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Abstract

The elimination of induction variables and the parallelization of
reductions in FORTRAN programs have been shown to be in�
tegral to performance improvement on parallel computers ��� ���
As part of the Polaris project ���� compiler passes that recognize
these idioms have been implemented and evaluated� Develop�
ing these techniques to the point necessary to achieve signi�cant
speedups on real applications has prompted solutions to prob�
lems that have not been addressed in previous reports on idiom
recognition techniques� These include analysis techniques capa�
ble of disproving zero�trip loops� symbolic handling facilities to
compute closed forms of recurrences� and interfaces to other com�
pilation passes such as the data�dependence test� In comparison�
the recognition phase of solving induction variables� which has re�
ceivedmost attention so far� has in fact turned out to be relatively
straightforward� This paper provides an overview of techniques
described in more detail in �	
��

� Introduction

The translation of sequential programs into parallel form is
a well�established discipline� An introduction to this topic
can be found in ���� Parallelizing translation techniques deal
mostly with loops whose iterations can be executed in par�
allel if no iteration produces a data value that is consumed
by another iteration� In some circumstances such true de�
pendences can be removed� for example if the value to be
consumed can be expressed directly as a function of the loop
index variable�s�� We call this an induction variable and the
direct expression its closed form� Another example of remov�
ing a true dependence involves an associative and commu�
tative operation performed across loop iterations� Since the
order of such operations can be changed� iterations need not
wait for the previous iteration to perform its operation� as
long as we ensure exclusive access to the operand� Important
operations of this type are reductions� e�g�� accumulating val�
ues across loop iterations�
Both induction and reduction idioms are recognized by

available parallelizing compilers if they have simple forms�

�This work is supported by the National Security Agency and by
U�S� Army contract �DABT������C������ This work is not neces�
sarily representative of the positions or policies of the Army or the
Government�

In our previous experiments ��� 	� we have seen the need for
recognizing more general forms of these patterns� notably
induction variables in triangular loops and in multiplicative
expressions� and reduction operations on arrays in histogram
form� We discuss these variants below�

We have implemented new and powerful idiom recognition
and solution techniques in the Polaris compiler �
� �� which
contribute towards substantial performance improvements
over previous generations of parallelizing compilers�

� Induction Variable Substitution

The following example shows a triangular induction vari�
able that occurs inside a triangular loop nest �the inner loop
bound depends on the outer loop index�� The nest can be
translated into parallel form as shown� Available compilers
typically are able to substitute the induction variable in the
inner loop only�

iv � �
do i � 	� n

do j � 	� i
a
iv� � � � � �

iv � iv � 	
enddo

enddo

do parallel i � 	� n
do parallel j � 	�m

a
j � 
i� � i��
� 	� � � � �
enddo

enddo

Our generalized induction variable algorithm performs the
complete translation in two steps� The �rst step recognizes
induction variables that match the statement pattern iv �
iv � inc expression where inc expression can contain outer
loop indices� other induction variables� and loop�invariant
terms� Induction variables may also appear in more than
one induction statement� at di
erent levels of a loop nest� as
exempli�ed in section ����

The closed form of the induction variable is computed in
the second step� In the following discussion we consider a
loop nest containing an induction variable iv� Loop L has n
iterations and the variable iter denotes the current iteration�
For the sake of simplicity we treat iteration spaces from �
to n �this is easily derived from the actual loop bounds and
step�� The �rst and last statements of loop L are labeled
loopentry and loopexit� respectively�

De�nition �

Given a loop L� the total increment �L
iv �iter� of the ad�

ditive induction variable iv in a single iteration of the body
of L is de�ned as�



�
L
iv �iter� �

loop exitX

s�loop entry

increments to iv in s

Here s iterates over the statements in loop L from
loop entry to loop exit� The increment to iv is zero if s is not
an induction statement� Inner loops are considered a single
�compound� statement and their increment is determined
using De�nition ��

De�nition �

The increment at the beginning of iteration i of the addi�
tive induction variable iv is de�ned as�

i�iLiv �

i��X

iter��

�
L
iv �iter�

Here �L
iv �iter� is summed over the iteration space of L

from the �rst to the i� �th iteration�

De�nition �

The increment of the additive induction variable iv upon
completion of loop L is de�ned as�

i�nLiv �

nX

iter��

�
L
iv �iter�

Here we are summing �L
iv �iter� over the entire iteration

space of L from � to n� Similar de�nitions hold for mul�
tiplicative induction variables� We refer the reader to the
more detailed description�����
Initially� � is computed by a lexical scan which forms a

symbolic sum of the right hand side increments at all induc�
tion sites of a given induction variable iv� Once � has been
computed for a given iv� the symbolic expressions i�i and
i�n are computed using a symbolic sum function based on
Bernoulli numbers �����
The algorithm proceeds recursively when an inner loop

is encountered� The current value for i�i in the enclosing
loop is used as the initial value of the iv at entry to the
nested loop� The sum � is then determined for the inner
loop �recursing again as necessary�� and the expression i�i
is formed for the inner loop� In other words� when iv occurs
inside a nested loop� � can only be partially calculated for
outer loops and becomes fully known in these outer loops
only as i�n is recursively returned from inner loop sums�
As the recursion unwinds and loop exits are encountered�

the expressions i�n are calculated� These are the last values
which will be used outside the loop if the induction variables�
live range extends beyond the loop exit�
The overall picture is one of a statement�wise traversal of a

given loop body� �rst summing increments� then multiplying
across iteration spaces� all done recursively as necessary�
The �nal substitution step is straightforward� Brie�y�

traversing from outside in� each loop header is annotated
with the value of the induction variable at entry to the loop�
The same annotation is made at the site of each use of the
induction variable� including any increments encountered in
the body of the loop up to the point of use� Our current im�
plementation does a direct substitution of the closed form�
The algorithm works similarly for multiplicative induction

variables� Instead of sum operations� however� products are
formed� Again� we refer the reader to ���� for additional
detail�

��� Zero Trip Test

If the upper bound UB of a loop is less than the lower bound
LB� then the loop is not executed� and as a result the com�
putation of the closed form of an induction variable must
include analysis techniques capable of detecting zero�trip
loops� Our algorithm handles this problem with new tech�
niques termed Symbolic Range Propagation ���� We prove in
all cases save one of our application test suite that loops do
not have zero trips and hence the transformation is correct�
The remaining case requires the use of interprocedural range
propagation� which has not yet been implemented� In ad�
dition� we have determined that in fact it is su�cient that
loops meet the weaker requirement UB � LB��� Expressed
in terms of De�nition � above� for example� UB � LB�� �
that i�nLiv is correct� In words this means simply that the
last value ivlast of induction variable iv in loop L is correct
given UBL � LBL � �� Consider the following example�

iv � �
do i � 	� n

do j � 	�m
iv � iv � 
 �

� � �
enddo
iv � iv � 	
a
iv� � � � �

enddo

do parallel i � 	� n
do parallel j � 	�m

� � �
enddo
a
i� 
 � i �m� � � � �

enddo

Intuitively� one concludes that the condition m � � insures
the correctness of the transformation� in fact the transforma�
tion is still correct for m � �� We have termed this an exact
zero trip and have found it important in our application test
suite�

��� Wrap�Around Variables

A wrap�around variable is classically de�ned as a variable
that takes on the value of an induction variable after one
iteration of a loop ����� There is one important case in our
application test suite where the recognition of wrap�around
loop bounds is a necessary precursor to the solution of an
induction variable�

m � �
do i � 	� n

do j � 	� i
lb � j
ub � i
do k � i� n

do l � lb� ub
m � m� 	
a
m� � � � �

enddo
lb � 	
ub � k � 	

enddo
m � m� i

enddo
enddo

Note the presence of the loop�variant wrap�around vari�
ables lb and ub on the l loop� which must be solved in order
to determine the closed form for the induction variable m�
After the induction transformation we have�

m � �
do parallel i � 	� n

do parallel j � 	� i
do parallel l � j� i
private m

m � l� 
i� 
��i� � �i� � �i� �i� � �in�



�in� � �ni� � �i�n����� �n�
�j� � n� � 
i� � �j � �i� � �ij�
�ji� � �jn� �jn����� 
i� 
ij

a
m� � � � �
enddo
do parallel k � 	 � i� n

do parallel l � 	� k
private m

m � l� 

��i� � �i� � �i� �i� � �in�
�in� � �ni� � �i�n����� �k � �n�
�j� � �n� � 
i� 
i� � �j � �k��
�ij � �ji� � �jn� �jn����� i� 
ij

a
m� � � � �
enddo

enddo
enddo

enddo

Employing powerful symbolic manipulation� the induction
pass �rst recognized and then removed the wrap�around loop
bounds lb and ub by peeling the �rst iteration of the k loop�
allowing the solution of the induction on m within the out�
ermost i loop� Note that the k loop now executes an exact
zero trip when i � n� and that the correctness of this trans�
formation has been proven using the techniques described in
section ����
As noted in section �� the value of m has been substituted

directly on the right hand side of each remaining induction
site� and m is now a loop private variable� � As is clear
from the example� direct substitution introduces unneces�
sary overhead in inner loops� For this reason we are cur�
rently implementing an on�demand substitution algorithm
which incorporates strength reduction of complex expres�
sions of this nature�

� Reduction Recognition

The following example represents an important pattern of
reduction operations that we have found in the analysis of
real application programs�

do i � 	� n
do j � 	� n� i

� � �
fx
i� � fx
i� � exp	
fx
i� j� � fx
i� j� � exp

� � �

enddo
enddo

The loop nest accumulates into the array FX� Dif�
ferent iterations accumulate into di
erent array elements�
This is what we term a histogram reduction� The Polaris�
transformed code is shown below�

do parallel i � 	� n
do j � 	� cpus

fx�
i� j� � �
enddo

enddo
do parallel i � 	� n
private p � procid

do j � 	� n� i
� � �
fx�
i� p� � fx�
i� p� � exp	
fx�
i� j� p� � fx�
i� j� p� � exp

� � �

�Note also that the third induction site just inside the outermost
i loop has been automatically removed

enddo
enddo
do parallel i � 	� n

do j � 	� cpus
fx
i� � fx
i� � fx�
i� j�

enddo
enddo

��� Recognition Pass

The algorithm for recognizing reductions searches for assign�
ment statements within a given loop of the form�

A���� ��� � � �� � A���� ��� � � �� � �

where � represents an arbitrary expression and A may be a
multi�dimensional array with subscript vector f��� ��� � � �g
which may contain both loop�variant and invariant terms�
Neither �i nor � may contain a reference to A� and A must
not be referenced elsewhere in the loop outside other reduc�
tion statements� Of course f��� ��� � � �g may be null �i�e�� A
is a scalar variable��
The algorithm recognizes potential reductions which fall

into the two classes of histogram reductions �where one of the
subscript dimensions� e�g�� ��� is loop�variant� and single�
address reductions �where all dimensions are loop�invariant��
The reduction recognition pass of Polaris is based on power�
ful pattern matching primitives that are part of the Polaris
FORBOL environment �����
In the recognition pass� variables that match the above

pattern are �agged as potential reduction variables�

��� Data Dependence Pass

The data dependence pass analyzes candidate reduction
variables� If it can prove independence� then it removes the
reduction �ag� This situation occurs if all loop iterations
accumulate into separate elements of an array�

��� Transformation Pass

In the transformation stage� three di
erent types of parallel
reductions can be generated� They are termed blocked� pri�
vatized� and expanded� All three schemes take advantage of
the fact that the sum operation is mathematically commu�
tative and associative� and thus the accumulation statement
sequence can be reordered� Although it is well known that
this can lead to roundo
 errors� we have not found this to be
a problem in our experiments� Polaris includes a switch that
allows the user to disable the transformation� which is the
common way of dealing with this issue in many compilers�
The �rst scheme� termed blocked� involves the insertion of

synchronization primitives around each reduction statement�
making the sum operation atomic� In our example the re�
duction statements could simply be enclosed by lock�unlock
pairs� allowing the loop to be executed in parallel� This is
an elegant solution where the architecture provides fast syn�
chronization primitives� However� in the machines used in
our experiments the synchronization overhead was high� and
as a result we focussed our e
orts on the remaining methods�
In privatized reductions� duplicates of the reduction vari�

able that are private to each processor are created and used
in the reduction statements in place of the original variable�
The partial sums accumulated by these variables are initial�
ized to zero at loop entry� In this way� the loop can now be
executed in a parallel doall fashion without the need for syn�
chronization other than the sum across processors executed
prior to �nal loop exit�



Scheme three is used in our example and it is termed ex�
panded reductions� It is similar to the second scheme� but
collects the partial sums in a shared array that has an addi�
tional dimension equal to the number of processors executing
in parallel� All reduction variables are replaced by references
to this new� global array� and the newly created dimension
is indexed by the processor number executing the current
iteration� The transformed loop may be executed fully in
parallel� The partial sums are combined in a separate loop
following the original one� For histogram reductions this
loop can be executed in parallel as well� as shown in the
example above�
One thorny issue dealt with in implementing methods two

and three was the determination of the size of the partial sum
variables for histogram reductions� Often it is not possible
to determine this size from the code surrounding the loop�
Because of this we again took good advantage of Symbolic
Range Propagation ��� to determine these sizes�

� Performance Results

Table � shows the speedups we have obtained on an 	�
processor set on an SGI Challenge �R������ relative to the
serial execution speed for three codes in our application
suite� We measured the overall speedup due to Polaris opti�
mizations� and the diminished speedups after disabling the
induction and reduction transformations� respectively� For
comparison purposes� the benchmarks under discussion were
also compiled and executed using the commercially available
SGI parallelizer� Power Fortran Accelerator �PFA�� with ad�
ditional non�default optimization options �ag�a and �r���

MDG TRFD TURB�D
serial � � �
PFA ��� ��� ���
Polaris 
�� ��	 ���
�no reduction� ��� ��	 ��

�no induction� ��� ��� ���

Table �� Overall Program Speedups

In all programs the Polaris compiler achieves signi�cant
speedups� In TURB�D this is about �� greater than
PFA� and in the other programs PFA achieves little or no
speedup� � The speedups are a result of the transformations
discussed in this paper in conjunction with additional tech�
niques described in ���� As shown by the table entries �no
reduction� and �no induction� above� in all cases the perfor�
mance drops substantially when these compiler capabilities
are switched o
�
The performance �gures become more clear when consid�

ering the most time�consuming loops of the test suite� Table
� summarizes the idiom recognition techniques applied to
these loops and the resulting loop speedups� These results
were obtained using a loop�by�loop instrumentation facility
built into the Polaris compiler� Column � serial shows the
percentage time that each loop takes in the serial program
execution� All of these loops would be serial without the
new capabilities described in this paper�
In Table �� HR means a histogram reduction was solved in

this loop� R� a reduction� IV� an induction variable� GIV� a
generalized induction variable� and W� a wrap�around vari�
able�

�In fact� results from more recent runs of Polaris which incorporate
full inlining bring the speedup 	gures for TURB�D up to �

loop transformation speedup � serial
MDG

interf do	��� IV� HR ��� ��
poteng do
��� IV� R ��� 


TRFD
olda do	�� GIV ��
 ��
olda do��� GIV� W ��� 
�
TURB�D
enr do
 IV� R ��� �

Table �� Key Loop Timings

In the program MDG� subroutine interf� loop do ����
contains multiple induction variables as well as histogram
reductions� Polaris �rst solved the inductions� then applied
expanded reductions to generate parallel code for the loop�
Interf do���� is by far the most time consuming loop in the
program� Another loop� poteng do����� is similar in nature�
however� as noted� it contains single�address reduction op�
erations� Polaris �agged these reductions with directives�
which were then processed by the back end compiler on the
SGI�
In TRFD subroutine OLDA� two loops dominate pro�

gram execution� do ��� and do ���� Both loops exercise Po�
laris� generalized induction variable substitution capabilities�
Do ��� contains an induction variable that is dependent on
a second� triangular induction variable� We have termed this
a coupled induction ����� The coupled induction variable oc�
curs at several nesting levels of nested triangular loops �the
innermost site is in a quadruply nested� doubly triangular
loop�� As a result� the subscript expressions introduced by
the substitution pass are non�linear and cannot be handled
by previously known data�dependence tests� The new Po�
laris data dependence test that handles such expressions is
described in ����
Olda do��� further contains two wrap�around variables

that need to be recognized in order to solve the inductions
properly� This transformation was described in section ����
Both loops also contain reduction operations� however� they
occur in inner loops that were not parallelized due to the
single�level parallelism supported by the SGI FORTRAN
compiler�
Loop ENR do� contains a single�address reduction in a

quadruply nested loop� Similar to poteng do����� this re�
duction is �agged by Polaris and solved via privatization by
the back end SGI compiler�

� Related Work

Three notable related contributions to idiom recognition
techniques deal with the recognition of induction variables�
Haghighat and Polychronopoulos ���� symbolically execute
loops and inspect the sequence of values assumed by vari�
ables� By taking the di
erence of consecutive values� the
di
erence of the di
erence� etc�� they can interpolate a poly�
nomial representing the closed form of an induction variable�
Harrison and Ammarguellat ��� do abstract interpretation

of loops to capture the e
ect of a single iteration on each
variable assigned in the loop� The e
ect is then matched
with pre�de�ned templates that express recurrence relations�
including induction variables of various forms�
Gerlek et al recognize induction variables by �nding cer�

tain patterns in the Static Single Assignment representation
of the program ���� They compute the closed form of an in�
duction variable based on a classi�cation of the speci�c SSA
pattern�



All three approaches provide some of the functionality nec�
essary to handle the generalized forms of induction variables
that we have seen in real programs� Potentially� they can
recognize complex control structures� such as induction vari�
ables assigned in di
erent branches of IF statements� which
we have not implemented in our algorithm� However� Polaris
is the only compiler that has delivered the proof of concept in
that it has demonstrated that new induction and reduction
variable techniques can contribute to real speedups of real
programs� In doing this we have identi�ed necessary parts of
both induction and reduction variable transformation tech�
niques that others have ignored or missed� symbolic manip�
ulation tools for generating closed forms of induction vari�
ables� program analysis capabilities for determining and dis�
proving zero�trip loops� combining induction variable recog�
nition with wrap�around variable removal� symbolically de�
termining ranges of histogram reductions� and complement�
ing non�linear data�dependence tests� Some of these capa�
bilities are supported by other passes available in the Polaris
compiler� De�ning proper interfaces between induction and
reduction variable handling and these passes is another dis�
tinguishing feature of the compiler�

� Conclusion

The new Polaris compiler is able to gain signi�cant speedups
in real programs� and demonstrates the parallelization tech�
nology necessary to do so� Two crucial techniques have been
described in this paper� the recognition and transformation
of induction variables and the parallelization of reduction
operations� Our implementation and measurements con�rm
the great importance of these idiom recognition techniques�
We have demonstrated that the implementation of the

necessary generalized forms of induction variable and reduc�
tion handling techniques is feasible in a parallelizing com�
piler and that it is possible to integrate them in such a way
that the resulting compiler actually achieves substantial per�
formance results on real programs� This demonstration has
not been made previously� and it is particularly signi�cant in
that some of the transformations introduce complexities in
the generated code �i�e�� non�linear expressions� that cannot
be readily processed by other compilation passes�
In our evaluation we have also determined that the is�

sue of recognizing complex recurrence patterns and control�
�ow structures� which was given much attention in related
work� was not of primary concern� Instead we have found
other issues to be of critical importance� namely� the provi�
sion of symbolic computation capabilities for handling closed
forms of recurrences� determining iteration counts and vari�
able ranges� and the integration of the idiom recognition pass
with other compilation techniques�
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