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Abstract 
 
In this article we present a supervised learning 
algorithm for the discovery of finite state 
automata in the form of regular expressions in 
textual data. The automata generate languages 
that consist of various representations of 
features useful in information extraction.  We 
have successfully applied this learning technique 
in the extraction of textual features from police 
incident reports [2]. In this article we present 
the result of the application of our algorithm in 
extraction of the ‘problem solved’ in patents. The 
‘problem solved’ in a patent identifies the 
particular solution to an insufficiency in prior 
art that the patent addresses. 
 
1. Introduction 

 
Regular expressions can be used as 

patterns to extract features from semi-
structured and narrative text [1]. After 
studying hundreds of police incident reports 
and patents, we find that regular expressions 
can be readily employed to express patterns 
of features. For example, in a police incident 
report a suspect’s height might be recorded 
as “{CD} feet {CD} inches tall”, where 
{CD} is the part of speech tag for a numeric 
value. Alternatively, if a sentence in a patent 
matches the regular expression “invention .* 
(to)? .* improve”, then it likely contains 
information about the particular solution that 
addresses an insufficiency in prior art. We 
have developed an algorithm for automatic 
discovery of regular expressions of this 
nature.  

At Lehigh University we are conducting 
information extraction research in 
collaboration with the Information Mining 
Group at Eastman Kodak Company and 
Lockheed Martin M&DS in conjunction 
with the Pennsylvania State Police. 

In our work with Lockheed Martin for 
the Pennsylvania State Police, our target is 
to develop a system that extracts features 
related to criminal modus operandi and 
physical description for suspects as recorded 
in narrative incident reports. Our results in 
[2] demonstrate that our algorithm has good 
testing performance on ten features 
important in homeland defense. 

Our goal in the work with the Eastman 
Kodak Company is to develop technology 
capable of automatically extracting 
sentences in patents that identify the 
problem that a given patent addresses. We 
term sentences of this nature problem 
solved identifiers (PSIs). This is an 
important domain given the commercial 
value of information automatically extracted 
from patents [3]. 

This article is organized as follows. In 
section 2, we summarize related work. 
Following this, we provide definitions in 
section 3. In section 4, we present our 
regular expression discovery algorithm.  
Following this in section 5 we discuss our 
preliminary experimental results in the 
patent domain. We also provide a summary 
of the result of applying our regular 
expression discovery algorithm to police 
incident reports from [2]. Finally, we discuss 
conclusions and future work in section 6 and 
acknowledge those who have contributed to 
this work in section 7. 
 
2. Related Work 
 

Although much work has been done in 
the field of information extraction, relative ly 
little has focused on the automatic discovery 
of regular expressions. In this section, we 
highlight a few efforts that are related to 
regular expression discovery. We also touch 



on related work in citation analysis of 
patents. 

Stephen Soderland developed a 
supervised learning algorithm, WHISK [1], 
which uses regular expressions as patterns to 
extract features from semi-structured and 
narrative text. In each iteration of the 
learning process, WHISK requires that a 
human expert label specific features in 
instances and then generates rules based on 
these labels. WHISK uses segments such as 
clauses, sentences, or sentence fragments as 
its instances. A crucial difference between 
WHISK and our approach is that WHISK 
requires the user to identify the precise 
location of features for labeling while our 
approach requires only that instances be 
labeled.  As noted this represents a 
signif icant reduction in the effort required to 
develop a training set. 

Eric Brill [7] applied his transformation-
based learning (TBL) framework to learn 
reduced regular expressions for correction of 
grammatical errors in text. Although Brill 
does not perform explicit information 
extraction, the correction process involves 
identifying grammatical errors. There are 
three major differences between Brill’s 
approach and ours. First, the reduced regular 
expressions generated by Brill do not 
include the logical “OR” operator. We have 
found that the “OR” operator is necessary to 
achieve high accuracies in information 
extraction. Secondly, like the 
aforementioned work by Soderland, Brill’s 
approach requires intensive feature-specific 
labeling to create the ground truth used in 
TBL. Finally, our approach does not require 
domain experts to create templates because 
it is not based on TBL 

Michael Chau, Jennifer J. Xu, and 
Hsinchun Chen have published results of 
research on extracting entities from 
narrative police reports [13]. They 
employed a neural network to extract 
persona names, addresses, narcotic 
drugs, and items of personal property 
from these reports. Noun phrases are 
candidates for name entities. Although 
not readily apparent in [13], they 

evidently employ a similar approach to 
other researchers in that feature-specific 
labeling is required in training set 
development. Their cross-validation 
results vary from a low of 46.8% to a 
high of 85.4% for various entities. In our 
approach, however, we achieve 
significantly better results without 
limiting ourselves to noun phrases.  In 
addition, we are able to extract a larger 
number of features that can be used for 
analysis in several ways, including 
matching on modus operandi. 

In [2] we describe our approach to 
feature extraction from police incident 
reports. We note that our algorithm is semi-
supervised because it requires significantly 
less effort to develop a training set than 
other approaches. Instead of labeling the 
exact location of features in a training set, 
the training set developer need only record 
whether a specific feature of interest occurs 
in a segment. From this training data our 
algorithm automatically discovers regular 
expressions that can be used on previously 
unseen data for information extraction. 

Similarly, PSI extraction is a semi-
supervised classification problem. Instead of 
requiring that the domain expert exactly 
identify the textual feature or features that 
describe the problem solved, the training set 
developer need only determine whether a 
sentence includes problem solved 
information or not. One difference between 
these two applications is the method of 
segmentation. In our previous work we 
found it necessary to break sentences into 
segments using periods and commas as 
segment boundary markers. In PSI 
extraction, however, we determined that 
sentences form natural segment boundaries.  

Much work has been done in patent 
citation analysis (e.g., [4] [5]). For example, 
patent citation frequencies are employed to 
ascertain the relative importance of patents. 
An approach of this nature, however, does 
not shed light on the content of the patent. 
To the best of our knowledge, our effort to 
develop technology to extract content-based 
PSIs from patents is novel. 



3. Definitions  
 
In this section, we start with the standard 
definition of a regular expression, and then 
define a reduced regular expression as used 
in our algorithm. Following this, we define 
terms used in this article. 
 
Regular expression: “Given a finite 
alphabet Σ , the set of regular expressions 
over that alphabet is defined as: 
1) Σ∈∀α , a is a regular expression 
and denotes the set {a}. 
2) if r and s are regular expressions 
denoting the languages R and S, 
respectively, then (r+s), (rs), and (r*) are 
regular expressions that denote the sets R ∪ 
S, RS and R* respectively.” [6, 7] 

 
Reduced regular expression (RRE): Our 
reduced regular expression is at first glance 
similar to that defined in [6]. However, there 
are some significant differences. Given a 
finite alphabet Σ , our reduced regular 
expression is defined as a set, where the star 
‘*’ indicates that the character 
immediately to its left may be repeated 
any number of times, including zero, and 
the question mark ‘?’ indicates that the 
character immediately to its left may be 
repeated either zero times or one time. 
 
§ Σ∈∀α , a is a RRE and denotes the set 

{a}. 
§ ~a* is a RRE and denotes the Kleene 

closure of the set α−Σ . 
§ Σ∈Σ∈ $,^ , where ^ is the start of a 

line, and $ is the end of a line. 

§ Σ⊂}\,\,\,\{ WwSs , where \s ([ 
\t\n\r\f]) is any white space, \S ([^ 
\t\n\r\f]) is any characte r except white 
space, \w ([0-9a-zA-Z]) is any 
alphanumeric character, and \W ([^0-9a-
zA-Z]) is any non-alphanumeric 
character. 

§ All words in the lexicon and all part of 
speech tags in the Penn tag corpus [8] 
belong to ? . 

§ (\w)* is a RRE denoting the Kleene 
closure of the set {\w}. 

§ (\w){i,j} is a RRE denoting that \w is 
repeated between i and j times, where 
i=0, and j=i. 

§ a? is a RRE and denotes that a is an 
optional part of the RRE. 

§ if r and s are RREs denoting the 
languages R and S, respectively, then 
(r+s) and (rs) are RREs that denote the 
sets R ∪ S and RS,  respectively. 

 
Some examples of regular expressions that 
are not RREs are: “a*”, “(ab)*”, and “a+”.  
We have not found it necessary to support 
such regular expressions to achieve high 
accuracies. 
 
Feature : A feature is the smallest unit of 
information extracted. Examples include 
values for the attributes height, weight, age, 
gender, time, location, PSI, etc. 
 
Segment: A segment is (a portion of) a 
sentence. As noted previously, we found it 
necessary to use periods to mark sentence 
boundaries and commas to mark segment 
boundaries. The only exception is a comma 
that separates two numbers, as in “$1,000”. 
The comma in the phrase “…in his twenties, 
with brown eyes…”, on the other hand, is a 
segment boundary. The textual string 
between any two segment boundaries is a 
segment. 
 
Item:  An item is a document from which 
features are extracted. In the experiments 
described herein this is either a police 
incident report or a full text patent. 
 
True set: If the system is learning a RRE for 
a feature f, then the true set consists of all 
segments labeled f in training set. After each 
iteration in learning, the true set is updated 
by removing those segments that have been 
covered. In this sense our approach uses a 
covering algorithm. 
 
False set If the system is learning a RRE for 
a feature f, then the false set consists of all 
segments that are not labeled f in the training 



set. For a given feature f, the false set does 
not change during learning. 
 
Element: Words in the RRE with frequency 
in the true set higher than a threshold Wordε  
and part of speech tags in the RRE with 
frequency in the true set higher than a 
threshold Tagε  are termed elements of the 
RRE.  
 
Root: We term the first element found by 
the algorithm in an RRE the root of the 
RRE. 
  
“AND” learning process: All learning 
iterations that employ the logical “AND” 
operator. 
 
“OR” learning process: All learning 
iterations that employ the logical “OR” 
operator. 
 
“NOT” learning process: All learning 
iterations that employ the logical “NOT” 
operator. 
 
“Optional” learning process: All learning 
iterations that employ an optional operator. 
 
Rand: The RRE learned after completion of 
the “AND” learning process. 
 
N: The number of elements in Rand. 
 
S: S is the set of words in the lexicon 
employed in our approach combined with 
the part of speech tags in the Penn tag set 
[8]. |S| is the total number of words and tags 
in S. 
 
4. Approach 

 
In this section we present our approach 

to the discovery of RREs from a small set of 
labeled training segments. The process 
begins with the separation of the input text 
into segments.  This step is performed 
automatically. Next, a domain expert labels 
segments. Finally, we apply a greedy 
algorithm to discover RREs for both 

applications. We then perform 10-fold cross-
validation to evaluate the performance of the 
model. We detail these steps in what 
follows.  
 
4.1. Pre-Processing 

 
Each item is split into segments at this 

stage. Each segment becomes an instance in 
our system. We use the technique presented 
in [9] to detect sentence boundaries.  
 
4.2. Segment Labeling 
 

During training set development, each 
segment is evaluated manually and assigned 
the proper labels. After labeling, each 
feature has its own true set and false set. 
 
4.3. Part Of Speech Tagging 
 

Part of speech tags are also used in our 
reduced regular expression discovery 
algorithm. Each word in the training set 
must be assigned its correct part of speech 
tag before the learning process begins. 
Currently, we are using Eric Brill’s part of 
speech tagger to tag our training sets [12]. 
Brill’s tagger uses the Penn tag set [8] 
(Table 1). We have enhanced the lexicon to 
include extra tags for feature extraction from 
police incident reports [2] (Table 2). 
However, we use the original lexicon in PSI 
extraction. 

 

Tag Category Example 

CD 
Cardinal 
number 

3, fifteen 

IN Preposition in, for 

PRP$ 
Determiner, 
possessive their, your 

DT 
Determiner, 

article 
a, the 

JJ Adjective happy, bad 

NN Noun, singular aircraft, data 

NNP Proper Noun 
London, 
Reston 



VBG 
Verb, present 

participle taking, living 

Table 1: Example tags from Penn tag set  
 

Tag Category Example 

CDS Plural  number 
Teens, 

twenties 

GN Gender man, boy 

WEEKDAY Weekday 
Monday, 
Tuesday 

Table 2: Examples of our own tags 
 

4.4. Learning Reduced Regular 
Expressions  

 
The goal of our algorithm is to discover 

sequences of words and/or part of speech 
tags that have high frequency in a collection 
of segments, while having low frequency 
outside the segments. The algorithm first 
discovers the most common element of an 
RRE, termed the root of the RRE. The 
algorithm then extends the ‘length’ of the 
RRE in the “AND” learning process. During 
the “OR” learning process, the ‘width’ of the 
RRE is extended. Next, optional elements 
are discovered during the “Optional” 
learning process. The algorithm then 
proceeds with the “NOT” learning process, 
and finally discovers the start and the end of 
the current RRE. Figure 1 depicts the entire 
learning process.  

 
Figure 1: RRE Discovery 

We use an example in Figure 2 to 
illustrate our algorithm in details through the 
rest of this section. The characters between 
“{“ and “}” are part-of-speech tags. 

Our approach employs a covering 
algorithm. After one RRE is discovered, the 
algorithm removes all segments covered by 
the RRE from the true set. The remaining 
segments become a new true set and the 
steps in Figure 1 repeat. The learning 
process stops when the number of segments 
left in the true set is less than or equal to a 
threshold δ . We use this threshold because 
over-fitting results if too few segments are 
used to discover a RRE.δ is a parameter in 
our system, and is currently set to two. We 
depict the details of each step of the 
algorithm in what follows.  

Our approach is a semi-supervised 
learning for feature extraction from police 
incident reports. Instead of labeling the 
exact location of features in a training set, 
the training-set developer need only record 
whether a specific feature of interest occurs 
in a sentence segment. The rules learned by 
the algorithm are for exact feature extraction 
from police reports. Therefore, the approach 
is a semi-supervised learning in this case. 
On the other hand, the approach is a 
supervised learning for PSI because PSI 
does not require exact match. Training-set 
developer tags whether a sentence is a PSI 
or not. The rules learned by the algorithm 
are also used to tag whether a sentence is a 
PSI or not. Thus, PSI is a supervised 
classification problem. 
 

 
Figure 2: Example training set for feature Age 

in/{IN} her/{GN} twenties/{CDS}  
in/{IN} his /{GN} forties/{CDS}  
in/{IN} his/{GN} early/{JJ} teens/{CDS} 

a/{DT} man/{GN} in/{IN} his/{GN} car/{NN}  
 
in/{IN} the/{DT} roaring/{VBG} twenties/{CDS} 
 
in/{IN} the/{DT} Reston/{NNP} area/{NN} 
…… 

True set 

False set 



 
4.4.1. Discovering the Root of a RRE 
 

This step matches each word and/or part 
of speech tag (specified as a simple RRE) in 
each true set segment against all segments. 
The performance of each such RRE in terms 
of F-measure (Equation 1 from [10]) is 
considered. In this formula, P = precision = 
TP/(TP+FP) and R = recall = TP/(TP+FN), 
where TP are true positives, FP are false 
positives, and FN are false negatives. The 
parameter β  enables us to place greater or 
lesser emphasis on precision, depending on 
our needs. 

Equation 1: F-measure  
 

The element with the highest score is 
chosen as the ‘root’ of the RRE. The 
algorithm discovers a word or part of speech 
tag that has a high frequency of occurrence 
in segments with the desired feature. It must 
also have low frequency in segments that do 
not contain the desired feature. 

Our approach places less emphasis on 
precision and more on recall during the root 
discovery process. We use the parameter 

Rootβ to control this. Naturally this results in 
a larger set of segments that match the root. 
These segments, however, are not 
necessarily all true positives. As a result, the 
“AND”, “OR”, and “NOT” learning phases 
all prune false positives from the set of 
strings that match the root RRE. The result 
is both high precision and high recall. For 
the example in Figure 2, the root of the RRE 
is {CDS}. 
 
4.4.2. “AND” Learning Process 
 

After the root is discovered, the 
algorithm inserts additional words and/or 
part of speech tags before and after the root. 
The algorithm places new candidate 
elements immediately before and after the 
root, thereby forming two new RREs. Any 
element (other than the root itself) can be 
used in this step. The RRE with the highest 

F-measure score will replace the previous 
RRE.  

The new RRE is then extended in the 
same way. Adjacency implies the use of an 
“AND” operator. As before, candidate 
elements are inserted into all possible 
positions in the RRE. The algorithm 
measures the performance of each new RRE 
and the one with the highest score is selected 
if its score is greater than or equal to the 
previous best score. In this sense our 
algorithm is greedy. 

The overall complexity of the “AND” 
learning process depends on both the 
number of candidate elements for a position 
in a given pass during the “AND” learning 
phase, and on the number of elements in 
Rand. If there are N (N>0) elements in a 
RRE, then there are N+1 possible positions 
to insert a new element. For example, if the 
initial “AND” learning phase learns “in 
{CDS}” as a RRE, then “0”, “1”, and “2” in 
“0 in 1 {CDS} 2” mark the three possible 
positions for the second “AND” learning 
pass to insert elements.  

Equation 2 depicts ANDC , the 
complexity of the “AND” process, where Sij 
is the set of candidate elements for the jth 
position in the ith pass of the “AND” 
learning process in a single iteration of 
Figure 1. In the previous example, S21 is the 
set of candidates that can be used in position 
1 in another pass through the “AND” 
learning process that produced “0 in 1 
{CDS} 2”. There are N passes to discover a 
RRE of size N, and ||||0 SS ij ≤≤ . This 

implies that )
2

)1(
(||0 N

NN
SANDC +

+
≤≤ . 

Therefore, )()0( 2NOCO AND ≤≤ . 

∑∑
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=
N
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i

j
ijAND SC

1 0

||  

Equation 2: “AND” Learning Complexity 
 

To improve the performance of the 
algorithm, we limit the candidates for each 
position to actual elements that occur in 
segments. For example, suppose we want to 
extend “in {CDS}” by inserting an element 
“_” between “in” and “{CDS}”. The system 

RP
PR

F
+

+
= 2

2 )1(
β

β
β



matches “in .* {CDS}” against all segments 
in the current true set using only those 
elements that actually occur between “in” 
and “{CDS}”. This approach limits 
candidate elements to a small set, for the 
example, the candidates are “his”, “their”, 
“twenties”, “forties”, “only”, “teens”, {IN}, 
{PRP$}, {GN}, and {JJ}. Moreover, the 
number of candidate elements becomes 
smaller as the RRE grows. To avoid the case 
in which N is too long for a certain RRE, we 
use a parameter λ  to limit N such 
that λ≤N . 

As noted, during the “AND” learning 
phase, our algorithm weights precision more 
heavily than recall. Since we employ a 
covering algorithm, our goal is to maximize 
precision during each iteration of Figure 1. 
Thus we employ different values of β  
during training to ensure that the resulting 
RRE is optimal. The parameter Othersβ  
controls the β value used in the “AND”, 
“OR”, “NOT”, and optional learning 
processes. For the example in Figure 2, the 
following iterations show how Rand is 
learned. “{CDS}”è “in {CDS}”è “in{IN} 
{CDS}”è “in{IN} his {CDS}”è “in{IN} 
his{GN} {CDS}”. 
 
4.4.3. “OR” Learning Process 
 

After the “AND” learning process is 
complete, the algorithm extends the RRE 
with candidate elements using the “OR” 
operator. For each element discovered 
during the “AND” learning process, the 
algorithm uses the “OR” operator to 
combine it with other candidate elements. If 
the newly discovered RRE has a better F-
measure than the previous RRE, the new 
RRE will replace the old one.  

For the example, suppose “in{IN} 
his{GN} {CDS}” has an F-measure of 0.78. 
If “in{IN} (his|her){GN} {CDS}” has a 
score of 1, then “in{IN} (his|her){GN} 
{CDS}” will replace “in{IN} his{GN} 
{CDS}” as the current RRE. After that, 
“in{IN} his{GN} {CDS}” will be evaluated 
as an extension to element “his”. The 
extension of element “his” stops when no 

higher score can be found after all candidate 
elements have been evaluated. Every 
element in Rand will be extended in turn. In 
the example, no other elements in Rand could 
be extended except “his”. Therefore, the 
RRE after “OR” learning process is “in{IN} 
(his|her){GN} {CDS}”. As is the case in the 
“AND” learning process, for performance 
reasons the selection of candidate elements 
for the “OR” learning process is also data 
driven.  

ORC , the time complexity of the “OR” 
learning process, is depicted in Equation 3, 
where iQ is the number of candidate 
elements in position i (each element in Rand 
is a position for the purposes of the “OR” 
learning process). ||||0 SQi ≤≤ è 

NSCOR ||0 ≤≤ è )()0( NOCO OR ≤≤   

∑
=

=
N

i
iOR QC

1

 

Equation 3: “OR” Learning Complexity  
 
4.4.4. “Optional” Learning Process 
 

The gap between any two adjacent 
elements in Rand is a position for an optional 
element in a RRE. Therefore, there are N-1 
positions that could have optional elements. 
Each gap can have zero or one optional 
element. For each gap, the system generates 
a set of candidate elements using a similar 
method as that described in section 4.4.2. 
From the candidate set, the system selects 
one element that occurs most often in the 
true set. If the frequency is higher than a 
threshold γ, the element becomes an optional 
part of the RRE. γ is a parameter of our 
system that is currently set to half the total 
number of instances in the true set in a given 
iteration of Figure 1. The time complexity 
for the optional learning process is depicted 
in equation 4, where Pi is the number of 
candidate elements in position i (position i is 
the gap between element i and element i+1). 
Since ||||0 SPi ≤≤ , )1(||0 −≤≤ NCCoptional . 

Therefore, )()0( NOCO optional ≤≤  
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Equation 4: Optional Element 
Learning Complexity 

 
Optional elements can improve neither 

precision nor recall. In other words, this 
phase of the learning process cannot 
improve either training or testing F-measure 
scores based on segment recognition.  
However, we have discovered that this 
phase can improve performance when 
extracting features from police incident 
reports. For example, suppose we are 
interested in extracting the height feature. 
Furthermore, suppose there are only two 
elements, the part of speech tag “CD” and 
the word “tall”, in Rand. This means that any 
number can be followed by any word or part 
of speech tag except “CD”, followed by the 
word “tall”. Meanwhile, suppose the string 
for a person’s height is “five feet six inches 
tall”. Unfortunately, this RRE cannot 
exactly match a height – instead it will 
match “six inches tall”. However, if there is 
an optional element “feet” between “CD” 
and “tall”, the RRE will achieve both 
optimal segment accuracy and effectively 
extract the feature of interest, “five feet six 
inches tall”. After this process, the example 
RRE becomes “in{IN} (his|her){GN} 
(early)? {CDS}”. 
 
 
4.4.5. “NOT” Learning Process 
 

For each element generated in the 
processes described in sections 4.4.2, 4.4,3, 
and 4.4.4, the system evaluates the insertion 
of a “NOT” operator on the element 
immediately following. The last element is 
an exception – the “NOT” operator is not 
applied to it because it marks the end of the 
RRE. For instance, if three elements found 
for the feature height are “CD”, “feet”, and 
“tall”, then a new RRE that includes ∼“CD” 
and ∼“feet” is generated (where ∼ is the 
“NOT” operator). The new RRE replaces 
the RRE discovered earlier based on the F-
measure score. The time complexity of 

applying the “NOT” operator is depicted in 
Equation 5. Here, CNOT = O(N’), where N’ is 
the total number of elements in the RRE. 

'NCNOT =  
Equation 5: “NOT” Learning Complexity 
 

In our implementation we used Perl. 
Perl, however, does not support a “NOT” 
operator for multi-character tokens, so we 
implemented the “NOT” operator as 
follows: we use the “NOT” operator on each 
single character in an element, and then use 
the “OR” operator to combine them. For 
example, ∼“feet” is expressed as 
“([^f]|f[^e]|fe[^e]|fee[^t]|feet[ \̂s])”. 

The “NOT” operation enabled the 
extraction of features of interest. For 
example, consider a RRE that includes three 
elements “CD”, “feet”, and “tall”. This RRE 
accepts the string “weighing/NN 180/CD 
pounds/NNS and/CC five/CD feet/NNS 
six/CD inches/NNS tall/JJ”, where 
“NN”,“CD”, “NNS”, “CC”, and “JJ” are 
part of speech tags. If we use 
“CD(\s)*feet(\s)*tall” as the RRE, it will 
find nothing. If we use “CD.*feet.*tall” as 
the RRE, it will find “180/CD pounds/NNS 
and/CC five/CD feet/NNS six/CD 
inches/NNS tall/JJ”. If we use 
“CD([^C]|C[^D]|CD[ \̂s\/])*feet([^f]|f[^e]|fe
[^e]|fee[^t]|feet[ \̂s\/])*tall([^t]|t[^a]|ta[^l]|tal
[^l]|tall[ \̂s\/])*”, the string accepted is 
“five/CD feet/NNS six/CD inches/NNS 
tall/JJ”. Obviously, the last result is the one 
we want for the feature height. For the Age 
example in this section, the RRE after the 
“NOT” learning process is: 
“in(~in) {IN}(~{IN}) (his(~his)|her(~her)) 
{GN}(~{GN}) (early(~early))? {CDS}(~{CDS})” 
 
4.4.6. Handling the start and the end 

of the RRE 
 

If the first element of a RRE is a part of 
speech tag, then our algorithm ensures that 
the RRE also covers the word before the tag 
by including “(\S)*” before the tag. For 
example, if the single element “CD” is 
discovered, then the RRE becomes 
““(\S)*{CD}”. This ensures that the RRE 
will accept strings such as “20{CD}”. 



The start symbol “^” and end symbol 
“$” of a segment also proved to be useful in 
some cases. As a result, our algorithm tests 
whether the current RRE should include “^” 
or “$”. We simply insert “^” at the 
beginning of the RRE to form a new one. If 
the resulting RRE has equal or better 
performance compared to the previous RRE, 
then the RRE starting with “^”replaces the 
previous RRE. We deal with “$” in a similar 
manner.  
 
4.5. Post Processing 
 

After each loop in Figure 1, (sections 
4.4.1 to 4.4.6), one RRE is generated. This 
RRE is considered a sub-pattern of the 
current feature. After all RREs have been 
discovered for the current feature (i.e., all 
segments labeled by the feature are 
covered), the system uses the “OR” operator 
to combine the RREs. In other words, given 
that R1, R2, …, Rm are m RREs that are 
discovered during learning, then the final 
RRE will be “(R1)|(R2)|…|(Rm)”. 

In this section we have described a 
greedy covering algorithm that discovers a 
RRE for a specific feature in narrative text. 
The basic idea is to find high frequency 
patterns in segments/sentences associated 
with the feature. We have applied “AND”, 
“OR”, and “NOT” operators to find 
elements of a RRE that accept sub-patterns 
of the feature under consideration. Optional 
elements as well as the start and the end of a 
sentence are also components of the RRE. 
Finally, RREs for all sub-patterns are 
combined to form a single RRE with the 
“OR” operator. 

The “NOT” operator, optional element, 
and the start/end of a segment are designed 
especially for exact match of feature 
extraction from police incident reports. In 
PSI discovery, the algorithm only requires 
steps 1, 2, and 3.  Any segment (sentence) 
that matches the RRE generated is 
considered a PSI. Otherwise, it is not a PSI. 
 
5. Experimental Results 
 

In this section, we first briefly 
summarize the result of feature extraction 
from police incident reports. Following this, 
we discuss how we built the training and 
testing datasets used in PSI extraction. 
Finally, we present the results of the use the 
widely applied technique of cross-validation 
to evaluate our models for PSI extraction 
from full text patents. 

 Table 3 summarizes the results of 10-
fold cross validation based on 100 police 
incident reports consisting of 1404 
segments. There are ten different features 
evaluated in Table 3 (first column). Eye 
Color, Gender and Weekday have perfect 
test performance (100%) in part because we 
have modified the lexicon as noted in 
section 4.3. The performance of Age, Date, 
Time, Height, Race, and Weight are also 
excellent (F-measure scores =90%). The 
performance of Hair Color is however, not 
as good. This is due to the lack of Hair 
Color segments in some folds of the training 
sets. However, the test performances on 
other folds, in which there are Hair Color 
segments, are perfect (100%). As a result, 
we conclude that the RREs discovered for 
these ten features are high-quality. 
 

Feature Average 
Precision % 

Average 
Recall % 

Average 
F-
measure 
% 

Average 
# of true 
positives 

Age 97.27 92.38 94.34 13 
Date 100 94.69 97.13 8.8 
Time 100 96.9 98.32 8.9 
Eye 
Color 100 100 100 1 

Gender 100 100 100 33.6 
Hair 
Color 60 60 60 0.8 

Height 100 98 98.89 2.4 
Race 95 96.67 94.67 3.3 
Week 
day 100 100 100 9.8 

Weight 90 90 90 1.9 
Table 3: 10-fold cross-validation performance on 

police incident report data 
 

For PSI extraction, our datasets include 
55 patents, of which 15 containing 7723 
segments (sentences) were used in cross-
validation. These patents were retrieved in 
the focused domain of text mining to enable 
us to label the training data more easily. 



Each segment in each patent was manually 
tagged by a human expert, thereby creating 
our ground truth. We split all true segments 
randomly into 10 folds for cross-validation. 
Each fold was given a roughly equal number 
of true segments (i.e., the folds were 
stratified). We did the same thing with the 
false segments. Table 4 depicts the makeup 
of folds used in cross validation. 
 

Fold # of true 
segments 

# of false 
segments 

Total # of 
segments 

1 10 761 771 
2 10 762 772 
3 10 762 772 
4 10 762 772 
5 10 762 772 
6 10 762 772 
7 11 762 773 
8 11 762 773 
9 11 762 773 
10 11 762 773 
Table 4: 10 folds for cross-validation 

 
As part of our experimental method we 

employed resampling to vary the ratio of 
true segments to false segments in the 
training sets. Figure 3 depicts how precision, 
recall, and F-measure score vary with the 
ratio of true to false segments. 

From Figure 3 it can be seen that F-
measure reaches an optimum when the ratio 
of true to false segments is 1:73, which in 
fact happens to be the original ratio in the 
source patents. Naturally, we do not 
resample the test folds – otherwise, the 10-
fold cross-validation performance would not 
reflect the true testing performance on data 
representative of the domain.  
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Figure 3: Performance curve of false/true 

segment ratio 
 

Table 5 depicts optimal parameter 
values for PSI extraction. In the first 
column, we list several important parameters 
to our algorithm. In each case, we varied 
each parameter in turn while holding the 
others fixed in order to determine an optimal 
value. Figures 4 and 5 depict the results of 
varying Othersβ  as an example of this 
approach to optimization of parameter 
values. The plots in Figures 4 and 5 are 
drawn from the average testing results based 
on 10-fold cross validation. 

It is interesting to note that in Figure 4, 
the higher the value of beta, the higher the 
average recall and the lower the precision.  
Meanwhile, the number of true positives 
increases as beta increases (Figure 5). One 
important property of precision and recall is 
that they are inversely related [11]. One 
generally has to trade off precision to 
increase recall and vise versa. Our intuition 
in PSI extraction is that it is more important 
to extract at least one PSI per patent than to 
extract several PSIs that are mixed with 
segments that are not PSIs. In this sense, 
precision is more important than recall in 
PSI extraction. Although this is intuitive, in 
this particular case we did not select 0.25 
for Othersβ  in Table 5 due to the fact that 
there were too few true positives extracted. 
Moreover, the F-measure metric has the best 
performance when Othersβ  equals 0.5, a 
value that still reflects a focus on precision 
but has better recall. Therefore, we chose 0.5 
as the optimal value for Othersβ  in Table 5. 
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Figure 4: Performance of Othersβ  
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Figure 5: True positives based on Othersβ  

 
We tuned all the other parameters in the 

same way. It is possible for the parameters 

Wordε and Tagε to be over 100% because the 
same word or part of speech tag may occur 
more than once in a single sentence. The 
final performance after all parameters have 
been optimized is not guaranteed to be 
globally optimal since our method to tune 
parameters is a greedy approach. The 
parameter values used for final cross-
validation tests reported in Table 6 are 
depicted in Table 5. 
 

Parameter 
Name 

Value 

δ  2 

Rootβ  6 

Othersβ  0.5 

Wordε  5% 

Tagε  400% 
λ  5 

Table 5: Optimal Parameter Values 
 

We performed 10-fold cross validation 
based on the configuration listed in Table 5 
with a 1:73 ratio of true to false segments in 
the training set. The test results of the cross-
validation are shown in Table 6. 
 
Test 
sets 

Precision  Recall  F-
measure 

# of true 
positives 

1 85.71% 60.00% 70.59% 6 
2 57.14% 40.00% 47.06% 4 
3 62.50% 50.00% 55.56% 5 
4 66.67% 40.00% 50.00% 4 
5 37.50% 30.00% 33.33% 3 
6 42.86% 30.00% 35.29% 3 

7 40.00% 18.18% 25.00% 2 
8 50.00% 27.27% 35.29% 3 
9 71.43% 45.45% 55.56% 5 
10 44.44% 36.36% 40.00% 4 

Ave
rage 55.83% 37.73% 44.77% 3.9 

Table 6: 10-fold cross-validation test 
performance on patent data 

 
The average precision is 55.83%. That 

means over half of the sentences extracted 
using the RREs discovered by our algorithm 
contained information relevant to the 
problem solved by patents. Considering the 
complexity of natural language expressions 
used in patents, we consider this result 
promising. The average recall is 37.73%. 
This value is acceptable because as noted 
previously, precision is more important than 
recall in this particular application. The 
average F-measure with ß=1 is 44.77%. This 
value tells us that we are currently 
successfully extracting PSI-related segments 
about half the time. Another important 
metric is the distribution of correctly 
extracted PSIs across patents. In order to 
assess our algorithm’s performance with 
regard to this metric, we measured the 
distribution of true positives from the 10 test 
folds across the 15 patents used to form the 
training set. Ideally, we would like to extract 
one or more PSIs from each patent. In this 
case, 80% of the original 15 patents were 
covered by at least one PSI.  This result too 
is quite promising. 

Our experimental results provide 
evidence that our semi-supervised approach 
to RRE discovery can be usefully applied to 
extract features from police incident reports 
and PSIs from patents. With the former 
application we achieved very good test set 
performance, and with the latter we 
achieved reasonable and stable test set 
performance.  Our work in the patent 
domain is ongoing. 
 
6. Conclusion 
 

We have presented a semi-supervised 
algorithm for feature extraction from police 
incident reports and patents. The algorithm 



can be used to learn reduced regular 
expressions that are used as patterns to 
match and extract previously unseen 
features with a high degree of reliability. 
Our experiments demonstrate that reduced 
regular expressions extract information 
useful in criminal justice, homeland defense, 
and patent intelligence applications. 
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