has a large
number of instances, we divided it into ten folds.
To accomplish this, the dataset first had to be
randomized using an instance randomization filter.
Following this, we randomly selected instances
from each class to form folds. Each resulting fold
had 391 E and 391 P instances. We created folds of
the same size in order to mitigate the effect of the
number of instances on the number of higher-order
paths. We enumerated the number of higher-order
paths for each fold for each class. The results are
depicted in tables 5, 6 and 7. Following this we
gathered statistics on the frequency of 3-itemsets in
fourth-order paths with no restriction on the paths.
Finally, we counted the number of same-frequency
itemsets for each unique frequency.

Table 5: Second-order paths in E and P instances

Fold E-instances P-instances
0 13374796 14963992
1 13802640 14807288
2 14149972 15128396
3 14140364 15014408
4 13658568 14806900
5 13623148 14909464
6 14027660 14962836
7 13609504 14896052
8 13786768 14837246
9 13756428 14806690

Table 6: Third-order paths in E and P instances

Fold E-instances P-instances
0 12376281978 14921747380
1 13087031162 14669936660
2 13644072116 15211709372
3 13615318426 15028870504
4 12808481968 14656258974
5 12794667846 14830395830
6 13441211064 14921668250
7 12760275832 14822502030
8 13058138066 14723983262
9 13005820302 14648564880

Table 7: Fourth-order paths in E and P instances

Fold E-instances P-instances
0 8.90419E+12 1.11037E+13
1 9.47334E+12 1.08798E+13
2 9.94377E+12 1.13544E+13
3 9.92627E+12 1.11849E+13
4 9.27069E+12 1.08781E+13
5 9.23824E+12 1.10276E+13
6 9.777E+12 1.11057E+13
7 9.21041E+12 1.10071E+13
8 9.45475E+12 1.09242E+13
9 9.40945E+12 1.08777E+13

Table 8: Unique AVPs in E and P instances

Fold AVPs in E AVPs in P
0 12 13
1 12 13
2 12 13
3 12 13
4 12 13
5 12 13
6 12 13
7 12 13
8 12 13
9 12 12

As can be seen from these results, there is a

discernable pattern in the higher-order path
frequencies tabulated for each class – there are
consistently more paths in the P-instances.
However, as noted previously there are factors that

influence the number of higher-order paths: the
number of instances, and the number of AVPs. We
ruled out the number of instances as a factor by
creating folds with equal numbers of E and P
instances. In our empirical studies, however, we
found that the number of distinct AVPs in a dataset
may also impact the number of higher-order paths.
Thus, in order to evaluate the potential impact of
differing numbers of AVPs in P and E sets, we
tabulated (table 8) and analyzed them.

We observe that there is again a different
pattern between the E and P classes. In all folds
except one, there are more AVPs in the P instances.
Since each dataset has the same number of
instances, the difference in the number of
higher-order paths might be due to the number of
AVPs. In fold 9, however, both the E and P
instances have the same number of instances and
AVPs. Yet the pattern in the number of paths holds
for fold nine. I.e., the number of higher-order paths
is greater for the P-instances in fold nine,
continuing the trend found in the other folds. The
fact that the trend holds encouraged us to proceed
to analyze the 3-itemset frequencies in the
higher-order paths as we had done before.

Unlike the previous experiment with the
decision tree leaf nodes, however, in this
experiment (with the E and P instances drawn
directly from the labeled training data) we found
that the counts of same-frequency itemsets yielded
no significant information. In other words, we were
unable to distinguish between the E and P classes
using the counts of same-frequency itemsets. As a
result, again using the t-test we compared the E and
P distributions using the 3-itemset frequencies
themselves. The results of these comparisons are
depicted in table 9.

Table 9: Two-sample t-test assuming unequal

variances between E and P instances

As can be seen from the table 9, six of the 10

folds had a confidence of 95% or greater that the E

Fo
ld

t S
ta

t

P(
T<

=t
)

on
e-

ta
il

t_
C

ri
tic

al

on
e-

ta
il

P(
T<

=t
)

tw
o-

ta
il

t_
C

ri
tic

al

tw
o-

ta
il

0 -2.684 0.0037 1.6471 0.0074 1.9634

1 -1.357 0.0875 1.6467 0.1751 1.9629

2 -1.554 0.0603 1.6468 0.1205 1.9629

3 -2.924 0.0018 1.6472 0.0036 1.9636

4 -1.908 0.0284 1.6469 0.0568 1.9631

5 -2.047 0.0205 1.6469 0.041 1.9631

6 -1.455 0.073 1.6467 0.146 1.9629

7 -2.023 0.0217 1.6469 0.0434 1.9631

8 -2.795 0.0027 1.6471 0.0053 1.9635

9 -2.71 0.0034 1.647 0.0069 1.9633

and P instances are significantly statistically
different. In order to ascertain whether this pattern
also holds when comparing like instances, we also
performed both E-to-E and P-to-P statistical tests.
These results are depicted in tables 10 and 11, and
show that in no case was there a statistically
significant difference between two folds when
comparing instances of the same class. Thus we
again draw the tentative conclusion that the
frequency distributions of itemsets of higher-order
paths may capture distinguishing characteristics of
the classes in supervised machine learning training
datasets. Although these results are preliminary in
nature and hold only for the experimental dataset
we evaluated, as noted they indicate that classes of
instances in labeled training data may be separable
using the characteristics of higher-order paths.

Table 10: Two-sample t-test assuming unequal
variances between E and E instances

Fo
ld

s

t S
ta

t

P(
T

<=
t)

on

e-
ta

il

t C
ri

tic
al

on

e-
ta

il

P(
T

<=
t)

tw

o-
ta

il

t C
ri

tic
al

tw

o-
ta

il

0-1 -0.627 0.2654 1.6467 0.5308 1.963

0-2 -1.083 0.1395 1.6467 0.279 1.963

0-3 -1.074 0.1416 1.6467 0.2832 1.963

0-4 -0.425 0.3353 1.6466 0.6706 1.963

0-5 -0.382 0.3515 1.6467 0.7029 1.962

0-6 -0.931 0.176 1.6467 0.352 1.963

0-7 -0.351 0.3627 1.6467 0.7254 1.963

0-8 -0.61 0.2709 1.6467 0.5417 1.963

0-9 -0.563 0.2867 1.6467 0.5733 1.963

Why do patterns in higher-order paths seem to

correlate with the class? In a sense it hearkens back
to our prior work with Latent Semantic Indexing
(LSI) [11] – in that work, as noted, we determined
that the ‘Latent’ aspects of term similarity that LSI
reveals are dependent on the higher-order paths
between terms. Likewise, in real-world supervised
machine learning datasets, the goal is to learn the
relation between the attributes and the class. It is
noteworthy that attributes are certainly not equally
important. In addition, neither attributes nor
instances are independent of one another, given the
class. As we found with LSI, it is our contention
that the ‘latent semantics’, if you will, of
attribute-attribute relations also depend on the
higher-order paths linking attribute-value pairs. By
taking attribute-value pairs as our base unit of
‘semantics’ and linking them via higher-order
co-occurrence relations, we reveal these latent
semantics, or patterns, that distinguish instances of
different classes. These preliminary results are
extremely interesting given that we have uncovered
evidence of separability without the use of a

supervised machine learning algorithm! We
consider this achievement significant, and
something that can be exploited in many different
applications using a variety of datasets as long as
there is a meaningful context of entities that allows
us to leverage co-occurrence relations. In the
following section we discuss some potential
applications of this work.

Table 11: Two-sample t-test assuming unequal
variances between P and P instances

Fo
ld

s

t S
ta

t

P(
T

<=
t)

on

e-
ta

il

t_
C

ri
tic

al

on
e-

ta
il

P(
T

<=
t)

tw

o-
ta

il

t_
C

ri
tic

al

tw
o-

ta
il

0-1 0.6937 0.244 1.6467 0.4881 1.9629

0-2 -0.002 0.4991 1.6467 0.9983 1.9629

0-3 -1.349 0.0889 1.647 0.1778 1.9633

0-4 0.4156 0.3389 1.6467 0.6778 1.9629

0-5 0.2655 0.3953 1.6467 0.7907 1.9629

0-6 0.2879 0.3867 1.6467 0.7735 1.9629

0-7 0.3029 0.381 1.6467 0.762 1.9629

0-8 -0.704 0.2408 1.6469 0.4816 1.9631

0-9 -0.532 0.2974 1.6468 0.5948 1.963

Conclusions and Future Work

Due to the recent concerns about security and
terrorism, there has been an increasing focus on
techniques that discover links and relations in data.
Several efforts employ machine learning
approaches to link analysis, but few consider
mining meta-level patterns in higher-order links. In
this work we focus on the discovery of such
patterns in higher-order paths generated from
supervised machine learning data. We use a dataset
from the UCI machine learning repository for our
analysis, and develop both theoretical and
algorithmic approaches to enumerating and
characterizing higher-order paths between
attribute-value pairs. Based on statistical
comparisons of distributions of higher-order path
itemset frequencies, we discovered evidence that
classes of instances in labeled training data may be
separable based on the characteristics of
higher-order paths.

These are preliminary results and we are
researching more effective ways, both theoretical
and algorithmic in nature that will aid us in mining
higher-order path data. We are for example
investigating more efficient algorithms to cope with
the immense number of higher-order paths even in
relatively small datasets. These efforts include
enumeration algorithms for paths in co-occurrence
graphs as well as approaches to enumerate SDRs in
a bipartite graph representation of path groups. As
noted we are in addition exploring the formulation
of closed-form representations of path data within

the framework of SDRs.
In the experiments reported herein,

higher-order path patterns revealed differences
among the instances of different classes. In
ongoing work, we are analyzing higher-order path
patterns in data generated during interdomain
routing. Our aim is to distinguish whether Border
Gateway Protocol (BGP) traffic is caused by an
anomalous event such as a power failure, a worm
attack or a node/link failure. We represent the data
as a machine learning dataset composed of
instances that correspond to one minute samples of
BGP traffic. Specific to BGP routing data, we
observe that the data differs from traditional
machine learning datasets because each instance
represents a particular snapshot in time. This
implies that a partial order may be imposed on the
co-occurrence graph formed from the BGP data.

Our higher-order path analysis technique may
have applications in text mining as well. For
instance, by considering a document or paragraph
as an instance, we may determine higher-order path
characteristics that aid in classifying text. In fact
this approach may have an important application in
security, counterterrorism and law enforcement. In
order to evaluate this approach, in future work we
also plan to explore the application of these
techniques on textual datasets such as the Enron
email dataset.

Acknowledgements
This work was supported in part by NSF grant
number 0534276 and National Institute of Justice,
US Department of Justice grant numbers
2005-93045-PA-IJ and 2005-93046-PA-IJ. Points
of view in this document are those of the authors
and do not necessarily represent the official
position or policies of the US Department of
Justice or the National Science Foundation.
Co-author William M. Pottenger wishes to thank
His Lord and Savior Yeshua the Messiah for His
grace. Thank you, Lord! Amen.

References

[1] Bipartite Matching. http://planetmath.org/
encyclopedia/BipartiteMatching.html

[2] C. Borgelt and R. Kruse. Induction of
Association Rules: Apriori Implementation.
Proceedings of 14th Conference On Computational
Statistics (COMPSTAT). Berlin, Germany, 2002.

[3] S. Chakrabarti, B.E. Dom, D. Gibson, J.
Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan,
and A. Tomkins. Mining the Link Structure of the
World Wide Web, IEEE Computer, 1999.

[4] H. Chen, and K.J. Lynch. Automatic
construction of networks of concepts characterizing
document databases. In IEEE Transactions on
Systems, Man and Cybernetics 22 (5), 1992, pp.
885– 902.

[5] N. A. Chinchor. Overview of

MUC-7/MET-2. Proceedings of the Seventh
Message Understanding Conference (MUC-7),
1998.

[6] R. Diestel. Graph Theory. Springer Press,
2000, ISBN 0-387-95014-1

[7] P. Edmonds. Choosing the word most
typical in context using a lexical co-occurrence
network. In Proceedings of the Thirty-fifth Annual
Meeting of the Association for Computational
Linguistics, 1997, pp. 507-509.

[8] Z. Galil. Efficient Algorithms for Finding
Maximum Matching in Graphs. Computing
Surveys, Vol. 18, No. 1, March 1986

[9] R.V. Hauck, H. Atabakhsh, P. Ongvasith, H.
Gupta, H. Chen, Using Coplink to analyze
criminal-justice data, IEEE Computer 35 (3), 2002,
pp. 30– 37.

[10] L. E. Holzman, T. A. Fisher, L. M.
Galitsky, A. Kontostathis, and W. M. Pottenger. A
Software Infrastructure for Research in Textual
Data Mining. The International Journal on
Artificial Intelligence Tools, 14 (4), 2004, pp.
829-849.

[11] A. Kontostathis, and W. M. Pottenger. A
framework for understanding LSI performance.
Information Processing & Management, 42(1),
2006, pp. 56-73.

[12] D. J. Newman, S. Hettich, C. L. Blake,
and C. J. Merz. UCI Repository of machine
learning databases. http://www.ics.uci.edu/~mlearn/
MLRepository.html. University of California,
Irvine, Department of Information and Computer
Science, 1998.

[13] H. Schütze. Automatic word sense
discrimination. Computational Linguistics 24 (1),
1998, pp. 97-124.

[14] D. R. Swanson. Migraine and magnesium:
eleven neglected connections. Perspectives in
Biology and Medicine, 31(4), 1988, pp. 526-557.

[15] T. Uno. Algorithms for Enumerating All
Perfect, Maximum and Maximal Matchings in
Bipartite Graphs. Lecture Notes in Computer
Science, Vol. 1350. Proceedings of the 8th
International Symposium on Algorithms and
Computation, 1997, pp. 92 – 101, ISBN:
3-540-63890-3, Springer-Verlag , London, UK

[16] J. H. Van Lint, and R. M. Wilson. A
Course in Combinatorics. Cambridge University
Press, 1993, ISBN: 0-521-42260-4

[17] I. H. Witten, and E. Frank. Data Mining:
Practical machine learning tools and techniques, 2nd
Edition, Morgan Kaufmann, San Francisco, 2005.

[18] J. J. Xu and H. Chen. Fighting organized
crimes: using shortest-path algorithms to identify
associations in criminal networks. In Decision
Support Systems 38(3), 2004, pp. 473-487.

[19] J. Xu, W. B. Croft. Corpus-based
stemming using co-occurrence of word variants.
ACM Transactions on Information Systems 16 (1),
1998, pp. 61-81.

[20] X. Zhang, M. Berry, and P. Raghavan.
Level search schemes for information filtering and
retrieval. Information Processing and Management
37 (2), 2000, pp. 313-334.

[21] R. J. Mooney, P. Melville, L.R. Tang, J.
Shavlik, I.C. Dutra, D. Page and V.S. Costa.
Relational Data Mining with Inductive Logic
Programming for Link Discovery. Proceedings of
the National Science Foundation Workshop on
Next Generation Data Mining, Nov. 2002,
Baltimore, MD.

[22] J. Sun, H. Qu, D. Chakrabarti, C.
Faloutsos. Relevance Search and Anomaly
Detection in Bipartite Graphs. SIGKDD
Explorations, 7 (2), 2006, 48-55

