
Efficient Interactive Proofs for Linear Algebra1

Graham Cormode2

University of Warwick, UK3

g.cormode@warwick.ac.uk4

Chris Hickey5

University of Warwick, UK6

c.hickey@warwick.ac.uk7

Abstract8

Motivated by the growth in outsourced data analysis, we describe methods for verifying basic linear9

algebra operations performed by a cloud service without having to recalculate the entire result.10

We provide novel protocols in the streaming setting for inner product, matrix multiplication and11

vector-matrix-vector multiplication where the number of rounds of interaction can be adjusted to12

tradeoff space, communication, and duration of the protocol. Previous work suggests that the costs13

of these interactive protocols are optimized by choosing O(logn) rounds. However, we argue that14

we can reduce the number of rounds without incurring a significant time penalty by considering the15

total end-to-end time, so fewer rounds and larger messages are preferable. We confirm this claim16

with an experimental study that shows that a constant number of rounds gives the fastest protocol.17

2012 ACM Subject Classification Theory of Computation → Models of Computation18

Keywords and phrases Streaming Interactive Proofs, Linear Algebra19

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.5120

Funding Graham Cormode: Supported by European Research Council grant ERC-2014-CoG 64755721

Chris Hickey: Supported by European Research Council grant ERC-2014-CoG 64755722

1 Introduction23

The pitch for cloud computing services is that they allow us to outsource the effort to store24

and compute over our data. The ability to gain cheap access to both powerful computing and25

storage resources makes this a compelling offer. However, it brings increased emphasis on26

questions of trust and reliability: to what extent can we rely on the results of computations27

performed by the cloud? In particular, the cloud provider has an economic incentive to take28

shortcuts or allow buggy code to provide fast results, if they are hardly noticed by the client.29

Prior work has developed the idea of using interactive proofs to independently verify30

outsourced computations without duplicating the effort. Originally invented as tools in the31

realm of computational complexity, recent work has sought to argue that interactive proofs32

can indeed be practically used for verification. Modern research takes two main approaches,33

from highly general methods with currently far-from-practical costs, to tackling specific34

fundamental problems where the overhead of verification is negligible.35

In this work, we focus on the ‘negligible’ end of the spectrum and study primitive36

computations within linear algebra — a core set of tools with applications across engineering,37

data analysis and machine learning. We make four main contributions:38

We consider protocols for inner product and matrix multiplication and present lightweight39

tunable verification protocols for these problems. We also produce an entirely new40

protocol for vector-matrix-vector multiplication.41

Our protocols allow us to trade off computational effort and communication size against42

the number of rounds of interaction. We show it is often desirable to have fewer rounds43

of interaction.44

https://orcid.org/0000-0002-0698-0922
mailto:g.cormode@warwick.ac.uk
mailto:c.hickey@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.ISAAC.2019.51

51:2 Efficient Interactive Proofs for Linear Algebra

We optimize the costs for the cloud, and show that the protocols impose a computational45

overhead that is typically much smaller than the cost of the computation itself.46

Our experimental study confirms our analysis, and demonstrates that the absolute cost47

is minimal, with the client’s cost significantly less than performing the computation48

independently.49

1.1 Streaming Interactive Proofs50

Our work adopts the model of streaming interactive proofs (SIPs), formalized in [7, 8].51

I Definition 1. We have two communicating computational entities, a helper, H, and a52

verifier, V , observing a stream S. V wishes to know f(S), for some function f . After53

viewing the stream, H and V have a conversation, culminating in V producing an output,54

Out(V,S, VR, H), where VR represents a private random string belonging to V , so that55

Out(V,S, VR, H) =
{
X if V is convinced by H that f(S) = X

⊥ Otherwise
56

We say the protocol used by the two parties is complete for f if there exists an honest helper
H such that

P[Out(V,S, VR, H) = f(S)] = 1

and sound if for any helper, H ′, and any input, S ′

P[Out(V,S ′, VR, H
′) /∈ {f(S ′),⊥}] ≤ 1

3

Informally, complete protocols always accept an honest answer, and sound protocols reject57

an incorrect answer most of the time (the constant probability 1
3 is arbitrary and can be58

reduced to be vanishingly small via standard amplification techniques). If a protocol for V is59

both complete and sound, we call it a valid protocol for f . A valid protocol is characterized60

by costs in terms of required space and communication.61

I Definition 2. For a function f we say that there is a d-round (h, v)−protocol if there is a62

valid protocol for f with63

Verifier Memory v — Verifier uses O(v) working memory.64

Communication h — The total communication between the two parties is O(h). Note65

that we do not include the cost of sending the claimed solution in this cost.66

Interactivity d at most 2d messages sent from H to V or vice versa.67

Furthermore, we quantify the computational costs by68

Verifier Streaming Cost — The work during the initial stream.69

Verifier Checking Computation — The work for the interactive stage.70

Helper Overhead — The additional work outside of solving the problem.71

Problem Statement.72

We seek optimal or near optimal verification protocols for core linear algebra operations.73

The canonical (and previously studied) example is the multiplication of two matrices A ∈74

Fk×n
q , B ∈ Fn×k′

q , where Fq is the finite field of integers modulo q, for some prime q > M2n,75

whereM = maxi,j(Aij , Bij) or chosen sufficiently large to not incur overflows. Our protocols76

work on any prime size finite field, consistent with prior work. This allows computation over77

fixed precision rational numbers, with appropriate scaling. For ease of exposition, we assume78

Cormode and Hickey 51:3

in this paper that n = k = k′, although all our algorithms work with rectangular matrices.79

The resulting matrix AB is assumed to be too large for the verifier to conveniently store,80

and so our aim is for the helper to allow the verifier to compute a fingerprint of AB [14],81

defined formally in Section 3.1, that can be used to check the helper’s claimed answer.82

1.2 Prior Work83

Interactive proofs were introduced in the 1980s, primarily as a tool for reasoning about84

computational complexity [12]. A key result showed that the class of problems admitting85

interactive proofs is equivalent to the complexity class PSPACE [17]. Subsequent work in86

this direction led to the development of probabilistically checkable proofs (PCPs), where87

(in our terminology) the verifier only inspects a small fraction of the proof written by the88

helper. One distinction between this prior work and our setting is that PCPs consider a89

verifier who can devote polynomial time to inspecting the proof and has access to the full90

input; by contrast, we consider weaker verifiers, and try to more tightly bound their space91

and computational resources. The notion that interactive proofs could be a practical tool for92

verifying outsourced computation was advocated by Goldwasser, Kalai and Rothblum [11].93

This paper introduced the powerful GKR (or ‘muggles’) protocol for verifying arbitrary94

computations specified as arithmetic circuits. Several papers have aimed to optimize the95

costs of the GKR protocol [7, 19, 18], or to provide systems for verifying general purpose96

computation under a variety of computational or cryptographic models [13, 16, 15]. The latter97

of which tackle large classes of problems using arguments, which consider a computationally98

bounded prover. We consider only proofs as we can achieve highly efficient protocols without99

requiring restriction on the prover, or use of cryptographic assumptions. Furthermore, some100

costs associated with such verification still remain high, such as requiring a large amount of101

pre-processing on the part of the helper, which can only be amortized over a large number of102

invocations. For the common and highly symmetric algebraic computations we work with in103

this paper, it is beneficial to build a specialised protocol.104

Other work has considered engineering protocols for specific problems that are more105

lightweight, and so trade generality for greater practicality. The motivation is that some106

primitives are sufficiently ubiquitous that having special purpose protocols will outweigh the107

effort to design them. An early example of this is given by Frievalds’ algorithm for verifying108

matrix multiplication [10]. This and similar algorithms unfortunately don’t directly work109

for verifiers that can’t store the entire input. This line of work was initiated for problems110

arising in the context of data stream processing, such as frequency analysis of vectors derived111

from streams [5]. Follow-up work addressed problems on graph data [8], data mining [9] and112

machine learning [6].113

These papers tend to consider either the non-interactive case (minimizing the number of114

rounds), or have a poly-logarithmic number of rounds (minimizing the total communication).115

For example, [8] introduces an interactive inner product protocol which can accommodate a116

variable number of rounds. The development assumes that setting the number of rounds to117

be log(n) will be universally optimal, an assumption we reassess in this work. Similarly, in118

[18] the matrix multiplication protocol takes place over O(log(n)) rounds. Our observation119

is that the pragmatic choice may fall between these extremes of non-interactive and highly120

interactive. Taking into account latency and round-trip time between participants, the121

preferred setting might be a constant number of rounds, which yields a communication cost122

which is a small polynomial in the input size, but which is not significantly higher in absolute123

terms from the minimal poly-logarithmic cost.124

We summarize the current state of the art for the problems of computing inner product125

ISAAC 2019

51:4 Efficient Interactive Proofs for Linear Algebra

Method O(h) O(v) Rounds H overhead V overhead + checking
This Work O(ld) O(l + d) d− 1 O(n log(l)) O(nld) +O(ld)

Binary SC [8] O(log(n)) O(log(n)) log(n) O(n) O(n log(n)) +O(log(n))
FFT LDEs [7] O(n1−a) O(na) 1 O(n log(n)) O(n) +O(log(n))

Table 1 Different SIPs for Inner Product with u, v ∈ Fn
q , with n = ld and a ∈ [0, 1].

Method O(h) O(v) Rounds H overhead V overhead + checking
This Work O(ld) O(l + d) d O(n2) O(n2ld) +O(ld)

Binary SC [18] O(log(n)) O(log(n)) log(n) + 1 O(n2) O(n2 log(n)) +O(log(n))
Fingerprints [5] O(n2) O(1) 1 O(1) O(n2) +O(n2)

Table 2 Different SIPs for Matrix Multiplication with A,B ∈ Fn×n
q and n = ld.

(Table 1) and matrix multiplication (Table 2), and show the results we obtain here for126

comparison.127

Lastly, we comment that our results are restricted to the information-theoretically secure128

model of Interactive Proofs, and are separate from recent results in the computational129

(cryptographic) security model [3, 4].130

1.3 Contributions and outline131

Our main contribution is an investigation into the time-optimal number of rounds for a variety132

of protocols. We adapt and improve protocols for inner product and matrix multiplication, as133

well as introducing an entirely new protocol for vector-matrix-vector multiplication. We then134

perform experiments in order to evaluate the time component of each stage of interaction.135

We begin in Section 2 by re-evaluating how to measure the communication cost of a136

protocol, and propose to combine the competing factors of latency and bandwidth into a137

total time cost. This motivates generalized protocols that take a variable number of rounds,138

where we can pick a parameter setting to minimizes the total completion time.139

In Section 3 and 4 we build on previous protocols [8, 7] to construct novel efficient140

variable round protocols for core linear algebra operations. We begin by revisiting variable141

round protocols for inner product. We leverage these to obtain new protocols for matrix142

multiplication and vector-matrix-vector multiplication (which does not appear to have been143

studied previously) with similar asymptotic costs.144

In Section 5, we thoroughly analyse the practical computation costs of the resulting145

protocols, and compare to existing verification methods. We perform a series of experiments146

to back up our claims, and draw conclusions on what we should want from interactive proofs.147

We show that it can be preferable to use fewer rounds, despite some apparently higher costs.148

2 How Much Interaction Do We Want?149

Prior work has sought to find ‘optimal’ protocols which minimize the total communication150

cost. This is achieved by increasing the number of rounds of interaction, with the effect of151

driving down the amount of communication in each round. The minimum communication is152

typically attained when the number of rounds is polylogarithmic [7]. The non-interactive case153

represents another extreme in this regard, requiring a single message from the helper to verifier.154

This allows the parties to work asynchronously at the cost of larger total communication.155

Cormode and Hickey 51:5

Figure 1 Optimal number of rounds for matrix multiplication of various sizes when considering
only communication, with a field size q = O(n3).

In this section we argue that the right approach is neither the non-interactive case nor156

the highly-interactive case. Rather, we argue that a compromise of ‘moderately interactive157

proofs’ can yield better results. To do so we consider the overall time required to process the158

proof.159

The key observation is that the time to process a proof depends not just on the amount160

of communication, but also the number of rounds. In the protocols from Table 1 and 2, each161

round cannot commence until the previous round completes, hence we incur a time penalty162

as a function of the latency between the two communicating parties. The duration of a round163

depends on the bandwidth between them. Thus, we aim to combine number of rounds and164

message size into a single intuitive quantity based on bandwidth and latency that captures165

the total wall-clock time cost of the protocol.166

For matrix multiplication, the variable round protocols summarized in Table 2 spread the167

verification over d rounds, and have a total communication cost proportional to dn1/d. Hence,168

we write the time to perform the communication of the protocol as T = 2dL+ 2dn1/d log(|F|)
B ,169

where latency (L) is measured in seconds, and bandwidth (B) in bits per second. This170

expression emerges due to the 2d changes in direction over the protocol, and considering a171

protocol that sends a total of 2dn1/d field elements (from the analysis in Section 4.2).172

We measured the cost using typical values of L and B observed on a university campus net-173

work, where the ‘ping’ time to common cloud service providers (Google, Amazon, Microsoft)174

is of the order of 20ms, and the bandwidth is around 100Mbps. From the above equation for175

T we see that, for a constant field size |F|, the value of 2n1/dd log(|F|)/B is dominated by176

2dL for even small d under such parameter settings. Hence, we should prefer fewer rounds as177

latency increases. Figure 1 shows the number of rounds which minimizes the communication178

time as a function of the size of the input. We observe that the answer is a small constant,179

at most just two or three rounds, even for the largest input sizes, corresponding to exabytes180

of data.181

3 Primitives182

Before we introduce our protocols, we first describe the building blocks they rely on.183

3.1 Fingerprints184

Fingerprints can be thought of as hash functions for large vectors and matrices with additional185

useful algebraic properties. For A ∈ Fn×n
q and x ∈ Fq, define the matrix fingerprint186

ISAAC 2019

51:6 Efficient Interactive Proofs for Linear Algebra

as Fx(A) =
∑n−1

i=0
∑n−1

j=0 Aijx
in+j . Similarly, for u ∈ Fn

q we have the vector fingerprint187

F vec
x (u) =

∑n−1
i=0 uix

i. The probability of two different matrices having the same fingerprint188

(over the random choice of x) can be made arbitrarily small by increasing the field size.189

I Lemma 3 ([14]). Given A,B ∈ Fn×n
q and x ∈R Fq, we have P[Fx(A) = Fx(B)|A 6= B] ≤190

n2

q .191

A similar result holds for F vec
x . In our model, fingerprints can be constructed in constant192

space, and with computation linear to the input size.193

3.2 Low Degree Extensions194

Low degree extensions (LDEs) have been used extensively in interactive proofs. LDEs have195

been used in conjunction with sum-check (Section 3.3) in a variety of contexts [11, 7, 8].196

Formally, for a set of data S an LDE is a low degree polynomial that goes through each data197

point. Typically, we think of S as being laid out as a vector or d-dimensional tensor indexed198

over integer coordinates. This polynomial can then be evaluated at a random point r with199

the property that, like fingerprinting, two different data sets are unlikely to evaluate to the200

same value at r (inversely proportional to the field size).201

Given input as a vector u ∈ Fn
q , we consider two new parameters, l and d with n ≤ ld, and202

re-index u over [`]d. The d-dimensional LDE of u satisfies f̃u(k0, ..., kd−1) = uk for k ∈ [n]203

where k0...kd−1 is the base l representation of k. For a random point r = (r0, ..., rd−1) ∈ Fd
q ,204

we have205

f̃u(r0, ..., rd−1) =
l−1∑
k0

· · ·
l−1∑

kd−1

ukχk(r) (1)206

χk(r) =
d−1∏
j=0

l−1∏
i=0

i 6=kj

rj − i
kj − i

, (2)207

208

where χ is the Lagrange basis polynomial. Note that f̃u : Fd
q → Fq and q ≥ l. A similar209

definition can be used for a matrix A ∈ Fn×n
q , by reshaping into a vector in Fn2

q .210

The polynomials can be evaluated over a stream of updates in space O(d) and time per211

update O(ld) [8]. The time cost of our verifier to evaluate an LDE at one location, r, is212

O(nld) (for sparse data, n can be replaced with the number of non-zeros in the input).213

3.3 Sum-Check Protocol214

Our final primitive is the sum-check protocol [12]. Sum-check is a multi-round protocol for215

verifying the sum216

G =
l−1∑

k0=0

l−1∑
k1=0
· · ·

l−1∑
kd−1=0

g(k0, k1, ..., kd−1) for g : Fd
q → Fq. (3)217

For our purposes, g will be a polynomial derived from the LDE of a dataset of size n = ld218

(i.e. the d-dimensional tensor representation of the data), and each polynomial used in219

the protocol will have degree λ, with λ = O(l); however, we keep the parameter λ for220

completeness. Provided that all the checks are passed then the verifier is convinced that221

(except with small probability) the value G was as claimed in (3). The original descriptions222

of the sum-check protocol [12, 2] use l = 2, however we shift to using arbitrary l, similar to223

[1, 7, 8]. The protocol goes as follows:224

Cormode and Hickey 51:7

Stream Processing: V randomly picks r ∈ Fd
q and computes g(r0, ..., rd−1).225

Round 1: H computes and sends G and g0 : Fq → Fq, where

g0(k0) =
l−1∑

k1=0
· · ·

l−1∑
kd−1=0

g(k0, k1, ..., kd−1).

V checks that G =
∑l−1

k0=0 g0(k0), computes g0(r0) and sends r0 to H.226

...
Round j + 1: H has received r0, . . . , rj−1 from V , and sends gj : Fq → Fq, where

gj(kj) =
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

g(r0, ..., rj−1, kj , ..., kd−1).

V checks if gj−1(rj−1) =
∑l−1

kj=0 gj(kj), computes gj(rj) and sends rj to H.227

...
Round d: H sends gd−1 : Fq → Fq, where gd−1(kd−1) = g(r0, ..., rd−3, rd−2, kd−1).228

V checks that gd−2(rd−2) =
∑l−1

kd−1=0 gd−1(kd−1), computes gd−1(rd−1), and finally checks229

this is g(r0, ..., rd−2, rd−1).230

H can express the polynomial gj as a set Gj =
{

(gj(x), x) : x ∈ [λ]
}
. In each round V231

sums the first l elements of this set, and checks it is gj−1(rj−1) for j > 0, then evaluates the232

LDE of Gj at rj , giving a computation cost per round of O(l + λ). The verifier also has to233

do some work in the streaming phase, evaluating the function g at r, with cost O(nλd). The234

helper’s computation time comes from having to evaluate g at ld−j points in the jth round,235

and so ultimately evaluating g at
∑d−1

j=1 l
d−j = O(n) points, with a cost per point of O(λd)236

(we subsequently show how this can be reduced in our protocols for linear algebra). The237

costs of performing sum-check are summarized as follows:238

Communication O(λd) words, spread over d rounds.239

Helper costs O(nλd) time for computation.240

Verifier costs O(λ+ d) memory cost, O(nλd) overhead to compute LDE and checking cost241

O(d(l + λ)).242

In our implementations, we will optimize our methods to ‘stop short’ the sum-check
protocol and terminate at round d − 1 (this idea is implicit in the work of Aaronson and
Wigderson [1, Section 7.2]). In this setting, the verifier finds the set

{g(r0, ..., rd−3, rd−2, kd−1) : kd−1 ∈ [l]}.

in the stream processing stage, and then checks this against the claimed set of values provided243

by the helper in round d− 1. This increases the space used by the verifier to maintain these244

l LDE evaluations. However, this does not affect the asymptotic space usage of the verifier,245

since we assume that V already keeps space proportional to l to handle H’s messages. It246

does not affect the streaming overhead time, since each update affects only the LDE point247

with which it shares the final coordinate. Equivalently, this can be viewed as running l248

instances of sum-check in parallel on the data divided into l partitions. Hence, this appears249

as an all-round improvement, at least in theory.250

ISAAC 2019

51:8 Efficient Interactive Proofs for Linear Algebra

4 Protocols for Linear Algebra Primitives251

Using the previously discussed primitives for SIPs, we show how they have been used in252

inner product [7]. We then use this to construct a new variable round method for matrix253

multiplication, and extend it to achieve a novel vector-matrix-vector multiplication protocol.254

4.1 Inner Product255

Given two vectors a, b ∈ Fn
q , the verifier wishes to receive aT b ∈ Fq from the helper. We256

give a straightforward generalization of the analysis of a protocol in [8], as an application of257

sum-check on the LDEs of a and b. This variable round protocol has costs detailed below.258

I Theorem 4. Given a, b ∈ Fn
q , there is a (d − 1)-round (ld, l + d)-protocol with n = ld259

for verifying aT b with helper computation time O
(

n log(n)
d

)
, verifier overhead O(nld), and260

checking cost O(ld).261

The analysis from [8] sets l = 2 and d = log(n), and the computational cost for the verifier is262

O(log(n)) while the cost for the helper is O(n log(n)). For general l and d these costs become263

O(ld) and O(nld) for the verifer and helper respectively.264

In [7] it is shown how the helper’s cost can be reduced to O(n log(n)) for d = 2 and265

l =
√
n using the Discrete Fast Fourier Transform to make a fast non-interactive protocol.266

We extend this for arbitrary d and l, and show how by combining with sum-check we can267

keep the helper’s computation low, proving Theorem 1.268

I Lemma 5. Given a, b ∈ Fn
q the sum269

aT b =
l−1∑

k0=0
· · ·

l−1∑
kd−1=0

f̃a(k0, ..., kd−1)f̃b(k0, ..., kd−1) (4)270

can be verified using a (d−1)-round (ld, l+d)-protocol with helper computation time O(n log(n)
d),271

and verifier computation time O(ld), overhead time O(nld).272

Proof. First, set
g(k0, ..., kd−1) = f̃a(k0, ..., kd−1)f̃b(k0, ..., kd−1).

g : Fd
q → Fq is a degree 2l polynomial in each variable. Now, consider round j + 1 of the

sum-check protocol, where the helper is required to send

gj(x) =
l−1∑

kj+1=0
· · ·

l−1∑
kd=0

g(r1, ..., rj−1, x, kj+1, ..., kd).

Here, g is degree 2l polynomial, sent to V as a set GΣ
j =

{
(gj(x), x) : x ∈ [2l]

}
. To compute273

this set we have H find the individual summands as274

Gj =
{(
g(r1, ..., rj−1, x, kj+1, ..., kd−1), x

)
: x ∈ [2l], kj+1, ..., kd−1 ∈ [l]

}
.275

276

Naive computation of all the values in Gj takes time O(nd) each, for a total cost of O(nld−jd).277

However, instead of computing the LDE at ld−j points with cost O(ld) we can sum ld−j
278

convolutions of length 2l vectors to obtain the same result. We present the full proof of this279

claim in the Appendix. The total cost of each convolution is O(l log(l)). Summing these280

ld−j convolutions gives the cost of the jth round for the helper as O
(

ld−j log(n)
d

)
. Summing281 ∑d−1

j=0 l
d−j over the d rounds gives us our cost of O

(
n log(n)

d

)
. The remaining costs are as in282

our version of the sum-check protocol (Section 3.3). J283

Cormode and Hickey 51:9

4.2 Matrix Multiplication284

By combining the power of LDEs with the matrix multiplication methods from [6], we can285

create a protocol with only marginally larger costs than inner product.286

I Theorem 6. Given two matrices A,B ∈ Fn×n
q , we can verify the product AB ∈ Fn×n

q287

using a d-round (ld, l + d)-protocol with verifier overhead time O(n2ld), checking time O(ld)288

and helper computation time O(n2).289

Proof. We make use of the matrix fingerprints from [6], and generate the fingerprint of AB290

for some x ∈ Fq by expressing matrix multiplication as a sum of outer products.291

Fx(AB) =
n−1∑
i=0

F vec
xn (A↓i)F vec

x (B→i) (5)292

where A↓i denotes the ith column of A and B→j is the jth row of B. We also define:293

Acol = (F vec
xn (A↓1), ..., F vec

xn (A↓n)) and Brow = (F vec
x (B→1), ..., F vec

x (B→n)).294
295

Our fingerprint Fx(AB) is then given by the inner product of Acol and Brow. We apply the
inner product protocol of Theorem 4, hence we need to show the verifier can evaluate the
LDE of the product of these two vectors at a random point,

l−1∑
kd−1=0

f̃Acol(r0, ..., rd−2, kd−1)f̃Brow(r0, ..., rd−2, kd−1),

which we denote as Σf̃Acol(r)f̃Brow(r). We can construct this value in the initial stream by296

storing, for each value of kd−1, f̃Acol(r0, ..., rd−1, kd−1) and f̃Brow(r0, ..., rd−1, kd−1), which is297

done in space O(ld) for the verifier. Each of these requires an initial verifier overhead of298

O(ld) for each of the n2 elements, then checking requires O(ld) as in Theorem 4. The helper299

has to fingerprint the matrices to form Acol and Brow, at a cost of O(n2). The result follows300

by using the generated fingerprint to compare to the fingerprint of the claimed result AB301

(which is provided by the helper in some suitable form, and excluded from the calculation of302

the protocol costs). J303

Note that the helper is not required to follow any particular algorithm to compute the304

matrix product AB. Rather, the purpose of the protocol is for the helper to assist the verifier305

in computing a fingerprint of AB from its component matrices. The time cost of this is much306

faster: linear in the size of the input.307

Fingerprinting versus LDEs. Our protocol in Theorem 6 is stated in terms of fingerprints.
In [18], a d-round protocol is presented which uses

f̃AB(R1, R2) =
1∑

k0=0
· · ·

1∑
klog(n)−1=0

f̃A(R1, k)f̃B(k,R2).

This uses the inner product definition of matrix multiplication, whilst we use the outer308

product property of fingerprints. Finding f̃AB(R1, R2) during the initial streaming has cost309

per update O(log(n)). For our method, we find Σf̃Acol(r)f̃Brow(r), which has cost O(ld). In310

the case l = 2, d = log(n), we see these two methods are very similar. The methods differ311

in how we respond to receiving the result, AB. In [18], the verifier computes the LDE of312

ISAAC 2019

51:10 Efficient Interactive Proofs for Linear Algebra

AB at a cost of O(n2ld), while our method takes time Õ(n2) to process the claimed AB,313

as we simply fingerprint the result. Thaler’s method posesses some other advantages, for314

example it can chain matrix powers (finding Am) without the Helper having to materialize315

the intermediate matrices. Nevertheless, in data analysis applications, it is often the case316

that only a single multiplication is required.317

4.3 Vector-Matrix-Vector Multiplication318

Vector-matrix-vector multiplication appears in a number of scenarios. A simple example319

arises in the context of graph algorithms: suppose that helper wishes to demonstrate that a320

graph, specified by an adjacency matrix A, is bipartite. Let v be an indicator vector for one321

part of the graph, then vTAv = (1 − v)TA(1 − v) = 0 iff v is as claimed. More generally,322

the helper can show a k colouring of a graph using k vector-matrix-vector multiplications323

between the adjacency matrix and the k disjoint indicator vectors for the claimed colour324

classes.325

We reduce the problem of vector-matrix-vector multiplication (which yields a single scalar)326

to inner product computation, after reshaping the data as vectors. Formally, given u, v ∈ Fn
327

and A ∈ Fn×n, we can compute uTAv as328

uTAv =
n∑

i=1

n∑
j=1

uiAijvj = (uvT)vec ·Avec329

330

uTAv is equal to computing the inner product of A and uvT written as length n2 vectors.331

Protocols using this form will need to make use of an LDE evaluation of uvT . We show that332

this can be built from independent LDE evaluations of each vector.333

I Lemma 7. Given u, v ∈ Fn and r ∈R Fd, with n = ld

fuvT (r0, . . . r2d−1) = fu(r0, . . . , rd−1)fv(rd, . . . , r2d−1)

Proof. We abuse notation a little to treat uvT as a vector of length n2, and we assume that334

n = ld (if not, we can pad the vectors with zeros without affecting the asymptotic behaviour).335

We write R1 = (r0, . . . , rd−1) and R2 = (rd, . . . , r2d−1). The proof follows by expanding out336

expression (2) to observe that χk(r0 . . . r2d−1) = χk0,...kd−1(R1)χkd,...,k2d−1(R2) and so337

fuvT (r0, . . . r2d−1) =
l−1∑

k0=0
. . .

l−1∑
k2d−1=0

[(
uvT

)
k
χk(r)

]
338

=
l−1∑

i0=0
. . .

l−1∑
id−1=0

l−1∑
j0=0

. . .

l−1∑
jd−1=0

(uivj)χi(R1)χj(R2)339

= fu(R1)fv(R2)340
341

J342

The essence of the proof is that we can obtain all the needed cross-terms corresponding to343

entries of uvT from the product involving all terms in fu and all terms in fv.344

We can employ the protocol for inner product using fA and fuvT , which we can compute345

in the streaming phase, as fuvT = fufv to give us Theorem 3.346

I Theorem 8. Given u, v ∈ Fn and A ∈ Fn×n, we can verify uTAv using a (d− 1) round347

(ld, l+d)-protocol for n2 = ld, with helper computation O
(

n2 log(n)
d

)
, verifier overhead O(nld)348

and checking cost O(l).349

Cormode and Hickey 51:11

Verifier Tasks Helper Tasks

a Finds AB

b0 Sends AB

Computes G0b
Sends G0c

Computes Gd−2b
Sends Gd−2c

Streams A,B and
computes ΣfAcol

(r)fBrow (r) α

Computes fx(AB) β0

Sends x δ

Checks
∑l−1

i=0(G0)i = fx(AB)
Computes fG0(r0)

β

Sends r0 δ

Checks∑l−1
i=0(Gd−2)i = fGd−3(rd−3)

fGd−2(rd−2) = ΣfAcol
(r)fBrow

(r)
β

Figure 2 Detailed Matrix Multiplication Protocol

5 Practical Analysis350

To evaluate these protocols in practice, we focus on the core task of matrix multiplication.351

In order to discuss the time costs associated with execution of our protocols in more detail,352

we break down the various steps into components as illustrated in Figure 2. Here, we use353

Greek characters to describe the costs for the verifier: the initial streaming overhead (t[α]),354

the checks performed in total in each round (t[β]), as well as the time to send responses355

(t[δ]). For the helper, we identify four groups of tasks, denoted by Latin characters: the356

computation of the matrix product itself (t[a]), the communication of this result to the357

verifier (t[b0]), and the time per round to compute and send the required message (t[b] and358

t[c] respectively).359

Recall our discussion in Section 2 on the effects of communication bandwidth and latency360

on the optimal number of rounds. In our simple model we focused on the tasks most directly361

involved with communication (the verifier round cost t[δ] and helper round cost t[c]). We362

implicitly treated the corresponding round computation costs (t[β] and t[b]) as nil. As the363

construction and sending of the solution (t[a] and t[b0]) will dominate the first stage of the364

protocol, we focus our experimental study on measuring values of t[b], t[β0] and t[β] to365

quantify a reasonable estimate for the length of time the interactive phase of the protocol366

takes with bandwidth B and latency L.367

We account for the cost required for computation and communication separately to find368

the total time, T , as follows:369

T = t[work] + t[comm] = (t[β0] + t[β] + t[b]) +
(

2dL+ 2dl log(|F|)
B

)
.370

371

T is the total time for the protocol from receiving the answer to producing a conclusion of372

the veracity of the result. We can omit the verifier’s streaming computation time t[α] from373

ISAAC 2019

51:12 Efficient Interactive Proofs for Linear Algebra

l d t[b] (ms) t[β] (µs)
2 12 0.230±0.02 9±2
4 6 0.120±0.01 14±1
8 4 0.099±0.01 35±7
16 3 0.097±0.01 35±7
64 2 0.110±0.01 43±5

(a) n = 212, t [β0] = 149± 15ms

l d t[b] (ms) t[β] (µs)
2 16 3.5± 0.2 6± 1
4 8 2.0± 0.1 9± 1
16 4 1.6± 0.1 46± 3
256 2 1.8± 0.1 1700± 200

(b) n = 216, t [β0] = 38.0± 6.5s
l d t[b] (ms) t[β] (µs)
2 18 14.1± 0.9 6± 1
4 9 8.0± 0.5 11± 3
8 6 6.3± 0.5 30± 3
64 3 7.1± 0.6 270± 30
512 2 7.8± 0.7 6400± 650

(c) n = 218, t [β0] = 603± 63s

Table 3 Interaction phase costs

n t[a] (s)
210 0.61± 0.06
211 5.61± 0.7
212 47.9± 4.3
213 403± 34

Table 4 Matrix Multiplication Timings

the total protocol run time, as this can be overlapped with the helper’s computation of the374

true answer, which should always dominate.375

In what follows, we instantiate this framework and determine the costs of implementing376

protocols. These demonstrate that while computation cost for matrix multiplication (t[a])377

grows superquadratically, the streaming cost (t[α]) is linear in the input size n. The dominant378

cost during the protocol is t[β0], to fingerprint the claimed answer; other computational costs379

in the protocol are minimal. Factoring in the communication based on real-world latency380

and bandwith costs, we conclude that latency dominates, and indeed we prefer to have fewer381

rounds. In all our experiments, the optimal number of rounds is just 2. Extrapolating to382

truly enormous values of n suggest that still three rounds would suffice.383

5.1 Setup384

The experiments were performed on a workstation with an Intel Core i7-6700 CPU @ 3.40GHz385

processor, and 16GB RAM. Our implementations were written in single-threaded C using the386

GNU Scientific Library with BLAS for the linear algebra, and FFTW3 library for the Fourier387

Transform. The programs were compiled with GCC 5.4.0 using the -O3 optimization flag,388

under Linux (64-bit Ubuntu 16.04), with kernel 4.15.0. Timing was done using the clock()389

function for all readings except t[β], which used getrusage() as the timings were so small.390

For the various tests performed, the matrices and vectors were generated using the C391

rand() function. Note that the work of the protocols is not affected by the data values, so392

we are not much concerned with how the inputs are chosen. The arithmetic field used was Fq393

with q = 231 − 1 (larger fields, such as q = 261 − 1 or q = 2127 − 1 could easily be substituted394

to obtain much lower probability of error, at a small increase in time cost). The work of the395

verifier and work of the helper were both simulated on the same machine.396

Cormode and Hickey 51:13

Table 5 Time taken for interactions (ping
20ms, bandwidth 100Mbps, |F|=231−1)

n l d
Latency
cost (ms)

Bandwidth
cost (ms)

212

2 12 440 0.014
4 6 200 0.012
8 4 120 0.015
16 3 80 0.020
64 2 40 0.041

216

2 16 600 0.019
4 8 280 0.018
16 4 120 0.031
256 2 40 0.163

218

2 18 680 0.022
4 9 320 0.020
8 6 200 0.026
64 3 80 0.082
512 2 40 0.328

Table 6 Verifier matrix multiplication time (ping
20ms, bandwidth 100Mbps, |F|=231−1).

n l d
t[comm]

(s)
t[work]
(s) T (s)

212

2 12 0.44

0.149

0.589
4 6 0.20 0.349
8 4 0.12 0.269
16 3 0.08 0.229
64 2 0.04 0.189

216

2 16 0.60

38

38.6
4 8 0.28 38.3
16 4 0.12 38.1
256 2 0.04 38.0

218

2 18 0.68

603

604
4 9 0.32 603
8 6 0.20 603
64 3 0.08 603
512 2 0.04 603

5.2 Matrix Multiplication Results397

Table 3 shows the experimental results for the matrix multiplication protocol for matrix398

sizes ranging from n = 212 to 218. Note, this means we are tackling matrices with tens of399

billions of entries. For completeness, we timed BLAS matrix multiplication on our machine400

for n = 210 to 213 to give an idea of the comparative magnitude of a (Table 4), although401

further results were restricted by machine memory. Due to memory limitations, we tested402

our algorithms using freshly drawn random values in place of stored values of the required403

vectors or matrices. This does not affect our ability to compare the data, and allows us to404

increase the data size beyond that of the machine memory.405

The computation cost t[a] grows with the cost of matrix multiplication, which is super-406

quadratic in n, while t[α] grows linearly with the size of the input, which is strictly quadratic407

in n. Further, the verifier does not need to retain whole matrices in memory, and can compute408

the needed quantities with a single linear pass over the input.409

We next study the helper’s cost across all d rounds to compute the responses in each step410

of the protocol. Our analysis bounds this total cost as O(n log(n)
d). However, we observe that411

in our experiments, this quantity tends to decrease as d decreases. We conjecture that while412

the cost does decrease each round, the amount of data needed to be handled quickly decreases413

to a point where it is cache resident, and the computation takes a negligible amount of time414

compared to the data access. Thus, this component of the helper’s time cost is driven by the415

number of rounds during which the relevant data is still ‘large’, which is greater for larger d.416

When we look at the contributory factors to t[work], we observe that the dominant417

term is by far t[β0], where the verifier reads through the claimed answer and computes the418

fingerprint. Thus, arguably, the computational cost of any such protocol once the prover finds419

the answer is dominated by the time the verifier takes to actually inspect the answer: all420

subsequent checks are minimal in comparison. This justifies our earlier modelling assumption421

to omit computational costs in our balancing of latency and bandwidth factors.422

We now turn to the time due to communication, summarized in Table 5. Here, we can423

clearly see the huge difference of several orders of magnitude between the latency cost, 2dL,424

versus the bandwidth cost, 2dl log(|F|)
B . Note that these timing figures are simulated, based on425

ISAAC 2019

51:14 Efficient Interactive Proofs for Linear Algebra

the average values of latency and the corresponding average bandwidth found when pinging426

several cloud servers such as Google, Amazon and Microsoft from a university network.427

The dependencies on both latency and bandwidth are linear. Consequently, if the latency428

were reduced to 10ms, this would halve the times in the Latency cost column; similarly, if429

bandwidth were doubled, this would halve the times in the Bandwidth cost column. We430

observe then that for all but very low bandwidth scenarios, the latency cost will dominate.431

Finally, we put these pieces together, and consider the total protocol time from both432

computation and communication components. We obtain the total time by summing t[work]433

and t[comm], in Table 6. These results confirm our earlier models, and the fastest time is434

achieved with a very small number of rounds. For all values of n tested in these experiments,435

we see the optimal value of d is 2, the minimally interactive scenario. The trend is such that,436

because of the sheer domination of latency and t[β0], it is unlikely that more than two or437

three rounds will ever be needed for even the largest data sets. As n increases, the size of438

t[work] grows faster than t[comm], predominantly due to t[β0]. Therefore to minimize the439

cost of verification one should prefer a small constant number of rounds.440

6 Concluding Remarks441

Our experimental study supports the claim that fewer rounds of interaction are preferable442

to allow efficient interactive proofs for linear algebra primitives. For large instances in443

our experiments, the optimal number of rounds is just two. These primitives allow simple444

implementation of more complex tools such as regression and linear predictors [6]. Other445

primitive operations, such as scalar multiplication and addition, are trivial within this model446

(since LDE evaluations and fingerprints are linear functions), so these primitives collectively447

allow a variety of computations to be efficiently verified. Further operators, such as matrix448

(pseudo)inversion and factorization are rather more involved, not least since they bring449

questions of numerical precision and representation [6]. Nevertheless, it remains open to450

show more efficient protocols for other functions, such as matrix exponentiation, and to allow451

sequences of operations to be easily ‘chained together’ to verify more complex expressions.452

Cormode and Hickey 51:15

References453

1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM454

Trans. Comput. Theory, 1(1):2:1–2:54, February 2009. URL: http://doi.acm.org/10.1145/455

1490270.1490272, doi:10.1145/1490270.1490272.456

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge457

University Press, 2009.458

3 Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. Cryptology459

ePrint Archive, Report 2016/116, 2016. https://eprint.iacr.org/2016/116.460

4 Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and Ron D.461

Rothblum. Fiat-shamir from simpler assumptions. Cryptology ePrint Archive, Report462

2018/1004, 2018. https://eprint.iacr.org/2018/1004.463

5 Amit Chakrabarti, Graham Cormode, and Andrew Mcgregor. Annotations in data streams.464

Automata, Languages and Programming, pages 222–234, 2009.465

6 Graham Cormode and Chris Hickey. Cheap checking for cloud computing: Statistical analysis466

via annotated data streams. In International Conference on Artificial Intelligence and Statistics,467

pages 1318–1326, 2018.468

7 Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation469

with streaming interactive proofs. In Proceedings of the 3rd Innovations in Theoretical470

Computer Science Conference, pages 90–112. ACM, 2012.471

8 Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive472

proofs. Proceedings of the VLDB Endowment, 5(1):25–36, 2011.473

9 Samira Daruki, Justin Thaler, and Suresh Venkatasubramanian. Streaming verification in474

data analysis. In International Symposium on Algorithms and Computation, pages 715–726.475

Springer, 2015.476

10 Rūsin, š Freivalds. Fast probabilistic algorithms. Mathematical Foundations of Computer477

Science 1979, pages 57–69, 1979.478

11 Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation:479

interactive proofs for muggles. In Proceedings of the fortieth annual ACM symposium on480

Theory of computing, pages 113–122. ACM, 2008.481

12 Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for482

interactive proof systems. Journal of the ACM (JACM), 39(4):859–868, 1992.483

13 Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical484

verifiable computation. Commun. ACM, 59(2):103–112, January 2016.485

14 Michael O Rabin. Fingerprinting by random polynomials. Center for Research in Computing486

Techn., Aiken Computation Laboratory, Univ., 1981.487

15 Srinath TV Setty, Richard McPherson, Andrew J Blumberg, and Michael Walfish. Making488

argument systems for outsourced computation practical (sometimes). In NDSS, volume 1,489

page 17, 2012.490

16 Srinath TV Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J Blumberg, and491

Michael Walfish. Taking proof-based verified computation a few steps closer to practicality. In492

USENIX Security Symposium, pages 253–268, 2012.493

17 Adi Shamir. IP=PSPACE. Journal of the ACM (JACM), 39(4):869–877, 1992.494

18 Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Advances in Cryptology–495

CRYPTO 2013, pages 71–89. Springer, 2013.496

19 Victor Vu, Srinath Setty, Andrew J Blumberg, and Michael Walfish. A hybrid architecture for497

interactive verifiable computation. In Security and Privacy (SP), 2013 IEEE Symposium on,498

pages 223–237. IEEE, 2013.499

ISAAC 2019

http://doi.acm.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/1490270.1490272
http://dx.doi.org/10.1145/1490270.1490272
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2018/1004

51:16 Efficient Interactive Proofs for Linear Algebra

A Details of Proof of Lemma 5500

I Lemma 9 (Restatement of Lemma 5). Given a, b ∈ Fn
p the sum

aT b =
l−1∑

k0=0
· · ·

l−1∑
kd−1=0

fa(k0, ..., kd−1)fb(k0, ..., kd−1)

can be verified using a (d− 1)-round (ld, l+ d)-protocol with helper overhead time O(n log(n)
d),501

and verifier overhead time of O(nld) and checking computation time O(ld).502

Proof. First, set
g(k0, ..., kd−1) = fa(k0, ..., kd−1)fb(k0, ..., kd−1)

g : Fq × ...× Fq → Fq is a degree 2l polynomial in each variable. Now, consider round j + 1
of the sum-check protocol, where the helper is required to send

gj(x) =
l∑

kj+1=1
· · ·

l∑
kd=1

g(r1, ..., rj−1, x, kj+1, ..., kd)

Here, g is degree 2l polynomial, sent to V as a set GΣ
j =

{
(gj(x), x) : x ∈ [2l]

}
. To compute503

this set we have H find the individual summands as504

Gj =
{(
g(r1, ..., rj−1, x, kj+1, ..., kd−1), x

)
: x ∈ [2l], kj+1, ..., kd−1 ∈ [l]

}
505
506

Naive computation of all the values in Gj takes time O(nd) each, for a total cost of O(nld−jd).507

However, instead of computing the LDE at ld−j points with cost O(ld) we can sum ld−j
508

convolutions of length 2l vectors to obtain the same result (See below). The total cost of the509

convolution is O(l log(l)) = O(l log(n)
d), using n = ld. Summing these ld−j convolutions gives510

the cost of the jth round for the helper as O(ld−j log(n)
d). Summing over the d rounds gives511

us our cost of O(n log(n)
d). J512

A.1 Finding Gj with Convolution513

To simplify the argument, we consider the computation of aTa (also referred to as F2). The514

general case of aT b follows the same steps but the notation quickly becomes cumbersome.515

So, given a vector a ∈ Fn
q , we want to find

∑n−1
i=0 a

2
i . This is equivalent to finding the inner516

product of a with itself.517

Consider a d− 1 round protocol for the F2 problem on a ∈ Fn
q . We have n = ld, and so

for each round of interaction the helper sends

gj(x) =
l∑

kj+1=1
· · ·

l∑
kd−1=1

fA(r0, ..., rj−1, x, kj+1, ..., kd−1)2,

where the input is reshaped as the d-dimensional A ∈ Fl×l×...×l. There are d − 1 such518

polynomials to send over the course of the protocol, and each one has degree 2l − 1.519

Round 1.520

Consider first the opening round

g0(x) =
l∑

k1=1
· · ·

l∑
kd−1=1

fA(x, k1, ..., kd−1)2

Cormode and Hickey 51:17

This can be found by materializing the set of values G0 =
{(
fA(x, k1, ..., kd), x

)
: x ∈521

[2l], k1, ..., kd−1 ∈ [l]
}
, and then summing over k1, . . . , kd to obtain GΣ

0 .522

For the first half of the GΣ
0 , the computation is closely linked to the original input, and

so we can simply compute the partial sums
l∑

k1=1
· · ·

l∑
kd−1=1

fA(x, k1, ..., kd−1)2.

These sums partition the input, so the total time is O(n) to obtain the values for all x ∈ [l].523

However, for x values in the range l + 1 . . . 2l, we need to evaluate the LDE at locations524

not present in the original input. To avoid the higher cost associated with naive computation525

of all terms, we expand the definition of LDEs:526

fA(k0, ..., kd−1) =
l−1∑

p0=0
· · ·

l−1∑
pd−1=0

Ap0p1...pd−1χp0p1...pd−1(k0, ..., kd−1)527

χp0p1...pd−1(k0, ..., kd−1) =
d−1∏
j=0

l−1∏
i=0,i6=pj

kj − i
pj − i

528

529

In what follows, we can make use of the fact that not all input values contribute to every530

LDE evaluation needed. We expand as follows:531

g0(x) =
l−1∑

k1=0
· · ·

l−1∑
kd−1=0

fA(x, k1, ..., kd−1)532

=
l−1∑

k1=0
· · ·

l−1∑
kd−1=0

 l−1∑
p0=0

l−1∑
p1=0
· · ·

l−1∑
pd−1=0

533

Ap0p1...pd−1

 l−1∏
i=0,i6=p0

x− i
p0 − i

 l−1∏
i=0,i6=p1

k1 − i
p1 − i

 · · ·
 l−1∏

i=0,i6=pd−1

kd−1 − i
pd−1 − i

2

534

=
l−1∑

k1=0
· · ·

l−1∑
kd−1=0

 l−1∑
p0=0

Ap0k1...kd−1

l−1∏
i=0,i6=p0

x− i
p0 − i

2

535

=
l−1∑

k1=0
· · ·

l−1∑
kd−1=0

 l−1∑
p0=0

Ap0k1...kd−1

l−1∏
i=0,i6=p0

1
p0 − i

(l−1∏
i=0

(x− i)
)(

1
x− p0

)2

536

=
l−1∑

k1=0
· · ·

l−1∑
kd−1=0

(l−1∏
i=0

(x− i)
)

l−1∑
p0=0

Ap0k1...kd−1

l−1∏
i=0,i6=p0

1
p0 − i

(1
x− p0

)2

537

538

Note in the second step we use that539

l−1∑
pj=0

l−1∏
i=0,i6=pj

kj − i
pj − i

=
{

0 pj 6= kj

1 pj = kj

540

We now introduce the helper functions541

g(p) = 1
p

; h(x) =
l∏

i=1
(x− i) and q(p) =

l−1∏
i=0,i6=p

1
p− i

(6)542

ISAAC 2019

51:18 Efficient Interactive Proofs for Linear Algebra

to simplify the notation. We define the vectors543

bk1...kd−1(p) =
{
Ap,k1...kd−1q(p) for p ∈ [0, l − 1], k1, ..., kd−1 ∈ [0, l − 1]
0 for p ∈ [l, 2l − 1], k1, ..., kd−1 ∈ [0, l − 1]

544

and use these to rewrite in terms of convolutions545

g0(x) :=
l−1∑

k1=1
· · ·

l−1∑
kd−1=0

(
h(x)

l−1∑
p0=0

[
bk1...kd−1(p0)g(x− p0)

])2

546

= h(x)2
l−1∑

k1=0
· · ·

l−1∑
kd−1=0

(conv(bk1...kd−1 , g)[x])2
547

= h(x)2

(
l∑

k2=1
· · ·

l∑
kd=1

DFT−1(DFT(bk1...kd−1) ·DFT(g))
)

[x]2548

549

Thus, by precomputing some arrays of values, we reduce the computation to several550

convolutions that can be evaluated quickly via fast Fourier transform. Observe that this551

FFT does not need to be computed over the same field as the matrix multiplication: we can552

choose any suitably large field for which there is an FFT (say, real vectors of size 2j for some553

j), and then map the result back into Fq. Forming bk1...kd
(p) takes time O(ld). We have to554

do O(ld−1) convolutions on vectors of length O(l), so each convolution takes time O(l log(l)).555

Since log(l) = log(n 1
d), we can write the helper’s time cost for the first round as O(n

d log(n)).556

Round j.557

Similar rewritings are possible in subsequent rounds. Initially, it may seem that things
are more complex for Gj , as each fA(r0, ..., rj−1, x, kj+1, ..., kd−1) appears to require full
inspection of the input to evaluate at (r0, ..., rj−1). However, we can again define an ancillary
array bk1...kd−1 to more easily compute this. In the sum-check protocol after the helper sends
G0, it receives r0, with which we define the array over [l]d−1 :

A
(1)
r0k1...kd−1

=
l−1∑
p=0

bk1...kd−1(p)
l−1∏

i=0,i6=p

(r0 − i)

This allows the Helper to form G1 using the same idea as above, but with A(1) instead of558

A. Working in terms of A(1) reduces the Helper’s cost from O(ld−1ld) for computing the559

fA(r0, k1, ..., kd−1) for each ki ∈ [l] to just O(l2) when combined with using bk1...kd−1 .560

In more detail, and with more generality, let us consider the jth round, where we are
forming Gj and GΣ

j . We define

A
(j)
r0,...,rj−1,kj ...kd−1

=
l−1∑
p=0

bkj ...kd−1(p)
l−1∏

i=0,i6=p

(rj−1 − i)

Cormode and Hickey 51:19

Then we have the following computation for x ∈ [l, 2l − 1]:561

gj(x) =
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

fA(r0, ..., rj−1, x, kj+1, ..., kd−1)2
562

=
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

 l−1∑
p0=0
· · ·

l−1∑
pd−1=0

Ap0...pd−1

 l−1∏
i=0,i6=p0

r0 − i
p0 − i

 · · ·
 l−1∏

i=0,i6=pj−1

rj−1 − i
pj−1 − i

563

 l−1∏
i=0,i6=pj

x− i
pj − i

 l−1∏
i=0,i6=pj+1

kj+1 − i
pj+1 − i

 · · ·
 l−1∏

i=0,i6=pd−1

kd−1 − 1
pd−1 − 1

2

564

=
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

 l−1∑
pj=0

A(j)
r0...rj−1pjkj+1...kd−1

l−1∏
i=0,i6=pj

x− i
pj − i

2

565

=
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

 l−1∑
pj=0

A(j)
r0...rj−1pjkj+1...kd−1

l−1∏
i=0,i6=pj

1
pj − i

(l−1∏
i=0

(x− i)
)(

1
x− pj

)2

566

=
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

(l−1∏
i=0

(x− i)
)

l−1∑
pj=0

A(j)
r0...rj−1pjkj+1...kd−1

l−1∏
i=0,i6=pj

1
pj − i

(1
x− pj

)2

567

568

We make use of the same set of helper functions specified in equation (6), and define the569

vectors570

bkj+1...kd
(p) =

{
A

(j)
r0...rj−1pkj+1...kd−1

q(p) for p ∈ [0, l − 1], kj+1, ..., kd ∈ [0, l − 1]
0 for p ∈ [l, 2l − 1], kj+1, ..., kd−1 ∈ [0, l − 1]

571

We can now continue to express the computation in terms of convolutions572

gj(x) :=
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

h(x)
l−1∑

pj=0

[
bkj+1...kd−1(pj)g(x− pj)

]2

573

=
l−1∑

kj+1=0
· · ·

l−1∑
kd−1=0

(
h(x) conv(bkj+1...kd−1 , g)[x]

)2
574

= h(x)2

 l−1∑
kj+1=0

· · ·
l−1∑

kd−1=0
DFT−1(DFT(bkj ...kd

) ·DFT(g))

 [x]2575

576

We can think of A(j) as a shrinking input array, where A(j) ∈ Fl×l×...×l is d−j dimensional,
and

bkj+1...kd
(pj) = A

(j)
r1...rj−1pjkj+1...kd

l∏
i=1,i6=pj

1
pj − i

A
(j)
r0,...,rj−1,kj ...kd−1

=
l−1∑

pj−1=0
A

(j−1)
r1...rj−2pj−1kj ...kd

l−1∏
i=0,i6=pj−1

rj−1 − i
pj−1 − i

Using this formulation, the dominant computation cost in round j will be from the FFT,
which involves ld−j−1 convolutions of cost O(l

d log(n)) each. Thus the final cost for the round

ISAAC 2019

51:20 Efficient Interactive Proofs for Linear Algebra

is O(ld−j

d log(n)). The cost of running the entire protocol requires d− 1 rounds, making the
computational cost for the helper

O

d−2∑
j=0

ld−j

d
log(n)

 = O

(
n log(n)

∑d−2
j=0 l

−j

d

)
= O

(
n log(n)

d

)

since l ≥ 2. Note that when d = log(n) and l = 2, we achieve O(n) time for the helper.577

The cost increases with fewer rounds, up to a maximum of O(n logn) for a constant round578

protocol.579

Cost summary.580

For the verifier, the checking computation cost is O(ld), which emerges from the d rounds,581

where in each round the verifier sums the first l elements of GΣ
j , before evaluating the LDE582

of GΣ
j at rj , making for a total cost of O(l). The streaming overhead for the verifier involves583

evaluating the LDE of the input A, for a cost of O(nld) The verifier requires O(l+d) memory584

to find the LDE of a at r ∈ Fd. The communication will be O(ld) as we have the helper585

sending d sets Gj of size O(l). Hence, we summarize the various costs as586

Rounds d− 1587

Communication O(ld)588

Verifier Memory O(l + d)589

Helper Computation Time O(n log(n)
d)590

Verifier Overhead Time O(nld)591

Verifier Checking Computation Time O(ld)592

	Introduction
	Streaming Interactive Proofs
	Prior Work
	Contributions and outline

	How Much Interaction Do We Want?
	Primitives
	Fingerprints
	Low Degree Extensions
	Sum-Check Protocol

	Protocols for Linear Algebra Primitives
	Inner Product
	Matrix Multiplication
	Vector-Matrix-Vector Multiplication

	Practical Analysis
	Setup
	Matrix Multiplication Results

	Concluding Remarks
	Details of Proof of Lemma 5
	Finding Gj with Convolution

