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Abstract

The global growth in popularity of the World Wide
Web has been enabled in part by the availability of
browser-based search tools, which in turn have led
to an increased demand for indexing techniques and
technologies. This explosive growth is evidenced by
the rapid expansion in the number and size of dig-
ital collections of documents. Simultaneously, fully
automatic content-based techniques of indexing have
been under development at a number of institutions.
The time is thus ripe for the development of scalable
knowledge management systems capable of handling
extremely large textual collections distributed across
maultiple repositories.

This paper introduces a technique for identifying re-
gions of semantic locality within a collection of doc-
uments represented as a semantic network. Semantic
locality imbues semantics to statistically based mea-
sures of graph connectedness. Such semantics become
the basis for several applications in scalable knowledge
management.

1 Introduction

The explosive growth of digital repositories of in-
formation has been enabled by recent developments
in communication and information technologies. The
global Internet /World Wide Web exemplifies the rapid
deployment of such technologies. Despite significant
accomplishments in internetworking, however, scal-

able indexing techniques for distributed information
lag behind the rapid growth of digital collections.

In the 21% century, a significant amount of informa-
tion useful in the practice of science will be available
via such computer communications networks. The
appearance of focused digital libraries on the World
Wide Web demonstrates the willingness of scientists
and engineers to distribute detailed information be-
yond that traditionally available in the published liter-
ature (e.g., [2]). It is critical that new information in-
frastructure be developed that enables effective search
in the huge volume of distributed information emerg-
ing in digital form.

Traditional methods of indexing combine multiple
subject areas into a single, monolithic index. There
are already enough documents on the Web that such
indexing technology is often failing to perform effec-
tive search. The difficulty lies in the fact that since
so many documents and subjects are being combined
together, retrieving all the documents that match a
particular word phrase often returns too many doc-
uments for effective search. This problem has been
known for some time [3].

In order to properly address this problem, a
paradigm shift is needed in the approach to indexing.
First and foremost, it is clear that digital collections
are now and will continue to be distributed. Our first
premise is thus that indezes must also be distributed.

Secondly, it must be realized that the information
contained in these distributed digital repositories is



hierarchical in nature!. Traditionally, knowledge hier-
archies, or ontologies, have been created with human
expertise?. Such an approach does not scale to the
tremendous amount of emerging digital information
for two reasons: as knowledge increases, new topics are
emerging at a greater rate, and both this and the sheer
volume of information preclude manual approaches to
indexing. Our second premise is thus that distributed
indexes must properly reflect the hierarchical nature
of knowledge.

Thirdly, due to the vast increase in communications
bandwidth and computing and online storage capabili-
ties mentioned above, digital collections are frequently
updated. This process reflects a key characteristic of
21t century collections: namely, they are dynamic in
nature. Our third premise is thus that any new infor-
mation infrastructure must include dynamic indexing
capabilities.

In the final analysis, these three technologies must
be integrated into a cohesive whole. The goal of our
research is thus to architect a knowledge management
prototype based on HDDI: Hierarchical Distributed
Dynamic Indexing.

As the HDDI technology unfolds, we are discov-
ering novel approaches to addressing the various is-
sues of managing distributed digital information in the
context of the aforementioned paradigm shift. This
paper introduces a technique for identifying regions
of semantic locality within a collection of documents
represented as a semantic network. Semantic local-
ity imbues semantics to statistically based measures
of graph connectedness. Such semantics become the
basis for applications employing HDDI technologies.

In the following sections we review the related work
in graph partitioning, discuss sLoc, our algorithm for
determining regions of semantic locality, and present
conclusions about the applicability of using sLoc to
build a hierarchical distributed dynamic index.

2 Background and Related Work

Central to the construction of a hierarchical dis-
tributed dynamic index is the formation of a knowl-
edge base. A knowledge base is a graph representing
the concepts (noun phrases) in a single node of an
HDDI linked with arcs of which the weights repre-
sent the similarities between concepts. The resulting
weight assignments from knowledge base creation are
context-sensitive, and are used to determine regions
of semantic locality (i.e., conceptual density) within

I This point was made recently by NSF CISE Assistant Di-
rector Ruzena Bajcsy.

20ne popular form is the thesaurus (e.g., the National Li-
brary of Medicine’s MeSH thesaurus).

each node of the HDDI hierarchy. During this phase
focused clusters of concepts within each knowledge
base in the hierarchy are detected. The result is a
hierarchy of knowledge bases composed of regions of
high-density clusters of concepts — subtopic regions of
semantic locality. In simple terms, these regions con-
sist of clusters of concepts commonly used together
that collectively create a knowledge neighborhood.

The motivation for the use of semantic locality de-
rives from the premise that grouping similar concepts
leads to increased effectiveness and efficiency in par-
ticular in query search and retrieval (see Sparck Jones
[10]). Also, in the perspective of the HDDI hierar-
chy, semantic locality enables tracking of similar topics
across the hierarchy.

In this section we review the traditional clustering
methods used in information retrieval, their purpose,
advantages and drawbacks. We then present other al-
gorithms used in graph partitioning and see why these
were not applicable for the particular case sLoc ad-
dresses. We might note here that classification and
clustering do not usually refer to the same thing. Clas-
sification tends to consider classes that are either given
or computed at the beginning, and tries to classify new
objects into these existing classes. Clustering is gen-
erally thought of as a dynamic process that creates
and modifies the classes with respect to the objects
it wants to classify. Clustering and classification will
however be used synonymously in this article.

2.1 The use of clustering in information
retrieval

In information retrieval the two most used clas-
sification schemes are: term classification and docu-
ment classification. Notice that Sparck Jones’s key-
word classification [10], or HDDI’s concept classifica-
tion refer to the same idea: clustering terms rather
than documents. Following Salton’s description in [8]:

Term classification is designed to group terms into
(synonym) classes in the hope of producing
greater matching capacities between queries and
document terms.

Document classification groups documents to-
gether to improve recall, but also to increase the
response time of the retrieval system.

The two classifications are not independent because
the terms assigned to the documents must necessarily
form the basis for the classes produced by a document
grouping procedure.

Term classification groups related low-frequency
terms into common thesaurus classes (clusters, or re-
gions of semantic locality). The terms included in a



common class can then be substituted for each other
in retrieval, and the recall output produced may be
improved in this way.

Document classifications make it possible to restrict
the searches to the most interesting document classes
only, thereby providing high-precision output [8].

2.1.1 The cluster hypothesis

Any sort of clustering in information retrieval (doc-
ument, or keyword clustering) is based on the as-
sumption that closely associated documents (respec-
tively keywords, or concepts in the HDDI terminology)
tend to be relevant to the same request. Van Rijsbergen
[4] refers to this assumption as the cluster hypothesis.

2.1.2 Criteria of a good clustering

The first property we expect from a clustering method
is that it provides a set of clusters that actually fit
the constraints and requirements of our application
semantics. However, additional properties are needed
in order for a given method to scale to multiple types
of input sets. Jardine and Sibson [27] stated the major
requirements of a good clustering method:

1. The classification should be defined such that a
given result is obtained for any given body of
data.

2. The classification should be independent of scale
because a multiplication by a constant of the
property values identifying the objects should not
affect the classification.

3. Small errors in the description of the objects must
not lead to big changes in the clustering.

4. The method must be independent of the initial
ordering of the objects.

5. Objects exhibiting strong similarities should not
be split by being assigned to separate classes.

We argue that although true in the 1960s, these
requirements may have to be reviewed in the context
of the 1990s where the amount of data increases on a
daily basis. The fact that the amount of data increases
every day invalidates the need for the classification to
be independent of scale; we rather want the classifica-
tion to adapt to the scale, that is to create new classes
or delete some to work best with the actual size of the
current collection.

At the same time, another essential criterion in the
assessment, of a clustering method is the efficiency

achieved by the algorithm. As stated in [1] efficiency is
usually measured in terms of the computer resources
used such as memory and storage requirements and
CPU time.

Over the past 40 years, various methods have been
used to achieve good efficiency and effectiveness. In
1979, van Rijsbergen identified two major approaches
[4] to information clustering and they are still good
starting points for research in IR today:

1. The clustering is based on a measure of similarity
between the objects to be clustered. This typi-
cally refers to the work of Sparck Jones [10] in
keyword clustering.

2. The cluster method proceeds directly from the
object descriptions. See Rocchio’s algorithm [18]
for an example of this method.

2.2 Existing algorithms in graph parti-
tioning

In our effort to find an algorithm for clustering
knowledge bases, we also wanted to consider alterna-
tive approaches to classical IR clustering algorithms.
In one sense, clustering a knowledge base can be cast
as a graph partitioning problem; we therefore looked
at the different problems that current graph partition-
ing techniques can help to solve, and evaluated the use
of these techniques in HDDI.

Graph partitioning is an NP-hard problem with nu-
merous applications. It appears in various forms in
parallel computing, sparse matrix reordering, circuit
placement and other important disciplines. Several
advanced software solutions are available from the in-
ternet. The most well-known are Chaco [28] and Metis
[29].

Traditional graph partitioning algorithms compute
a k-way partitioning of a graph such that the number
of edges that are cut by the partitioning is minimized
and each partition has an equal number of vertices.
The task of minimizing the edge-cut can be consid-
ered as the objective and the requirement that the
partitions be of the same size can be considered as the
constraint.

Much of the current research in graph partitioning
finds its application in parallel computing and load
balancing. Therefore, the focus is mostly on getting
a fixed number of clusters (that may correspond to
the number of processors for example) and an equal
number of vertices, in a nonoriented graph.

Hinrich Schiitze uses clustering for context-group
discrimination and disambiguation in computational
linguistics [34]. In this study, similarity in word



space is based on second order co-occurrence. Quoting
Schiitze:

Words, contexts and clusters are represented
in a high-dimensional real-valued vector
space. Context vectors capture the informa-
tion present in second-order co-occurrence.
Instead of forming a context representation
from the words that the ambiguous word di-
rectly occurs with in a particular context
(first-order co-occurrence), we form the con-
text representation from the words that these
words in turn co-occur with in the training
corpus. Second-order co-occurrence informa-
tion is less sparse and more robust than first-
order information.

This tells us that, depending on the context, allowing
some transitivity in the similarity relation can improve
the results of clustering based on similarity measures.

In data mining applications, Han, Karypis and Ku-
mar [35] propose a clustering method based on hyper-
graphs that is expected to handle large input data sets
better than the traditional k-means [36] or Autoclass
[37]. The idea of the hypergraph model is to map the
relationship of the original data in high dimensional
space into a hypergraph. The hypergraph model is
therefore based on the concept of a hyperedge. Quot-
ing Kumar et al. [35]:

A hyperedge represents a relationship (affin-

ity) among subsets of data and the weight

of the hyperedge reflects the strength of this

affinity. A hypergraph partitioning algo-

rithm is used to find a partitioning of the ver-

tices such that the corresponding data items

in each partition are highly related and the

weight of the hyperedges cut by the parti-

tioning is minimized.
[35] used a number of partitions that was set a priori,
and a different measure of similarity, which do not
fit our requirements for sLoc. However [35] does in-
troduce fitness and connectivity measures, which are
akin to metrics used in sLoc (see [1] for a detailed
comparison of these approaches).

In the final analysis we determined that none of the
available algorithms were suitable for our application.
Thus, the decision was made to base development on
an existing linear graph partitioning algorithm that
could be readily adapted to our needs [38].

2.3 Test collections

In the following sections we will use various test
collections to illustrate or validate our approach. Let
me introduce them briefly here.

e Patterns 300 is a collection of 300 postings to a
discussion list about computer software systems.

e MED, CISI and ADI are three collections of re-
spectively 1033, 112 and 82 abstracts commonly
employed in retrieval experiments. MED is a
sample from MEDLINE, the National Library of
Medicine’s database of references to articles pub-
lished in biomedical journals. The CISI and ADI
collections both contain information science doc-
uments.

e The Grainger collection contains 60,000 abstracts
from the Grainger Engineering Library at Univer-
sity of Illinois at Urbana-Champaign.

3 The Semantic Locality Finder: sLoc
In this section we discuss the details of the algo-
rithm, system design and implementation of the Se-
mantic Locality Finder (sLoc).
The function of sLoc is to identify regions of seman-
tic locality. For now, we can qualitatively characterize
a region of semantic locality as follows:

e Concepts inside a region of semantic locality are
similar to each other.

e Concepts belonging to different regions of seman-
tic locality are dissimilar.

Similarity between concepts is defined quantita-
tively in [25, 26]. It is a mapping from one concept
to another that quantitatively determines how similar
they are semantically. We term the resultant mapping
a knowledge base.®> A knowledge base is represented
as an asymmetric directed graph in which nodes are
concepts and arc weights are similarity measures. De-
termining regions of semantic locality in such a graph
involves clustering or splitting the input knowledge
base into a set of subtopic regions - smaller knowledge
bases, if you will. These subtopic regions are regions
of semantic locality or conceptual density. The num-
ber of concepts in each region of semantic locality may
vary and the total number of regions is determined dy-
namically by sLoc. sLoc processes a knowledge base
and outputs a knowledge neighborhood that consists of
multiple regions of semantic locality.

3.1 Contextual transitivity in sLoc

The similarity relation is by definition not transi-
tive. The theoretical basis for sLoc is the concept of
what we term contextual transitivity in the similarity
relation. In essence, this means that depending on the

3Note that follow-on work by Chen (of [25]) terms this a
concept space.



context (structure and distribution of the similarities
in the knowledge base), a threshold is decided upon
and transitivity is constrained accordingly. Contex-
tual transitivity extends Schiitze’s conceptualization
of second order co-occurrence [34] by using n-order
co-occurrence, where n varies with the underlying se-
mantic structure of the model.

In order to group concepts together in a region
of semantic locality, sLoc uses contextual transitiv-
ity. Here is a simple example. Let us consider the
three concepts Java, applet and e-commerce. If the
concepts occur in the same document, they are called
co-occurring concepts. Let us assume that Javae and
applet co-occur and that Javae and e-commerce also
co-occur. This means that there is at least one doc-
ument that contains both Java and applet, and that
there is at least one document that contains both Java
and e-commerce, but applet and e-commerce do not co-
occur necessarily. However it may be natural to gather
the three concepts in one unique class and extrapolate
that e-commerce and applet are actually related. That
is what contextual transitivity means.

Note that similarity is not a boolean relation for it
can take on a range of values. Two concepts can thus
be more or less similar. In sLoc, aspects of the knowl-
edge base structure lead to a heuristic minimum simi-
larity value for two concepts to be in the same cluster,
and therefore to constrain transitivity. It is called con-
textual because this minimum similarity value depends
on the structure and distribution of the similarities in
the knowledge base.

3.2 Design

The core of sLoc is based on an algorithm due to
Tarjan [38, 39]. Tarjan’s algorithm uses a variant of
depth-first search to determine the strongly connected
components of a directed graph. This was the first al-
gorithm to solve the problem in linear time. This is
an important feature due to the fact that graph clus-
tering is a NP-hard problem and the only heuristics
we are aware of are not linear. The theory can be
found in [39]. Figure 1 shows how Tarjan’s algorithm
identifies strongly connected regions (R, Rs, R3), in a
simple graph.

3.2.1 Notation

Before tackling the algorithm itself we must first in-
troduce the following notation:

e Let A be the set of nodes 7 in the input graph,
and let N be the total number of nodes.

e Let A be the set of arcs in the input graph, A the

Figure 1: Strongly connected regions of a graph

total number of arcs. An arc a;; € A goes from
node 7 to node j.

e Let W be the set of arc weights in the graph, w; ;
is the weight of the arc going from node i to node
J.
Therefore W = {w; ; }(; jyen>- A knowledge base is an
asymmetric graph and thus w; ; may differ from w; ;.
Moreover, if a; ; ¢ A then w;; = 0; in particular, for
all ¢, w;; =0. Now, let M be the mean of the arc
weights:

1
M = Z Z Wi, 5
(i,j)EN?

We term the standard deviation of the distribution of
arc weights SD:

1

(i,7)EN?

3.2.2 The algorithm, step by step

Figure 2 depicts the three steps of the sLoc process.
These steps are outlined in the following sections on
the algorithm and its applications.

The first step in sLoc is to statistically “prune” the
input graph before applying Tarjan’s algorithm. Arcs
of weight smaller than a certain threshold value T are
virtually pruned. This pruning and the process de-
scribed in [4] are very much alike. The difference here
is that similarities are asymmetric; that is, there can
be potentially two arcs between nodes in a given pair.
Therefore, the arc from concept a to concept b can be
pruned while the arc back from b to a remains.

The second step involves the actual identification
of the clusters within the graph. Tarjan’s algorithm
is applied to find strongly connected regions. At this
stage each strongly connected region is a cluster. The
size of a given cluster is the number of nodes (con-
cepts) it contains.
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Figure 2: The sLoc process

During the third step, clusters of size smaller than
parameter s are discarded (they are assumed to be
outliers). We interpret the remaining clusters as re-
gions of semantic locality in the knowledge base.

The greater 7, the more arcs are cut off, and there-
fore the smaller in size the strongly connected regions.
Thus the greater 7 the smaller in size and the more
focused will be the regions of semantic locality.

Two questions have arisen in the course of our work:
(1) Given an input knowledge base, what threshold
7 should be applied? (2) Is the usability of a given
clustering dependent on the application?

Let us tackle the first question on how to deter-
mine the value of 7 yielding an optimum clustering.
Our premise is that the optimum 7 can be determined
statistically as a function of the mean M, the stan-
dard deviation SD and other knowledge base depen-
dent variables (e.g., size, maximum weight, etc.).

For leaf-level collections in a hierarchical dis-
tributed dynamic index, i.e., for those collections for
which the knowledge base is directly computed from
the co-occurrence frequencies in the collections, we use

(o) = Max(WW) —a x SD (1)

In the equation above, 7 is the cut-off weight used to
prune the graph and « is a number of standard devi-
ations. Thus, 7(1) is the threshold corresponding to
the maximum weight in the graph minus half of the
standard deviation of the distribution of arc weights.
[1] summarizes our results for a range of values of the
parameter . Figure 3 shows the distribution of arc
weights at a leaf-level HDDI node, for the MED col-
lection.

However, as we consider higher level nodes in the
HDDI, the underlying distribution of weights changes
to approximate more closely a normal distribution (see

Distribtion ol weights & lesl node
of an HODH o MED)

iz s ==__LI_IJ_J.':
Figure 3: Distribution of weights at a leaf-level node

Disribasmion of wekghes af an inferior e
‘of s HERD (for MED

Figure 4: Distribution of weights in an interior node

Figure 4). For the interior nodes, we use
(o) =M +2SD —ax SD (2)

We did not factor SD in the equation above in or-
der to emphasize that the maximum value 7 can take
is M +2SD, the value below which 97.5% of a normal
distribution occurs. It makes more sense to use this
value here, rather than Max(W), because Max(W)
does not make much statistical sense when the dis-
tribution of W is normal.

At this point in time we are still investigating an-
swers to the second question posed above. Appar-
ently, there is no ready-made definition. Our intuition
tells us that the quality of a given clustering is re-
lated to the application: in other words, the applica-
tion will likely play a key role in determining whether
a given clustering is appropriate or not. If so, a given
input knowledge base will have many optima, each
one suited to a particular application (e.g., search en-
gine, detection of emerging conceptual content, tar-
geted marketing, etc.).

3.3 Clustering measures

In order to find the optimum where the threshold
T leads to satisfactory regions of semantic locality, we
introduce some measures on the resulting knowledge
neighborhood.

We distinguish between what we call “micromet-
rics” assessing the interior structure of the clustered
graph and “macrometrics” assessing the knowledge
neighborhood quality based on measures that are in-
dependent of its internal structure.

Macrometrics do not take into account the underly-
ing graph structure. We can draw a parallel between
these measures and the input parameters used in the



second approach to clustering described in Section 2.1.
The main macrometrics are the number of clusters,
the size of the clusters, and the coverage; they will be
described later in this section.

Micrometrics give some feedback about the inter-
nal structure of the clustered graph; they measure the
similarity of concepts in a cluster, and the dissimilar-
ity of concepts in different clusters. However, these
measures are very expensive computationally.

Moreover, the quality of these micrometrics is very
dependent on the graph structure. In order to avoid
getting a huge set of measures, one for each cluster for
example, we want to use a “reduced” measure for each
micrometric. The reduced measure represents the dis-
tribution of a given metric across the whole knowledge
neighborhood. However, the less homogeneous the un-
derlying graph, the less these measures make sense,
because one average cannot represent the complexity
of a heterogeneous distribution.

In defining the micrometrics, we take an approach
similar to that of Sparck Jones [10] and compute mea-
sures similar to those outlined in further detail in the
previous work section of [1]. The intercluster and
intracluster densities for a given knowledge base are
computed over all clusters remaining after the com-
pletion of phase 3 (see Figure 2).

Let us call Cy,C5...C), the n clusters of nodes
found by sLoc. Notice that, mathematically,
(C1,Cs...CY) is not a partition of A: we must add
all the clusters of size smaller than s to get a real
partition of . (C1,C5...C,) only covers part of the
input knowledge base; the clusters of size smaller than
s, rather than being forced into a larger cluster, are
simply discarded. Traditional clustering methods such
as Rocchio’s [18] try to force the outliers into existing
clusters. In HDDI we want to leverage our knowledge
of outliers and allow sLoc to play a role in “trimming”
the knowledge base. Therefore, all the concepts in
clusters of size smaller than s will be ignored for any
further use at the leaf level of the hierarchy.

3.3.1 Coverage

At the end of the process depicted in Figure 2 clusters
of size smaller than s are discarded. For large values of
7 (respectively, small values of @) the number of nodes
discarded can be fairly high. In other words, the ratio
of the number of nodes in clusters of size greater than
s to the total number of nodes present in the knowl-
edge base originally is fairly low for large values of 7.
We call the this latter ratio the coverage ¢ in HDDI
terminology. The coverage c is the percentage of the
knowledge base actually represented in the regions of

semantic locality sLoc outputs.

Zke[l,n] Nok
=N 3

For example, a coverage of .9 means that 90% of
the nodes in the input knowledge base will actually
appear in a cluster of the knowledge neighborhood.
The larger ¢ the larger the number of concepts that
will be retrievable through the knowledge neighbor-
hood.

3.3.2 Number of clusters

The number of clusters n at the end of phase 3 (see
Figure 2) is a good experimental indicator of distri-
bution of clusters. We show in [1] how the quality of
the clustering relates to the number of clusters. No-
tice that n not only depends on the threshold 7, but
it is also determined by the minimum cluster size s
that we impose. As for the other measures, the way
s is set must reflect the application needs. For some
applications, or some input sets s = 2 might be too
small.

3.3.3 Cluster size

The distribution of cluster sizes is characteristic of the
clustering too. In [1] we give an interpretation of how
this distribution changes with the threshold 7.

3.3.4 Intracluster densities

The intracluster density p(C}) of a given cluster Cj
can be easily computed from the mean M, and stan-
dard deviation SD¢, of the weights of arcs inside clus-
ter Ck

Mc,

p(Cr) = T+ 5Dg,

(4)

Let us call N¢, the number of nodes in cluster Cj.
An alternative formula for intra-cluster density is

1
p(Ck) = Y wiy (5)
ch X (ch — 1) (i) eCh

Formula (4) will assign a greater intracluster den-
sity to clusters of homogeneously high weight. For-
mula (5) was designed to take care of situations de-
scribed in Figure 5. In the case presented, using for-
mula (4) we would get p(A4) > p(B); to put it sim-
ply, formula (4) favors homogeneity over connectivity.
Therefore we introduced formula (5) for cases when
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Figure 5: Homogeneous vs. tightly connected clusters

connectivity fits more closely to the application needs.
It is very important to notice that in Equation (5) the
denominator N¢, X (N¢, —1) corresponds to the max-
imum number of arcs a cluster of N¢, nodes can have
(that is 2 x (Ngk)) This makes the assumption that
the best clusters have to be fully connected (cliques).
We show the limitations of this assumption in the sec-

tion dedicated to metrics evaluation in [1].

3.3.5 Intracluster density reduction measure

For a given value of the threshold 7, sLoc outputs a
set of clusters C,C5...C, and their respective intr-
acluster densities p(C1), p(C2)...p(Cy). In order to
compare the clusterings performed for each value of 7
we need a reduction measure that will summarize the
distribution of intracluster densities in a single metric.
Therefore, we define p, the reduced intracluster den-
sity for a given value of 7, with the following formula:

1
p=— 3 Noyxnl(Cw) ©
k€[1,n]

In the formula above, from formula (3) we know
that ¢ X N is the total number of nodes that belong
to a cluster of size larger that s. Thus, the reduction
measure p is simply a weighted average of the intra-
cluster densities where the weight assigned to a cluster
is proportional to its size N¢, . The use of this particu-
lar reduction measure can be justified by the fact that,
assuming all the concepts have the same probability
of being searched for, the probability of returning a
given cluster as a response to a query is proportional
to the number of nodes this cluster contains.

3.3.6 Intercluster density

In order to compute the intercluster density P, let
Ainter C A be the subset of A such that

Ainter - {ai,j eA | 1€ Cp)j € C’q:p7é q}

The set Ajper contains all the arcs going from one
cluster to another. What we call A;uter is the number

of elements in A;pier. Then Minier and SDj,per are

— ¥
T Wi, j
Ainter

a;,jEAinter

Minter =

S-Dinter =

;_12

A (wi,j - Minter)2
inter ai,jEAinter

A first definition for the intercluster density P is

Minter

P=———
(1 + SDinter)

(7)
An alternative definition can be

P = ; Z Wi, j (8)

X (TL N 1) ai,jEAinter

As with (4) and (5), (7) and (8) differ by the pat-
terns they emphasize in the clustering. Formula (7)
will assign a greater intercluster density when the arcs
in Ajnter are of similar weight, whereas (8) will em-
phasize the connectivity pattern of the clustering.

Here, notice the denominator in Equation 8, n x
(n — 1), where n is the number of clusters after the
end of phase 3 in Figure 2; it can be viewed as an as-
sumption made on the clustered graph structure. This
measure makes much more sense if the clusters in the
set are fully connected, that is, if the weights w; ; are
distributed fairly homogeneously between clusters.

3.3.7 A theoretical definition of the optimum

The intracluster density measures the similarity of
concepts within a cluster. As a result, it is our premise
that reduced intracluster density p should be maxi-
mum at the optimum. At the same time, the inter-
cluster density P measures how similar concepts are
across different clusters. Therefore, we want the inter-
cluster density to be minimized at this same optimum.
At the same time, the closer the coverage c is to 100%,
the larger the number of concepts represented in the
knowledge neighborhood. These three metrics vary in
completely different ranges; to make them compara-
ble we have them all range between zero and one by
simply dividing them by the largest value they actu-
ally take across the range of alpha. We then define
standardized reduced intracluster density pp and in-
tercluster density FPjy:

_ p(7)
0 = Mazer o) ©)
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Figure 6: Optimization function F vs. «

Ro(r) = P(r)

= Mazrer (P(7) (10)

A satisfactory clustering will have a pgy close to 1,
a Py close to 0, that is, (1 — Fy) close to one, while
the coverage has to be as close to 1 as possible too.
Therefore, we arrive at the empirical formula for the
optimization function F:

F=(po+(1-F)) xc (11)

The optimum 7 makes F reach a maximum. The
above formula aims at determining the clustering that
yields an optimum balance between coverage, intra-
and intercluster densities. Further experimental ev-
idence is needed, however, on the impact on perfor-
mance in application environments to justify the use
of such an optimum.

This definition of a theoretical optimum thus does
not intend to actually fit every real-world application
sLoc would be used for. It is rather intended to pro-
vide a theoretical baseline, a reference to which other
optima can be compared. For instance, the “opti-
mum” clusters may be too large to be properly man-
aged by a dynamic query engine that matches a query
vector to one or more clusters. In addition, if concepts
inside a given cluster are to be used as suggestions
for an interactive search refinement, clusters of size
greater than 10 or 20 may not be very user-friendly.

3.4 Results for the optimization func-
tion F

Figure 6 shows how the function F varies for differ-
ent values of « for a leaf-level HDDI node. In all the
experiments we conducted, the curve has about the
same shape, always exhibiting a maximum for a value
of a ranging between 1.25 and 2.

For small values of a, po + (1 — P) is fairly large
and is maximum when alpha is just above zero. Small
clusters (size of 2 or 3) are more prone to be fully
connected with arcs of maximum similarity than they
would be for larger values of « (see Figure 7). Indeed,

when « is just above zero, the only arcs that are not
pruned out have a weight of Max(W); this makes the
intracluster densities very large. At the same time,
intercluster densities are fairly low. This can be ex-
plained by the way weights are assigned; it is fairly
uncommon to see w; ; = Max(W) and w;; < Max(W)
at the same time. However, the coverage c is very low
in this area of the graph, that is, a relatively small
proportion of the knowledge base is represented in the
knowledge neighborhood. The coverage is therefore
used as a filter when it multiplies po + (1 — Py) to
balance the impact of pg and Py on the optimization
function F.

Figure 7: po+ (1 — Ry) vs. «

In Figure 8, one can see that ¢ has a logarithmic
shape, reaching 85% for a = .6, its filtering action on
po—+(1—PFp) then lessens, so that intra- and intercluster
densities really lead the way F varies.

Figure 8: Coverage ¢ vs. «

For large values of «, that is, when the threshold-
ing is not aggressive, some clusters start merging into
a couple of very large ones. These very large clus-
ters have very poor intracluster density because they
are far from fully connected. At the same time the
intercluster density is increasing. This is due in par-
ticular to two factors. First, the number of clusters
is fairly low, and therefore in formula (8) the sum of
the arc weights between clusters is not balanced by
the denominator. Second, when w; ; is low, chances
are higher that node j is not connected at all to node
1, which increases the probability of this arc being an
intercluster arc.

It is very interesting to see that the definition of
F still fits interior HDDI nodes, despite the different
structure and weight distribution of their knowledge



bases. In Figure 9, F exhibits a clearer peak than for
leaf-level nodes.

Figure 9: Optimization function F for an interior
HDDI node (from Patterns 300)

4 Summary and Conclusion

In order to build an HDDI, we need to cluster the
knowledge base graph of each HDDI node. After a
thorough study of existing IR clustering techniques,
we decided to design our own algorithm to cluster
HDDI knowledge bases: sLoc. This algorithm meets
the requirements of HDDI in terms of complexity; it
is linear and therefore allows dynamic identification of
regions of semantic locality.

In order to assess the quality of the clustering we
designed micro- and macrometrics. We arrived at
an optimization function F which uses a subset of
these metrics to define a desirable theoretical base-
line clustering. Finally, we conducted experiments to
gain an understanding of how these metrics and opti-
mization function work and demonstrated scalability
across leaf-level and interior nodes of a hierarchical
distributed dynamic index.

Now, we need to assess these theoretical measures
in a real-life application environment in order to val-
idate our approach. Ongoing work at Lehigh Uni-
versity and the National Center for Supercomputing
Applications involves the development of several ap-
plications based on HDDI technologies which we are
employing to validate our approach.
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