
A Supervised Learning Algorithm for Information Extraction from
Textual Data

Tianhao Wu, Lars E. Holzman, William M. Pottenger and Daniel J. Phelps

Computer Science and Engineering at Lehigh University and Eastman Kodak Company
 {tiw2, leh7, billp}@lehigh.edu, daniel.phelps@kodak.com

Abstract

In this article we present a supervised learning
algorithm for the discovery of finite state
automata in the form of regular expressions in
textual data. The automata generate languages
that consist of various representations of
features useful in information extraction. We
have successfully applied this learning technique
in the extraction of textual features from police
incident reports [2]. In this article we present
the result of the application of our algorithm in
extraction of the ‘problem solved’ in patents. The
‘problem solved’ in a patent identifies the
particular solution to an insufficiency in prior
art that the patent addresses.

1. Introduction

Regular expressions can be used as

patterns to extract features from semi-
structured and narrative text [1]. After
studying hundreds of police incident reports
and patents, we find that regular expressions
can be readily employed to express patterns
of features. For example, in a police incident
report a suspect’s height might be recorded
as “{CD} feet {CD} inches tall”, where
{CD} is the part of speech tag for a numeric
value. Alternatively, if a sentence in a patent
matches the regular expression “invention .*
(to)? .* improve”, then it likely contains
information about the particular solution that
addresses an insufficiency in prior art. We
have developed an algorithm for automatic
discovery of regular expressions of this
nature.

At Lehigh University we are conducting
information extraction research in
collaboration with the Information Mining
Group at Eastman Kodak Company and
Lockheed Martin M&DS in conjunction
with the Pennsylvania State Police.

In our work with Lockheed Martin for
the Pennsylvania State Police, our target is
to develop a system that extracts features
related to criminal modus operandi and
physical description for suspects as recorded
in narrative incident reports. Our results in
[2] demonstrate that our algorithm has good
testing performance on ten features
important in homeland defense.

Our goal in the work with the Eastman
Kodak Company is to develop technology
capable of automatically extracting
sentences in patents that identify the
problem that a given patent addresses. We
term sentences of this nature problem
solved identifiers (PSIs). This is an
important domain given the commercial
value of information automatically extracted
from patents [3].

This article is organized as follows. In
section 2, we summarize related work.
Following this, we provide definitions in
section 3. In section 4, we present our
regular expression discovery algorithm.
Following this in section 5 we discuss our
preliminary experimental results in the
patent domain. We also provide a summary
of the result of applying our regular
expression discovery algorithm to police
incident reports from [2]. Finally, we discuss
conclusions and future work in section 6 and
acknowledge those who have contributed to
this work in section 7.

2. Related Work

Although much work has been done in
the field of information extraction, relative ly
little has focused on the automatic discovery
of regular expressions. In this section, we
highlight a few efforts that are related to
regular expression discovery. We also touch

on related work in citation analysis of
patents.

Stephen Soderland developed a
supervised learning algorithm, WHISK [1],
which uses regular expressions as patterns to
extract features from semi-structured and
narrative text. In each iteration of the
learning process, WHISK requires that a
human expert label specific features in
instances and then generates rules based on
these labels. WHISK uses segments such as
clauses, sentences, or sentence fragments as
its instances. A crucial difference between
WHISK and our approach is that WHISK
requires the user to identify the precise
location of features for labeling while our
approach requires only that instances be
labeled. As noted this represents a
signif icant reduction in the effort required to
develop a training set.

Eric Brill [7] applied his transformation-
based learning (TBL) framework to learn
reduced regular expressions for correction of
grammatical errors in text. Although Brill
does not perform explicit information
extraction, the correction process involves
identifying grammatical errors. There are
three major differences between Brill’s
approach and ours. First, the reduced regular
expressions generated by Brill do not
include the logical “OR” operator. We have
found that the “OR” operator is necessary to
achieve high accuracies in information
extraction. Secondly, like the
aforementioned work by Soderland, Brill’s
approach requires intensive feature-specific
labeling to create the ground truth used in
TBL. Finally, our approach does not require
domain experts to create templates because
it is not based on TBL

Michael Chau, Jennifer J. Xu, and
Hsinchun Chen have published results of
research on extracting entities from
narrative police reports [13]. They
employed a neural network to extract
persona names, addresses, narcotic
drugs, and items of personal property
from these reports. Noun phrases are
candidates for name entities. Although
not readily apparent in [13], they

evidently employ a similar approach to
other researchers in that feature-specific
labeling is required in training set
development. Their cross-validation
results vary from a low of 46.8% to a
high of 85.4% for various entities. In our
approach, however, we achieve
significantly better results without
limiting ourselves to noun phrases. In
addition, we are able to extract a larger
number of features that can be used for
analysis in several ways, including
matching on modus operandi.

In [2] we describe our approach to
feature extraction from police incident
reports. We note that our algorithm is semi-
supervised because it requires significantly
less effort to develop a training set than
other approaches. Instead of labeling the
exact location of features in a training set,
the training set developer need only record
whether a specific feature of interest occurs
in a segment. From this training data our
algorithm automatically discovers regular
expressions that can be used on previously
unseen data for information extraction.

Similarly, PSI extraction is a semi-
supervised classification problem. Instead of
requiring that the domain expert exactly
identify the textual feature or features that
describe the problem solved, the training set
developer need only determine whether a
sentence includes problem solved
information or not. One difference between
these two applications is the method of
segmentation. In our previous work we
found it necessary to break sentences into
segments using periods and commas as
segment boundary markers. In PSI
extraction, however, we determined that
sentences form natural segment boundaries.

Much work has been done in patent
citation analysis (e.g., [4] [5]). For example,
patent citation frequencies are employed to
ascertain the relative importance of patents.
An approach of this nature, however, does
not shed light on the content of the patent.
To the best of our knowledge, our effort to
develop technology to extract content-based
PSIs from patents is novel.

3. Definitions

In this section, we start with the standard
definition of a regular expression, and then
define a reduced regular expression as used
in our algorithm. Following this, we define
terms used in this article.

Regular expression: “Given a finite
alphabet Σ , the set of regular expressions
over that alphabet is defined as:
1) Σ∈∀α , a is a regular expression
and denotes the set {a}.
2) if r and s are regular expressions
denoting the languages R and S,
respectively, then (r+s), (rs), and (r*) are
regular expressions that denote the sets R ∪
S, RS and R* respectively.” [6, 7]

Reduced regular expression (RRE): Our
reduced regular expression is at first glance
similar to that defined in [6]. However, there
are some significant differences. Given a
finite alphabet Σ , our reduced regular
expression is defined as a set, where the star
‘*’ indicates that the character
immediately to its left may be repeated
any number of times, including zero, and
the question mark ‘?’ indicates that the
character immediately to its left may be
repeated either zero times or one time.

§ Σ∈∀α , a is a RRE and denotes the set

{a}.
§ ~a* is a RRE and denotes the Kleene

closure of the set α−Σ .
§ Σ∈Σ∈ $,^ , where ^ is the start of a

line, and $ is the end of a line.

§ Σ⊂}\,\,\,\{ WwSs , where \s ([
\t\n\r\f]) is any white space, \S ([^
\t\n\r\f]) is any characte r except white
space, \w ([0-9a-zA-Z]) is any
alphanumeric character, and \W ([^0-9a-
zA-Z]) is any non-alphanumeric
character.

§ All words in the lexicon and all part of
speech tags in the Penn tag corpus [8]
belong to ? .

§ (\w)* is a RRE denoting the Kleene
closure of the set {\w}.

§ (\w){i,j} is a RRE denoting that \w is
repeated between i and j times, where
i=0, and j=i.

§ a? is a RRE and denotes that a is an
optional part of the RRE.

§ if r and s are RREs denoting the
languages R and S, respectively, then
(r+s) and (rs) are RREs that denote the
sets R ∪ S and RS, respectively.

Some examples of regular expressions that
are not RREs are: “a*”, “(ab)*”, and “a+”.
We have not found it necessary to support
such regular expressions to achieve high
accuracies.

Feature : A feature is the smallest unit of
information extracted. Examples include
values for the attributes height, weight, age,
gender, time, location, PSI, etc.

Segment: A segment is (a portion of) a
sentence. As noted previously, we found it
necessary to use periods to mark sentence
boundaries and commas to mark segment
boundaries. The only exception is a comma
that separates two numbers, as in “$1,000”.
The comma in the phrase “…in his twenties,
with brown eyes…”, on the other hand, is a
segment boundary. The textual string
between any two segment boundaries is a
segment.

Item: An item is a document from which
features are extracted. In the experiments
described herein this is either a police
incident report or a full text patent.

True set: If the system is learning a RRE for
a feature f, then the true set consists of all
segments labeled f in training set. After each
iteration in learning, the true set is updated
by removing those segments that have been
covered. In this sense our approach uses a
covering algorithm.

False set If the system is learning a RRE for
a feature f, then the false set consists of all
segments that are not labeled f in the training

set. For a given feature f, the false set does
not change during learning.

Element: Words in the RRE with frequency
in the true set higher than a threshold Wordε
and part of speech tags in the RRE with
frequency in the true set higher than a
threshold Tagε are termed elements of the
RRE.

Root: We term the first element found by
the algorithm in an RRE the root of the
RRE.

“AND” learning process: All learning
iterations that employ the logical “AND”
operator.

“OR” learning process: All learning
iterations that employ the logical “OR”
operator.

“NOT” learning process: All learning
iterations that employ the logical “NOT”
operator.

“Optional” learning process: All learning
iterations that employ an optional operator.

Rand: The RRE learned after completion of
the “AND” learning process.

N: The number of elements in Rand.

S: S is the set of words in the lexicon
employed in our approach combined with
the part of speech tags in the Penn tag set
[8]. |S| is the total number of words and tags
in S.

4. Approach

In this section we present our approach

to the discovery of RREs from a small set of
labeled training segments. The process
begins with the separation of the input text
into segments. This step is performed
automatically. Next, a domain expert labels
segments. Finally, we apply a greedy
algorithm to discover RREs for both

applications. We then perform 10-fold cross-
validation to evaluate the performance of the
model. We detail these steps in what
follows.

4.1. Pre-Processing

Each item is split into segments at this

stage. Each segment becomes an instance in
our system. We use the technique presented
in [9] to detect sentence boundaries.

4.2. Segment Labeling

During training set development, each
segment is evaluated manually and assigned
the proper labels. After labeling, each
feature has its own true set and false set.

4.3. Part Of Speech Tagging

Part of speech tags are also used in our
reduced regular expression discovery
algorithm. Each word in the training set
must be assigned its correct part of speech
tag before the learning process begins.
Currently, we are using Eric Brill’s part of
speech tagger to tag our training sets [12].
Brill’s tagger uses the Penn tag set [8]
(Table 1). We have enhanced the lexicon to
include extra tags for feature extraction from
police incident reports [2] (Table 2).
However, we use the original lexicon in PSI
extraction.

Tag Category Example

CD
Cardinal
number

3, fifteen

IN Preposition in, for

PRP$
Determiner,
possessive their, your

DT
Determiner,

article
a, the

JJ Adjective happy, bad

NN Noun, singular aircraft, data

NNP Proper Noun
London,
Reston

VBG
Verb, present

participle taking, living

Table 1: Example tags from Penn tag set

Tag Category Example

CDS Plural number
Teens,

twenties

GN Gender man, boy

WEEKDAY Weekday
Monday,
Tuesday

Table 2: Examples of our own tags

4.4. Learning Reduced Regular
Expressions

The goal of our algorithm is to discover

sequences of words and/or part of speech
tags that have high frequency in a collection
of segments, while having low frequency
outside the segments. The algorithm first
discovers the most common element of an
RRE, termed the root of the RRE. The
algorithm then extends the ‘length’ of the
RRE in the “AND” learning process. During
the “OR” learning process, the ‘width’ of the
RRE is extended. Next, optional elements
are discovered during the “Optional”
learning process. The algorithm then
proceeds with the “NOT” learning process,
and finally discovers the start and the end of
the current RRE. Figure 1 depicts the entire
learning process.

Figure 1: RRE Discovery

We use an example in Figure 2 to
illustrate our algorithm in details through the
rest of this section. The characters between
“{“ and “}” are part-of-speech tags.

Our approach employs a covering
algorithm. After one RRE is discovered, the
algorithm removes all segments covered by
the RRE from the true set. The remaining
segments become a new true set and the
steps in Figure 1 repeat. The learning
process stops when the number of segments
left in the true set is less than or equal to a
threshold δ . We use this threshold because
over-fitting results if too few segments are
used to discover a RRE.δ is a parameter in
our system, and is currently set to two. We
depict the details of each step of the
algorithm in what follows.

Our approach is a semi-supervised
learning for feature extraction from police
incident reports. Instead of labeling the
exact location of features in a training set,
the training-set developer need only record
whether a specific feature of interest occurs
in a sentence segment. The rules learned by
the algorithm are for exact feature extraction
from police reports. Therefore, the approach
is a semi-supervised learning in this case.
On the other hand, the approach is a
supervised learning for PSI because PSI
does not require exact match. Training-set
developer tags whether a sentence is a PSI
or not. The rules learned by the algorithm
are also used to tag whether a sentence is a
PSI or not. Thus, PSI is a supervised
classification problem.

Figure 2: Example training set for feature Age

in/{IN} her/{GN} twenties/{CDS}
in/{IN} his /{GN} forties/{CDS}
in/{IN} his/{GN} early/{JJ} teens/{CDS}

a/{DT} man/{GN} in/{IN} his/{GN} car/{NN}

in/{IN} the/{DT} roaring/{VBG} twenties/{CDS}

in/{IN} the/{DT} Reston/{NNP} area/{NN}
……

True set

False set

4.4.1. Discovering the Root of a RRE

This step matches each word and/or part
of speech tag (specified as a simple RRE) in
each true set segment against all segments.
The performance of each such RRE in terms
of F-measure (Equation 1 from [10]) is
considered. In this formula, P = precision =
TP/(TP+FP) and R = recall = TP/(TP+FN),
where TP are true positives, FP are false
positives, and FN are false negatives. The
parameter β enables us to place greater or
lesser emphasis on precision, depending on
our needs.

Equation 1: F-measure

The element with the highest score is
chosen as the ‘root’ of the RRE. The
algorithm discovers a word or part of speech
tag that has a high frequency of occurrence
in segments with the desired feature. It must
also have low frequency in segments that do
not contain the desired feature.

Our approach places less emphasis on
precision and more on recall during the root
discovery process. We use the parameter

Rootβ to control this. Naturally this results in
a larger set of segments that match the root.
These segments, however, are not
necessarily all true positives. As a result, the
“AND”, “OR”, and “NOT” learning phases
all prune false positives from the set of
strings that match the root RRE. The result
is both high precision and high recall. For
the example in Figure 2, the root of the RRE
is {CDS}.

4.4.2. “AND” Learning Process

After the root is discovered, the
algorithm inserts additional words and/or
part of speech tags before and after the root.
The algorithm places new candidate
elements immediately before and after the
root, thereby forming two new RREs. Any
element (other than the root itself) can be
used in this step. The RRE with the highest

F-measure score will replace the previous
RRE.

The new RRE is then extended in the
same way. Adjacency implies the use of an
“AND” operator. As before, candidate
elements are inserted into all possible
positions in the RRE. The algorithm
measures the performance of each new RRE
and the one with the highest score is selected
if its score is greater than or equal to the
previous best score. In this sense our
algorithm is greedy.

The overall complexity of the “AND”
learning process depends on both the
number of candidate elements for a position
in a given pass during the “AND” learning
phase, and on the number of elements in
Rand. If there are N (N>0) elements in a
RRE, then there are N+1 possible positions
to insert a new element. For example, if the
initial “AND” learning phase learns “in
{CDS}” as a RRE, then “0”, “1”, and “2” in
“0 in 1 {CDS} 2” mark the three possible
positions for the second “AND” learning
pass to insert elements.

Equation 2 depicts ANDC , the
complexity of the “AND” process, where Sij
is the set of candidate elements for the jth
position in the ith pass of the “AND”
learning process in a single iteration of
Figure 1. In the previous example, S21 is the
set of candidates that can be used in position
1 in another pass through the “AND”
learning process that produced “0 in 1
{CDS} 2”. There are N passes to discover a
RRE of size N, and ||||0 SS ij ≤≤ . This

implies that)
2

)1(
(||0 N

NN
SANDC +

+
≤≤ .

Therefore,)()0(2NOCO AND ≤≤ .

∑∑
= =

=
N

i

i

j
ijAND SC

1 0

||

Equation 2: “AND” Learning Complexity

To improve the performance of the
algorithm, we limit the candidates for each
position to actual elements that occur in
segments. For example, suppose we want to
extend “in {CDS}” by inserting an element
“_” between “in” and “{CDS}”. The system

RP
PR

F
+

+
= 2

2)1(
β

β
β

matches “in .* {CDS}” against all segments
in the current true set using only those
elements that actually occur between “in”
and “{CDS}”. This approach limits
candidate elements to a small set, for the
example, the candidates are “his”, “their”,
“twenties”, “forties”, “only”, “teens”, {IN},
{PRP$}, {GN}, and {JJ}. Moreover, the
number of candidate elements becomes
smaller as the RRE grows. To avoid the case
in which N is too long for a certain RRE, we
use a parameter λ to limit N such
that λ≤N .

As noted, during the “AND” learning
phase, our algorithm weights precision more
heavily than recall. Since we employ a
covering algorithm, our goal is to maximize
precision during each iteration of Figure 1.
Thus we employ different values of β
during training to ensure that the resulting
RRE is optimal. The parameter Othersβ
controls the β value used in the “AND”,
“OR”, “NOT”, and optional learning
processes. For the example in Figure 2, the
following iterations show how Rand is
learned. “{CDS}”è “in {CDS}”è “in{IN}
{CDS}”è “in{IN} his {CDS}”è “in{IN}
his{GN} {CDS}”.

4.4.3. “OR” Learning Process

After the “AND” learning process is
complete, the algorithm extends the RRE
with candidate elements using the “OR”
operator. For each element discovered
during the “AND” learning process, the
algorithm uses the “OR” operator to
combine it with other candidate elements. If
the newly discovered RRE has a better F-
measure than the previous RRE, the new
RRE will replace the old one.

For the example, suppose “in{IN}
his{GN} {CDS}” has an F-measure of 0.78.
If “in{IN} (his|her){GN} {CDS}” has a
score of 1, then “in{IN} (his|her){GN}
{CDS}” will replace “in{IN} his{GN}
{CDS}” as the current RRE. After that,
“in{IN} his{GN} {CDS}” will be evaluated
as an extension to element “his”. The
extension of element “his” stops when no

higher score can be found after all candidate
elements have been evaluated. Every
element in Rand will be extended in turn. In
the example, no other elements in Rand could
be extended except “his”. Therefore, the
RRE after “OR” learning process is “in{IN}
(his|her){GN} {CDS}”. As is the case in the
“AND” learning process, for performance
reasons the selection of candidate elements
for the “OR” learning process is also data
driven.

ORC , the time complexity of the “OR”
learning process, is depicted in Equation 3,
where iQ is the number of candidate
elements in position i (each element in Rand
is a position for the purposes of the “OR”
learning process). ||||0 SQi ≤≤ è

NSCOR ||0 ≤≤ è)()0(NOCO OR ≤≤

∑
=

=
N

i
iOR QC

1

Equation 3: “OR” Learning Complexity

4.4.4. “Optional” Learning Process

The gap between any two adjacent
elements in Rand is a position for an optional
element in a RRE. Therefore, there are N-1
positions that could have optional elements.
Each gap can have zero or one optional
element. For each gap, the system generates
a set of candidate elements using a similar
method as that described in section 4.4.2.
From the candidate set, the system selects
one element that occurs most often in the
true set. If the frequency is higher than a
threshold γ, the element becomes an optional
part of the RRE. γ is a parameter of our
system that is currently set to half the total
number of instances in the true set in a given
iteration of Figure 1. The time complexity
for the optional learning process is depicted
in equation 4, where Pi is the number of
candidate elements in position i (position i is
the gap between element i and element i+1).
Since ||||0 SPi ≤≤ ,)1(||0 −≤≤ NCCoptional .

Therefore,)()0(NOCO optional ≤≤

∑
−

=

=
1

1

N

i
ioptional PC

Equation 4: Optional Element
Learning Complexity

Optional elements can improve neither

precision nor recall. In other words, this
phase of the learning process cannot
improve either training or testing F-measure
scores based on segment recognition.
However, we have discovered that this
phase can improve performance when
extracting features from police incident
reports. For example, suppose we are
interested in extracting the height feature.
Furthermore, suppose there are only two
elements, the part of speech tag “CD” and
the word “tall”, in Rand. This means that any
number can be followed by any word or part
of speech tag except “CD”, followed by the
word “tall”. Meanwhile, suppose the string
for a person’s height is “five feet six inches
tall”. Unfortunately, this RRE cannot
exactly match a height – instead it will
match “six inches tall”. However, if there is
an optional element “feet” between “CD”
and “tall”, the RRE will achieve both
optimal segment accuracy and effectively
extract the feature of interest, “five feet six
inches tall”. After this process, the example
RRE becomes “in{IN} (his|her){GN}
(early)? {CDS}”.

4.4.5. “NOT” Learning Process

For each element generated in the
processes described in sections 4.4.2, 4.4,3,
and 4.4.4, the system evaluates the insertion
of a “NOT” operator on the element
immediately following. The last element is
an exception – the “NOT” operator is not
applied to it because it marks the end of the
RRE. For instance, if three elements found
for the feature height are “CD”, “feet”, and
“tall”, then a new RRE that includes ∼“CD”
and ∼“feet” is generated (where ∼ is the
“NOT” operator). The new RRE replaces
the RRE discovered earlier based on the F-
measure score. The time complexity of

applying the “NOT” operator is depicted in
Equation 5. Here, CNOT = O(N’), where N’ is
the total number of elements in the RRE.

'NCNOT =
Equation 5: “NOT” Learning Complexity

In our implementation we used Perl.
Perl, however, does not support a “NOT”
operator for multi-character tokens, so we
implemented the “NOT” operator as
follows: we use the “NOT” operator on each
single character in an element, and then use
the “OR” operator to combine them. For
example, ∼“feet” is expressed as
“([^f]|f[^e]|fe[^e]|fee[^t]|feet[\̂s])”.

The “NOT” operation enabled the
extraction of features of interest. For
example, consider a RRE that includes three
elements “CD”, “feet”, and “tall”. This RRE
accepts the string “weighing/NN 180/CD
pounds/NNS and/CC five/CD feet/NNS
six/CD inches/NNS tall/JJ”, where
“NN”,“CD”, “NNS”, “CC”, and “JJ” are
part of speech tags. If we use
“CD(\s)*feet(\s)*tall” as the RRE, it will
find nothing. If we use “CD.*feet.*tall” as
the RRE, it will find “180/CD pounds/NNS
and/CC five/CD feet/NNS six/CD
inches/NNS tall/JJ”. If we use
“CD([^C]|C[^D]|CD[\̂s\/])*feet([^f]|f[^e]|fe
[^e]|fee[^t]|feet[\̂s\/])*tall([^t]|t[^a]|ta[^l]|tal
[^l]|tall[\̂s\/])*”, the string accepted is
“five/CD feet/NNS six/CD inches/NNS
tall/JJ”. Obviously, the last result is the one
we want for the feature height. For the Age
example in this section, the RRE after the
“NOT” learning process is:
“in(~in) {IN}(~{IN}) (his(~his)|her(~her))
{GN}(~{GN}) (early(~early))? {CDS}(~{CDS})”

4.4.6. Handling the start and the end

of the RRE

If the first element of a RRE is a part of
speech tag, then our algorithm ensures that
the RRE also covers the word before the tag
by including “(\S)*” before the tag. For
example, if the single element “CD” is
discovered, then the RRE becomes
““(\S)*{CD}”. This ensures that the RRE
will accept strings such as “20{CD}”.

The start symbol “^” and end symbol
“$” of a segment also proved to be useful in
some cases. As a result, our algorithm tests
whether the current RRE should include “^”
or “$”. We simply insert “^” at the
beginning of the RRE to form a new one. If
the resulting RRE has equal or better
performance compared to the previous RRE,
then the RRE starting with “^”replaces the
previous RRE. We deal with “$” in a similar
manner.

4.5. Post Processing

After each loop in Figure 1, (sections
4.4.1 to 4.4.6), one RRE is generated. This
RRE is considered a sub-pattern of the
current feature. After all RREs have been
discovered for the current feature (i.e., all
segments labeled by the feature are
covered), the system uses the “OR” operator
to combine the RREs. In other words, given
that R1, R2, …, Rm are m RREs that are
discovered during learning, then the final
RRE will be “(R1)|(R2)|…|(Rm)”.

In this section we have described a
greedy covering algorithm that discovers a
RRE for a specific feature in narrative text.
The basic idea is to find high frequency
patterns in segments/sentences associated
with the feature. We have applied “AND”,
“OR”, and “NOT” operators to find
elements of a RRE that accept sub-patterns
of the feature under consideration. Optional
elements as well as the start and the end of a
sentence are also components of the RRE.
Finally, RREs for all sub-patterns are
combined to form a single RRE with the
“OR” operator.

The “NOT” operator, optional element,
and the start/end of a segment are designed
especially for exact match of feature
extraction from police incident reports. In
PSI discovery, the algorithm only requires
steps 1, 2, and 3. Any segment (sentence)
that matches the RRE generated is
considered a PSI. Otherwise, it is not a PSI.

5. Experimental Results

In this section, we first briefly
summarize the result of feature extraction
from police incident reports. Following this,
we discuss how we built the training and
testing datasets used in PSI extraction.
Finally, we present the results of the use the
widely applied technique of cross-validation
to evaluate our models for PSI extraction
from full text patents.

 Table 3 summarizes the results of 10-
fold cross validation based on 100 police
incident reports consisting of 1404
segments. There are ten different features
evaluated in Table 3 (first column). Eye
Color, Gender and Weekday have perfect
test performance (100%) in part because we
have modified the lexicon as noted in
section 4.3. The performance of Age, Date,
Time, Height, Race, and Weight are also
excellent (F-measure scores =90%). The
performance of Hair Color is however, not
as good. This is due to the lack of Hair
Color segments in some folds of the training
sets. However, the test performances on
other folds, in which there are Hair Color
segments, are perfect (100%). As a result,
we conclude that the RREs discovered for
these ten features are high-quality.

Feature Average
Precision %

Average
Recall %

Average
F-
measure
%

Average
of true
positives

Age 97.27 92.38 94.34 13
Date 100 94.69 97.13 8.8
Time 100 96.9 98.32 8.9
Eye
Color 100 100 100 1

Gender 100 100 100 33.6
Hair
Color 60 60 60 0.8

Height 100 98 98.89 2.4
Race 95 96.67 94.67 3.3
Week
day 100 100 100 9.8

Weight 90 90 90 1.9
Table 3: 10-fold cross-validation performance on

police incident report data

For PSI extraction, our datasets include
55 patents, of which 15 containing 7723
segments (sentences) were used in cross-
validation. These patents were retrieved in
the focused domain of text mining to enable
us to label the training data more easily.

Each segment in each patent was manually
tagged by a human expert, thereby creating
our ground truth. We split all true segments
randomly into 10 folds for cross-validation.
Each fold was given a roughly equal number
of true segments (i.e., the folds were
stratified). We did the same thing with the
false segments. Table 4 depicts the makeup
of folds used in cross validation.

Fold # of true
segments

of false
segments

Total # of
segments

1 10 761 771
2 10 762 772
3 10 762 772
4 10 762 772
5 10 762 772
6 10 762 772
7 11 762 773
8 11 762 773
9 11 762 773
10 11 762 773
Table 4: 10 folds for cross-validation

As part of our experimental method we

employed resampling to vary the ratio of
true segments to false segments in the
training sets. Figure 3 depicts how precision,
recall, and F-measure score vary with the
ratio of true to false segments.

From Figure 3 it can be seen that F-
measure reaches an optimum when the ratio
of true to false segments is 1:73, which in
fact happens to be the original ratio in the
source patents. Naturally, we do not
resample the test folds – otherwise, the 10-
fold cross-validation performance would not
reflect the true testing performance on data
representative of the domain.

Performance based on ratio of false to true segments

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

false/true ratio

pe
rf

or
m

an
ce Precision

Recall

F-measure

Figure 3: Performance curve of false/true

segment ratio

Table 5 depicts optimal parameter
values for PSI extraction. In the first
column, we list several important parameters
to our algorithm. In each case, we varied
each parameter in turn while holding the
others fixed in order to determine an optimal
value. Figures 4 and 5 depict the results of
varying Othersβ as an example of this
approach to optimization of parameter
values. The plots in Figures 4 and 5 are
drawn from the average testing results based
on 10-fold cross validation.

It is interesting to note that in Figure 4,
the higher the value of beta, the higher the
average recall and the lower the precision.
Meanwhile, the number of true positives
increases as beta increases (Figure 5). One
important property of precision and recall is
that they are inversely related [11]. One
generally has to trade off precision to
increase recall and vise versa. Our intuition
in PSI extraction is that it is more important
to extract at least one PSI per patent than to
extract several PSIs that are mixed with
segments that are not PSIs. In this sense,
precision is more important than recall in
PSI extraction. Although this is intuitive, in
this particular case we did not select 0.25
for Othersβ in Table 5 due to the fact that
there were too few true positives extracted.
Moreover, the F-measure metric has the best
performance when Othersβ equals 0.5, a
value that still reflects a focus on precision
but has better recall. Therefore, we chose 0.5
as the optimal value for Othersβ in Table 5.

Performance of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

P
er

fo
rm

an
ce Precision

Recall

F-measure

Figure 4: Performance of Othersβ

of True Positives vs.

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

o

f T
ru

e
P

o
si

ti
ve

s

Figure 5: True positives based on Othersβ

We tuned all the other parameters in the

same way. It is possible for the parameters

Wordε and Tagε to be over 100% because the
same word or part of speech tag may occur
more than once in a single sentence. The
final performance after all parameters have
been optimized is not guaranteed to be
globally optimal since our method to tune
parameters is a greedy approach. The
parameter values used for final cross-
validation tests reported in Table 6 are
depicted in Table 5.

Parameter
Name

Value

δ 2

Rootβ 6

Othersβ 0.5

Wordε 5%

Tagε 400%
λ 5

Table 5: Optimal Parameter Values

We performed 10-fold cross validation
based on the configuration listed in Table 5
with a 1:73 ratio of true to false segments in
the training set. The test results of the cross-
validation are shown in Table 6.

Test
sets

Precision Recall F-
measure

of true
positives

1 85.71% 60.00% 70.59% 6
2 57.14% 40.00% 47.06% 4
3 62.50% 50.00% 55.56% 5
4 66.67% 40.00% 50.00% 4
5 37.50% 30.00% 33.33% 3
6 42.86% 30.00% 35.29% 3

7 40.00% 18.18% 25.00% 2
8 50.00% 27.27% 35.29% 3
9 71.43% 45.45% 55.56% 5
10 44.44% 36.36% 40.00% 4

Ave
rage 55.83% 37.73% 44.77% 3.9

Table 6: 10-fold cross-validation test
performance on patent data

The average precision is 55.83%. That

means over half of the sentences extracted
using the RREs discovered by our algorithm
contained information relevant to the
problem solved by patents. Considering the
complexity of natural language expressions
used in patents, we consider this result
promising. The average recall is 37.73%.
This value is acceptable because as noted
previously, precision is more important than
recall in this particular application. The
average F-measure with ß=1 is 44.77%. This
value tells us that we are currently
successfully extracting PSI-related segments
about half the time. Another important
metric is the distribution of correctly
extracted PSIs across patents. In order to
assess our algorithm’s performance with
regard to this metric, we measured the
distribution of true positives from the 10 test
folds across the 15 patents used to form the
training set. Ideally, we would like to extract
one or more PSIs from each patent. In this
case, 80% of the original 15 patents were
covered by at least one PSI. This result too
is quite promising.

Our experimental results provide
evidence that our semi-supervised approach
to RRE discovery can be usefully applied to
extract features from police incident reports
and PSIs from patents. With the former
application we achieved very good test set
performance, and with the latter we
achieved reasonable and stable test set
performance. Our work in the patent
domain is ongoing.

6. Conclusion

We have presented a semi-supervised
algorithm for feature extraction from police
incident reports and patents. The algorithm

can be used to learn reduced regular
expressions that are used as patterns to
match and extract previously unseen
features with a high degree of reliability.
Our experiments demonstrate that reduced
regular expressions extract information
useful in criminal justice, homeland defense,
and patent intelligence applications.

7. Acknowledgements

The authors also gratefully acknowledge
the help of co-workers, family members and
friends, and co-authors William M.
Pottenger and Tianhao Wu gratefully
acknowledge the continuing help of their
Lord and Savior, Yeshua the Messiah (Jesus
Christ) in their lives.

References

[1] S. Soderland. Learning “Information

Extraction Rules for Semi-structured and
Free Text”. Machine Learning, 34(1-3):233-
272, (1999).

[2] Tianhao Wu and William M. Pottenger. “A

Semi -supervised Algorithm for Pattern
Discovery in Information Extraction from
Textual Data”. The seventh Pacific -Asia
conference on Knowledge Discovery and
Data Mining (PAKDD), April (2003).

[3] M. Hehenberger, P. Coupet, M. Stensmo

and C. Huot. “Text Mining of Chemical and
Patent Literature”. Division of Chemical
Information, 217th ACS National Meeting
Anaheim, California, March 21-25, (1999).

[4] Bronwyn H. Hall, Adam Jaffe, Manuel

Trajtenberg. “Market Value and Patent
Citations: A First Look”. NBER Working
Paper No. W7741 Issued in June (2000).

[5] Anthony Breitzman, Patrick Thomas and

Margaret Cheney. "Technological
Powerhouse or Diluted Competence:
Techniques for Assessing Mergers via
Patent Analysis " Society of Competitive
Intelligence Technical Intelligence
Symposium, San Francisco, June 8-9,
(2000).

[6] Hopcroft, J. and J. Ullman. “Introduction to

Automata Theory”. Languages and
Computation, Addison-Wesley, (1979).

[7] Eric Brill. “Pattern-Based Disambiguation

for Natural Language Processing”.
Proceedings of Joint SIGDAT Conference
on Empirical Methods in Natural Language
Processing and Very Large Corpora, (2000).

[8] Christopher D. Manning and Hinrich

Schütze. “Foundations of Statistical Natural
Language Processing”. MIT Press, (2000).

[9] Jeffrey C. Reynar and Adwait Ratnaparkhi.

“A Maximum Entropy Approach to
Identifying Sentence Boundaries”. In
Proceedings of the Fifth Conference on
Applied Natural Language Processing.
Washington, D.C. March 31-April 3, (1997).

[10] Van Rijsbergen. “Information Retrieval”.

Butterworths, London, (1979).

[11] Cleverdon, C.W. “On the inverse

relationship of recall and precision”. Journal
of Documentation, 28, 195-201 (1972).

[12] Brill, Eric. “Transformation-Based Error

Driven Learning and Natural Language
Processing: A Case Study in Part-of-Speech
Tagging”. Computational Linguistics
21(94): 543-566. 1995.

[13] Michael Chau, Jennifer J. Xu, Hsinchun

Chen, “Extracting Meaningful Entities from
Police Narrative Reports”. in Proceedings of
the National Conference for Digital
Government Research. Los Angeles,
California, May 19-22, (2002).

