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The rapid progress made in the application of optimization techniques to 
industrial processes has been driven primarily by the increase in global 
competitiveness and environmental regulations that force companies to 
make optimum use of their resources. The US Air Force has of late been 
coming under severe pressure to reduce expenditure in the form of 
reductions in budgetary allocations. There has therefore, been an 
increasing interest to optimize the operations of its various fleets. This 
paper surveys some of the optimization techniques currently in use in an 
attempt to analyze the strengths and weaknesses inherent in them and 
their applicability to a military operation. 
 

 
Optimization may be defined as the 
process by which an optimum is 
achieved. The optimum may be that of 
an industrial institution or an objective 
function that models a similar entity. 
The factors that define the optimum will 
vary with the situation to which the 
optimization process is applied. Some 
examples of factors that may be 
optimized are cost, raw materials used, 
time required and pollution caused. 
Optimizations may be performed for 
obtaining local and global optima.  
 
The increasing complexity of decision-
making that increased competition has 
engendered has resulted in the 
implementation of enterprise-wide 
resource planning systems (ERP). These 
information systems have provided a 
wealth of information that is staggering 
in terms of sheer size. To achieve a 
competitive advantage firms must be 
able develop the means to use the 
information provided by these systems 
to improve their processes. However, 

decision-making is hampered by the 
presence of multiple objectives operating 
on different time scales, strategic 
environments and rates of change. 
 
The US Air Force operates in a different 
competitive environment. However, it 
has of late been coming under severe 
pressure to reduce expenditure in the 
form of reductions in budgetary 
allocations. There has therefore, been an 
increasing interest to optimize the 
operations of its various fleets. To 
determine the optimization technique 
that would be most effective for the Air 
Force business model, we surveyed 
some of the optimization techniques 
currently in use. We attempt to analyze 
the strengths and weaknesses inherent in 
the different techniques and their 
applicability to a military operation. 
 
This paper begins with an introduction to 
some of the terms commonly used in the 
industry and military when dealing with 
optimization in section 1. Section 2 



describes some of the techniques that are 
used and describes a few recent 
applications of optimization in different 
industries and research areas. Section 3  
evaluates the pros and cons of each 
technique. Section 4 summarizes the 
paper and concludes. 
 
1. Introduction to Terminology 

Used 
Attribute: An attribute is any parameter 
that has significant impact on the 
behavior of a system that is being 
optimized and is being controlled in an 
attempt to achieve an optimum. 
 
Constraint: A constraint is used to refer 
to any condition that limits flexibility. In 
this case the extent to which an 
optimizer can vary the parameters that 
influence the outcome is limited by the 
constraint. 
 
Objective Function: An objective 
function (also called a cost function) 
spells out the relationship between the 
outcome (objective) and the attributes 
mathematically. 
 
Policy Level Objectives: These are 
macro- level objectives imposed upon a 
system due to strategic or operational 
necessities. These are broad, intuitive 
and articulate the tradeoff between 
different and sometimes antagonistic 
objectives. 
 
Readiness: of a system is a measure of 
the number of units in the system that 
can perform to specifications with a 
given amount of certainty. This certainty 
is usually measured as the probability of 
occurrence with a required confidence 
level (usually 95%). 
 

Markov processes: Simply defined a 
Markov process is one in which the rate 
of input and output are the same. 
Processes are usually treated as Markov 
processes because they resemble them or 
because they simplify the mathematics 
involved. 
 
Multi-Level Optimization: We define 
multi- level optimization as being 
optimization that takes place on two 
different time scales or at different 
amounts of granularity. Usually the 
optimizer at the higher level makes use 
of the outputs of the optimizer at the 
lower level. 
 
Multi-Objective Optimization: When the 
optimization tries to achieve multiple 
objectives, it is said to be multi-
objective. Often in this type of 
optimization, one or more of the 
objectives are treated as constraints. 
 
2. The Problem Being Tackled 
The planning and allocation of resources 
in the Air Force has depended heavily on 
simulation software called LCOM 
(Logistic Composite Model) that 
provides estimates of outcomes based on 
a stochastic set of inputs. These inputs 
include labor, spares, capacity and 
policy requirements. An analyst will 
typically run multiple simulations with 
different scenarios and based on his/ her 
past experience come up with an 
educated guess about the optimal 
operating scenario. This scenario at 
present takes on average anywhere from 
two to three weeks. The lead-time 
needed for analysis decreases the 
accuracy of the estimates. Further the 
overhead imposed by the planning time 
hinders the ability of the Air Force to 
rapidly respond to changing 
requirements of the environment.  



Advances in the field of optimization 
and in supercomputer processing power 
have made his problem more tractable in 
terms of time. By relegating the core 
optimization work to a machine the 
analyst could be better utilized in value 
enhancing activities such as risk 
analysis. Further by reducing the time 
needed to provide an estimate of the 
optimum it is hoped that the estimates 
themselves will be of greater utility in 
decision-making.  
 
This project will be implemented in 
three phases – the proof of concept 
phase, the validation phase and the 
implementation phase. The proof of 
concept phase will involve the selection 
of two optimization methods that would 
be most suited to handling the problem 
at hand. It will involve building a new 
model of the entire C17 fleet operations, 
independent of LCOM, and the 
optimization of the model with one of 
the two methods chosen. The second 
phase will involve the proof of concept 
and validation of both the optimization 
methods. The third phase will include 
the application of the optimization 
techniques so developed to LCOM.  
    
3. Techniques Used and Some 

Recent Applications 
The optimization problem can be stated 
mathematically as 
 
x* ∈ ARGMAXx {f(x): g(x) = 0, x∈X}, 
 
where S = {x: g(x) = 0, x∈X} is the set 
of possible solutions. 
 
Direct techniques are based on the 
derivative method in which the gradient 
of an objective function is calculated and 
set to zero to obtain points at which its 
value becomes maximum or minimum. 

The second derivative of the function is 
then used to determine whether the 
points so obtained are maxima or 
minima.  Clearly, therefore, the objective 
function in classical & direct 
optimization must be continuous and 
twice differentiable. This requirement is 
generally not met in real world 
problems. Classical techniques however, 
have the advantage of being 
mathematically neat, simple to 
understand and easy to use. Due to the 
dynamic and discontinuous nature of the 
problem at hand classical techniques 
were clearly not of significant use. Some 
classical techniques include Gaussian 
elimination, Newton Raphson and Gauss 
Seidal methods. 
 
Simulated Annealing 
This technique draws its inspiration from 
the annealing process that many 
substances undergo while changing 
state. Typically, a substance, such as 
iron for example, when heated gains 
energy. This energy is gradually 
dissipated due to cooling. The 
temperature is thus a measure of the 
disorder in the iron. As it cools its 
molecules gradually, loose energy and 
gain order. This process continues until 
the system can achieve thermodynamic 
equilibrium. In the case of annealing a 
piece of iron, thermodynamic 
equilibrium would occur when the 
temperature of the iron is the same as the 
temperature of the surroundings.  
Simulated Annealing tries to mimic this 
process and therefore gets its name.  
 
One of the difficulties in using 
Simulated Annealing is that it becomes 
very difficult to choose the rates of 
cooling and the initial temperatures for 
the system that is being optimized. This 
occurs primarily because of the absence 



of any rules for selecting them. The 
selection of these parameters depends on 
heuristics and varies with the system that 
is being optimized.  
 
Industrial Application 
Simulated Annealing has been used for a 
variety of optimization problems. These 
range from portfolio optimization to 
image processing. Belegundu and 
Constans [Ref. 14] have used simulated 
annealing to reduce noise pollution. 
They use a software called SOAR (Shell 
Optimization for Acoustic Radiation) to 
predict the vibration and sound power. 
The shape of a structure is modified until 
it becomes a ‘weak radiator’. The 
simulated annealing algorithm is used to 
find the optimal distribution of mass 
locations from a noise perspective.  
 
Cederberg and Collins, [Ref. 15] at the 
Naval Research Laboratory, have used 
simulated annealing to optimize the 
solution of inverse geoacoustic 
problems. The solutions are obtained 
with the help of self starter – an efficient 
forward modeling tool. Geoacoustic 
problems arise when a source and an 
array of receivers are separated by a 
water column with unknown parameters. 
These systems are used to probe the 
bottom of the ocean.  
 
Greening at Datavision Computing 
Services together with Zakarauskas and 
Dosso of the Defense Research 
Establishment Atlantic Canada, [Ref 16] 
used simulated annealing to localize the 
sources of acoustic signals. They used a 
modified Bartlett processor, which 
matched the measured acoustic fields 
with computed values. The search for 
the parameters was then carried out 
using simulated annealing. They found 
that this simultaneous localization 

provided accurate positions and relative 
strengths for multiple sources. 
 
Boudet et al, [Ref. 18] at the 
Commissariat a l’Energie Atomique, 
used simulated annealing to design thin 
film filters. They assigned parameters 
such as the number of layers, tolerances 
for the target, incidence angles etc as 
parameters for the simulated annealer. 
Conditions like adhesion to the substrate 
were provided as constraints. The 
authors found that the simulated 
annealer converged in every case and 
that the accuracy of the optimum 
obtained depended upon the parameters 
chosen. They also report, interestingly 
that the solution needed no further 
refinement. 
 
 
Neural Networks 
There has been an explosion of interest 
in Neural Networks. They have been 
applied to modeling as well as to 
interpretation. The major reason for the 
universal appeal and utility of neural 
networks is that they are universal 
approximators. Neural networks derive 
their inspiration from biological neuron 
systems and the brain. A neural network 
consists of a number of sub-units called 
neurons. These are interconnected in 
parallel to form a network as shown 
below. 
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A typical neuron consists of inputs, a 
summing function, a limiting or 
threshold function and outputs. These 
correspond to the dendrons, the  
synapses, the cell bodies and the axons 
of a biological neuron. A diagram of an 
actual neuron and a artificial one is 
shown below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
For neural networks to perform any 
useful function they must be trained. The 
most common method of training found 
has been the backpropagation method 
[Ref 6 & 7] in which an error function is 
minimized by changing the weights of 
each synapse in proportion to the error 
calculated. The error being the 
difference between some target or 
desired value and the actual value 
(output) obtained. The analogy between 
the error function in backpropagation 
training and the objective function in 
optimization is too obvious to be missed. 

Hence, the application of neural nets to 
optimization problems is easy to expect. 
 
Fundamental to the utilization of neural 
nets to optimization problems is the 
computation of the gradient of a cost/ 
objective function with respect to the 
parameters being optimized.  For a 
constrained optimization, hard bounds 
can be introduced either on the inputs or 
on outputs depending on convenience. 
Another technique of limiting these 
problems is by using an exterior penalty 
function. The penalty function adds an 
additional function to the objective 
function that increases the cost of those 
regions that lie outside the constraints 
thereby making them infeasible. 
 
A multi-criterion optimization problem 
is generally solved using the minimax 
method, a weighting method, a Lp-norm 
method, a goal programming method or 
more commonly an ε-constrained 
method. In the ε-constrained method one 
of the objectives is optimized while the 
others are treated as constraints. In the 
minimax method the optimization is 
carried out on each of the objective 
functions and the minimum of the result 
is taken as the optimum. In the 
weighting method each objective is 
assigned a scalar weight that signifies its 
relative importance to the other 
objectives. The optimization problem is 
then converted into optimizing the 
weighted sum of the different objective 
functions.  
 
There have been several attempts to use 
neural networks to optimize discrete 
combinatorial problems. However, there 
have been reports of success as well as 
failure in obtaining optimal solutions 
using different methods developed. The 
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conflicting reports need to be resolved 
with further research. 
 
Industrial Applications 
Lu and Markwood [Ref. 33] have 
developed and applied neural networks 
in the industry  to control the weight of 
the coating applied in a hot dip coating 
line of a steel mill. They report 
significant savings in terms of reduction 
in coating weight, error between the 
target and actual coating weight and 
coating material used. They found that 
neural networks outperformed regression 
models and resulted in a 5% saving of 
Zinc. 
 
Veluswami at Mittel Corporation, 
Canada, along with the Department of 
Electronics, Carleton University used 
neural networks to optimize high speed 
interconnects of VLSI circuits with 
electromagnetic simulation models.[Ref. 
32] They found that the models once 
developed operate with minimal CPU 
time. They also demonstrate the savings 
in both CPU resources and advantages 
that neural networks have over existing 
techniques. 
 
Yalcinoz and Short, [Ref. 31] report 
having used neural networks for solving 
dispatch problems in transmission 
systems. They found that the results that 
they obtained were very close to those 
obtained using the quadratic 
programming method. 
 
Ko and Cho [Ref 31], report using neural 
networks to optimize face milling 
operations. They used two neural 
networks one for estimating tool wear 
length and the other for mapping input 
and output relations from the data during 
cutting. 
 

Genetic Algorithms 
These algorithms draw their inspiration 
from various hypotheses of biological 
evolution. Historically, such hypotheses 
have proposed that species evolve 
through a process of survival of the 
fittest. A population of a species (set of 
possible solutions in this case) is created. 
The members of this species are allowed 
to reproduce and recombine to produce 
new offspring. The fittest offspring are 
then selected to go on to the next stage 
namely, recombining and producing new 
offspring (or new solutions). The 
pseudo-code for this may be written as 
[from Ref 1] 

Initialize the population  
Evaluate initial population 
Repeat  

Perform competitive 
selection  
Apply genetic operators 
to generate new solutions  
Evaluate solutions in the 
population  

Until some convergence criteria 
is satisfied 

There are a number of optimization 
techniques in the same family as genetic 
algorithms. They include genetic 
programming and evolutionary 
strategies. 
 
Industrial Applications 
Duponcheele and Tilley used genetic 
algorithms to optimize the shape of an 
automotive structural bumper beam. 
[Ref. 27] The used a variant of genetic 
algorithms called messy genetic 
algorithm. [Ref. 28] They carried out 
their evaluations in collaboration with 
ECIA, a car component manufacturer. 
The aim of a designer is to increase the 
moment of inertia of the cross-section 
with respect to bending and thus increase 
the absorption of kinetic energy. The 



optimization involves increasing this 
cross-section by increasing the mass of 
the beam and therefore its cost or 
changing the shape of the cross-section. 
The authors found that the performance 
of the  messy genetic algorithm's design 
was consistently better than the existing 
ones. 
 
Lee and Horner [Ref. 29] use group 
synthesis to model piano tones. A 
genetic algorithm is used by them to 
select nearly contiguous groups. 
Independent frequency deviations are 
provided to each group to simulate 
partial stretching. They found that the 
data required was reduced by half when 
compared to additive synthesis. 
Furthermore, the perceptual identity of 
sound was also preserved. 
 
Higuchi and Kajihara report [Ref. 30] 
that MITI, Japan is developing 
Evolvable Hardware chips (EHW) as 
part of its real-world computing project. 
EHW is based on the idea of combining 
hardware with genetic algorithms to 
"execute reconfiguration" automatically. 
These chips are used in 
telecommunication equipment where 
they process compressed signals. They 
report that the GA is invoked each time 
the prediction performance of an EHW 
decreases due to changes in the data to 
be compressed. The GA searches for a 
better structure and autonomously 
reconfigures the hardware to changing 
environments. Based on their experience 
they conclude that the EHW concept 
with GAs can be applied to a wide 
variety of applications. 
 
Tabu Search 
This technique is based on the idea that 
humans behave in a seemingly random 
manner given the same learning 

environment. The correct behavior or 
solution is discovered over time by 
performing a given action, determining 
its consequences and using those 
consequences in performing future 
actions. Hence, tabu search must keep a 
track or ‘list’ of the paths it has 
traversed. Tabu search has two main 
stages. In the first stage it explores the 
state space coarsely and determines 
probable solutions. In the second stage, 
it searches in the environs of these 
probable solutions to determine which 
solution is the best. A detailed 
investigation on this algorithm can be 
found in [Ref. 21]. Vujic et al compared 
the performance of tabu search to the 
MonteCarlo method and found that tabu 
search was superior with respect to both 
the computational effort and the value of 
the objective function.  
 
Industrial Applications 
Lee and Ellis [Ref. 17] at the Graduate 
Institute of National Research and 
management and John Hopkins 
University respectively, provide some 
empirical comparisons of algorithms.  
They applied tabu search and other 
algorithms to optimize monitoring of 
network design to the Taiwan power 
system. They report that the primary 
objective in monitoring network design 
is to maximize information acquisition 
while minimizing cost. Accordingly they 
measured the performance of the 
algorithms based on the computational 
time or the cost and the effectiveness or 
frequency of obtaining good solutions. 
The algorithms they considered were the 
polytope method, simulated annealing 
and genetic algorithms. They found that 
simulated annealing and tabu search 
were superior in performance to the 
other methods. 
 



Chang and Wen report [Ref. 24] that 
they had developed a mathematical 
model for ‘trouble call’ analysis and 
used tabu search to solve this problem. 
They tested their solution on a sample 
distribution system and found that the 
tabu search based method was efficient. 
 
Tabu search has also been applied to 
scheduling m identical parallel 
processors with 'sequence dependent 
setup times' to minimize the total 
execution time [Ref. 25]. Their 
scheduling had three phases. In the first 
phase unassigned jobs were assigned to 
the processor. In phase 2 tabu search was 
used to improve upon the starting 
solution produced in phase 1. In phase 3 
final adjustments were made to improve 
the solution obtained. The authors 
reported that this methodology resulted 
in producing "good quality solutions in 
reasonable running times" when 
compared with an exact procedure. 
 
He and Kusiak report [Ref. 26] that they 
used tabu search to configure an 
assembly system. They indicate the 
production of modular products requires 
a single assembly line. The assembly 
system must be designed to improve 
agility and cost efficiency. They set the 
aspiration value to the current minimum 
and use a stopping criterion of a fixed 
number of iterations. They found that 
their heuristic algorithm that used tabu 
search outperformed the general line 
balancing method. 
 
Stochastic Approximation 
While some non-classical optimization 
techniques are able to optimize on 
discontinuous objective functions, they 
are unable to do so when the complexity 
of the data becomes very large. In this 
case the complexity of the system 

requires that the objective function be 
estimated. Furthermore, the models that 
are used to estimate the objective 
function may be stochastic due to the 
dynamic and random nature of the 
system and processes.  
 
Stochastic approximation techniques are 
not new. They had been first developed 
by Robbins and Munro in 1956.[Ref 2, 
8] Their development however, has been 
slow due to their dependence on 
simulation and the accompanying 
computing power required.  
 
The basic idea behind the stochastic 
approximation method is the gradient 
descent method. Here the variable that 
the objective function is to be optimized 
upon is varied in small increments and 
the impact of this variation (measured by 
the gradient) is used to determine the 
direction of the next step. The magnitude 
of the step is controlled to have larger 
steps when the perturbations in the 
system are small and vice versa. 

 
Stochastic approximation algorithms 

based on various techniques have been 
developed recently. They have been 
applied to both continuous and discrete 
objective functions. [Ref 3 & 4] 
Recently, their convergence has been 
proved for the degenerate case as well 
[Ref 9]. In their paper, L’Ecuyer et al 
[Ref 5] illustrate the behavior of 
stochastic approximation with different 
estimation techniques.  
 
Industrial Applications 
Simha R., and Kurose F., [Ref 19] with 
funding from DARPA and the Office of 
Naval Research used stochastic 
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approximation to minimize the call setup 
time. They attempted to achieve this by 
balancing the load on call processors. 
They compare the performance of two 
stochastic approximation techniques 
when applied to a circuit switched or a 
packet switched network. 
 
  
Mixed Integer Programming(MIP) 
Integer programming is used for 
optimizing linear functions that are 
constrained by linear bounds. Quite 
often, the variables that are being varied 
can have only integer value (e.g. in 
inventory problems where fractional 
values such as the number of cars in 
stock are meaningless). Hence, it is more 
appropriate to use integer programming. 
Mixed integer programming is a type of 
integer programming in which not all of 
the variables to be optimized have 
integer values. Due to the linear nature 
of the objective function it can be 
expressed mathematically as  

 

 
where C is the coefficient matrix and X 
is the attribute vector of attributes 
x1….xn. Also (i) and (ii..in) are the 
constraints in the equation above. 
Typically, MIP problems are solved by 
using branch and bound techniques to 
increase speed. 
 
Industrial Applications 
Mixed Integer programming has been 
used extensively at American Airlines. 
In their paper [Ref. 10], Ranga et al, at 
American Decision Technologies, 
describe the optimization of crew 
pairings. American Airlines, in 1992,  

had about 25,000 pilots and flight 
attendants. Their yearly cost was 
estimated at around $1.3 billion. The 
authors reported that the use of MIP in 
their optimization code (named TRIP) 
and subsequent enhancements resulted in 
savings of $20 million per year over the 
period 1985-90 and $3-5million from 
1990-92. The code implemented in 
Fortran and C used an existing IBM 
optimization subroutine library.  
 
In his paper [Ref. 11] Ciriani found that 
MIP when used to optimize the 
modeling techniques used at IBM 
'significantly improved performance'. He 
reported using MIP as a preprocessor 
and found that combinatorial problems 
with a flat objective function seemed to 
benefit from heuristics. He also 
concluded that model formulation can 
provide a better integer polytope 
approximation if methods like 
coefficient tightening are used. 
Dillenberger and Wollensak [Ref 13] 
report that the use of mathematical 
programming techniques (such as MIP) 
in the decision support system of IBM's 
Sindelfingen plant was successful.  
 
Ballintjin, [Ref. 12] at Shell Laboratories 
reports that MIP models that were used 
to control mode switching at acceptable 
levels generated attractive schedules. 
However, the solution times obtained 
were not satisfactory.  
 
4. The Pros and Cons of Each 

Technique 
While classical techniques would 
obviously not be applicable to the 
problem we have at hand, stochastic 
techniques seem, intuitively, to be 
appropriate for our purpose. The 
literature survey demonstrated that each 
technique had its strengths and 
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weaknesses. It also demonstrated that the 
performance of each algorithm would be 
heavily dependent on the nature of the 
problem itself and the heuristics that we 
used.  
 
The major strengths of simulated 
annealing, [Ref. 35] are that it can 
optimize functions with arbitrary degrees 
on non-linearity, stochasticity, boundary 
conditions and constraints. It is also 
statistically guaranteed of finding an 
optimal solution. However, it has its 
disadvantages too. Like GAs it is very 
slow, its efficiency is dependent on the 
nature of the surface it is trying to 
optimize and must be adapted to specific 
problems. The availability of 
supercomputing resources, however, 
mitigates these drawbacks and makes 
simulated annealing a good candidate. 
 
Neural networks have the advantage that 
the entire operations process can be 
treated as a black box. This would ease 
the burden of having to model the entire 
system. It has, however, the 
disadvantage of requiring us to gather 
data and training the network. 
Furthermore, the performance of the 
optimizer would be heavily dependent 
on the quality of the data used.  
 
Genetic algorithms perhaps seem to be 
the most popular algorithms at present. 
Their advantage lies in the ease of 
coding them and their inherent 
parallelism. The use of genotypes 
instead of phenotypes to travel in the 
search space makes them less likely to 
get stuck in local minima. They have, 
however, certain drawbacks to them. 
GAs require very intensive computation 
and hence are slow. They are also not 
guaranteed to give an optimal solution. 
There are examples to show that simple 

random mutation may be superior to 
GAs in some cases [Ref. 34]. The lack of 
proofs demonstrating the ergodicity of 
GAs is one factor that makes this 
technique unsuitable for our problem. 
 
Tabu search had the advantage of not 
using hill-climbing strategies. Its 
performance could also be enhanced by 
branch and bound techniques. However, 
the mathematics behind this technique 
was not as strong as those behind neural 
networks or simulated annealing. 
Furthermore, a solution space would 
have to be generated. Hence, tabu search 
would require a knowledge of the entire 
operation at a more detailed level. Battiti 
and Tecchiolli [Ref. 22] had compared 
Simulated Annealing and Tabu Search 
on the Quadratic assignment problem. 
They found that tabu search does require 
extra overhead in terms of memory 
usage and adaptation mechanisms 
compared to Simulated Annealing. 
However, it avoids the "traps" inherent 
in simulated annealing such as attraction 
basins and hence did work better in their 
case. Paulli J., [Ref 23] reports, on the 
other hand, that simulated annealing is 
significantly better than tabu search. He 
cites the excessive memory overhead as 
well as the time required by tabu search 
to form a search trajectory as being the 
main causes of the poor performance. 
 
Stochastic Approximation did not have 
as many applications reported as the 
other techniques. This could have been 
because of various factors such as the 
lack of a metaphorical concept to 
facilitate understanding and proofs that 
are complex. It has recently shown great 
promise, however, especially in 
optimizing non-discrete problems. The 
stochastic nature of our model along 
with the complexity of the application 



domain makes this an attractive 
candidate. 
 
Mixed integer programming was found 
to have the widest application. It was 
preferred to routing airline crews and 
other similar problems that bore a close 
resemblance to the problem we had at 
hand. Furthermore, the mathematical 
rigor we were looking for was well 
established. However, as the nature of 
our problem is continuous and dynamic 
we preferred to use either Simulated 
Annealing or Stochastic Approximation. 
 
5. Summary and Conclusions 
 
This paper has surveyed a wide range of 
applications to determine which 
optimization technique has proven to be 
most successful. This knowledge will be 
applied in choosing one of these 
techniques to optimize a simulation 
model of the operations of the Air Force. 
The paper has briefly enumerated the 
strengths and weaknesses of each 
technique and elaborated in some detail 
the techniques themselves.  
 
Due to the very nature of the application, 
the optimization methodology would 
have to meet certain requirements. It 
must be able to provide a ninety-five 
percent statistical confidence level for its 
estimates of the global optimum. 
Second, it must be fault tolerant and able 
to produce realistic results even in the 
event of minor inconsistencies in the 
input set. Third it should be able to come 
up with a good approximation of, at a 
minimum, the local minima when 
constrained to execute in a given time 
frame. Fourth, it should be robust 
enough to deal with noisy inputs and 
underlying stochastic models. Lastly, the 
ease of implementing a highly secure 

version is most desirable. The 
implementation must in no way 
compromise the security of the 
underlying hardware and software 
systems. 
 
While the authors appreciated the 
strengths of each technique, Stochastic 
Approximation and Simulated 
Annealing best fit our application. We 
chose simulated annealing due in part to 
the fact that it lent itself naturally to 
optimizing a scenario-based simulation 
[Ref 20]. Another reason that influenced 
our choice included the fact that the 
mathematics behind Simulated 
Annealing is based on the rigorous 
theory of Markov chains. Additionally, 
several convergence proofs have existed 
for it in technical literature for quite a 
few years. Finally, Simulated Annealing 
variants such as Adaptive Simulated 
Annealing and Quenching provide a 
quick ‘first pass’ solution. More 
elaborate simulated annealing techniques 
such as enhanced simulated annealing 
[Ref. 36] provide a clean mechanism 
with parallelism inherent in it to achieve 
speed up. 
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