Graham Cormode

I am a professor in the Department of Computer Science at the University of Warwick, and my interests are in all aspects of the "data lifecycle", from data collection and cleaning, through mining and analytics, and private data release. From 2004--06, I worked at Bell Laboratories in the Internet Management Research Department. From 2006-2013, I was a researcher at AT&T Labs--Research.

Between 2002 and 2004, I was a postdoctoral fellow at DIMACS, the Center for Discrete Mathematics and Computer Science. I completed my PhD at the Department of Computer Science at the University of Warwick, UK in 2002. I spent a year of my PhD studying in Cleveland, Ohio at Case Western Reserve University with the Electrical Engineering and Computer Science Department , and Summer 2000 as an intern at AT&T Shannon research labs.

For more information, see a (reasonably up to date) CV.

Conference Publications

[1] G. Cormode, H. Jowhari, M. Monemizadeh, and S. Muthukrishnan. Streaming algorithms for matching size estimation in sparse graphs. In European Symposium on Algorithms, 2017.
[2] Z. Jorgensen, T. Yu, and G. Cormode. Publishing attributed social graphs with formal privacy guarantees. In ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 107-122, 2016.
[3] R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, A. McGregor, M. Monemizadeh, and S. Vorotnikova. Kernelization via sampling with applications to dynamic graph streams. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016.
[4] K. J. Ahn, G. Cormode, S. Guha, A. McGregor, and A. Wirth. Correlation clustering in data streams. In International Conference on Machine Learning, ICML, pages 2237-2246, 2015.
[5] X. He, G. Cormode, A. Machanavajjhala, C. M. Procopiuc, and D. Srivastava. DPT: differentially private trajectory synthesis using hierarchical reference systems. In Proceedings of the VLDB Endowment, volume 8, pages 1154-1165, 2015.
[6] R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, and M. Monemizadeh. New streaming algorithms for parameterized maximal matching & beyond. In Symposium on Parallelism in Algorithms, pages 56-58, 2015.
[7] J. Zhang, G. Cormode, M. Procopiuc, D. Srivastava, and X. Xiao. Private release of graph statistics using ladder functions. In ACM SIGMOD International Conference on Management of Data (SIGMOD), 2015.
[8] A. Chakrabarti, G. Cormode, A. McGregor, J. Thaler, and S. Venkatasubramanian. Verifiable stream computation and arthur-merlin communication. In Computational Complexity Conference, 2015.
[9] Z. Jorgensen, T. Yu, and G. Cormode. Conservative or liberal? personalized differential privacy. In International Conference on Data Engineering (ICDE), 2015.
[10] R. Chitnis, G. Cormode, M. Hajiaghayi, and M. Monemizadeh. Parameterized streaming: Maximal matching and vertex cover. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2015.
[11] G. Cormode, M. Procopiuc, D. Srivastava, X. Xiao, and J. Zhang. Privbayes: Private data release via bayesian networks. In ACM SIGMOD International Conference on Management of Data (SIGMOD), 2014.
[12] Q. Ma, S. Muthukrishnan, B. Thompson, and G. Cormode. Modeling collaboration in academia: A game theoretic approach. In WWW Workshop on Big Scholarly Data, 2014.
[13] G. Cormode, S. Muthukrishnan, and J. Yan. People like us: Mining scholarly data for comparable researchers. In WWW Workshop on Big Scholarly Data, 2014.
[14] A. Chakrabarti, G. Cormode, N. Goyal, and J. Thaler. Annotations for sparse data streams. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014.
[15] G. Cormode, S. Muthukrishnan, and J. Yan. First author advantage: Citation labeling in research. In Proceedings of the Computational Scientometrics: Theory and Applications Workshop at CIKM, 2013.
[16] G. Cormode, X. Gong, C. M. Procopiuc, E. Shen, D. Srivastava, and T. Yu. UMicS: From anonymized data to usable microdata. In ACM Conference on Information and Knowledge Management (CIKM), 2013.
[17] S. Papadopoulos, G. Cormode, A. Deligiannakis, and M. Garofalakis. Lightweight authentication of linear algebraic queries on data streams. In ACM SIGMOD International Conference on Management of Data (SIGMOD), 2013.
[18] L. Wang, G. Luo, K. Yi, and G. Cormode. Quantiles over data streams: An experimental study. In ACM SIGMOD International Conference on Management of Data (SIGMOD), 2013.
[19] G. Cormode, C. M. Procopiuc, E. Shen, D. Srivastava, and T. Yu. Empirical privacy and empirical utility of anonymized data. In Privacy-Preserving Data Publication and Analysis (PrivDB), 2013.
[20] G. Cormode, K. Mirylenka, T. Palpanas, and D. Srivastava. Finding interesting correlations with conditional heavy hitters. In International Conference on Data Engineering (ICDE), 2013.
[21] G. Cormode, C. M. Procopiuc, D. Srivastava, and G. Yaroslavtsev. Accurate and efficient private release of datacubes and contingency tables. In International Conference on Data Engineering (ICDE), 2013.
[22] G. Cormode and D. Firmani. On unifying the space of l0-sampling algorithms. In SIAM Meeting on Algorithm Engineering and Experiments, 2013.
[23] G. Cormode, J. Thaler, and K. Yi. Verifying computations with streaming interactive proofs. In International Conference on Very Large Data Bases (VLDB), Sept. 2012.
[24] A. Goyal, H. Daumé III, and G. Cormode. Sketch algorithms for estimating point queries in NLP. In EMNLP-CoNLL, pages 1093-1103, 2012.
[25] P. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and K. Yi. Mergeable summaries. In ACM Principles of Database Systems (PODS), 2012.
[26] E. Cohen, G. Cormode, and N. Duffield. Don't let the negatives bring you down: Sampling from streams of signed updates. In ACM Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), 2012.
[27] G. Cormode and K. Yi. Tracking distributed aggregates over time-based sliding windows. In Scientific and Statistical Database Management (SSDBM), 2012.
[28] G. Cormode, S. Muthukrishnan, and J. Yan. Scienceography: the study of how science is written. In Proceedings of the International Conference on Fun with Algorithms (FUN), 2012.
[29] G. Cormode, M. Procopiuc, D. Srivastava, and T. Tran. Differentially private publication of sparse data. In International Conference on Database Theory (ICDT), 2012.
[30] G. Cormode, M. Procopiuc, E. Shen, D. Srivastava, and T. Yu. Differentially private spatial decompositions. In International Conference on Data Engineering (ICDE), 2012.
[31] M. Lu, S. Bangalore, G. Cormode, M. Hadjieleftheriou, and D. Srivastava. A dataset search engine for the research document corpus. In International Conference on Data Engineering (ICDE), 2012.
[32] G. Cormode, E. Shen, D. Srivastava, and T. Yu. Aggregate query answering on possibilistic data with cardinality constraints. In International Conference on Data Engineering (ICDE), 2012.
[33] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming interactive proofs. In Innovations in Theoretical Computer Science (ITCS), 2012.
[34] P. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and K. Yi. Mergeable coresets. In Third Workshop on Massive Data Algorithmics (MASSIVE), 2011.
[35] G. Cormode. Personal privacy vs population privacy: Learning to attack anonymization. In ACM SIGKDD Conference, 2011.
[36] E. Cohen, G. Cormode, and N. Duffield. Structure-aware sampling: Flexible and accurate summarization. In International Conference on Very Large Data Bases (VLDB), 2011.
[37] G. Cormode and K. Yi. Tracking distributed aggregates over time-based sliding windows (brief announcement). In ACM Principles of Distributed Computing (PODC), 2011.
[38] E. Cohen, G. Cormode, and N. Duffield. Structure-aware sampling on data streams. In ACM Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), 2011.
[39] G. Cormode, H. Karloff, and T. Wirth. Set cover algorithms for very large datasets. In ACM Conference on Information and Knowledge Management (CIKM), 2010.
[40] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. Optimal sampling from distributed streams. In ACM Principles of Database Systems (PODS), 2010.
[41] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava. Privacy in dynamic social networks. In World Wide Web Conference (WWW), 2010.
[42] G. Cormode, M. Mitzenmacher, and J. Thaler. Streaming graph computations with a helpful advisor. In European Symposium on Algorithms, 2010.
[43] A. Chakrabarti, G. Cormode, R. Kondapally, and A. McGregor. Information cost tradeoffs for augmented index and streaming language recognition. In IEEE Foundations of Computer Science (FOCS), 2010.
[44] G. Cormode, N. Li, T. Li, and D. Srivastava. Minimizing minimality and maximizing utility: Analyzing method-based attacks on anonymized data. In International Conference on Very Large Data Bases (VLDB), 2010.
[45] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava. Prediction promotes privacy in dynamic social networks. In Workshop on Online Social Networks (WOSN), 2010.
[46] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava. Class-based graph anonymization for social network data. In International Conference on Very Large Data Bases (VLDB), 2009.
[47] G. Cormode, A. Deligiannakis, M. Garofalakis, and A. McGregor. Probabilistic histograms for probabilistic data. In International Conference on Very Large Data Bases (VLDB), 2009.
[48] A. Chakrabarti, G. Cormode, and A. McGregor. Annotations in data streams. In International Colloquium on Automata, Languages and Programming (ICALP), 2009.
[49] G. Cormode, L. Golab, F. Korn, A. McGregor, D. Srivastava, and X. Zhang. Estimating the confidence of conditional functional dependencies. In ACM SIGMOD International Conference on Management of Data (SIGMOD), 2009.
[50] R. Berinde, G. Cormode, P. Indyk, and M. Strauss. Space-optimal heavy hitters with strong error bounds. In ACM Principles of Database Systems (PODS), 2009.
[51] G. Cormode, S. Tirthapura, and B. Xu. Time-decayed correlated aggregates over data streams. In SIAM Conference on Data Mining (SDM), 2009.
[52] G. Cormode and M. Garofalakis. Histograms and wavelets on probabilistic data. In International Conference on Data Engineering (ICDE), 2009. Best paper award.
[53] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilistic data and expected ranks. In International Conference on Data Engineering (ICDE), 2009.
[54] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu. Forward decay: A practical time decay model for streaming systems. In International Conference on Data Engineering (ICDE), 2009.
[55] G. Cormode and M. Hadjieleftheriou. Finding frequent items in data streams. In International Conference on Very Large Data Bases (VLDB), 2008. Best paper award.
[56] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anonymizing bipartite graph data using safe groupings. In International Conference on Very Large Data Bases (VLDB), 2008.
[57] G. Cormode, F. Korn, and S. Tirthapura. Time-decaying aggregates in out-of-order streams. In ACM Principles of Database Systems (PODS), 2008.
[58] G. Cormode and A. McGregor. Approximation algorithms for clustering uncertain data. In ACM Principles of Database Systems (PODS), 2008.
[59] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Summarizing two-dimensional data with skyline-based statistical descriptors. In Scientific and Statistical Database Management (SSDBM), 2008.
[60] A. Chakrabarti, G. Cormode, and A. McGregor. Robust lower bounds for communication and stream computation. In ACM Symposium on Theory of Computing (STOC), 2008.
[61] G. Cormode, F. Korn, S. Muthukrishnan, and Y. Wu. On signatures for communication graphs. In International Conference on Data Engineering (ICDE), 2008.
[62] G. Cormode, F. Korn, and S. Tirthapura. Exponentially decayed aggregates on data streams. In International Conference on Data Engineering (ICDE), 2008.
[63] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed, functional monitoring. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.
[64] S. Bhagat, G. Cormode, and I. Rozenbaum. Applying link-based classification to label blogs. In Joint WEBKDD and SNA-KDD Workshop, 2007.
[65] S. Ganguly and G. Cormode. On estimating frequency moments of data streams. In Proceedings of RANDOM, 2007.
[66] G. Cormode, S. Tirthapura, and B. Xu. Time-decaying sketches for sensor data aggregation. In ACM Principles of Distributed Computing (PODC), 2007.
[67] G. Cormode and M. Garofalakis. Sketching probabilistic data streams. In ACM SIGMOD International Conference on Management of Data (SIGMOD), 2007.
[68] S. Bhagat, G. Cormode, S. Muthukrishnan, I. Rozenbaum, and H. Xue. No blog is an island analyzing connections across information networks. In International Conference on Weblogs and Social Media, 2007.
[69] G. Cormode, S. Muthukrishnan, and W. Zhuang. Conquering the divide: Continuous clustering of distributed data streams. In International Conference on Data Engineering (ICDE), 2007.
[70] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm for computing the entropy of a stream. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.
[71] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for compressed sensing. In SIROCCO, 2006.
[72] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space- and time-efficient deterministic algorithms for biased quantiles over data streams. In ACM Principles of Database Systems (PODS), 2006.
[73] G. Cormode, R. Keralapura, and J. Ramimirtham. Communication-efficient distributed monitoring of thresholded counts. In ACM SIGMOD International Conference on Management of Data (SIGMOD), 2006.
[74] G. Cormode, M. Garofalakis, and D. Sacharidis. Fast approximate wavelet tracking on streams. In Extending Database Technology, pages 4-22, 2006.
[75] G. Cormode, S. Muthukrishnan, and W. Zhuang. What's different: Distributed, continuous monitoring of duplicate-resilient aggregates on data streams. In International Conference on Data Engineering (ICDE), pages 20-31, 2006.
[76] G. Cormode, S. Muthukrishnan, and I. Rozenbaum. Summarizing and mining inverse distributions on data streams via dynamic inverse sampling. In International Conference on Very Large Data Bases (VLDB), pages 25-36, 2005.
[77] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed approximate query tracking. In International Conference on Very Large Data Bases (VLDB), pages 13-24, 2005.
[78] G. Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In ACM Principles of Database Systems (PODS), pages 271-282, 2005.
[79] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a networked world: Distributed tracking of approximate quantiles. In ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 25-36, 2005.
[80] G. Cormode and S. Muthukrishnan. Summarizing and mining skewed data streams. In SIAM Conference on Data Mining (SDM), 2005.
[81] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Effective computation of biased quantiles over data streams. In International Conference on Data Engineering (ICDE), pages 20-31, 2005.
[82] G. Cormode and S. Muthukrishnan. Substring compression problems. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 321-330, 2005.
[83] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Diamond in the rough: Finding hierarchical heavy hitters in multi-dimensional data. In ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 155-166, 2004.
[84] G. Cormode, F. Korn, S. Muthukrishnan, T. Johnson, O. Spatscheck, and D. Srivastava. Holistic UDAFs at streaming speeds. In ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 35-46, 2004.
[85] G. Cormode. The hardness of the lemmings game, or Oh no, more NP-completeness proofs. In Proceedings of Third International Conference on Fun with Algorithms, pages 65-76, 2004.
[86] G. Cormode, A. Czumaj, and S. Muthukrishnan. How to increase the acceptance ratios of top conferences. In Proceedings of Third International Conference on Fun with Algorithms, pages 262-273, 2004.
[87] G. Cormode and S. Muthukrishnan. What's new: Finding significant differences in network data streams. In Proceedings of IEEE Infocom, pages 1534-1545, 2004.
[88] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. In Proceedings of Latin American Theoretical Informatics (LATIN), pages 29-38, 2004.
[89] G. Cormode. Stable distributions for stream computations: it's as easy as 0,1,2. In Workshop on Management and Processing of Massive Data Streams at FCRC, 2003.
[90] G. Cormode and S. Muthukrishnan. What's hot and what's not: Tracking most frequent items dynamically. In ACM Principles of Database Systems (PODS), pages 296-306, 2003.
[91] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding hierarchical heavy hitters in data streams. In International Conference on Very Large Data Bases (VLDB), pages 464-475, 2003.
[92] G. Cormode and S. Muthukrishnan. Estimating dominance norms of multiple data streams. In European Symposium on Algorithms, volume 2838 of LNCS, 2003.
[93] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams using Hamming norms. In International Conference on Very Large Data Bases (VLDB), pages 335-345, 2002.
[94] G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan. Fast mining of tabular data via approximate distance computations. In International Conference on Data Engineering (ICDE), pages 605-616, 2002.
[95] G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 667-676, 2002.
[96] G. Cormode, S. Muthukrishnan, and S. C. Sahinalp. Permutation editing and matching via embeddings. In International Colloquium on Automata, Languages and Programming (ICALP), volume 2076, pages 481-492, 2001.
[97] G. Cormode, M. Paterson, S. C. Sahinalp, and U. Vishkin. Communication complexity of document exchange. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 197-206, 2000.
[98] G. Ozsoyoglu, N. H. Balkir, G. Cormode, and Z. M. Ozsoyoglu. Electronic books in digital libraries. In Proceedings of IEEE Advances in Digital Libraries (ADL), pages 5-14, 2000.

Journal Publications

[1] J. Zhang, G. Cormode, M. Procopiuc, D. Srivastava, and X. Xiao. Privbayes: Private data release via bayesian networks. ACM Transactions on Database Systems, 2017.
[2] G. Cormode. Data sketching. Communications of the ACM (CACM), 60(9):48-55, 2017.
[3] E. Cohen, G. Cormode, N. Duffield, and C. Lund. On the tradeoff between stability and fit. ACM Transactions on Algorithms, 13(1), 2016.
[4] A. Chakrabarti, G. Cormode, and A. McGregor. Robust lower bounds for communication and stream computation. Theory of Computing, 12(10):1-35, 2016.
[5] G. Luo, L. Wang, K. Yi, and G. Cormode. Quantiles over data streams: experimental comparisons, new analyses, and further improvements. The VLDB Journal, 25(4):449-472, 2016.
[6] K. Mirylenka, G. Cormode, T. Palpanas, and D. Srivastava. Conditional heavy hitters: detecting interesting correlations in data streams. The VLDB Journal, 24(3):395-414, 2015.
[7] S. Papadopoulos, G. Cormode, A. Deligiannakis, and M. N. Garofalakis. Lightweight query authentication on streams. ACM Transactions on Database Systems, 39(4):30:1-30:45, 2015.
[8] G. Cormode and H. Jowhari. A second look at counting triangles in graph streams. Theoretical Computer Science, 552:44-51, 2014.
[9] A. Chakrabarti, G. Cormode, A. McGregor, and J. Thaler. Annotations in data streams. ACM Transactions on Algorithms, 11(1), 2014.
[10] G. Cormode and D. Firmani. A unifying framework for l0-sampling algorithms. Distributed and Parallel Databases, 32(3):315-335, 2014. Special issue on Data Summarization on Big Data.
[11] G. Cormode. What does an associate editor actually do? SIGMOD Record, 42(2):52-58, June 2013.
[12] G. Cormode. The continuous distributed monitoring model. SIGMOD Record, 42(1), Mar. 2013.
[13] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and K. Yi. Mergeable summaries. ACM Transactions on Database Systems, 38(4):26, 2013.
[14] A. Chakrabarti, G. Cormode, R. Kondapally, and A. McGregor. Information cost tradeoffs for augmented index and streaming language recognition. SIAM Journal on Computing (SICOMP), 42(1):61-83, 2013.
[15] G. Cormode, Q. Ma, S. Muthukrishnan, and B. Thompson. Socializing the h-index. Journal of Informetrics, 7(3):718 - 721, 2013.
[16] G. Cormode, M. Mitzenmacher, and J. Thaler. Streaming graph computations with a helpful advisor. Algorithmica, 65(2):409-442, 2013.
[17] G. Cormode, S. Muthukrishnan, and J. Yan. Studying the source code of scientific research. SIGKDD Explorations, 14(2):59-62, Dec. 2012.
[18] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. Continuous sampling from distributed streams. Journal of the ACM (JACM), 59(2), Apr. 2012.
[19] G. Cormode and S. Muthukrishnan. Approximating data with the count-min data structure. IEEE Software, 2012.
[20] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional monitoring. ACM Transactions on Algorithms, 7(2):1-21, 2011.
[21] G. Cormode, J. Jestes, F. Li, and K. Yi. Semantics of ranking queries for probabilistic data. IEEE Transactions on Knowledge and Data Engineering, 23(12):1903-1917, 2011.
[22] G. Cormode, B. Krishnamurthy, and W. Willinger. A manifesto for modeling and measurement in social media. First Monday, 15(9), Sept. 2010.
[23] G. Cormode and M. Garofalakis. Histograms and wavelets on probabilistic data. IEEE Transactions on Knowledge and Data Engineering, 22(8):1142-1157, Aug. 2010.
[24] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm for computing the entropy of a stream. ACM Transactions on Algorithms, 6(3), 2010.
[25] R. Berinde, G. Cormode, P. Indyk, and M. Strauss. Space-optimal heavy hitters with strong error bounds. ACM Transactions on Database Systems, 35(4), 2010.
[26] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anonymizing bipartite graph data using safe groupings. The VLDB Journal, 19(1):115-139, 2010.
[27] G. Cormode and M. Hadjieleftheriou. Methods for finding frequent items in data streams. The VLDB Journal, 19(1):3-20, 2010.
[28] G. Cormode, S. Tirthapura, and B. Xu. Time-decaying sketches for robust aggregation of sensor data. SIAM Journal on Computing (SICOMP), 39(4):1309-1339, 2009.
[29] G. Cormode, S. Tirthapura, and B. Xu. Time-decayed correlated aggregates over data streams. Statistical Analysis and Data Mining, 2(5-6):294-310, 2009.
[30] K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios, and D. Srivastava. Small synopses for group-by query verification on outsourced data streams. ACM Transactions on Database Systems, 34(3), 2009.
[31] G. Cormode and M. Hadjieleftheriou. Finding the frequent items in streams of data. Communications of the ACM (CACM), 52(10):97-105, 2009.
[32] G. Cormode. How not to review a paper: The tools and techniques of the adversarial reviewer. SIGMOD Record, 37(4):100-104, Dec. 2008.
[33] G. Cormode and B. Krishnamurthy. Key differences between web 1.0 and web 2.0. First Monday, 13(6), June 2008.
[34] G. Cormode and M. Garofalakis. Approximate continuous querying over distributed streams. ACM Transactions on Database Systems, 33(2), June 2008.
[35] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding hierarchical heavy hitters in streaming data. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(4), Jan. 2008.
[36] G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves. ACM Transactions on Algorithms, 3(1), 2007.
[37] G. Cormode and S. Muthukrishnan. What's new: Finding significant differences in network data streams. Transactions on Networking, 13(6):1219-1232, December 2005.
[38] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. Journal of Algorithms, 55(1):58-75, April 2005.
[39] G. Cormode and S. Muthukrishnan. What's hot and what's not: Tracking most frequent items dynamically. ACM Transactions on Database Systems, 30(1):249-278, March 2005.
[40] G. Cormode. Representations of the research student in popular culture. Annals of Improbable Research, 10(1):26-27, 2004.
[41] G. Ozsoyoglu, N. H. Balkir, G. Cormode, and Z. M. Ozsoyoglu. Electronic books in digital libraries. IEEE Transactions on Knowledge and Data Engineering, 16(3):317-331, 2004.
[42] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams using Hamming norms. IEEE Transactions on Knowledge and Data Engineering, 15(3):529-541, 2003.

Books and Theses

[1] G. Cormode, M. Garofalakis, P. Haas, and C. Jermaine. Synposes for Massive Data: Samples, Histograms, Wavelets and Sketches. now publishers, 2012.
[2] G. Cormode and M. Thottan, editors. Algorithms for Next Generation Networks. Springer, 2010.
[3] J. Abello and G. Cormode, editors. Discrete Methods in Epidemiology, volume 70 of DIMACS. AMS, 2006.
[4] G. Cormode. Sequence Distance Embeddings. PhD thesis, University of Warwick, 2003.

Book Chapters, Technical Reports and Unrefereed Papers

[1] G. Cormode, H. Jowhari, M. Monemizadeh, and S. Muthukrishnan. The sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. Technical report, ArXiV, 2016.
[2] G. Cormode and M. Garofalakis. Join sizes, frequency moments, and applications. In M. Garofalakis, J. Gehrke, and R. Rastogi, editors, Data Stream Management: Processing High-Speed Data Streams. Springer, 2016.
[3] G. Cormode and P. Indyk. Stable distributions in streaming computations. In M. Garofalakis, J. Gehrke, and R. Rastogi, editors, Data Stream Management: Processing High-Speed Data Streams. Springer, 2016.
[4] G. Cormode. Encyclopedia entry on 'count-min sketch'. In M.-Y. Kao, editor, Encyclopedia of Algorithms. Springer, 2015.
[5] G. Cormode. Encyclopedia entry on 'ams sketch'. In M.-Y. Kao, editor, Encyclopedia of Algorithms. Springer, 2015.
[6] G. Cormode. Encyclopedia entry on 'misra-gries summary'. In M.-Y. Kao, editor, Encyclopedia of Algorithms. Springer, 2015.
[7] G. Cormode. Continuous distributed monitoring: A short survey. In Paper accompanying invited talk at Algorithms and Models for Distributed Event Processing (AlMoDEP). ACM, Sept. 2011.
[8] G. Cormode. Sketch techniques for massive data. In G. Cormode, M. Garofalakis, P. Haas, and C. Jermaine, editors, Synposes for Massive Data: Samples, Histograms, Wavelets and Sketches, Foundations and Trends in Databases. NOW publishers, 2011.
[9] S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification in social networks. In C. C. Aggarwal, editor, Social Network Data Analytics. Springer, 2011.
[10] G. Cormode, J. Thaler, and K. Yi. Verifying computations with streaming interactive proofs. Technical Report TR10-159, Electronic Colloquium on Computational Complexity (ECCC), 2010.
[11] G. Cormode. Individual privacy vs population privacy: Learning to attack anonymization. Technical Report arXiv:1011.2511, arXiv, 2010.
[12] G. Cormode. Encyclopedia entry on 'Count-Min Sketch'. In L. Liu and M. T. Ozsu, editors, Encyclopedia of Database Systems, pages 511-516. Springer, 2009.
[13] G. Cormode and M. Garofalakis. Histograms and wavelets on probabilistic data. Technical Report arXiv:0806.1071, arXiv, 2008.
[14] G. Cormode, F. Korn, and S. Tirthapura. Time decaying aggregates in out-of-order streams. Technical Report 2007-10, Center for Discrete Mathematics and Computer Science (DIMACS), 2007.
[15] G. Cormode. Computational fundamentals of analyzing and mining data streams. In Workshop on Data Stream Analysis. 2007.
[16] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for compressed sensing. In Proceedings of Conference on Information Sciences and Systems (CISS). 2006. Invited submission.
[17] G. Cormode. Some key concepts in data mining - clustering. In Discrete Methods in Epidemiology, volume 70 of DIMACS, pages 2-9. AMS, 2006.
[18] G. Cormode and M. Garofalakis. Efficient strategies for continuous distributed tracking tasks. In IEEE Data Engineering Bulletin, pages 33-39. IEEE, March 2005.
[19] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for compressed sensing. Technical Report 2005-40, Center for Discrete Mathematics and Computer Science (DIMACS), 2005.
[20] G. Cormode and S. Muthukrishnan. Towards an algorithmic theory of compressed sensing. Technical Report 2005-25, Center for Discrete Mathematics and Computer Science (DIMACS), 2005.
[21] G. Cormode, S. Muthukrishnan, and I. Rozenbaum. Summarizing and mining inverse distributions on data streams via dynamic inverse sampling. Technical Report 2005-11, Center for Discrete Mathematics and Computer Science (DIMACS), 2005.
[22] G. Cormode. The hardness of the lemmings game, or, “Oh no, more NP-Completeness proofs”. Technical Report 2004-11, Center for Discrete Mathematics and Computer Science (DIMACS), 2004.
[23] J. Abello and G. Cormode. Report on DIMACS working group meeting: Data mining and epidemiology, March 18-19, 2004. Technical Report 2004-37, Center for Discrete Mathematics and Computer Science (DIMACS), 2004.
[24] G. Cormode, A. Czumaj, and S. Muthukrishnan. How to increase the acceptance ratios of top conferences. Technical Report 2004-12, Center for Discrete Mathematics and Computer Science (DIMACS), 2004.
[25] G. Cormode and S. Muthukrishnan. Radial histograms for spatial streams. Technical Report 2003-11, Center for Discrete Mathematics and Computer Science (DIMACS), 2003.
[26] G. Cormode and S. Muthukrishnan. Estimating dominance norms of multiple data streams. Technical Report 2002-35, Center for Discrete Mathematics and Computer Science (DIMACS), 2002.
[27] G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves. Technical Report 2001-26, Center for Discrete Mathematics and Computer Science (DIMACS), 2001.
[28] G. Cormode. Topic dependencies for electronic books. (unpublished manuscript), 1999.
[29] G. Cormode. Springs and sound layouts. (unpublished manuscript), 1998.

Invited Talks and Tutorials

[1] Engineering streaming algorithms, June 2017. Invited talk at Symposium on Experimental Algorithms.
[2] Engineering privacy for small groups, Nov. 2016. Talk at Isaac Newton Institute.
[3] Matching and covering in streaming graphs, Sept. 2016. Invited keynote talk at DISC 2016.
[4] The confounding problem of private data release, Sept. 2016. Invited talk at Heilbronn Conference; WMG; Liverpool University.
[5] Sub-quadratic recovery of correlated pairs, June 2016. Talk at Google Research, Facebook, Simons Institute, Manchester U., LSE.
[6] Compact summaries over large datasets, May 2015. Invited tutorial in PODS 2015 and BICOD 2015.
[7] Trusting the cloud with practical interactive proofs, Apr. 2015. Talk at Google NYC, Bristol, Oxford Algorithms Day, Durham.
[8] The confounding problem of private data release, Mar. 2015. Invited talk at EDBT/ICDT 2015.
[9] Sampling for big data, Aug. 2014. Tutorial at SIGKDD 2014 conference.
[10] Sketches, streaming and big data, July 2014. Summer school on Hashing at University of Copenhagen.
[11] Differentially private mechanisms for data release, March 2014. Talk at Hamilton Institute; Edinburgh University; Yahoo! Research, New York.
[12] Sketch data structures and concentration bounds / mergeable summaries, Sept. 2013. Invited tutorial at Yandex conference.
[13] Streaming, sketching and sufficient statistics, Sept. 2013. Invited tutorial at Big Data Boot Camp, Simons Institute for Theoretical Computer Science, Berkeley.
[14] Summary data structures for massive data, July 2013. Invited talk in Session on Data Streams and Compression, Computability in Europe 2013.
[15] Computing + statistics = data science, June 2013. An introduction to data science for teenagers, IGGY DUX awards, Experience Warwick.
[16] Streaming verification of outsourced computation, May 2013. Talk at Big Data Analytics Workshop, Microsoft Research Cambridge, and University of Warwick.
[17] Building blocks of privacy: Differentially private mechanisms, Apr. 2013. Invited tutorial talk at Privacy Preserving Data Publication and Analysis (PrivDB) workshop.
[18] Privacy and big data: Challenges and promise, Mar. 2013. Invited panel at NYU Abu Dhabi conference on Big Data Systems, Applications, and Privacy.
[19] Current industry trends in computer science research, Mar. 2013. Invited Talk/Panel at NSF Research Experience for Undergraduates PI Meeting.
[20] Data-driven concerns in private data release, Sept. 2012. Talk at Stevens Institute of Technology; AT&T Labs; UMass Amherst; Rutgers University-Newark; Bell Labs; NYU-Abu Dhabi.
[21] Sketches: Past, present and future, 2012. Invited Panel on Sketching and Streaming at SAMSI Workshop, 2012.
[22] Small summaries for Big Data, 2012. Talk at Duke ARO workshop on Big Data at Large; MSR Cambridge; Princeton.
[23] Continuous distributed monitoring: A short survey, Sept. 2011. Invited keynote at Algorithms and Models for Distributed Event Processing (AlMoDEP).
[24] Some sketchy results, May 2011. Talk at DIMACS Workshop on Algorithms in the Field (8F).
[25] Mergeable summaries, Apr. 2011. Talk at Harvard University; DIMACS; Johns Hopkins; University of Pennsylvania; AT&T Labs; Warwick University.
[26] Data anonymization, Mar. 2011. Guest lecture in 'Dealing with Massive Data' at Columbia University.
[27] Distributed summaries, 2011. Talk at DIMACS workshop on Parallelism: a 2020 vision.
[28] G. Cormode and D. Srivastava. Anonymized data: Generation, models, usage, Mar. 2010. Tutorial at ICDE 2010.
[29] Sipping from the firehose: Streaming interactive proofs for verifying computations, February 2010. Invited talk at Bristol Algorithms Days 2010; University of Maryland.
[30] Progress in data anonymization: from k-anonymity to the minimality attack, February 2010. Talk in Bristol.
[31] Anonymization and uncertainty in social network data, Oct. 2009. Invited talk at DBIR Day 2009 at NYU Poly.
[32] G. Cormode and D. Srivastava. Anonymized data: Generation, models, usage, July 2009. Tutorial at SIGMOD 2009.
[33] Processing graph streams: Upper and lower bounds, June 2009. Talk at Workshop on Algorithms and Models for Complex Networks, Bristol UK.
[34] Finding frequent items in data streams, March 2009. Talk at DIMACS Working group on Streaming, Coding and Compressive Sensing; AT&T Labs; UMass Amherst; Dartmouth College.
[35] On 'selection and sorting with limited storage', Sept. 2008. Talk at Mike66 Workshop celebrating Mike Paterson.
[36] Algorithms for distributed functional monitoring, Aug. 2008. Talk at Dagstuhl Seminar on Sublinear Algorithms.
[37] Data stream algorithms, July 2008. Tutorial at Bristol Summer School on Probabilistic Techniques in Computer Science.
[38] G. Cormode and M. Garofalakis. Streaming in a connected world: Querying and tracking distributed data streams, March 2008. Tutorial at VLDB 2006, SIGMOD 2007, EDBT 2008.
[39] Analyzing web 2.0, blogs and social networks, Dec. 2007. Talk at AT&T Labs.
[40] Computational fundamentals of analyzing and mining data streams, March 2007. Tutorial at Workshop on Data Stream Analysis, Caserta, Italy.
[41] Computing the entropy of a stream, December 2006. AT&T Labs; Bell Labs; DyDAn Center.
[42] A compact survey of compressed sensing, December 2006. Workshop on Algorithms for Data Streams, IIT Kanpur, India.
[43] Biased quantiles, June 2006. Bertinoro.
[44] Cluster and data stream analysis, March 2006. Tutorial at DIMACS Workshop on Data Mining and Epidemiology.
[45] Tracking inverse distributions of massive data streams, July 2005. Network Sampling Workshop in Paris, Bell Labs Research Seminar.
[46] Towards an algorithmic theory of compressed sensing, July 2005. Schloss Dagstuhl.
[47] Summarizing and mining skewed data streams, May 2005. NJIT.
[48] Algorithms for processing massive data at network line speed, March 2004. Talk at U. Iowa; U. Minnesota; Dartmouth; Google; AT&T; CWRU; Poly.
[49] How hard are computer games?, February 2004. Talk at DIMACS.
[50] What's hot, what's not, what's new and what's next, October 2003. Bell Labs; DIMACS Mixer at AT&T Labs.
[51] Zeroing in on the l0 metric, August 2003. DIMACS Workshop on Discrete Metric Spaces and their Algorithmic Applications at Princeton.
[52] Tracking frequent items dynamically, 2003. Institute of Advanced Studies; DIMACS; Stonybrook; U. Pennsylvania.
[53] Algorithmic embeddings for comparing large text streams, June 2002. CCR/DIMACS Workshop/Tutorial on Mining Massive Data Sets and Streams: Mathematical Methods and Algorithms for Homeland Defense.
[54] Embeddings of metrics on strings and permuations, March 2002. Workshop on Discrete Metric Spaces and their Algorithmic Applications in Haifa, Israel; BCTCS.
[55] Short string signatures, September 2000. DIMACS Workshop on Sublinear Algorithms in Princeton, NJ.

See also the listings from the dblp and their co-authors list. Google scholar page. Microsoft Academic Search page.

Programme Committees and Workshops

Editorships, Current Program Committees and Workshops: Consider submitting your papers and giving me something to read!

Previous Editorships Program Committees and Workshops:

Teaching

Spring 2015: CS346 Advanced Databases, Warwick University
Spring 2014: CS131 Mathematics for Computer Scientists 2 (part 1), Warwick University
Autumn 2013, 2014, 2015: CS910 Foundations of Data Analytics, Warwick University.
Summer 2012: Distributed Streaming Algorithms Course at MADALGO Summer School -- follow link for slides

Spring 2011: Map Reduce Algorithms Seminar Class at Rutgers on Map Reduce and related topics.

Summer 2008: Streaming algorithms at Bristol Summer school on Probabilistic Techniques in Computer Science A short course on streaming algorithms - see above for slides, write-up, and video.

Spring 2006: Blog Data Analysis A seminar class on blog (weblog) data.

Summer 2003, Summer 2004, Summer 2006: Mentor in the DIMACS REU Program (2003) (2004)

Spring 2003: Processing Massive Data Sets. 4 x 2 hour lectures on recent research on data streams, including maintaining frequent itemsets, computing distinct items and clustering on the stream. Slides available from the class page.



This file was generated using bibtex2html 1.69 on Fri, 15 Sep, 2017 5:18:44 PM