Application ResourceRequiremengstimation
In a Parallel-PipelineModel of Execution

JiradaKuntraruk, William M. Pottengerand Andrev M. Ross$
ComputerScience& EngineeringDepartmerit
andIndustrial & SystemsEngineeringDepartmerit
Lehigh University
Bethlehem PA 18015USA
jakb@sci.ub.ac.th,{billp,amr5t @lehigh.edu

Abstract

We proposea massiely parallelframenork termeda parallel-pipelinemodelof executionthatcanbe employed
on a homogeneousomputationalcluster We shav that speedupsearlinear in the numberof processorsare
achievable for applicationsinvolving reductionoperationsbasedon a novel, parallel-pipelinemodel of execution.
As computationatlustersbecomeviablealternatve platformsfor solvinglargecomputationaproblemstheresearch
communityacknavledgesthatthe clusterervironmentcanbe usedeffectively whenadaptve resourcananagement
is employed. This requiresthe ability to estimatethe resourcerequirementsof applicationsbefore scheduling
decisionsare made.We proposea resourceestimationmodel for applicationsexecutedin the parallel-pipeline
model of execution. We develop a performancemodel that predictsthe resourceutilization (i.e., computation
and communicationcomplexity) for applicationsexecutingunderthe parallel-pipelinemodel on a homogeneous
computationaktluster This performancepredictionmodel can provide informationto a clusterscheduler

. INTRODUCTION

In [28] Pottengerdevelopeda framewnork for understandingparallelismin a programbasedon the
associatiity of operationswhich accumulateaggregate or coalescea rangeof valuesof varioustypes
into asingleconglomerateThe framewvork for understandinguchparallelismis basedn anapproactihat
modelsloop bodiesas coalescingoop opetators. Within this framewvork the authordistinguisheetween
associatie coalescingloop operatorsand associatie and commutate coalescingloop operators.He
identifiedcoalescindoop operatorghatareassociatie in naturein a variety of differentapplicationq29].
A numberof thesecasesinvolve programspreviously considereddifficult or impossibleto parallelize;
however, the framewvork providesthe necessaryheoreticafoundationdor performingthe analysisneeded
to prove theseloops paralleland transformtheminto a parallelform.

Due to the wide variety of applicationsthat can be parallelizedwithin this theoreticalframework,
in follow-on work we developeda parallel-pipelinemodel of executionfor computationaklusters.This
parallel-pipelinenodelof executionprovidesan executionframenork within which applicationsnvolving
associatie operationscan achiere nearlinear speedup®n homogeneousomputationaklusters.One of

our target applicationsis featureextraction, an importanttask in mining textual data. We will discuss

featureextractionalongwith two otherapplicationsnumericalsortingand querylookup, in detailin this
article. Theseapplicationsare parallelizablebasedon the existenceof associatie operators.

In fact, asavailable computingpower increasedbecausef fasterprocessorandfasternetworking, the
computationalclusteris becominga viable alternatve platform for executing distributed jobs to solve
computationaproblems.lt is recognizedhat a clustercan be effectively sharedwhen adaptve resource
managemenis employed. This implies an ability to estimatethe resourcerequirement®of ary givenrun
beforea schedulingdecisionis made.

This article thus addresseshe problem of developing a resourceestimationmodel for applications
executedwithin our parallel-pipelinemodelof executionon a homogeneousomputationatluster In [21],
we report preliminary results that demonstratethat our parallel-pipelinemodel of execution achieves
nearlinear speedupson such a platform. The primary goal of this article is to develop a practical
performancenodelthatpredictsthe resourcautilization (i.e., computatiorandcommunicatiorcompleity)
for applicationsexecutingunderour parallel-pipelinemodel on a homogeneousomputationakluster

A relatedpurposeof this article is to determinethe efficiency of the parallel-pipelinemodelcompared
to othermodelsof execution.The parallel-pipelinemodelis intendedto be a generalizedramewvork that
works well for a wide rangeof applicationsin which the underlyingoperationis associatie. Thus, the
third purposeof the article is to evaluatethe scalability of the parallel-pipelinemodel acrossmultiple

applicationsthat involve associatie operations.

II. RELATED WORK

A numberof researchprojects[9], [14], [1], [8], [26], [25], [23], [31] have contrituted useful results
to the performancepredictionof parallel computationin dedicatedhomogeneougnvironments.These
prediction models are cateyorized as “classical” performanceevaluation. The modelstreat two main
componentsthe computationand the communicationtime. The work in [14] and [31], for example,
provides a very simple communicationdelay model. It is, however, insufiicient for our purposes.The
modelsLogP [9], LogGP [2], BDM [17], BSP [34], and QSM [16] include sometermsfor network-
relateddelays;they focus on upperbounds,and assumeupperboundsfor network delay are available
without consideringn detailhow to derive them.Sincewe aim to provide datato schedulerasto expected
job duration,especiallyin the presenceof other jobs (and thustraffic) on the cluster we mustemploy
more sophisticatechetwork contentionmodelsthan employ/ed in theseprevious works.

The communicatiordelaymodelpresentedn [18] includesa network contentionfactor Kleinrock [19]

also introduceda methodfor applying queueingtheory to model network contentionin communication

delays.Thesetwo efforts focusedonly on the communicatiortime - just oneof the two maincomponents
of parallelcomputationcompleity. We have developedperformancenodelsfor a parallel-pipelinemodel
of executionthat model both the computationand the communicationcompleity. We also characterize
network contentionn our performancenodels We baseour communicatiordelaymodelson[18] and[19].
To thebestof our knowledge,no performancenodelshave beendevelopedfor a parallel-pipelinenodel

of execution.In this regard,we concludethat our contrikution is novel.

1. PARALLEL-PIPELINE MODEL OF EXECUTION

We have developeda parallel-pipelinemodelof executionthat performsa parallelreductionover a large
set of distributed processorg21]. Reductionin this sensemeansa combiningoperation- for example,
meiging two sortedarraysin ameigesort.Theability to performareductionin parallelreliesonthefactthat
thetargetapplicationinvolvesoneor moreassociatie operationsandcan,asa result,be parallelized28].
Therefore,theoretically any applicationthat involves an associatie operation(e.g., a reduction)can be
executedunderour model. Computationallythe applicationcanbe modeledastwo differenttasks:first, a
computationatask,andseconda parallelmegeasdiscussedh [21]. Of thesetwo tasksthe paralleimeige
forms the reductionstageof the computation.In a distributed environment,communicationtakes place
during the reduction.This communications representedby the arrovs in an examplereductionpictured

in Figure 1. The compleity of eachstepis modeledas cost= computationtime + communicatiortime

K4
.~ To server

O O O ceps
R A U
® O/OC’D

P1 P2 P3 P5

Fig. 1. Parallel-PipelineReductionModel. The white nodesrepresenthe executionof the applicationtask and the black nodes
representhe merging operationThis figure depictsexecutionon eightprocessorsThearronv edgegepresenthecommunication

that takes place.The dottedlines and the arrov edgestogetherform a reductiontree.

Figurel depictsanexampleof our parallel-pipelinemodelof executionon eightprocessorsDuring the
initial step(step0) every processoexecuteghe applicationtask. Then,startingwith stepone,areduction
is completedevery Ig P steps. The systemreachesa stateof equilibrium after Ig P steps.At eachstep

1we male the simplifying assumptiorthat the numberof processorsP is a power of 2. Note thatlg P = log, P.

afterwards,thereare § processorperformingthe applicationtaskand g processorperformingmeiges.
There are Ig P meige stagesfor eachset of P processorsn the parallel-pipelinebecausea complete
binary tree with P leaves hasa depthof 1g P. Since we model communicationstagesas part of the
pipeline,the numberof stagesbecomes x Ig P. Adding the initial stagepicturedin Figure 1 yields,in
thiscase2x 3+ 1 = 7 stagedor a parallel-pipelinecreatedrom eight processorsThis forms, in essence,
a pipelined, parallel reductionconsistingof 2 x lg P + 1 stagesin which new input is continually being
processedh the applicationtask,andpipelinedto the2x1g P+ 1 stagesof thereductiontre€’. Thelengths
of the2 x1g P + 1 stagesn the pipeline are constrainedsuchthat all stagesare equal,thusguaranteeing

the optimality of the pipelinedreduction[27].

A. Model Optimality

Due to the natureof the binary reductiontree, messagesize reachesa bound of O(%) when the
computationreachessteplg P for mary applicationsof interest.As notedpreviously, the systemreaches
a state of equilibrium that optimally usesthe processorsand communicationresourcesgiven certain
constraintson the target application. This optimal use of resourceslependson the 2 x lg P + 1 stages
beingequalin length. Thesestagesconsistof Tcomyp, (18 P — 1) * Tarerge, 18 P * Teomm anNdTcommserver
asdepictedin Figure 2, whereT¢,n,, is thetime to performthe applicationtaskand 7', is the mege
time for addingthe resultfrom a new taskto the existing result.

As noted, the parallel-pipelineis optimal when all stagesin the pipeline are equal in length and
boundedabove by T¢,m,. TO achieve this, for example,the numberof processorgarticipatingin the
memge operationin the parallel-pipelinecan be usedto control Tseg.. Similarly, Tcomm is dependent
on messagesize, and for mary applicationsT’,.,4. drivesthe size of messagegbecausegreaterfan-in
during mege operationgesultsin a larger output),andthereforel’y 4. drivesTcomm. Consequentlythe
numberof processorparticipatingin a meige canbe usedto control T¢op,m aswell. SinceTcomp, Threrge
and T¢comm dependon the particularapplication,userscan vary the numberof processorgarticipating
in the parallel-pipelinen orderto keepthe pipeline stagesdalancedA practicalexampleof determining
the numberof processorsieededo balancethe pipeline stagess discussedn detail in SectionVI-B.

2Note that unlike a hardware pipeline, the communicatiorbetweenstagesn the reductiontreeis significantandasa resultis modeledas

lg P of the2 x1g P + 1 stages.

WsH Wy 67 @ @ 0 6

M S B(Server)
8

=
=

M| s
N |

==
w

=
w
=
=
o1
w
=
)

Time

Fig. 2. ParallelPipeline.The parallelreductionpipelineof sevenstagesisedin executionon eightprocessorsT is the application
task executedon four processorsS is a send,M is a memge. Processorare numberedin parenthesetn eachstageof the

pipeline.

B. The SpeeduModel

In this sub-sectionwe presentthe centraltheoremfor the theoreticalmaximum performanceof the
parallel-pipelinemodel of execution.

Theoem1: The parallel-pipeline modelof executionachievesa nearlinear speedup.

Proof: Let N be the numberof tasksand P be the numberof processorsLet T¢,,, be the execution
time for one task, 7,4 b€ an upperboundon the mege time, and7¢,,.., be an upperboundon the
communicatiortime for one or moretasks.We assumehat T¢om, ~ Tarerge during sequentiakxecution
andthat Tcomp = Therge = Teomm during parallel execution(i.e., all pipeline stagesare approximately
equa¥).

The speedupmodelincorporatespeedupsiue to both paralleland pipelinedexecutionas depictedin

Figure 2 for an eight processoexample.The sequentiakexecutiontime is

TSeq =N- TComp + (N - 1) : TMerge (1)

The parallel executiontime for onesetof N tasksis

N N
TaT:—'Tom —'Tere Tomm'lp
P P/2 C p+P/2 (Mg+ C) g (2)

The first term, & - Toomp, representshe executiontime to produceresultsfrom N tasksusing §
2
processorsThe secondterm, % “ (Trerge + Tcomm) - 1g P, representshe reduction(combination)of the
2
resultsfrom the % setsof tasks.Eachreductionof £ resultsin a settakeslg P — 1 megesandlg P

2

3Note that the constraintof equalpipeline stagess requiredfor optimality of the pipeline operationas discussegreviously.

communication®n a single set of g processorsplus an additionalmeige or send-to-serer, so the total

reductiontime for eachset of % tasksis (Tarerge + Toomm) - 1g P. Note that herewe representhe final

meige or send-to-sem@r asa meige.

Generalizingfrom Figure 2 we have

Pipeline depth =2 -1gP + 1 (3)

This derivesdirectly from the model. However, the actualmaximumtheoreticalspeedups 2 -1g P due
to a functionalhazardin the first two stagesof the pipeline. For examplein Figure 2 processord,3,5,7
perform the applicationtask in pipeline stageone, then 1,5 sendresultsto 3,7, so none of thesefour
processorsarefree until the endof stagetwo andno otherprocessorsireavailablebecausehey arebeing
usedin other (e.g.,reduction)operationsvhenthe pipelineis full.

The speedumueto parallelexecutionof one setof taskson a single setof £ processorss

. (4)

The overall speedupgs thus

Soverall - Spar : SPipeline

Tse L
= Foj - Pipeline depth (5)

- 9.gP
2. gP+1 ~ °

Notethatthe 2 - Ig P in the numeratoris approximatelyequalto 2 -1g P + 1 in the denominatarThus,

Soveral &< P, a nearlinear speedupThis completesour proof.

IV. A PERFORMANCE PREDICTION MODEL FOR THE PARALLEL-PIPELINE MODEL OF EXECUTION

Althoughour original compleity modelsketchedin [21] is ableto predictthe behaior of our parallel-
pipeline model of execution, it introducesunnecessargompleity. As a result, herein we develop a
simplified compleity model,therebymakingit easierto usethe modelfor scheduling.

Our new modelis composedof the two componentghat play an importantrole in parallel program

execution time, communicationand computation.Figure 1 in Sectionlll depictsthe parallel-pipeline

modelon eight processorswherethe white nodesrepresenthe executionof the applicationtaskandthe
black nodesrepresenmeige operationsDuring the initial stepof executionin the parallel-pipelinethere
are P tasks(i.e., input dataitems) processedn P processorspne task per processarAfter this initial

step,thereare only £ tasksprocessedsincehalf of the processorsre meging datareceied from the

previous step.Thereforethe numberof stepsrequiredto processN input items (not including the initial

step)is Nép. It takesigP additionalstepsto drainthe pipelinewhenusinga binary reductiontreein the
parallel-pipelinemodel. The computationthat takes placein theselastig P stepsis the meige operation.
In this analysis,we ignore the last stageof the pipeline (the send-to-serer). From Figure 1, it can be
seenthat almostevery Tomy OF Tierge Stagehasa matchingcommunicationstage(a send).The only
exceptionis the final mewge that takes place when the pipeline is drained.Thereforethereis one less
Tcomm Stagethan T, /Therge Stagesin the parallel-pipeline.

Assumethat we want to processN datainput items (e.g., N single-dimensionahrraysfor sorting).
The total time to processN input itemsis thus:

N-P
TTotal = (P + 1) . TComp + lgP : TMerge +
2

(6)
N-P
- p TC’omm + lgP : TComm

2
Perthe optimality modelpresentedn Sectionlll-A, T, is boundedabove by Tt,,,,. Thereforewe

replacel’nerge With Teoomp in Equation6. We do not, however, replacelcom, With Teem, even though
the sameoptimality constraintshold. This is becaus€l¢,,..., aswe will see,varieswidely depending
on the application,and the predictionmodelaccurag is improved by modelingZ¢,... Separatelyusing
gueueingtheory This is the topic of the following section.Finally, as noted previously, the remaining

lgP stepsin Equation6 comprisethe pipelinedrain time for both melge and communicatiorstages.

A. A Delay Model using QueueingTheory

For the purposesof exemplifying our approachthe compleity model presentechereinis developed
specificallyfor Myrinet [4], a high speedinterconnectiometwork developedby Myricom, Inc. In this
communicationcompleity model, queueingtheoryis appliedto modelthe network contentionin order
to predictTcomm. We will usethe resultsof classicalM/M/1 queueingheoryto suggesfunctionalforms
for predictingcommunicatiordelays.The classicalqueueingmodelassumes Poissonstreamof arriving
messagesequestingransmissiorover communicationlinks, whereeachmessagéasa lengthwhich is

exponentiallydistributedwith a meanof L bytes.The arrival streamin our applicationswill probablynot

be Poisson,but the M/M/1 formula may still give useful answersithus, we will useit even thoughits
assumptionsnay not be met. Let p denotethe systemutilization factot thenp = A - % where) is the
arrival rateand C' is the channelcapacity The meanresponsdime of the system,asa functionof L, is

denotedD(L) andis given by

Ql

D(L)

:1—,0+T (7)

wherer is the propagationdelay (i.e., the channellatengy in seconds)In our situation,asin [19], the

channellateny is negligible comparedo é sowe setr =0

Links to 128 Hosts

Fig. 3. Thetopologyof the Myrinet network switch. Figure courtesyMyricom, Inc.

Let us considersendinga messag®ver a Myrinet network. The currenttopology of a Myrinet switch
is shavn in Figure 3. Eachmessagéravels throughthreenodesin a 16-portswitch: a leaf node,a spine
node,andbackthroughanotherleaf node.Thus,we modelthe communicatiordelayin threesteps.

First the messagdravels from a PC (personalcomputey or host node) through a leaf node to the
spine,denotedas D(L);eq 1. We model D(L),..p1 usingan M/M/1 framevork. The arrival rateat a given
leaf nodeis derived directly from the topology of the Myrinet network. From Figure 3, we canseethat
thereare eightlinks from the hoststo eachleaf node.Assumingthat all the eight hostsconnectedo the
leaf nodeare transmittingmessagesimultaneouslytherewill be 8 - —— messagesrriving at the leaf

TComp

node per second.Therefore,the maximum arrival rate of ‘upstream’messages$o a given leaf nodeis

A = 8- —— messages/secorshd

TComp

L

D(L)leafl = ¢ (8)
1 o (8 ' TCimp) é)

Thenmessagesravel throughthe spinebackto anotherleaf node,denotedas D(L)pin.. Thereis only

one possiblepath to the destination,so as beforewe model D(L)i,. usingan M/M/1 system.Again,
we derive the arrival rate at the spine nodesfrom the Myrinet topology From Figure 3, we seethat
there are sixteenlinks to eachspine nodefrom the leaf nodesbeneaththem. In the limit, if messages

areroutedfrom the leaf nodesto a single spinenode, 16 - —— messagearrive at the spinenodeat the

TComp
sametime. Therefore the arrival rate of the ‘upstream’message$o a givenspinenodeis A = 16 - ﬁ
messages/secorahd
L
D (L)spine = < 1 L (9)
1 B (16 ' TComp ’ 6)

Lastly, messagesravel throughleaf nodesto destinationhosts,denotedas D(L);e.r2. Again thereis
only one possiblepathandwe model D(L),.,r» usingan M/M/1 system.We also derive the arrival rate
at the leaf nodesdirectly from the Myrinet topology From Figure 3, we seethat there are eight links
from the spinenodesto eachleaf node.We assumeagainthat all eight spine nodesroute messages$o

the sameleaf nodeat the sametime, andthus$ - ——~— messageasrrive at the leaf node. Therefore the

TComp
arrival rate of ‘downstream’messagest the leaf nodeis A =8 - Tcimp messages/secorahd
L
D(L)leafZ = ¢ (10)
1 - (8 ' TCimp) é)
Thereforethe overall communicationcompleity is
TComm = D(L)leafl + D(L)spine + D(L)leafZ (11)

V. APPLICATION AND IMPLEMENTATION

Our first target applicationis feature extraction. Featureextraction is an important task in mining
distributedtextual data.We implementour parallel-pipelinenodelof executionusingthe featureextraction
algorithmsin HDDI [30], Hierarchical Distributed Dynamic Indexing, as our application.Our results
confirm that the performanceof the parallel-pipelinemodel of executionachiezes a nearlinear speedup
on a homogeneousluster A secondtarget applicationis Latent Semanticindexing [10], an approacho

informationretrieval. We provide an overview of the two tamget applicationsin the following sections.

A. Featuie Extractionin HDDI

In this sub-sectionye review the threefunctionalpartsof the HDDI featureextractionprocessinput,
part-of-speectiagging,and conceptextraction.

1) Input: Sincea collectioncanoriginatefrom ary source,we needto handledifferentinput formats
including SGML andvarioussubsetsuchasHTML andXML. In addition,the featureextractionprocess
requiresus to identify particularfields of datain the input collectionthat are of interest(e.g.,the title of
an item). In orderto accomplishthesetaskswe employed an extensible,reusableobject-orientednput
parser See[3] for details.

2) Part-of-Speeb Tagging: After identifyingfieldsof interest,our featureextractionalgorithmsperform
part-of-speechtagging. The part-of-speechaggeris a rule-basedsystemfor tagging English parts of
speech.This systemis basedon [5], [6], [7]. The taggerusesthreelevels of rule setsto determinethe
part of speechof eachword, and tagswords with their English part-of-speectiag, as specifiedin the
Brown tagset[15].

3) Featue Extraction: A key part of textual datamining is feature or conceptextraction. For this
purposewe employeda sophisticatedEnglishlanguagenounphrasesxtractor Our premiseis thatmaximal
lengthnounphrasesare high quality discriminatorsand shouldthereforebe usedas keyword featuresfor
indexing purposesby the HDDI textual datamining system.In order to identify maximal length noun
phrasesfrom the taggedtext, a finite state machinecapableof handling complex noun phraseswas
employed[3].

Concurrentlywith the extraction of noun phrasesother information that is usedlater in the HDDI
modelbuilding stageis extractedand presered. For example,a frequeng of occurrences calculatedor
eachconceptin eachitem aswell asthe characterffset of eachconceptin the original item. Also, the
field in which the conceptoccurred(e.g., title) is presered.

Overall, the computatiorformsa globaldictionaryof nounphrasdeaturesThisis areductionoperation
in three sensesfirst, the various setsof featuresare combinedlexicographicallyin the meige stage.
Simultaneously occurrencefrequenciesfor identical phrases(possibly from multiple documents)are
reducedo a singlefrequeng. Likewise, offsetsfor phrasesccurringin multiple documentsare meged.
This creationof a global lexicon with occurrencefrequenciesand offsets is an associatie reduction

operation[29].

B. LatentSemantidndexing

In [20], Kontostathisand Pottengerdefine Latent Semanticindexing as follows: “Latent Semantic
Indexing (LSI) [10] is a well-known techniqueusedin informationretrieval. LSI hasbeenappliedto a
wide variety of learningtasks,suchassearchandretrieval [10], [11], classification35] andfiltering [12],
[13]. LSl is a vectorspaceapproachfor modelingdocumentsand mary have claimedthat the technique
bringsout the ‘latent’ semanticsn a collectionof documentg10], [11]. LSI is basedon a mathematical
techniquecalledSingularValueDecompositior(SVD). The SVD processiecomposeatermby document
matrix* into threematrices:a term by dimensionmatrix, 7', a singularvalue matrix, S, anda document
by dimensionmatrix, D. The numberof dimensionsis min(t,d) wheret = numberof termsand d =
numberof documentsThe original matrix can be obtainedthrough matrix multiplication of 7SD?. In
theLSI systemthe T, S and D matricesaretruncatedo k£ dimensionsDimensionalityreductionreduces
‘noise’ in the term-documenmatrix resultingin a richer word relationshipstructurethat reveals latent
semanticspresentin the collection. Queriesare representedn the reducedspaceby 77 q, where T is
the transposef the term by dimensionmatrix, after truncationto £ dimensionsQueriesare comparedo
the reduceddocumentvectors,scaledby the singularvalues(S;D;) by computingthe cosinesimilarity,
which provides a naturalrankingfor the documentsetfor eachquery’

In this informationretrieval application,queriesare comparedo multiple setsof documentvectorsin
parallel. The rankingsthat resultsare combinedin the memge stageof the parallel-pipelineln so doing,
a global ranking results.Overall, this processof computinga global rankingis an associatie reduction

operation.

C. Implementation

In this sub-sectionwe outline pseudo-coddor the core computationand communicationpattern of
the implementationof our parallel, pipelined reductionmodel. The while loop in the codein Figure 4
implementscontinuous hever-endingexecutionof the coretaskasdiscussedn Sectionlll-B for feature
extraction. The for loop and the parameterblksize control the communicationpattern describedand
depictedin Sectionlll (Figure 1). The if clausedetermineswhethera processorsendsor receves a

messagelt is theseloopsthat are (software) pipelinedand executedin parallel.

4A term by documenimatrix is a matrix wherecolumnsrepresentiocumentsand rows representermsin the collection. The elementsin

the matrix represent frequeny of the termsin eachdocumentin the collection.

MPI_Init(&argc, &argv);

MPI_Commsize(&size);

P=size;

MPI_Comm.rank(&rank);

output=NPRextractor(url); or output=Sort(array)or output=Match(query);
while(true)

{
blksize=2;

for(i=1;; < lg(P);i++)

if(rank%blksize>0 and rank%blksizelblksize/2)
{

buf=output;

dest=rank+blksize/2;

MPI_Send(lnf,dest);

output=NPextractor(url); or output=Sort(array)or output=Match(query);

}

else

{

source=rank-blksize/2;
MPI_Recv(luf,source);
list=buf;
Merge(output,list);

blksize=blksize*2;

}
}

Fig. 4. Pseudo-codéor the Parallel-PipelineModel implementation

V1. RESULTS ON THE IA-32 CLUSTER AT NCSA

In this section,we detail the resultsof the applicationof our compleity modelin a parallel-pipelineon
a homogeneousomputationakluster As noted,one of our target applicationsis featureextractionfrom
textual documentsanimportanttaskin mining distributedtextual data.We employed our parallel-pipeline
modelof executionusingthe featureextractionalgorithmsimplementedn HDDI [30]. We alsoprovide an
empirical performancecomparisoras well asanisoeficieney comparisorof our parallel-pipelinemodel

with the masterslave andreductiontree paradigms.

A. ExperimentalPlatform

The NCSA 1A-32 cluster[33] is a clusterof 484 individual computingnodes,eachwith two CPUs
per node,for atotal of 968 processorsA high-speedlow lateny Myrinet network interconnectshe 484

computenodes,and a Fast Ethernetnetwork connectshe clusterto file senersandthe Internet.

B. Applicationof the Compleity Model

In this sub-sectionwe detail the resultsof the applicationof our compleity model in a parallel-
pipeline on a homogeneousomputationaklusterfor our first target application,featureextraction from
textual documentsAs noted,this involvesthe creationof a global dictionaryof lexicographicallyordered
features Our resultsconfirm that our performancepredictionmodelis capableof estimatingthe resource
requirement®f this applicationwhen executedwithin our parallel-pipelinemodel of execution.

As discussedn Sectionlll, in orderto maximize performancewithin the parallel-pipelinemodel of
execution thestagesn the pipelinemustbe nearlyequalandboundeddy 7¢,,,,. Thenumberof processors
participatingin the parallel-pipelineis one of the parameter®f the parallel-pipelinemodel of execution.
The depth of the pipeline, for example,can be controlled by varying the numberof processorsn the
pipelinein orderto achiaze maximum performanceof the model. In addition, as discussedoreviously,
the numberof processorsn the parallel-pipelinecan be variedto control the value of Tye.q.°. For this
particulartest application (feature extraction), we determinedthat executingthe parallel-pipelineusing
16 processorsesultsin all stagesbeing boundedabove by T¢,.,,, andas a resultthe model achieves
maximumperformance.

The estimationof the executiontime T, of our applicationwithin our parallel-pipelinemodel is
calculatedusing Equations6 and 11 presentedn SectionlV. Thus,the computationtime T¢,,,, in our
testapplicationis the time requiredto extract featuresfrom a singletextual input documentand produce
a sortedlist of features.During the initial step(step0) depictedin Figure 1, every processorexecutes
this featureextraction task. Following this, startingin steponein Figure 1, £ processorsontinuously
perform feature extraction and g processorgerform meging. In the experimentsreportedherein, the
averageinput documensizewasapproximatelysKB andthe averagecomputatiortime Tt,,,, for feature
extractionwas measurecempirically to be 0.15 secondsAs noted,for this particularapplicationP = 16
processorsn the parallel-pipelineyields valuesof Tyerge aNd T o, thatare boundedabove by T,

Basedon the useof 16 processors the parallel-pipelinewe have determinedL, the averagemessage
size,to be approximately23, 720 bytesin this case.This yields an averagefor the actualcommunication
compleity. Basedon the Myrinet interconnectiometwork in the 1A-32, the channelcapacityC' is equal
to 1.28 Gbits/second.

To understandhe applicationof the prediction model, we now discussan example.In one of the

5This holdswhenthe size of the databeingmeigedgrows with the depthof the pipeline (e.g.,whenmeming multiple single-dimensional

arraysduring a parallel-pipelinedsort).

experimentsthat we conductedwe emplo/ed 128 processorsn the parallel-pipelinemodel. Thesepro-
cessorsveredividedinto eightgroupsof 16 processorgach.Assuminga total of 4096input documents,
% documentsvere distributedto eachsetof 16 processorsAs a result,the total time to processt096
documentson 128 processorss estimatedas:

N-P N-P

TTotal = (P + 1) . TComp + T . TComm
2 2

4096 _
=(+H%—+1)-015+

2 (12)
4096 16 23720%8 23720%8 23720%8
8 . [1.28G + 1.28G + 1.28G]
16 1— (8 R 23720*8) 1— (16 R 23720*8) 1— (8 R 23720*8)
2 0.15 1.28G 0.15 1.28G 0.15 1.28G

=9.454 0.16 = 9.61 seconds
It is clearthatthe communicatiortime in thisexample(0.16 secondsjs of little engineeringsignificance.
Thus,our experimentswith the featureextractionapplicationserne mainly to testour predictionsof T7ry4;.
Later, in SectionVIl, we discussan applicationin which the communicatiortime is large relative to the
overall executiontime. This allows us to separatelyinvestigatethe two aspectsof our predictionmodel.
This examplesenesto demonstratéhe useof the performancepredictionmodel,andthe resultsreported
in what follows are basedon this samemethod.

We first employed 16 nodeson the IA-32 cluster The resultsare presentedn Tablel.

Input SeqTime | Par Time | SPPar Pred SPPred | SPfrom SP Model
Size Time
4096 878 83 10 7 11 16
8192 1779 165 10 156 11 16
16384 3472 326 10 312 11 16
TABLE |

RESULTS FOR 16 PROCESSORS (IN SECONDS)

In the secondset of experiments,we used32 nodeson the 1A-32. Thesenodeswere divided into
two groups(communicatorspf 16 processorgach.The input wasdivided and distributedto eachgroup
equally Thesegroupsof nodesconcurrentlyexecutedour parallel-pipelinenodel. Theresultsarepresented
in Tablell.

In the third set of experimentswe emplo/ed 64 nodes.Thesenodeswere divided into four groups

®For simplicity, we ignorethe two IgP termsin Equation6 thatinvolve pipelinedrain time.

Input SeqTime | Par Time | SPPar Pred SPPred | SPfrom SP Model
Size Time
4096 878 43 20 38 23 32
8192 1779 83 21 7 23 32
16384 3472 166 20 156 22 32
TABLE 1l

RESULTS FOR 16-PROCESSOR SETS USING 32 PROCESSORS (IN SECONDS)

of 16 processoreach.As before,the input was divided and distributed evenly and the groupsof nodes

concurrentlyexecutedour parallel-pipelinemodel. The resultsare presentedn Tablelll.

Input SeqTime | Par Time | SPPar Pred SPPred | SPfrom SP Model
Size Time
4096 878 23 38 19 46 64
8192 1779 43 41 38 46 64
16384 3472 84 41 7 45 64
TABLE Il

RESULTS FOR 16-PROCESSOR SETS USING 64 PROCESSORS (IN SECONDS)

Lastly, we employed 128 nodeson the 1A-32 cluster As noted previously, thesenodeswere divided
into eightgroupsof 16 processorgach.Again, theinput wasdivided anddistributedto eachgroupevenly
andthe groupsof nodesconcurrentlyexecutedour parallel-pipelinemodel. The resultsof the 128-node

experimentsare depictedin TablelV.

Input SeqTime | Par Time | SPPar Pred SPPred | SPfrom SP Model
Size Time
4096 878 13 67 9 97 128
8192 1779 23 77 19 93 128
16384 3472 43 80 38 91 128
TABLE IV

RESULTS FOR 16-PROCESSOR SETS USING 128 PROCESSORS (IN SECONDS)

As can be seenfrom thesefour tables,the sequentialand parallel executiontime for eachof three
different setsof documentswas measuredThe speedupsachiezed basedon the empirically obsened
wallclock executiontimes are presentedn column four of eachtable. The predictedexecutiontimes

basedon our performancemodel are in column five of eachtable, and the speedupsorrespondingo

theseestimatedexecutiontimesarein columnsix of eachtable. The last columnof eachtable shavs the
upperboundon the speedupas predictedby our speedupmodel.

TableV summarizeshe relative errorsfrom the predictedtime vs. actualexecutiontime. The obsenred
variationsof the actualexecutiontime from 30 runsare small enoughto ignore (under2%). The analysis
revealsthat the worst underestimatés 30.7%,which is alsothe worst overall. The averagerelative error

is -11.5%. The analysisalso revealsthat this model doesnot producean overestimation.

Num Input Actual Pred Rel
Proc Size Time Time Error(%)
16 4096 83 7 —7.22
16 8192 165 156 —5.45
16 16384 326 312 —4.29
32 4096 43 38 —11.6
32 8192 83 7 —7.22
32 16384 165 156 —6.02
64 4096 23 19 —-17.3
64 8192 43 38 —11.6
64 16384 83 7 —-8.33
128 4096 13 9 —-30.7
128 8192 23 19 —-17.3
128 16384 43 38 —11.6
AverageRelatve Error | —11.5
AverageAbsoluteRelative Error | 11.5
Maximum Relative Error | —4.29
Maximum Absolute Relatve Error | 30.7
Minimum Relatve Error | —30.7
Minimum AbsoluteRelative Error | 4.29

TABLE V

RELATIVE ERROR ON |A-32

Figure5 depictsthe samerelatie errorin graphicalform.

Relative Error from Prediction Model

-0.05

-0.15

—e— 16 Processors
—m— 32 Proessors
—a— 64 Processors
—m— 128 Processors

Relative Error

-0.25

-0.3

-0.35

Input Size

Fig. 5. Relatve Error on 1A-32

C. PerformanceComparisonof the Parallel-Pipelinevs. the MasterSlaveModel

In this sub-sectionywe presenta performancecomparisorof our parallel-pipelinemodel of execution
with the masterslave paradigm.The testapplicationis featureextraction.In the masterslave paradigm,
the slave processorsetrieve documentandprocesghem. The output,which is the list of featuresjs sent
to the masterwhereall the featuresare meigedinto a global dictionary

We employed 128 nodesof eight-processosetson the IA-32 clusterin theseexperiments.In other
words,thenodesweredividedinto groupsof eightprocessorgach.TableVI presentsheexecutiontime of
the applicationin our parallel-pipelinemodelandin the masterslave paradigm Both the parallel-pipeline
runsandthe masterslave runsare basedon eight-processosets.The input wasdivided anddistributedto
eachgroupequally Theresultsdemonstratéhat our parallel-pipelinenodeloutperformshe masterslave
modelasexpected.TableVII andTableVIll presenthe resultsfrom experimentsconductedn the same
fashionon 16-processosetsand 32-processosetsrespectiely.

The masterslave paradigmcan achieze computationalspeedupsut hasa limited degree of scalabil-
ity [32]. For a large numberof processorghe centralizedcontrol of the masterprocesscan becomea
bottleneck.Mathis et al. [24] studiedthe performanceof the masterslavze model and reportedthat as
they scaledthe numberof processorsvhile holding the amountof computationper processoiconstant,
they found the overall executiontime increasedyraduallydue to increaseccommunicationcostsandthe
masterprocesshottleneckfactor It is possibleto enhancethe scalability of the masterslave paradigm
by extendinga single masterto a setof mastersgeachof them controlling a differentgroup of process
slaves[32]. In our experimentshowever, we implementeda single masterin the masterslave modelto

highlight the bottleneckfactorin the masterslave paradigm.

Input Size | SeqTime PP MS Improvement
16384 3560 42 65 1.54
32768 7113 83 128 1.54
65536 14239 166 254 1.53
131072 28192 331 505 1.52
262144 57251 659 1008 1.52
TABLE VI

RESULTS FOR 8-PROCESSOR SETS USING 128 PROCESSORS (IN SECONDS)

As we scaledthe number of processorswe obsered that our parallel-pipelineoutperformedthe

masterslave paradigmby larger and larger factors.This is becauseas the numberof processorgrow, a

Input Size | SeqTime PP MS Improvement
16384 3560 43 233 5.41
32768 7113 84 450 5.35
65536 14239 166 891 5.36
131072 28192 330 1782 5.40
262144 57251 654 3574 5.46
TABLE VI

RESULTS FOR 16-PROCESSOR SETS USING 128 PROCESSORS (IN SECONDS)

Input Size | SeqTime PP MS Improvement

16384 3560 54 825 15.27

32768 7113 105 1649 15.70

65536 14239 209 3307 15.82

131072 28192 411 6616 16.09

262144 57251 818 13252 16.20
TABLE VIII

RESULTS FOR 32-PROCESSOR SETS USING 128 PROCESSORS (IN SECONDS)

biggerbottleneckdevelopsat the masterprocessoin the masterslave paradigmand degradesthe overall
performanceMeanwhile,the parallel-pipelineshavs consistenperformance.

For mary parallel algorithms, speedupdeclineswhen the problem size is fixed and the number of
processorss increasedand speedugncreaseswvhenthe numberof processorss fixed and the problem
sizeincreasesThe scalability of a parallelalgorithmis usedto refer to the changein performanceof a
parallelalgorithmasthe problemsizeandnumberof processorsncreaselntuitively, a parallelalgorithm
is scalableif its performancecontinuesto improve aswe scale(i.e., increase}he size of the system(i.e.,
problemsize as well as numberof processors)The resultsin this sectionempirically demonstratehat
our parallel-pipelinemodel exhibits scalability while the masterslaze model doesnot. For a theoretical

analysisthat reacheghe sameconclusion,pleasesee[22].

D. PerformanceComparisonof Parallel-Pipelinevs. Binary ReductionTree

In this sub-sectionwe presenta performancecomparisorof our parallel-pipelinemodel of execution
with a binary reductiontree. Again, the testapplicationis featureextraction.In the binary reductiontree
implementationall processorsnitially processdocumentsA binary reductiontree is formedto mege

the outputup to theroot of the reductiontree.During the meige, someof the processorsvill beidle until

the reductioncompletesThenall processorstart processinghe next set of documentauntil the taskis
completed.

We employed 128 nodessplit into eight-processosetson the IA-32 clusterin theseexperiments.
Table IX presentsthe executiontime of the applicationin our parallel-pipelinemodel versususing a
binary reductiontree. Both modelsemployed eight-processosets.The input was divided and distributed
to eachsetevenly. As before,the resultsdemonstratehat our parallel-pipelinemodel outperformsthe
binary reductiontreemodel. Table X and Table XI presenthe resultsfrom experimentsconductedn the

samefashionon 16-processosetsand 32-processosetsrespecitrely.

Input Size | SeqTime PP BT Improvement
16384 3560 42 48 1.14
32768 7113 83 90 1.08
65536 14239 166 178 1.07
131072 28192 331 355 1.07
262144 57251 659 708 1.07
TABLE IX

RESULTS FOR 8-PROCESSOR SETS USING 128 PROCESSORS (IN SECONDS)

Input Size | SeqTime PP BT Improvement
16384 3560 43 73 1.69
32768 7113 84 140 1.66
65536 14239 166 278 1.67
131072 28192 330 556 1.68
262144 57251 654 1107 1.69
TABLE X

RESULTS FOR 16-PROCESSOR SETS USING 128 PROCESSORS (IN SECONDS)

Again, as we scaledthe numberof processorsye obsered that our parallel-pipelineoutperformed
the binary reductiontree paradigm.This is becauseour parallel-pipelinemodel makes use of the idle
processorsvhile the binary reductiontree doesnot.

The resultsin this sectionempirically demonstratehat our parallel-pipelinemodel exhibits a better

scalabilitythanthe binary reductiontree.

Input Size | SeqTime PP BT Improvement
16384 3560 54 123 2.27
32768 7113 105 243 2.31
65536 14239 209 482 2.30
131072 28192 411 968 2.35
262144 57251 818 1928 2.35
TABLE Xl

RESULTS FOR 32-PROCESSOR SETS USING 128 PROCESSORS (IN SECONDS)

VIl. RESULTS FOR END-TO-END SYSTEMS AND FOR A SORTING APPLICATION

The parallel-pipelinemodel is intendedto be a generalizedramenork that works well for a wide-
rangeof applicationsIn this section,we reportthe resultsof two end-to-endapplicationsexecutedin our
parallel-pipelinemodel on a homogeneousomputationakluster End-to-endin this context means for
example,the entireprocesf retrieving web pagesgextractingfeaturesandstoringthemon a sener. The
first applicationis featureextractionrunningon a 48-nodehomogeneouslusterat Lehigh University We
choseLSI (SectionV-B) asour secondarget end-to-endapplicationfor executionin the parallel-pipeline
framework. As noted,LSI takes query phrasesasinput, matchegshe queriesandretrievesthe documents
in a collectionthat matchthe queries.We have incorporatedhe send-to-sermr stageto sendresultsto a
centralsener in both of theseapplications.The LSI applicationwas also executedon Lehigh’s cluster

Finally, we report the resultsfrom a third tamget application,sorting arraysof numbers.The sorting

experimentswere conductedon the I1A-32 cluster

A. ExperimentalPlatforms

Lehigh’s cluster (Fire) is a 48-node Beowulf cluster constructedentirely from personalcomputer
technologyto createa high-performanceparallel computingervironment.The processorsre connected

by a 100 Mbit Ethernet.Nodeson Fire run the Linux operatingsystem.

B. SpeeduResultsfor Feature Extractionin an End-to-endSystem

In this sub-sectiorwe presentspeedupesultsfor a completeend-to-endsystemthatincludesreal-time
download of documentsfrom the web, feature extraction, and storageto an SQL sener all operating
within our parallel-pipeline Our purposein doingsois to substantiat®ur claim thatthe parallel-pipeline

model of executioncan be usedin real-world applicationsthat involve a reductionin the input prior to

execution.As aresult,in this analysisve do notapplyour performanceredictionmodel.Insteadwe shav
that the applicationachierzes speedupsiearthe upperbound predictedby the speedupmodel presented
in Sectionlll. (Recallthat the theoreticalupperboundon the speedupachiered in the parallel-pipeline
is P, where P is the numberof processors.\We have implementeda documentdownloading process
and integratedit into the feature extraction application.In essencet is a multi-threadedweb cravler
that retrieves documentsrom the web and feedsthemto the parallel-pipelinethat executesthe feature
extraction application.We have alsoimplementedhe final stagein the pipeline,send-to-serer. The last
processoin eachreductiontreein the parallel-pipelinesendsthe lexicographicallyordereddictionary of
extractedfeaturesto an SQL sener for storagein a global dictionary

We first employed eight nodeson Fire. The resultsare presentedn Table XII.

Input Runtime on | Runtime Speedup | SPfrom SP Model
Size oneprocessor| on eight
processors
4096 4308 841 5.12 8
8192 8702 1980 4.39 8
16384 17491 3161 5.53 8
TABLE XII

FEATURE EXTRACTION SPEEDUP RESULTS FOR EIGHT PROCESSORS (IN SECONDS)

In the secondsetof experimentswe used16 nodeson Fire. Thesenodesweredividedinto two groups

(communicatorspf eight processorgach.The resultsare presentedn Table XIII.

Input Runtime on | Runtime on | Speedup | SPfrom SP Model
Size oneprocessor| 16 processors
4096 4308 367 11.73 16
8192 8702 852 10.21 16
16384 17491 1632 10.71 16
TABLE XIlI

FEATURE EXTRACTION SPEEDUP RESULTS FOR EIGHT-PROCESSOR SETS USING 16 PROCESSORS (IN SECONDS)

In the third setof experimentswe used32 nodeson Fire. Thesenodeswere divided into four groups
(communicatorspf eight processorgach.The resultsare presentedn Table XIV.
As can be seenfrom theseresults,for at leastone application,featureextraction, the input reduction

problemis tractableandthe paralIeI-pipelineachie/esspeedupgreaterthan§ in areal-world end-to-end

Input Runtime on | Runtime on | Speedup | SPfrom SP Model
Size oneprocessor| 32 processors
4096 4308 217 19.85 32
8192 8702 412 21.12 32
16384 17491 718 24.36 32
TABLE XIV

FEATURE EXTRACTION SPEEDUP RESULTS FOR EIGHT-PROCESSOR SETS USING 32 PROCESSORS (IN SECONDS)

system.

C. SpeedupResultsfor LSI with an End-to-endSystem

In this sub-sectiorwe presenspeedupesultsfor acompleteend-to-endsystenmthatperformsL S| based
retrieval andstoresthe resultson an SQL sener. As with the featureextractionend-to-endsystem,in this
analysiswve do notapply our performanceredictionmodel.Insteadwe shaw thatthe applicationachieves
speedupsiearthe upperboundpredictedby our speedupmodel presentedn Sectionlll. As before,we
implementedthe final stagein the pipeline, send-to-semr. The last processolin eachreductiontreein
the parallel-pipelinesendsthe queryresultsfrom LSI to an SQL sener for storage.

We emplgyed eight processor®n Fire. The resultsare presentedn Table XV. Theseresultsconfirm

that our parallel-pipelineframewnork scalesacrossmultiple applicationsin an end-to-endsystem.

Input Runtime on | Runtime Speedup | SPfrom SP Model
Size oneprocessor| on eight
processors

4096 2383 538 4.42 8

8192 4783 1055 4.53 8

16384 9617 2103 4.57 8

32768 19331 4184 4.62 8

TABLE XV

LSl SPEEDUP RESULTS USING EIGHT PROCESSORS (IN SECONDS)

D. PerformancePredictionfor Sortingon the IA-32 Cluster

In this sub-sectionwe explore an applicationfor which messagesizesgrov exponentially with the

depthof the pipeline.For example,in a binary tree basedpipeline, messagesizesdoubleat eachstageof

communicationThe purposeof theseexperimentds to exploretheaccurag of our performancerediction
modelundertheseextremeconditionsof exponentialgrowth in messagesize. Our applicationis sorting:
the quicksortis usedto sort pseudo-randomlygeneratedntegers. A sequentialmeige is performedto
meige sortedlists in meige stagef the pipeline. The parallel-pipelinevasexecutedon the IA-32 cluster
in theseexperiments.

The estimationof the executiontime 77, Of the sortingapplicationwithin our parallel-pipelinenodel
is calculatedbasedon Equations6 and 11 presentedn SectionlV. The computationtime T, in our
testapplicationis the time requiredto sort a single input array of numbersusing quicksort.During the
initial stepdepictedin Figure 1, every processorexecutesquicksortto sort pseudo-randomlgenerated
integers. Following this, startingin steponein Figure 1, % processorgontinuouslyperform quicksort
andg processorperformthe sequentiaimege, doublingthe size of the resultat eachmege nodein the
parallel-pipeline.This also doublesmessagesizessince eachmeige node sendsthe result up the binary
reductiontree thatis embeddedn the pipeline. The averagecomputationtime of quicksorton an array
of onemillion integerswas measuredcempirically to be 1.39 secondsUsing quicksortasour application
and input arraysof one million integers,we determinedthe optimum numberof processorsieededto
maximizeperformanceo be eight. In otherwords, P = 8 ensureghat Ty, boundsTive,ge and T omm
from above. In this particularapplication,sortingintegersfrom multiple differentarraysis an associatie
reductionoperation.

Basedon the use of eight processordn the parallel-pipeline,we have determinedlZ, the average
messageize,to be approximately8MB in this case.This yields an averagefor the actualcommunication
compleity. Basedon the Myrinet interconnectionnetwork, the channelcapacity C' is equalto 1.28
Gbits/second.

To understandhe applicationof the prediction model, we now provide an example.In one of the
experimentgliscussedereinwe employed eightprocessorn the parallel-pipelinenodelwith 512 arrays

asinput to be sorted.We thus computethe total predictedtime to processs12 arraysas':

512 — 8
Trotar = (+ 1) -1.39 +
8 M8 8 M8 8 M %8
512 —8 _ [1.28G + 1.28G + 1.28G] (13)
T T TG

= 176.53 + 31.5 = 208.03 seconds

"As before,we ignorethe two IgP termsin Equation6 thatinvolve pipeline drain time.

This examplesenesto demonstratehe useof the performancepredictionmodelin the sorting appli-
cation,andthe resultsreportedin what follows are basedon this samemethod.
We testedour performancepredictionmodelwith the sorting applicationrunningon the 1A-32 cluster

on eight nodes.The resultsare presentedn Table XVI.

Input SeqTime | Par Time | SPPar Pred SPPred | SPfrom SP Model
Size Time
512 886 181 4.89 208 4.25 8
1024 1770 363 4.87 417 4.24 8
2048 3544 721 4.91 837 4.23 8
4096 7254 1430 5.07 1676 4.32 8
TABLE XVI

SORTING RESULTS FOR EIGHT PROCESSORS (IN SECONDS)

Table XVII summarizeghe relative errors from the predictedtime vs. actual executiontime. The

analysisrevealsthat the worst overestimatas 17.20%andthe averagerelative erroris 15.77%.

Num Input Actual Pred Rel

Proc Size Time Time Error(%)
8 512 181 208 14.91

8 1024 363 417 14.87

8 2048 721 837 16.08

8 4096 1430 1676 17.20

AverageRelative Error | 15.77

AverageAbsoluteRelatve Error | 15.77

Maximum Relatve Error | 17.20

Maximum AbsoluteRelatve Error | 17.20

Minimum Relatve Error | 14.87

Minimum AbsoluteRelatve Error | 14.87

TABLE XVII

RELATIVE ERROR ON |A-32 FOR SORTING

Figure 6 graphicallydepictsthe relative error from the predictedvs. actualexecutiontime.

In summaryin this section,we reportedresultsfor end-to-endsystemsor featureextractionandLSI
informationretrieval executedin our parallel-pipelinemodelon Lehigh’s Cluster The resultshave shavn
that our parallel-pipelineoffers a nearlinear speedupn applicationsin an end-to-endsystem.We also

conductedxperimentdor anapplicationin which messagasizesgrow exponentiallywith the depthof the

Relative Error from Prediction Model

0.175

0.17
0.165

0.16 +
0.155

0.15 \/

0.145

Relative Error

—=— 8 processors

512 1024 2048 4096
Input Size

Fig. 6. Relative Error on IA-32 for Sorting

pipelineand comparedhe resultswith our performancepredictionmodel. The predictionmodel predicts

executiontime within about15% error.

VIII. CONCLUSION AND FUTURE WORK

In this researctwe have developeda framewnork thatcombineghe speedugachiared from both parallel
andpipelinedexecutionin onemodeland henceper our theoreticalresult,achiezesa nearlinear speedup
for parallelizedassociatie operationsln orderto achieve the optimumperformancefferedby our parallel-
pipelinemodel, pipeline stagesmustbe approximatelyequalin length.In [22], we also proposeda multi-
ary reductiontreefor the parallel-pipelinenodelandproveda corollary to our primary theorem We have
testedthe model on multiple applicationsand determinedhat the parallel-pipelinemodel achieves near
optimal efficiency as predictedby our theoreticalanalysisfor several applicationsinvolving associatie
operationsWe have also shavn that the parallel-pipelinemodel outperformsthe traditional masterslave
andreductiontree paradigmdor our applicationsuite.

One of the openproblemsthat we addresseds the input reductionproblem- bringing the input data
to the nodesinvolved in the parallel-pipelinecomputation.To addressthis issuewe have developeda
framework for ‘just-in-time’ retrieval of the data neededfor computation.This in effect addsanother
stageto the parallel-pipeline,and can also be modeledas part of the computationalstage.Following
completionof this effort, we implementedhe final step,the send-to-serer pipeline stage,in end-to-end

systemdor featureextractionand query processing.

We have also developeda performancemodel that predictsthe resourceutilization (i.e., computation
andcommunicatiorcompleity) for applicationsexecutingunderour parallel-pipelinemodelof execution
on a homogeneougsomputationalcluster We demonstratedhe accurag of theseresourceestimation
modelsfor a variety of processingervironmentsand applications.Suchmodelscan provide information
to a scheduleffor a homogeneousomputationatluster

The performanceof our predictionmodel varied. For featureextraction on the 1A-32 cluster the best
predictionsyieldedan averageerror of about10%.For the sortingapplication the bestpredictionsyielded
an averageerror of about15%.

One might ask if errorsin the rangeof 10% to 20% are acceptablelt very much dependson the
domain.We will take two examplesfrom the world of queueingtheoryas guideposts:

1. Predictingthe durationof a phonecall to a call centeris difficult; the varianceis often quite large
relative to the mean,so onewould be happy with a predictionthat was within 50%.

2. Predictingthe durationof a manufcturingstep,suchasmilling, is easier;onewould only be hapyy
with a predictionthat waswithin 5%.

In our domainof parallel-pipelineexecution,no previous studieshave beenperformedon predictingrun
times.Therefore pur resultsin the 10%to 20%rangeareby default the stateof the art. Predictionsof this
accurayg placethe problemof schedulingmultiple jobs someavherebetweenthe world of M/M/c queues,
with highly variabledurations,andthe world of job-shopschedulingwith durationsof low variability.

We plan to continueto tune our resourceestimationmodelsby applyingthemto predictthe resource
utilization in end-to-endsystemdor information retrieval and featureextraction. This may requireus to
develop more sophisticatednodelsof communicatiorcompleity at both endsof the parallel-pipelineln
addition,we planto scaleour parallel-pipelinemodel of executionand our resourcesstimationmodelsto
additionalapplicationghatinvolve associatie operationsandthe useof multi-ary reductiontrees.Finally,
we expectto modify the featureextraction applicationso that it can meige or split input documentsas

requiredto balancethe pipeline stages.

IX. ACKNOWLEDGEMENTS

Author JiradaKuntrarukgratefully acknavledgethe financial supportof the Royal Thai Government.
Co-authorsaWilliam M. Pottengeiand Andrew M. Rossexpresstheir deepgratitudefor their sahationto
their Lord and Savior, JesusChrist. In addition,we are quite gratefulto Todd Fisherand Lars Holzman

for their diligent aid in coding.

(1]
(2]

(3]
(4]
(5]
(6]
(7]

(8]
&)

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
(18]

[19]
[20]

[21]
[22]

(23]
[24]

[25]
[26]
[27]
(28]
[29]
[30]

[31]
[32]

[33]
[34]
[35]

REFERENCES

V. Adve. Analyzingthe Behaviorand Performanceof Parallel Programs PhD thesis,Univ. of Wisconsin-MadisonPecember1993.
Albert Alexandro, Mihai F. lonescu,Klaus E. Schauserand Chris Scheiman.LogGP: IncorporatingLong Messagesnto the LogP
Model for Parallel Computation.Journal of Parallel and Distributed Computing 44(1), 1997.

R.H. Bader M.R. Callahan,D.A. Grim, J.T. Krause,N. Miller, and W.M. Pottenger The Role of the HDDI™ Collection Builder in
HierarchicalDistributed Dynamic Indexing. In Proceedingof Textmine’01 Wbrkshop,First SIAM International Confeenceon Data
Mining, April 2001.

N.J. Bodenandet al. Myrinet-A Gigabit per secondLocal Area Network. IEEE Micro., 15, 1995.

E. Brill. A SimpleRule-basedPartof Speechragger.In Proceeding®f the Third Confeenceon AppliedNatural Languaye Processing
ACL, 1992.

E. Brill. A Corpus-basedAppmoadc to Languaye Learning PhD thesis, University of Pennsylhania, Departmentof Computerand
Information Science,1993.

E. Bril. SomeAdvancesin Rule-basedPart of SpeechTagging. In Proceedingsof the Twelfth National Confeenceon Artificial
Intelligence 1994.

M. Clementand M. Quinn. Analytical PerformancédPredictionon Multicomputers.In Supecomputing93, 1993.

D.E. Culler, R.M. Karp, D.A. PattersonA. Sahay E.E. Santos K.E. SchauserR.Subramonianand T.von Eicken. LogP: A Practical
Model of Parallel Computation.CommunACM, 39(11),1996.

S. DeerwesterSusanT. Dumais, Geoge W. Furnas,ThomasK. Landauer and Richard Harshman. Indexing by Latent Semantic
Analysis. J. of the AmericanSocietyfor Information Science41(6), 1990.

S.T. Dumais. LS| meetsTREC: A StatusReport. In The First Text REtrieval Confeence 1993.

S.T. Dumais. Latent Semanticindexing (LSI) and TREC-2. In The SecondText REtrieval Confeence 1994.

S.T. Dumais. Using LSI for Informationfiltering: TREC-3 experiments.In The Third Text REtrieval Confeence 1995.

H.P. Flatt andK. Kennedy Performanceof Parallel ProcessorsParallel Computing 12(1), 1989.

W.N. Francis and H. Kucera. Brown corpus manual. Department of Liguistics, Brown University 1979 revision,
http://www hit.uib.no/icame/bravn/bcm.html.

P.B. Gibbons,Y. Matias,andV. RamachandranCanA Shared-MemorpModel Sene asa Bridging Model for Parallel Computation?
In Proceedingof the 9th ACM Symp.on Parallel Algorithmsand Architectues 1997.

J.E JaJaand K.W. Ryu. The Black Distributed Memory Model. IEEE Trans. Parallel And Distributed Systems7(8), 1996.
SangCheol Kim and SunggulLee. Measurementand Predictionof CommunicationDelaysin Myrinet Networks. J. Parallel and
Distributed Computing 61, 2001.

L. Kleinrock. On the Modeling and Analysis of ComputerNetworks. In Proceedingof IEEE, volume 81(8), 1993.

A. Kontostathisand W.M. Pottenger Assessinghe Impactof Sparsificatioron LSI Performanceln Proceedingsf the 2004 Grace
Hopper Celebation of Womenin ComputingConfeence 2004.

J. Kuntraruk and W.M. Pottenger Massiely Parallel Distributed FeatureExtractionin Textual Data Mining Using HDDI™. In
Proceedingof the Tenth IEEE International Symposiunon High PerformanceDistributed Computing August2001.
JiradaKuntraruk. Application Resouce RequiementEstimationin a Parallel-Pipeline Model of Executionon a ComputationGrid.
PhD thesis,Lehigh University, Departmenif ComputerScienceand Engineering2003.

V. Mak. PredictingPerformancef Parallel ComputationsIEEE Trans. Parallel Distributed Systems1(3), July 1990.

M.M. Mathis, D.J. Kerbyson,and A. Hoisie. A PerformanceModel of non-DeterministidParticle Transporton Large-ScaleSystems.
In Proceedingof International Confeenceon ComputationalScience volume 2659, 2003.

A. Menasceand L. Barroso. A Methodologyfor PerformanceEvaluation of Parallel Applicationson Multiprocessors. J. Parallel
Distributed Computing 14(2), 1992.

J. Mohan. Performanceof Parallel Programs: Modelsand Analyses PhD thesis,Carngie Mellon Univ., July 1984.

D.A. Pattersonand J.L. Hennessy ComputerArchitectue A QuantitativeAppmoad. Morgan-Kaufmann1996.

William M. Pottenger The Role of Associatvity and Commutatiity in the Detectionand Transformatiorof Loop-Level Parallelism.
In Proceedingof the 12th ACM International Confeenceon Supecomputing July 1998.

W.M. PottengerTheory Techniquesand Experimentsn SolvingRecurencesn ComputerPrograms PhD thesis,University of lllinois
at Urbana-ChampaigDepartmenbf ComputerScience May 1997.

W.M. PottengerY. Kim, and D.D. Meling. Data Mining for Scientificand EngineeringApplications chapterHDDI™: Hierarchical
Distributed Dynamic Indexing. Kluwer AcademicPublishers2001.

J. Schopf. StructuralPredictionModels for High-Performancdistributed Applications. In Cluster ComputingConfeence97, 1997.
L.E. Silva and R. Buyya. High Performance Cluster Computing: Programming and Applications volume 2, chapter Parallel
ProgrammingModels and Paradigms.PrenticeHall, 1999.

1A-32 Linux Superclusterhttp://wwwncsa.uiuc.edu/userinfo/resources/handiia32linuxcluster/.

L.G. Valiant. A Bridging Model for Parallel Computation.Communicatiorof the ACM, 33(8), 1990.

S. Zelikovitz and H. Hirsh. Using LSI for Text Classificationin the Presenceof BackgroundText. In Proceedingof 10th ACM
International Confeenceon Informationand Knowledg Management 2001.

