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Abstract There has been progress in the science of analytical reasoning and
in meeting the recommendations for future research that were laid out when
the field of visual analytics was established. Researchers have also developed a
group of visual analytics tools and methods that embody visual analytics prin-
ciples and attack important and challenging real-world problems. However,
these efforts are only the beginning and much study remains to be done. This
article examines the state of the art in visual analytics methods and reasoning
and gives examples of current tools and capabilities. It shows that the science
of visual analytics needs interdisciplinary efforts, indicates some of the disci-
plines that should be involved and presents an approach to how they might
work together. Finally, the article describes some gaps, opportunities and
future directions in developing new theories and models that can be enacted
in methods and design principles and applied to significant and complex prac-
tical problems and data.
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Introduction

The science of analytical reasoning is an essential part of visual analytics,
as discussed in the introduction to this special issue and in Illuminating the
Path.1 To attack complex, exploratory, insight discovery and knowledge-
building problems, visual analytics requires a foundation in the science
and theory of analytical reasoning. Little in terms of controlled observa-
tions and practical results exists for higher-level reasoning processes in
perceptually rich environments, not even in the field of cognitive science.
Thus, it has been hard to build such a science. Visual analytics offers
the promise of providing the practical basis where theories can be tested
and (cognitive) analytics must be applied in order to have any hope of
successfully solving very important, but quite challenging, real-world
problems. Although analytical reasoning is an essential part of visual
analytics, there are other essential components (computation, interactive
visual representations and analytic methods). All of these must eventually
be brought together to provide an overarching science of visual analytics.
Some approaches to bringing these elements together are discussed in
other articles in this special issue.

Initial recommendations and assessments

Chapter 2 of Illuminating the Path dealt with the science of analytical
reasoning and laid out eight recommendations for future research. We do
not have space in this article to address all these recommendations indi-
vidually. Instead, we will present and discuss a couple of combined recom-
mendations that cover the main points of the full set. (For a discussion
of the complete set of recommendations, see Chapter 2 of Illuminating the
Path.)
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Recommendation

Build upon theoretical foundations of reasoning, sense-making,
cognition and perception to create visually enabled tools to
support collaborative analytic reasoning about complex and
dynamic problems.

Over a period of many years, there has been a large
amount of research in reasoning, cognition and percep-
tion that can be applied to the visual analytics framework
and to the complex and dynamic problems that it must
address. Although this work has clear implications for
visual analytics, it is essential that it must also be focused
on areas that are critical for the design and evaluation
of systems that aid human cognitive processing. The
relative lack of this study so far in the visual analytics
community may be due to the lack of communication
between visualization researchers and cognitive scientists
whose methods could be used to shed light on analytic
cognition in visually complex environments. Much of
this study might be adapted from the existing literature;
however, progress in this area could be considerably
improved by a higher level of communication. In addi-
tion, the focus of visual analytics is to make the tools
visually enabled, coupling visualizations and interac-
tions with the human visual/understanding channel for
maximum throughput integrated with human under-
standing and judgment. Interaction is the mechanism
of coupling, and thus interaction should be considered
from the standpoint of coupling human reasoning and
analytic processes with computer-based processes. Collab-
oration should be considered in two senses: collaboration
between the human and the computer; and collaboration
among humans to provide enhanced perspective, more
effective generation of new ideas and hypotheses and
diverse viewpoints. Scalability in problem solving must
be supported in both types of collaboration.

Recommendation

Conduct research to address the challenges and seize the oppor-
tunities posed by the scale of the analytic problem. The issues
of scale are manifested in many ways, including the complexity
and urgency of the analytical task, the massive volume of
diverse and dynamic data involved in the analysis and chal-
lenges of collaborating among groups of people involved in
analysis, prevention and response efforts.

A main realization among leaders in the visual analytic
community is that the most challenging applications are
not just large scale in terms of, say, the data that must
be analyzed or even in terms of the dimensionality of
the data; they are also complex in terms of the analysis
task, and this task involves reasoning, inference building,
hypothesis creation and testing and decision making. The
sensemaking model of Pirolli and Card2 was the most
comprehensive existing model addressing these issues
from the standpoint of investigative analysis. It shows
that the investigation must be iterative with data foraging,
evidence building, hypothesis creation and testing and

decision making, overlapping one another. This general
operational model is relevant for all types of investigation.
However, it does not say much about what is inside each
of the steps or how they should be connected. Under-
standing these steps in terms of reasoning and argument
building and connecting them through interactive inter-
faces is a main province of visual analytics. Beyond this,
dynamic data, changing conditions and new insights
require an exploratory, adjustable approach to problem
solving. Such an approach is really not explicitly addressed
in models, such as sensemaking. There are many aspects
to dynamic problem solving. Dynamic data require their
own structure and analytical approach. In this regard,
analyzing and organizing data in terms of temporal
events is an important and, it seems, general approach,
as tools such as EventRiver,3 STAB4 and GeoTime5 show.
Also, general models that explicitly consider dynamic
behavior and temporal sequencing must be developed
and integrated into visual analytics approaches. An illus-
tration of this requirement is the need to incorporate flow
models and explicit temporal sequence in routing for
large-scale emergencies.6 Efficient evacuation of a very
large building or evacuation routing in a city requires not
just one shortest path route, but a series of routes that can
be used in alternating fashion so that no route becomes
gridlocked. These must be available in a situation-aware
context that is dynamic in order to be usable.

Relevant visual analytics tools and results

Several tools have been developed that address aspects
of analytical reasoning. There are also relevant results
involving evaluations of the tools. Some main examples
are given next.

Financial visual analytics

The WireVis system7 was created in cooperation with
financial analysts at the Bank of America (BoA) to address
fundamental problems they had in understanding their
vast flow of financial transactions. Its initial purpose was
to seek and discover fraud, especially wire transfer fraud.
This is a very difficult investigative analysis problem in
that tools must be exploratory, because new modes of
deception are tried all the time, and must help human
analysts see odd patterns over time in financial transac-
tions. The need to involve highly trained human analysts
to find meaning and discover new modes of deception
means that these analyses are expensive and the human
part of the system does not scale very well. WireVis
directly addresses the challenge of scaling-limited human
resources by permitting the analyst to explore tens of
thousands of transactions or more over extended time
periods while still being able to dive in and look in detail
at any transaction or group of transactions.

WireVis was established after extensive discussions with
bank analysts and is built around the idea of keywords. (The
keywords are a set of highly proprietary words developed
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by the analysts, through long-investigative experience,
for flagging transactions that may be of interest. The
keywords can contain names of countries or cities, types
of businesses, types of transactions and so on and set the
analytic context for this specialized analytic task.) WireVis
has a four-window interface where each window focuses
on a key aspect of the transactional analysis (frequency
of keywords in a transactional cluster, temporal trends
of clusters by keyword, ‘search by example’ for keyword
and temporal patterns and keyword relation within trans-
actions). Each window has multiple interactions, and
an interaction in one window produces an update in
another, which shows relationships across views.

A fast, hierarchical clustering approach is applied to the
transactions, and the time window shows daily activity
for all clusters over a 13-month window. One can choose
certain keyword patterns for any time period and do
reclustering on the fly. Thus, even for repositories of BoA’s
size, the analyst can start from an overview and with a
few clicks get to clusters where activities of individual
accounts are discriminated, all the while keeping track
of longer-range temporal patterns and emerging relation-
ships. The analysts have never had any of these capabil-
ities before. Although WireVis was initially focused on
wire fraud, its capabilities are general and appropriately
extended versions are now being considered for general
financial analysis including risk and customer analyses.

An evaluation of high-level reasoning processes was
then undertaken with WireVis as the central application.8

The analyst’s operations were divided into strategies
(overall approaches to solving a problem), methods
(specific steps taken) and findings (conclusions drawn by
the analyst after investigating a suspicious activity). In this
study, expert analysts were subjected to multiple obser-
vational tools including video, ‘talk-aloud’ recording,
postanalysis reports and interaction logging. However, a
group of nonexpert evaluators, using only the interaction
logs represented in a visualization to make it easier to
organize among strategies, methods and findings, were
able to recover 60% of the expert’s strategies, 60% of their
methods and 79% of their findings. This is an important
result because it has been notoriously difficult to infer user
intent and especially higher-level reasoning from inter-
action logs alone. The result also shows that considerable
aspects of the reasoning process can be recovered without
the elaborate and invasive processes of video recording,
talk-aloud and post-investigation reporting. There are
many cases where it is hard to impose these observational
processes or where they just have not been imposed.
Also, there is evidence that imposing talk-aloud or other
invasive activities during an analyst’s investigations can
affect, often negatively, reasoning processes, such as
discovery and spontaneous insight (a-ha moments).9

Finally, talk-aloud collection will be incomplete (analysts
tend to stop talking when they become deeply immersed)
as will postinvestigation reporting (analysts forget detailed
steps), so interaction log analysis provides a valuable
addition permitting more complete understanding of the

analyst’s reasoning processes. This study also revealed that
strategies of a few of the analysts were not clearly repre-
sented in the visual interface; if they had been (which
would have been straightforward to do without loss of
generality of WireVis), the strategic recovery would have
been significantly higher. These results can be used to
quickly and effectively train apprentices in the best prac-
tices of analysis, to more fully understand the analyst’s
craft and to uncover specific parts of the interactive
interface that need improvement.

The above study raises the question of why the results
from evaluation of interaction logs alone, even when
undertaken by nonexperts, were as good as they were.
It appears that a significant part of the answer lies with
the careful preparation of the visualization tools for the
reasoning tasks at hand. However, the WireVis example
also shows that it is possible to do this while still keeping
a strong, general aspect to the interface (although the
keyword list may have to be swapped out or expanded).
The WireVis outcomes are important because they suggest
a generalizable approach to analytical reasoning prob-
lems. One should not just deal with cognitive tasks for a
specific problem, but should always attempt to generalize
to whole classes of problems. In this case, a key outcome
was the development of knowledge- and strategy-laden
keyword representations that were intimately coupled to
other carefully chosen representations of the data. The
result was an approach that could be generalized to other
types of financial analytics. Further, the methods permit-
ted deep analytical evaluation. These generalized approa-
ches, their outcomes and evaluations provide necessary
building material for the science of analytical reasoning.

Tools for investigation and reasoning

Other visual analytics tools have been developed that
support reasoning and analytical processes. Jigsaw was
developed to help investigators to deal with large collec-
tions of documents, in particular to support investiga-
tive analysts in sensemaking where they must under-
stand multiple entities and their relationships within
the documents.10 Jigsaw acts like a visual index into
the documents, highlighting connections between enti-
ties through multiple views, such as list, graph and
timeline-based representations (see Figure 1). Jigsaw also
can provide different views of the document text itself.
Analysts can then follow a trail of entity connections in
order to more fully understand the context of events and
their detailed workings. Thus, Jigsaw helps the analyst
link seemingly unconnected events together to make
more complete and coherent stories across the document
collection. Jigsaw has been shared with multiple investi-
gators and agencies, who have given feedback about its
capabilities. They have expressed interest in using it in
some of their settings.

The scalable reasoning system (SRS)11,12 is focused
more on structured argumentation and provides a web-
based diagrammatic reasoning interface that allows the
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Figure 1: Jigsaw multi-window interface.10 The document view is in the upper left, the list view is in the upper right, the
calendar view is to the lower left, and the graph view is to the lower right.

users to record the structure of their arguments and
hypotheses. Data brought in from other applications
and from the web are represented as ‘sticky notes’; the
contents of these notes can be visualized using data clus-
tering, timeline and map-based displays. Using the idea of
‘reasoning artifacts’ from structured argumentation, SRS
tags these notes with reasoning roles, such as evidence,
assumption or hypothesis. Reasoning artifacts can be
turned into edges that describe relationships between
notes, and users can record confidence assessments for
each artifact and the attached note. This provides an
explicit knowledge structure for the argument. SRS uses
Dempster–Shafer belief theory to compute likelihood
scores for each artifact, allowing users to see quickly the
sum of likelihood and uncertainty for each component of
their reasoning structures. By tracking the development
of their hypotheses graphically, SRS can help users reflect
on knowledge that might otherwise be kept tacit.

There are also tools that tackle the mixed-initiative
aspects of the investigative process. Mixed-initiative

systems are those where the human and computer
work together, although sometimes independently, in
intimate partnership, each doing what it does best. A
mixed-initiative approach is necessary because the most
challenging (and often most important) visual analytics
problems require the insertion of the human ability to
attach meaning or to create or extend hypotheses, yet
the data are too large, the dimensions too high and the
ramifications of a change or decision too many for
a human to handle unaided. These last areas are the
province of the computer. In the sensemaking approach,
the investigative process is divided into two main overlap-
ping loops: the foraging loop and the sensemaking loop,
the latter entailing higher-order hypothesis creation,
comparison and evaluation. RESIN has been developed
to support the first loop, except that it is extended to
a foraging/analysis loop to make explicit the integrated
analysis that occurs in visual analytics. RESIN provides an
automated framework for the reasoning and analytical
process, concentrating in particular on data selection and
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Figure 2: RESIN27 interface for image browsing and analysis application. The control panel on the left is set for a task with
a tight deadline. It sets the scale of imagery to be browsed in the center tool. The panel on the right updates information
on real-time execution of subtasks so that the user can allocate time appropriately for completing the end-to-end task.

choosing the proper visual analytics tools for analyses13

(see Figure 2). It relies on an artificial intelligence (AI)
blackboard-based14 software agent that employs inter-
active visualization, mixed-initiative problem-solving
and time-series analyses to support predictive analyses
from a particular viewpoint. (The blackboard architec-
ture was developed to handle complex, ill-defined prob-
lems. In this case, a hierarchical system is developed
with several agent-based knowledge sources for specific
problem aspects. The blackboard is iteratively updated
by the knowledge agent when its internal specifications
match the current blackboard state.) The RESIN system
enables analysts to explore large amounts of data in order
to generate, track and validate multiple hypotheses in
an uncertain environment. This general approach has
been applied to some specific problems. For example, in
terrorism event analysis, RESIN uses information from
the National Consortium for the Study of Terrorism and
Responses to Terrorism (START) Center’s Global Terrorism
Database15 to match an event with a likely group or
groups and to determine the threat level in a region in the
near future based on past behavior of the group. RESIN is
now being extended to also analyze sociocultural factors
that could be significant in predicting behavior trends.

To attack the sensemaking loop, STAB has been devel-
oped. STAB is based on the human proclivity to make
sense of complex information or processes by constructing
stories that causally connect events, ascribe intentions to
actors and make predictions about the world. Humans also
use stories to communicate goals, hypotheses, explana-
tions and conclusions to one another. However, humans
also have cognitive limitations and biases in constructing
stories, including biases in collecting, interpreting and
using information. The aim of the STAB project is to
develop an interactive approach that uses the structures
and processes of story construction to support and guide
information visualizations for complex problems.4,16

The STAB system provides an interactive story editor for
entering specific stories as well as generic story plots.
STAB uses its library of story plots to interpret input
streams of events, generate multiple stories that provide
causal explanations for sequences of events and calcu-
late confidence values for the generated stories. Current
study on STAB investigates how the entities occurring
in a story may focus information visualizations of input
data streams. Also under investigation is how predictions
made by a generated story may focus data foraging, anal-
yses and visualizations. This study connects STAB closely
with RESIN, and activity is underway to combine the two
to provide an overall mixed-initiative approach to sense-
making. The combined system could be embedded within
RESIN, which already has a structure for considering
end-to-end reasoning and decision-making processes.

Human cognitive model (HCM)

In order to organize the above and other studies in a
meaningful way and use it to establish design princi-
ples for visual analytics tool development, it is necessary
to create an HCM. Such a model is also necessary to
treat the mixed-initiative aspects of the visual analytics
process. However, even in cognitive science, higher-order
reasoning processes associated with attaching meaning to
results, developing and evaluating models or hypotheses
and making decisions are in a sense black boxes, and
no general, practical model exists. Visual analytics can
give a fresh perspective to this problem, and researchers
have begun to develop a prototype HCM.17 The model
uses the cognitive science literature to clearly state and
differentiate the strengths of the human and computer
components of the mixed-initiative system. Thus, we
have a basis for determining when a human should inter-
cede (for example, to attach meaning at a key point in the
analysis and reasoning process) and what the computer
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should do to best prepare for this moment. A significant
part of the computer’s role is to keep track of pertinent
information, including analysis processes and outcomes.
We see one approach to keeping track of analyses and
outcomes in the RESIN/STAB study above. These systems,
plus tools, such as SRS, can also keep track of competing
hypotheses and the evidence for each, helping to remove
the natural human bias to prefer one hypothesis over
another, even when, in many cases, substantial coun-
terevidence is available. The computer also can use its
vastly superior ‘working memory’ to keep information
available and accessible via highly interactive, exploratory
visualization tools. Finally, of course, the computer has an
ever more powerful ability to carry out computations and
perform computation-based analysis. All of this provides
the opportunity for the computer to augment human
discovery by computer-aided discovery. One approach is
for the computer to observe what interests the human;
the computer then suggests information that is seman-
tically related, but not yet considered, or does computa-
tions to create new relevant information. The human is
then free to explore or to ignore these suggestions.

The HCM leads to design principles for visual analytics
tools.18 For example, semantically rich and complex
reasoning applications often require multiple windows,
each focusing efficiently on one aspect of the problem.
This need is established in WireVis, Jigsaw, SRS and a
number of other visual analytics tools. To minimize the
human attentional overhead of dealing with multiple
windows, each window must be efficiently focused on
a task and obey the principal of ‘balanced interaction’.
Balanced interaction goes beyond brushing and linking
from information visualization in that it requires that an
interaction in one window not only cause an update in
another window but also be available, in a general way,
in all windows. With balanced interaction, reasoning
and interaction become merged for the user, and the
attentional and cognitive switches required for handling
different visualizations or different focuses among the
windows tend to subside. This aspect is part of a general
consideration of cognitive flow within the HCM. One goal
of intuitive, exploratory visualization should be that the
visualization should not hamper the rhythm of reasoning
until the human chooses to refocus resources elsewhere.
This sense of being ‘in the zone’ allows the human
collaborator to reason without encountering unnecessary
attentional or cognitive impediments. In cases where task
complexity exceeds the user’s ability to process informa-
tion, or a cognitive impasse is reached for some other
reason, the computer can provide a scaffolding of support
by presenting the information within relevant context,
suggesting what may have been overlooked, and keeping
relevant information present. These considerations result
in a series of design choices in terms of interaction. In
particular, interaction should be, as much as possible,
direct and intimate. Direct interaction ensures that one
deals directly with the artifacts of the reasoning/analysis
process rather than with indirect representations that

require cognitive shifts (for example, Boolean inputs or
pull-down menus where selections or queries must be
entered). Intimate interaction ensures that the interac-
tion is so translucent to the human that it appears natural
and obvious, thus maintaining the intimate collabo-
ration between human and computer. A key method
for maintaining direct, intimate interaction is through
‘search-by-example’ where one merely indicates the
pattern or relationship one is interested in (rather than,
for example, having to construct an elaborate Boolean
query). Prominent instances of search-by-example are
selecting a keyword distribution or transaction pattern
over time from an account of interest and then finding
accounts with similar patterns (as in WireVis), searching
for images similar to (or dissimilar from) a selected
group of images, searching for video patterns similar to
a selected one or various text body search techniques.
To fully achieve search-by-example requires a full-fledged
visual analytics approach with a true marriage of visu-
alization and analysis. Imposing the design principles
described here does not just lead to improved exploration
and knowledge building for problem solving, it may also
lead to discoveries and insights that one would not find
otherwise. There is evidence that spontaneous insights
(a-ha moments) can actually be suppressed if a tool is not
flexible enough to permit the user’s mind to roam freely.9

This treatment of interaction in terms of cognition
and cognitive flow offers a broadened perspective on
the development of an interaction theory discussed in
another article in this special issue.18 The interaction
theory needs to take into account these issues of cogni-
tive flow, higher-level reasoning and human cognitive
modeling. The principles described here and others that
may follow from further theoretical development should
be part of the theory’s outcomes. Much remains to be
done with the HCM before a more complete, working
theory can be developed, as discussed in the next section.

Establishing a Science, Future Directions and
Opportunities

If we are to build a science of analytical reasoning, we
must think about what this entails. A common defini-
tion of science is, ‘The intellectual and practical activity
encompassing the systematic study of the structure and
behavior of the physical and natural world through
observation and experiment’. This definition extends to
psychology and the cognitive sciences when we remember
that mental processes are embodied in physical beings
and must be studied that way. The science must have
observations and undertake experiments that can be
reproduced independently and that work to constrain or
disprove theories. A usual way to build the science is to
lay down basic, general principles that define its scope
and withstand testing and then build theories, models
or hypotheses that are themselves subject to observa-
tional and experimental confirmations. To pursue these
issues, we must apply the scientific method, defined as
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a method of procedure consisting in systematic observa-
tion, measurement and experiment, and the formulation,
testing and modification of hypotheses. As researchers
in analytical reasoning build up a body of study that
addresses all these aspects, we will have a science.

We must also identify who should be involved in this
new science. Certainly visualization scientists, cogni-
tive scientists and psychologists should be and already
are involved. Because analytics and reasoning can have
a social component, other social scientists should be
involved as well. Because this new science of analytical
reasoning should be part of the broader science of visual
analytics, developers of analysis methods (statistical,
database, AI and so on.) may also take part. Although this
intrinsically interdisciplinary science requires substantial
effort, we should also keep in mind its benefits. As Bordon
has pointed out, most advances in science come when a
person for one reason or another is forced to change fields.

Critical to setting forth an interdisciplinary science are
the ways in which disparities in the research questions,
methods, data and arguments can be reconciled between
fields. One approach, taken by cognitive science, attempts
to bridge component disciplines of psychology, AI, philos-
ophy, neuroscience, linguistics and anthropology using
the concept of a ‘trading zone’19,20 formed in part by
methods that cross-cut the various disciplines. Thagard19

points out that computational models of cognition (for
example, SOAR, ACT-R) serve to draw out the unforeseen
empirical consequences of cognitive theories and display
their limitations. One can argue that a similar role could
be played for computational models of cognitive systems
in visual analytics. One can further argue that a trading
zone should be set up for the partners in developing the
science of analytical reasoning.

A parallel approach to interdisciplinarity, translational
science21 avoids the ‘pure’ vs ‘applied’ science distinc-
tion, focusing instead on building application-driven
basic research paradigms.22 The idea of a scientific disci-
pline that spans exploration of underlying phenomena
and complexities of real-world practice originated in
the health sciences. Health sciences’ need for effec-
tive ‘evidence-based medicine’ required the scientists to
more closely coordinate clinical studies and research in
underlying physiological, biochemical and biophysical
phenomena. For a translational science of visual analytics,
we emphasize the reciprocal flow of knowledge between
studies of real-world practices; this flow of knowledge
generates laboratory research directions and the results
of laboratory studies, which are directed by field work
to more effectively address technology designers’ ‘need
to know’ about analytical cognitive processing. As in
the health sciences, translational research methods will
require a coevolution of field and lab approaches.23 This
blurring of the somewhat arbitrary distinction between
pure and applied science is especially appropriate and
useful for visual analytics. It is quite evident that the
challenges and problems that visual analytics was estab-
lished to face are deep and thus require new, deep basic

research and methods, even in the core areas of visual-
ization science, data analysis and knowledge acquisition
and other areas.

Beyond these general considerations, much specific
work must be done to build the science of analytical
reasoning. Perry et al.24 propose an approach based on
the core idea that an interactive analysis system can use
data from user interactions to infer high-level knowledge
of the analyst’s state within a sensemaking process, and
then use this high-level knowledge to provide feedback
that encourages a maximally effective route through
the sensemaking process.2 In other words, the software
should know enough about what the user is doing to be
able to support a sensemaking profile that provides high
efficiency and minimizes errors due to known human
cognitive limits.

One can see how this higher-level knowledge might
be obtained through machine learning, say, by having
a sensemaking expert together with an analyst go over
the user interaction sequence and manually label sense-
making states and then train an HMM or Markov Net to
predict where transitions occur. However, experience in
machine learning shows that this would produce too large
a number of parameters to learn without a huge amount
of training data, and the model would likely be too sensi-
tive to variations in users’ investigative styles. With such a
setup, we would be unlikely to learn much useful knowl-
edge about the sensemaking process.

Another, perhaps better, way to gain high-level knowl-
edge is to encode more detailed knowledge of the
elements of the sensemaking, from the level of raw user
interactions up to the higher-level abstractions of the
model. This is in line with the general observation above
about the need to ‘get inside’ the sensemaking steps; the
studies already done developing and evaluating visual
analytics tools for reasoning tasks could also be used to
develop this detailed knowledge.7,8,12,13 In representing
the sensemaking model, there are three primary classes of
objects: Stages, Artifacts and Data Tasks. The dependency
structure of these classes can be encoded in a description
language. The sensemaking stages and artifacts are repre-
sented as classes, and the relationships between them can
be encoded in the class properties. This will produce a set
of hierarchical relationships that shows the sensemaking
tasks at the highest layer of abstraction, the artifacts at the
next lower layer and the data tasks at the lowest layer. The
data tasks can be recorded directly from the user inter-
face, where recording them corresponds to instantiation
of objects of the classes of the sensemaking ontology.

The structure of this ontology immediately suggests
how the sensemaking tasks can be inferred from the data
tasks. In addition, this ontological model of the process
can be analyzed to find entailments that provide limits
to the set of sensemaking stages that are logically possible
given a history of data tasks performed and access to
artifacts, thus limiting the scope and complexity of the
learning problem. However, if we make the relationships
in the ontology such that the current sensemaking state is
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always a matter of strict necessity, we would have a model
that required a much too restrictive user interface and
workflow. Thus, we see the need of learning from actual
analysts rather than specifying the entailments of the
model too strictly. In addition, the ontological structure
itself may have to be loosened so that, for instance, cate-
gories of general knowledge can be included rather than
just task-specific knowledge and so that the ontology can
be dynamic.

Much study remains to be done with dynamic data and
the temporal structure of data, especially with streaming
data and with data that accumulate into long histo-
ries. This is not just a problem of data representation
and transformation, although certainly the approaches
described in the article in this issue by Kasik et al.25 are
essential. Dynamic data must be also considered from the
standpoint of reasoning and analytical processes. Here,
the event-based approaches mentioned above3,5 are a
start in the right direction, but much more remains to
be done. Beyond this, modeling approaches that fit, in
a mixed-initiative sense, into a human/computer system
must be developed. For large-scale emergencies, fixed
plans are often quickly invalidated by events. (Large-scale
emergencies are just one example where these approaches
to dynamic data and temporal processes are needed.)
One needs, rather, a dynamic model-based plan that can
be updated and responds to unexpected events in the
current situation. Otherwise, even expert decision makers
can be overwhelmed. The responses to hurricanes Katrina
and Rita give ample evidence of this issue. Although
incompetence and failure to respond quickly were major
factors in the Katrina disaster, it is questionable whether
the best decisions would have been made even if respon-
ders and officials had been much better at doing their
jobs once the levees started failing and the situation
changed completely. A general model that could take
the new situation into account running within a visual
analytics system so that it was readily available to deci-
sion makers would have been a great help. In the case
of Rita, previously established evacuation routing plans
failed completely because people did not act as expected;
because Katrina was fresh in their minds, people tried
to leave all at once. One aspect that must immediately
be faced if evacuation, critical infrastructure and other
models are to be integrated into visual analytics systems
is to make the models fast and interactive; otherwise, they
will not be compatible with either the visual analytics
interactive interfaces or the need to respond to a disaster
as it unfolds. Trade-offs must be made among accuracy
and speed and, more generally, with not having complete
resources (for example, lots of data could be missing).
Systems, such as RESIN,26 are looking at this problem, but
much more remains to be done. In addition, the models
must be placed into the analytical reasoning environ-
ment in such a way that they fit the human reasoning
and decision-making process. The HCM17 and cognitive
analyses are starting to provide some direction here, but,
again, much more must be done.

There is also much study to do with respect to mixed-
initiative approaches and human cognitive modeling.
Although there are some promising initial results, the
surface of this broad and deep area has just been scratched.
For HCM, many experiments and evaluations should be
done to validate the precepts of the model and to see
how they apply to specific tools and tasks. Although the
initial modeling is founded on principles from cognitive
science and related areas that already have some valida-
tion and evaluation, the cognitive analyses that we must
attack with visual analytics tools are more complex, larger
and deeper than what have been considered before. If
nothing else, the required HCM must be more compre-
hensive, and it will be necessary to see how precepts that
may have some independent validity work together.

Some visual analytics tools have been used
collaboratively27,28 and some studies have been done on
design considerations,29 but not much work has been
done that studies collaboration in a more fundamental
way with respect to analysis and reasoning. Certainly,
tools such as Jigsaw, SRS and others have capabilities
that lend themselves to collaboration because they enact
knowledge structures and track reasoning processes that
can then be shared. From the standpoint of the scope
of this article, sharing knowledge through a knowledge
structure and sharing aspects of the reasoning/argument-
building processes are essential to meaningful collabo-
ration. However, a basic approach is needed that inves-
tigates the form that collaboration should take, what
artifacts should be shared, in what form and at what stage
of the reasoning process. This approach would help us
determine the design and functionality of the interactive
visual analytics tools. At least three types of collaboration
might come into play. The first is collaboration within a
group of people with equal status who may have different
tasks, say a group of analysts. The second is collaboration
across groups, say between analysts and professionals
in charge of emergency planning. The third is vertical
collaboration within a hierarchy between, say, analysts
and their managers.

The HCM must also be made predictive and practical. To
be practical, the model must have several diverse instances
of application so that one can clearly see how its precepts
can be applied and can get a concrete sense of the success
and effectiveness of the application. To be truly powerful,
the HCM must be predictive so that one has an operational
approach for not only designing but optimizing visual
analytics tools for complex reasoning applications. At the
core of the predictive model is the goal that actions taken
by the computer – presentation of new data, modification
of existing data, computation and analysis of patterns
of data and so on – should be done in such a way that
they do not interfere with the human’s train of thought
or flow of reasoning. Indeed, the temporal constraints
of human memory, perception and cognitive processing
are such that optimizing the sequence of computational
operation to match those constraints is likely to enhance
the depth of analysis that the user is capable of. ‘In the
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zone’ is the term often used to indicate the state of height-
ened cognitive efficiency and insightful thinking that can
be achieved. In the predictive HCM, one would want to
predict both qualitatively and quantitatively what being
in the zone means, how it can be achieved, and such
things as what certain types of distractions cost, how
cognitive efficiency can be measured and how (especially
interaction) techniques can be ranked. One could then
imagine having a cost/benefit model, such as van Wijk’s,26

but much more detailed and predictive, with which
to determine the value of a particular visual analytics
approach. This study is complicated, however, by the fact
that research in neuroscience30 and other areas indicates
that the focus required, for example, to complete certain
types of cognitive tasks more quickly may significantly
impede the human’s ability to have a flash of insight or
an important new idea.9 An environment that supports
more free association and less focus is superior for this.
Thus, there is the tension of trying to balance contradic-
tory characteristics, both of which may be needed.
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