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Abstract

The development of similarity functions for first-
order logic predicates and argument types is the
initial step in the development of techniques for
inter-domain predicate mapping. Predicate map-
pings established across textual data sources can
be applied in federated text search during resource
selection, and by systems such as Markov Logic
Networks for transfer learning.

In this work, we propose similarity functions
for mapping predicates and argument types. Each
predicate is represented by a mutual information
matrix characterizing statistical associations be-
tween predicate arguments. Drawbacks of using
the Euclidean distance function as a similarity mea-
sure are discussed and mitigated in our approach.
We also demonstrate that variations in the num-
bers of groundings of predicates have a significant
and undesirable impact on their similarity scores,
and propose a normalization scheme to address this
deficiency.

Preliminary experimental results on real world
datasets collected from the web demonstrate the
effects of normalization of mutual information ma-
trices and the resulting invariance of the similarity
functions to variations in the numbers of ground-
ings of predicates. The results also show that
predicates that encode the same type of relations
(e.g., one-to-many) tend to receive higher similar-
ity scores than pairs of predicates where each pred-
icate encodes a different type of relation (e.g., one-
to-many and one-to-one).

Overall, our approach to measuring similarity
for predicate mapping promises to scale to a num-

ber of text mining applications including federated
search and retrieval, as well as other domains such
as transfer learning.

1 Introduction

Federated text search [1, 3, 5] provides a uni-
fied search capability over heterogeneous data
sources, and relies on methods of constructing re-
source descriptions [3, 4] and selecting resources
[3, 5, 14] most appropriate for a given search
query. One approach to resource description re-
lies on identifying relationships in narrative tex-
tual data. This field, known as relationship ex-
traction, involves mining textual data for relation-
ships such as President(‘‘George W. Bush’’,

‘‘United States’’) [7, 18, 19, 2].
Relationship extraction produces instances

of relationships (e.g., WorkedUnder(‘‘Julia

Roberts’’, ‘‘Steven Soderbergh’’)) that are,
essentially, groundings of first-order logic (FOL)
predicates (e.g., WorkedUnder(person,person)).
This inspires an approach to resource description
based on the use of a FOL framework for predicate
mapping.

We consider domain descriptions in terms of
FOL predicates and their groundings. Building on
a work [9] on schema matching [15, 17] published
in the database community, we propose similar-
ity functions for predicates and argument types.
The similarity functions are based on characteri-
zations of predicates by statistical interactions be-
tween their arguments. The characterizations are
constructed using a measure of mutual information
between the arguments.



The development of similarity functions for
predicates and argument types is the initial step
in the development of techniques for inter-domain
predicate mapping. Predicate mappings estab-
lished across textual data sources can then be ap-
plied in federated text search during resource se-
lection performed by the search system while re-
sponding to a query.

The ability to automatically establish map-
pings between predicates across domains has appli-
cations in other areas as well. For example, pred-
icate mapping would also allow learning systems,
such as Markov Logic Networks (MLNs) [16], to be
used in a transfer learning framework.

Transfer learning is concerned with developing
machine learning methods of leveraging the knowl-
edge learned in a source domain for improving the
accuracy and speed of learning and inference in a
target domain. Previous work in the area of trans-
fer learning with MLNs either assumed that pred-
icate mappings were known apriori [13], or relied
on an exhaustive search procedure [12] for trans-
lating FOL clauses between domains. The apriori
assumption limits the applicability of the approach
to small domains where predicate mappings can be
specified manually. The exhaustive search proce-
dure [12], on the other hand, is not guaranteed
to produce consistent predicate mappings across
clauses. An approach to predicate mapping based
on our similarity functions would promise to resolve
these issues in a fashion that is scalable across ap-
plication domains.

The paper is organized as follows. Related
work is described in Section 2. The predicate
mapping similarity functions along with illustrative
computational examples are presented in Section
3. Experimental results are discussed in Section 4,
followed by concluding remarks and an outline of
future research directions proposed in Section 5.

2 Related Work

One area of research closely related to predicate
mapping is automated schema matching. Auto-
mated schema matching has been studied [15, 17,
11, 9] in the database community as one of the key
aspects of integration of disparate data sources in
order to provide a centralized view of the data.

The goal of schema matching is to identify
viable mappings between elements (e.g. tables and
attributes of relational schemas, or XML attributes
of XML schemas) of schemas in a collection, where
each schema describes a different data source. A
survey of automatic schema matching techniques
was published in [15].

Two types of schema matching methods could
be distinguished — schema-based and instance-
based. Schema-based methods, such as those sur-
veyed in [17], use structures of schemas in order
to produce mappings between their elements. In
[11], for example, a pair of schemas being matched
is represented as a directed graph. Nodes of the
graph correspond to pairs of elements (e.g. at-
tributes of relational tables), each belonging to a
different schema. Presence and direction of edges
of the graph are determined according to the re-
lations between elements within a schema. Initial
similarity scores for the nodes are computed us-
ing a string-based similarity measure. The final
similarity scores for the schema element pairs are
produced by a fixed-point computation that prop-
agates the initial similarity scores over the directed
graph.

Instance-based methods, such as [9], rely on
the analysis of data instances in order to perform
schema matching. In the approach proposed in
[9], statistical associations between attributes of
a relational table were captured using a mutual
information matrix. Given a pair of tables, the best
matching between their attributes was determined
by minimizing a distance function defined over the
mutual information matrices.

Measures of association based on mutual infor-
mation have also been applied in text mining. For
example, the pointwise mutual information metric
was applied in [6] for unsupervised extraction of
facts from textual data on the web. This is related
to our approach, which relies on mutual informa-
tion to assess the similarity of predicates extracted
from web data as well.

In another related effort, [8], a modified mu-
tual information metric was used for extraction of
highly associated terms (words or phrases) for con-
structing a product description by attribute-value
pairs.



Extraction of functional key words for genes
from biomedical literature is yet another example
of an application of mutual information in text
mining. In [10], mutual information was used
as a measure of cluster quality in a method of
clustering genes based on the functional key word
associations.

3 Similarity Measures Based on Mutual
Information

In this section, we describe the proposed similar-
ity functions for mapping predicates and argument
types. As the basis for the development of the
similarity functions, we used the mutual informa-
tion measure of attribute associations and the Eu-
clidean distance function described in [9].

In Subsection 3.1, we discuss two drawbacks of
using the Euclidean distance function [9] directly
as a similarity function. The drawbacks stem from
the unboundness of the range of values of the Eu-
clidean distance function and its monotonic growth
with the dimensionality of its arguments. In the
same subsection, we also describe an improvement
scheme that overcomes these drawbacks. An ex-
ample of predicate similarity computation is given
in Subsection 3.2.

In Subsection 3.3, we demonstrate that varia-
tions in the numbers of groundings of predicates
have a significant and undesirable impact on their
similarity scores. In order for the similarity func-
tions to be robust to variations in the numbers of
groundings of predicates, we propose a normaliza-
tion scheme for mutual information matrices.

Subsection 3.4 describes the proposed similar-
ity function for argument types. An example of
type similarity computation is given in Subsection
3.5.

3.1 Similarity Measure for Predicates
Given predicates X and Y , we represent each
predicate as a relational table whose attributes
(columns) correspond to predicate’s arguments
while records (rows) correspond to the true ground-
ings of the predicate.

Following a mutual-information-based method
of database schema matching published in [9],
square n× n matrices MK = ‖mK

ij ‖ are computed

for each K ∈ {X,Y }, where n is the arity of (i.e.
the number of arguments in) predicates X and
Y , and mK

ij is the mutual information coefficient
computed on a pair of attributes i ∈ K and j ∈ K.

The mutual information of two random vari-
ables A and B is a non-negative symmetric quan-
tity defined as

M(A,B) =
∑

a∈dom(A)

∑

b∈dom(B)

p(a, b) log
p(a, b)

p(a)p(b)
.

(3.1)
The mutual information measures the reduction in
entropy of one random variable due to knowledge
of the value of the other random variable.

The proposed similarity function is based on
the Euclidean distance function defined for a pair
of matrices MX and MY as

E(MX ,MY ) =

√∑

i,j

(mX
ij −mY

ij)
2. (3.2)

Let us note that the value of (3.2) depends on
the correspondence between indices of matrices
MX and MY . This dependence must be elim-
inated by the similarity function, because the
order of arguments in a predicate may be ar-
bitrary (e.g. Publication(title,person) and
Publication(person,title)).

Invariance of the similarity function to the
order of indices of mutual information matrices is
achieved by holding the order of indices of one of
the matrices fixed, while considering all possible
permutations of indices of the other matrix. For
each permutation, the Euclidean distance (3.2) is
computed. The minimum value of the Euclidean
distance function is then used in the similarity
function.

Formally, we compute

Ê(MX ,MY ) = min
τ∈IY

E(MX ,MY
τ ), (3.3)

where IY is the set of all permutations of indices of
matrix MY , and MY

τ is the matrix with rows and
columns permuted according to τ ∈ IY .

In order for the similarity coefficients to be
comparable across pairs of predicates, the similar-
ity function must be independent of the size of mu-
tual information matrices, and the range of values



person person
student265 adviser168
student381 adviser168
student176 adviser407
student352 adviser415
student352 adviser292

... ...

Table 1: A sample of groundings of predicate
AdvisedBy(person,person)

person person
Casey Affleck Soderbergh Steven
Elliott Gould Soderbergh Steven
Julia Roberts Soderbergh Steven

Denzel Washington Pakula Alan J.
Julia Roberts Pakula Alan J.

... ...

Table 2: A sample of groundings of predicate
WorkedUnder(person,person)

of the similarity function must be bounded. Func-
tion (3.3), however, is unbounded and is monoton-
ically non-decreasing with increasing size n of mu-
tual information matrices.

Therefore, we propose the following exponen-
tial similarity function

S(MX ,MY ) = exp

(
− 1

n
Ê(MX , M̂Y )

)
, (3.4)

which is independent of the size n of the mutual
information matrices, and whose range of values
lies in a bounded interval (0,1]. A similarity score
of one indicates the maximum similarity possible.
Whereas, a similarity score below 1

e suggests that
the two predicates are highly dissimilar.

3.2 Example of Similarity Score Com-
putation for Predicates Consider pred-
icates AdvisedBy(person,person) and
WorkedUnder(person,person). Predicate
AdvisedBy relates advisers to students, while
WorkedUnder relates film directors to actors who
worked for them. Examples of groundings of the
two predicates are shown in Tables 1 and 2. In
Table 1, names of advisers and students have been
anonymized.

Two mutual information matrices

MA =

(
6.22 4.39
4.39 4.77

)
and MW =

(
7.43 3.77
3.77 4.92

)

(3.5)

are computed over the groundings of predicates
AdvisedBy and WorkedUnder, respectively.

Let set IW = {(1, 2), (2, 1)} denote the set of
all possible permutations of indices of matrix MW ,
where MW

(1,2) = MW and

MW
(2,1) =

(
4.92 3.77
3.77 7.43

)
.

The Euclidean distance function (3.2) is com-
puted over MA and MW

τ for all τ ∈ IW , yielding
E(MA,MW

(1,2)) = 1.51 and E(MA,MW
(2,1)) = 3.08.

Therefore, the value produced by function (3.3)
is Ê(MA,MW ) = E(MA,MW

(1,2)) = 1.51, and
the resulting similarity score between predicates
AdvisedBy and WorkedUnder is S(MA,MW ) =
0.471.

3.3 Normalization of Mutual Information
Matrices Consider a uniformly distributed ran-
dom variable X defined over a domain X of discrete
values. The entropy of X

H(X) = −
∑

x∈X
p(x) log p(x) = log |X |

monotonically increases with increasing size of do-
main X .

Similarly, the sizes of domains of two random
variables X and Y affect the value of their mutual
information M(X,Y ). In the view of our work, this
means that the similarity measure (3.4) is affected
by the number of groundings of the predicates.

In order to neutralize the effect the numbers
of groundings have on the similarity measure (3.4),
two normalization schemes were considered:

• by row-vector length

m̃X
ij =

mX
ij

‖mX
i· ‖

• by the sum of row-vector components

m̃X
ij =

mX
ij∑

j
mX
ij

, (3.6)



where mX
i· denotes the i-th row-vector of a mu-

tual information matrix MX computed over the
groundings of a predicate X.

A distinguishing feature of the proposed nor-
malization (3.6) is that it results in the similarity
measure (3.4) being computed based on a relative
measure of statistical association of the predicates’
arguments rather than the absolute values of their
mutual information. Hence, we employed this nor-
malization scheme in the experiments.

We demonstrate the effect of normalization on
the similarity coefficients by extending the example
given in Section 3.2. Normalization of mutual
information matrices (3.5) of predicates AdvisedBy
and WorkedUnder according to scheme (3.6) yields

M̃A =

(
0.59 0.41
0.48 0.52

)
and M̃W =

(
0.66 0.34
0.43 0.57

)
.

The resulting similarity score S(M̃A,M̃W ) =
0.939 indicates a much stronger similarity between
the predicates than the previously attained score
S(MA,MW ) = 0.471.

3.4 Similarity Measure for Argument
Types In this section, we describe a similarity
function for predicate argument types. First, let
us introduce two auxiliary functions. We define a
function

δ(x) =

{
1, if x = 0
0, otherwise

and introduce the following function that computes
the normalized Euclidean distance between rows of
mutual information matrices of predicates X and
Y

U(i,MX , p,MY ) = exp

(
−
√

1
n

∑
j

(mX
ij −mY

pj)
2

)
×

δ(τi(M
X ,MY )− p),

(3.7)

where τi(M
X ,MY ) is the i-th component of

permutation vector

τ(MX ,MY ) = arg min
τ∈IY

E(MX ,MY
τ ). (3.8)

Let TAk = {(i,MX )} be the set of all pairs

(i,MX), such that predicate X belongs to domain
A and the i-th row of mutual information matrix
MX corresponds to argument type k. The pro-
posed similarity function for argument types k and

person position
adviser168 faculty
adviser407 faculty
adviser415 faculty
adviser292 faculty affiliate
adviser349 faculty adjunct

... ...

Table 3: A sample of groundings of predicate
Position(person,position)

person gender
Casey Affleck male

Charlotte Rampling female
Denzel Washington male

Julia Roberts female
Gina Chiarelli female

... ...

Table 4: A sample of groundings of predicate
Gender(person,gender)

l of domains A and B, respectively, can now be
defined as

Sa(k, l) =P
(i,MX )∈TA

k

P
(p,MY )∈TB

l

S(MX ,MY )×U(i,MX ,p,MY )

P
(i,MX )∈TA

k

P
(p,MY )∈TB

l

S(MX ,MY )×δ(τi(MX ,MY )−p) .
(3.9)

3.5 Example of Similarity Score Com-
putation for Argument Types Consider
predicates Position(person,position) that
relates persons to academic faculty posi-
tions, Gender(person,gender) that relates
film actors and directors to genders, and
WorkedUnder(person,person). Sample ground-
ings of these predicates are shown in Tables 3, 4
and 2, respectively.

Suppose that domain A contains predicate
Position and the associated argument types, while
domain B contains the other two predicates and
their argument types.

Below, we demonstrate the computation
of similarity score for argument type pair
(person,person). In calculations that follow, pred-
icates’ names are abbreviated by their first letters.
For ease of exposition, normalized mutual informa-
tion matrices computed over the groundings of the
predicates are denoted by MP ,MG and MW , and
are not shown due to space constraints.

Since there is only one predicate in domain A



person gender
person 0.895 0.000

position 0.936 1.000

Table 5: An example of similarity scores computed
for argument types

and only the first argument of that predicate is
of type person, set TAperson is comprised of a sin-

gle element TAperson = {(1,MP )}. Set TBperson, on

the other hand, contains three elements T Bperson =

{(1,MG), (1,MW ), (2,MW )}, because the first ar-
gument of predicate G is of type person and both
arguments of predicate W are of type person.

Permutations, computed by formula (3.8),
of indices of mutual information matrices are
τ(MP ,MG) = (1, 2) and τ(MP ,MW ) = (1, 2).
The similarity score for argument type pair
(person,person) is computed according to (3.4) as

Sa(person,person) =
S(MP ,MG)U(1,MP ,1,MG)+S(MP ,MW )U(1,MP ,1,MW )

S(MP ,MG)+S(MP ,MW ) =
0.949×0.93+0.888×0.857

0.949+0.888 = 0.895.

Similarity scores for all pairs of argument types
are shown in Table 5.

4 Results

Data for two domains was used in the experiments.
The academic domain describes the Department of
Computer Science and Engineering at the Univer-
sity Of Washington, and was provided by the au-
thors of [16]. The film domain describes the film-
making industry and was provided by the authors
of [12].

Predicates of the academic domain relate stu-
dents to their advisers (AdvisedBy), faculty mem-
bers to the types of their positions (Position)
and authors to publication titles (Publication).
Predicates of the film domain relate persons to
genders (Gender), persons to genres (Genre), per-
sons to film titles (Movie) and actors to directors
(WorkedUnder). Both domains also contain predi-
cates that indicate “sameness” of a pair of objects
(e.g. SameCourse, SameMovie, etc.). The predi-
cates are listed in Table 6. The number of ground-
ings of each predicate is shown in Table 7.

We distinguish three groups of predicates by
the types of relationships they encode. The

Academic Film
AdvisedBy(person,person) WorkedUnder(person,person)
Publication(title,person) Movie(title,person)
Position(person,position) Genre(person,genre)

SameCourse(course,course) SameMovie(title,title)
SamePerson(person,person) SamePerson(person,person)

Gender(person,gender)

Table 6: Predicates from the academic and film
domains

Academic Film
AdvisedBy 97 WorkedUnder 382
Publication 628 Movie 286

Position 48 Genre 47
SameCourse 122 SameMovie 20
SamePerson 312 SamePerson 268

Gender 236

Table 7: Number of groundings of each predicate

first group consists of predicates AdvisedBy,
Publication, Genre, Movie and WorkedUnder that
encode many-to-many relations between objects of
the corresponding domains. For example, an ad-
viser may be associated with several students, while
a student may have more than one adviser. Sim-
ilarly, several persons may participate in the cre-
ation of a film, while a person may be involved in
several films.

The second group consists of predicates
Position and Gender that encode one-to-many re-
lations. A person may occupy only one type of a
faculty position in the academic domain, but mul-
tiple persons may hold the same type of a position.
In the film domain, a person is associated with a
single gender, but there are multiple persons of the
same gender.

The third group consists of predicates
SameCourse and SamePerson that encode one-
to-one relations (assuming that there is only one
object signifying a particular course, or a person).

Since similarity measure (3.4) is solely based
on statistical properties of the relationships the
predicates encode, we expect the pairwise similar-
ity scores to be higher for predicates in the same
group than for predicates that belong to different
groups.

Similarity scores for predicates in the first and
second groups are presented in Tables 8 and 9.
The former contains similarity scores computed
over non-normalized mutual information matrices,



Genre Movie WorkedUnder Gender
AdvisedBy 0.076 0.389 0.471 0.040
Publication 0.045 0.546 0.579 0.038

Position 0.405 0.058 0.066 0.309

Table 8: Similarity scores, for the first and second
predicate groups, computed using non-normalized
mutual information matrices

Genre Movie WorkedUnder Gender
AdvisedBy 0.858 0.950 0.939 0.806
Publication 0.908 0.961 0.993 0.841

Position 0.892 0.893 0.888 0.949

Table 9: Similarity scores, for the first and second
predicate groups, computed using normalized mu-
tual information matrices

while the latter demonstrates the effects of normal-
ization scheme (3.6).

In both cases, predicates AdvisedBy and
Publication received higher similarity scores with
predicates of the same group (i.e. Genre, Movie

and WorkedUnder) than with Gender. By consider-
ing the two tables column-wise, it can be seen that
Movie and WorkedUnder also attained higher simi-
larity scores with predicates of the same group (i.e.
AdvisedBy and Publication). Predicate Gender

received higher similarity score with Position than
with any other predicate.

When no normalization was used (Table 8),
predicate Genre attained its highest similarity
score with Position. Moreover, Position at-
tained its highest similarity score with Genre, and
not with Gender – the other predicate in the second
group.

Once the normalization was employed (Ta-
ble 9), Position and Gender became more sim-
ilar to each other than to any other predicate
of the first group. Genre became most similar
with Publication. Although, Genre maintained
a higher similarity score with Position than with
AdvisedBy (as was the case when no normalization
was used).

The effect the number of groundings of a pred-
icate has on its similarity scores with other predi-
cates is made apparent by Table 10. Columns titled
SameMovie and SamePerson correspond to the two
predicates that encode one-to-one relations in the
film domain. Statistical patterns encoded by these

SameMovie SamePerson
AdvisedBy 0.376 0.040
Publication 0.142 0.051

Position 0.065 0.002
SameCourse 0.074 0.321
SamePerson 0.019 0.803

Table 10: Similarity scores, for the third predicate
group, computed using non-normalized mutual in-
formation matrices

SameMovie SamePerson
AdvisedBy 0.939 0.939
Publication 0.889 0.889

Position 0.799 0.799
SameCourse 1.000 1.000
SamePerson 1.000 1.000

Table 11: Similarity scores, for the third predicate
group, computed using normalized mutual infor-
mation matrices

predicates are identical. However, the similarity
scores for these predicates vary widely when no nor-
malization is used. For instance, SameCourse and
SameMovie received the similarity score of 0.074
while SameCourse and SamePerson received 0.321
simply due to the variability in the numbers of
groundings of these predicates.

The normalization (Table 11) removed the vari-
ability in similarity scores due to varying numbers
of groundings of the predicates. As a result, pairs
of predicates of the third group received the max-
imum possible similarity score of one. Similarity
scores for pairs where only one of the predicates
was from the third group were strictly smaller than
one (due to space limitations, only a representative
sample of these scores is shown in Table 11).

The effects of normalization can also be ob-
served by considering similarity scores presented in
Tables 12 and 13 for argument types.

Types course and gender had a very small
similarity score of 0.002 when no normaliza-

person title genre gender
person 0.528 0.480 0.063 0.023
title 0.680 0.073 0.000 0.000

position 0.041 0.048 0.391 0.755
course 0.254 0.071 0.006 0.002

Table 12: Similarity scores, for argument types,
computed using non-normalized mutual informa-
tion matrices



person title genre gender
person 0.892 0.947 0.886 0.972
title 0.910 0.857 0.000 0.000

position 0.966 0.996 0.860 1.000
course 0.880 0.998 0.860 1.000

Table 13: Similarity scores, for argument types,
computed using normalized mutual information
matrices

tion was used. Once the mutual information
matrices were normalized, the (course,gender)
pair received the maximum possible score of
one. The reason for this result lies in
the relations these argument types participate
in, namely SameCourse(course,course) and
Gender(person,gender).

As was stated earlier, predicate SameCourse

encodes a one-to-one relation between objects
(courses) of the academic domain. Therefore,
knowing the value of one of the arguments of
SameCourse completely determines the value of the
other argument. Predicate Gender, on the other
hand, encodes a one-to-many relation. Hence,
knowing the value of the first argument (person) of
predicate Gender completely determines the value
of its second argument (gender). The converse,
however, is not true — knowing a person’s gender
does not uniquely identify the person.

Once the normalization was used, such patterns
of association between argument types resulted in
(course,gender) receiving the maximum similar-
ity score of one, while the pair (course,person)
received a lower score of 0.88.

Type pair (position,gender) also received a
score of one as a result of using the normalization
and due to the nature of one-to-many relations
encoded by predicates Position and Gender.

As can be seen in Table 13, the type pair
(person,person) received a lower similarity
score than (person,title), and (title,title)
received a lower score than (title,person).
This result could potentially be improved by
introducing constraints on what type of pred-
icates are considered for similarity scoring.
Note that computing a similarity score for
predicates SamePerson(person,person) and
Movie(title,person) forces the computation

of similarity score for type pair (person,title).
In such situations, it may be reasonable to
introduce a constraint that would prevent
predicates with different patterns of argument
types from being scored. Under this constraint,
predicates SamePerson(person,person) and
Movie(title,person) will not be scored,
while SamePerson(person,person) and
SameMovie(title,title) will (and so will
predicates Publication(title,person) and
Movie(title,person)).

5 Conclusion and Future Work

In this work, we proposed similarity functions for
mapping predicates and argument types in text
mining. Mutual information matrices were used for
characterizing predicates by patterns of statistical
relations between a predicate’s arguments.

The Euclidean distance function defined over
mutual information matrices was used as the basis
in the development of the similarity functions. Un-
boundness of the range of values of the Euclidean
distance function and its monotonic growth with
the dimensionality of mutual information matri-
ces rendered the Euclidean distance function inade-
quate as a similarity function for a pair of matrices.

The range of values of the similarity functions
was confined to a bounded interval (0,1] by incor-
poration of the Euclidean distance function into an
exponential function.

The monotonic growth of the Euclidean dis-
tance function with the dimensionality of the ma-
trices was circumvented by introducing into the
similarity functions a normalization term depen-
dent on the size of the matrices.

We demonstrated that variations in the num-
bers of groundings of predicates had a significant
impact on their similarity scores. In order for the
similarity functions to be robust to variations in the
numbers of groundings of predicates, a normaliza-
tion of mutual information matrices was proposed.

Experimental results demonstrated the effects
of normalization of mutual information matrices
and the resulting invariance of the similarity func-
tions to variations in the numbers of groundings of
predicates.

The results also showed that predicates that



encode the same type of relations (e.g., one-to-
many) tend to receive higher similarity scores than
pairs of predicates where each predicate encodes
a different type of relation (e.g., one-to-many and
one-to-one).

Data used in the preliminary experiments dis-
cussed in this paper contained a limited collection
of predicate groundings drawn from data avail-
able on the web. Mutual information, on the
other hand, normally requires large samples of data
in order to produce reliable estimates. To this
end, it is necessary in future work to evaluate our
similarity functions on data sets with large num-
bers of groundings as well as higher-arity predi-
cates. Resource descriptions based on relationship
extraction are an ideal candidate for this future
work. Predicate mapping applied in transfer learn-
ing forms another candidate for more extensive ex-
perimentation with our approach.

Another potential direction for future work lies
in an investigation of approaches to combining, in a
single similarity function, the analysis of statistical
patterns of associations between entities in the
domains with a deeper analysis of the textual
content of those entities.
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