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Abstract

Methods for approximate query processing are essential for dealing with mas-
sive data. They are often the only means of providing interactive response
times when exploring massive datasets, and are also needed to handle high
speed data streams. These methods proceed by computing a lossy, compact
synopsis of the data, and then executing the query of interest against the syn-
opsis rather than the entire data set. We describe basic principles and re-
cent developments in approximate query processing. We focus on four key
synopses: random samples, histograms, wavelets, and sketches. We consider
issues such as accuracy, space and time efficiency, optimality, practicality,
range of applicability, error bounds on query answers, and incremental main-
tenance. We also discuss the trade-offs between the different synopsis types.
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Introduction

A synopsis of a massive data set captures vital properties of the original data
while typically occupying much less space. For example, suppose that our
data consists of a large numeric time series. A simple summary allows us to
compute the statistical variance of this series: we maintain the sum of all the
values, the sum of the squares of the values, and the number of observations.
Then the average is given by the ratio of the sum to the count, and the variance
is ratio of the sum of squares to the count, less the average. An important
property of this synopsis is that we can build it efficiently. Indeed, we can
find the three summary values in a single pass through the data.

However, we may need to know more about the data than merely its vari-
ance: how many different values have been seen? How many times has the
series exceeded a given threshold? What was the behavior in a given time pe-
riod? To answer such queries, our three-value summary does not suffice, and
synopses appropriate to each type of query are needed. In general, these syn-
opses will not be as simple or easy to compute as the synopsis for variance.
Indeed, for many of these questions, there is no synopsis that can provide the
exact answer, as is the case for variance. The reason is that for some classes
of queries, the query answers collectively describe the data in full, and so any
synopsis would effectively have to store the entire data set.
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2 Introduction

To overcome this problem, we must relax our requirements. In many
cases, the key objective is not obtaining the exact answer to a query, but
rather receiving an accurate estimate of the answer. For example, in many
settings, receiving an answer that is within 0.1% of the true result is adequate
for our needs; it might suffice to know that the true answer is roughly $5 mil-
lion without knowing that the exact answer is $5,001,482.76. Thus we can
tolerate approximation, and there are many synopses that provide approxi-
mate answers. This small relaxation can make a big difference. Although for
some queries it is impossible to provide a small synopsis that provides exact
answers, there are many synopses that provide a very accurate approximation
for these queries while using very little space.

1.1 The Need for Synopses

The use of synopses is essential for managing the massive data that arises in
modern information management scenarios. When handling large data sets,
from gigabytes to petabytes in size, it is often impractical to operate on them
in full. Instead, it is much more convenient to build a synopsis, and then use
this synopsis to analyze the data. This approach captures a variety of use-
cases:

• A search engine collects logs of every search made, amounting
to billions of queries every day. It would be too slow, and energy-
intensive, to look for trends and patterns on the full data. Instead, it
is preferable to use a synopsis that is guaranteed to preserve most
of the as-yet undiscovered patterns in the data.

• A team of analysts for a retail chain would like to study the impact
of different promotions and pricing strategies on sales of different
items. It is not cost-effective to give each analyst the resources
needed to study the national sales data in full, but by working with
synopses of the data, each analyst can perform their explorations
on their own laptops.

• A large cellphone provider wants to track the health of its net-
work by studying statistics of calls made in different regions, on
hardware from different manufacturers, under different levels of
contention, and so on. The volume of information is too large to
retain in a database, but instead the provider can build a synopsis
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of the data as it is observed live, and then use the synopsis off line
for further analysis.

These examples expose a variety of settings. The full data may reside in
a traditional data warehouse, where it is indexed and accessible, but is too
costly to work on in full. In other cases, the data is stored as flat-files in a
distributed file system; or it may never be stored in full, but be accessible only
as it is observed in a streaming fashion. Sometimes synopsis construction is
a one-time process, and sometimes we need to update the synopsis as the
base data is modified or as accuracy requirement change. In all cases though,
being able to construct a high quality synopsis enables much faster and more
scalable data analysis.

From the 1990’s through today, there has been an increasing demand for
systems to query more and more data at ever faster speeds. Enterprise data
requirements have been estimated [174] to grow at 60% per year through at
least 2011, reaching 1,800 exabytes. On the other hand, users—weaned on
Internet browsers, sophisticated analytics and simulation software with ad-
vanced GUIs, and computer games—have come to expect real-time or near-
real-time answers to their queries. Indeed, it has been increasingly realized
that extracting knowledge from data is usually an interactive process, with
a user issuing a query, seeing the result, and using the result to formulate
the next query, in an iterative fashion. Of course, parallel processing tech-
niques can also help address these problems, but may not suffice on their
own. Many queries, for example, are not embarrassingly parallel. Moreover,
methods based purely on parallelism can be expensive. Indeed, under evolv-
ing models for cloud computing, specifically “platform as a service” fee mod-
els, users will pay costs that directly reflect the computing resources that they
use. In this setting, use of Approximate Query Processing (AQP) techniques
can lead to significant cost savings. Similarly, recent work [15] has pointed
out that approximate processing techniques can lead to energy savings and
greener computing. Thus AQP techniques are essential for providing, in a
cost-effective manner, interactive response times for exploratory queries over
massive data.

Exacerbating the pressures on data management systems is the increasing
need to query streaming data, such as real time financial data or sensor feeds.
Here the flood of high speed data can easily overwhelm the often limited CPU
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and memory capacities of a stream processor unless AQP methods are used.
Moreover, for purposes of network monitoring and many other applications,
approximate answers suffice when trying to detect general patterns in the
data, such as a denial-of-service attack. AQP techniques are thus well suited
to streaming and network applications.

1.2 Survey Overview

In this survey we describe basic principles and recent developments in build-
ing approximate synopses (that is, lossy, compressed representations) of mas-
sive data. Such synopses enable approximate query processing, in which the
user’s query is executed against the synopsis instead of the original data. We
focus on the four main families of synopses: random samples, histograms,
wavelets, and sketches.

A random sample comprises a “representative” subset of the data values
of interest, obtained via a stochastic mechanism. Samples can be quick to
obtain, and can be used to approximately answer a wide range of queries.

A histogram summarizes a data set by grouping the data values into sub-
sets, or “buckets,” and then, for each bucket, computing a small set of sum-
mary statistics that can be used to approximately reconstruct the data in the
bucket. Histograms have been extensively studied and have been incorporated
into the query optimizers of virtually all commercial relational DBMSs.

Wavelet-based synopses were originally developed in the context of im-
age and signal processing. The data set is viewed as a set of M elements in
a vector—i.e., as a function defined on the set {0,1,2, . . . ,M− 1}—and the
wavelet transform of this function is found as a weighted sum of wavelet “ba-
sis functions.” The weights, or coefficients, can then be “thresholded”, e.g.,
by eliminating coefficients that are close to zero in magnitude. The remaining
small set of coefficients serves as the synopsis. Wavelets are good at capturing
features of the data set at various scales.

Sketch summaries are particularly well suited to streaming data. Linear
sketches, for example, view a numerical data set as a vector or matrix, and
multiply the data by a fixed matrix. Such sketches are massively paralleliz-
able. They can accommodate streams of transactions in which data is both
inserted and removed. Sketches have also been used successfully to estimate
the answer to COUNT DISTINCT queries, a notoriously hard problem.
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Many questions arise when evaluating or using synopses.

• What is the class of queries that can be approximately answered?
• What is the approximation accuracy for a synopsis of a given size?
• What are the space and time requirements for constructing a syn-

opsis of a given size, as well as the time required to approximately
answer the query?

• How should one choose synopsis parameters such as the number
of histogram buckets or the wavelet thresholding value? Is there
an optimal, i.e., most accurate, synopsis of a given size?

• When using a synopsis to approximately answer a query, is it pos-
sible to obtain error bounds on the approximate query answer?

• Can the synopsis be incrementally maintained in an efficient man-
ner?

• Which type of synopsis is best for a given problem?

We explore these issues in subsequent chapters.

1.3 Outline

It is possible to read the discussion of each type of synopsis in isolation, to un-
derstand a particular summarization approach. We have tried to use common
notation and terminology across all chapters, in order to facilitate comparison
of the different synopses. In more detail, the topics covered by the different
chapters are given below.

Sampling

Random samples are perhaps the most fundamental synopses for approxi-
mate query processing, and the most widely implemented. The simplicity of
the idea—executing the desired query against a small representative subset
of the data—belies centuries of research across many fields, with decades of
effort in the database community alone. Many different methods of extract-
ing and maintaining samples of data have been proposed, along with mul-
tiple ways to build an estimator for a given query. This chapter introduces
the mathematical foundations for sampling, in terms of accuracy and preci-
sion, and discusses the key sampling schemes: Bernoulli sampling, stratified
sampling, and simple random sampling with and without replacement.
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For simple queries, such as basic SUM and AVERAGE queries, it is
straightforward to build unbiased estimators from samples. The more general
case—an arbitrary SQL query with nested subqueries—is more daunting, but
can sometimes be solved quite naturally in a procedural way.

For small tables, drawing a sample can be done straightforwardly. For
larger relations, which may not fit conveniently in memory, or may not even
be stored on disk in full, more advanced techniques are needed to make the
sampling process scalable. For disk-resident data, sampling methods that op-
erate at the granularity of a block rather than a tuple may be preferred. Exist-
ing indices can also be leveraged to help the sampling. For large streams of
data, considerable effort has been put into maintaining a uniform sample as
new items arrive or existing items are deleted. Finally, “online aggregation”
algorithms enhance interactive exploration of massive data sets by exploiting
the fact that an imprecise sampling-based estimate of a query result can be
incrementally improved simply by collecting more samples.

Histograms

The histogram is a fundamental object for summarizing the frequency distri-
bution of an attribute or combination of attributes. The most basic histograms
are based on a fixed division of the domain (equi-width), or using quantiles
(equi-depth), and simply keep statistics on the number of items from the input
which fall in each such bucket. But many more complex methods have been
designed, which aim to provide the most accurate summary possible within
a limited space budget. Schemes differ in how the buckets are chosen, what
statistics are stored, how estimates are extracted, and what classes of query
are supported. They are quantified based on the space and time requirements
used to build them, and the resulting accuracy guarantees that they provide.

The one-dimensional case is at the heart of histogram construction, since
higher dimensions are typically handled via extensions of one-dimensional
ideas. Beyond equi-width and equi-depth, end biased and high biased,
maxdiff and other generalizations have been proposed. For a variety of
approximation-error metrics, dynamic programming (DP) methods can be
used to find histograms—notably the “v-optimal histograms”—that minimize
the error, subject to an upper bound on the allowable histogram size. Approx-
imate methods can be used when the quadratic cost of the DP is not practical.
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Many other constructions, both optimal and heuristic, are described, such as
lattice histograms, STHoles, and maxdiff histograms. The extension of these
methods to higher dimensions adds complexity. Even the two-dimensional
case presents challenges in how to define the space of possible bucketings.
The cost of these methods also rises exponentially with the dimensionality
of the data, inspiring new approaches that combine sets of low-dimensional
histograms with high-level statistical models.

Histograms most naturally answer range-sum queries—for example,
“compute total sales between July and September for adults from age 25
through 40”—and their variations. They can also be used to approximate
more general classes of queries, such as aggregations over joins. Various
negative theoretical and empirical results indicate that one should not expect
histograms to give accurate answers to arbitrary queries. Nevertheless, due to
their conceptual simplicity, histograms can be effectively used for a broad va-
riety of estimation tasks, including set-valued queries, real-valued data, and
aggregate queries over predicates more complex than simple ranges.

Wavelets

The wavelet synopsis is conceptually close to the histogram summary. The
central difference is that, whereas histograms primarily produce buckets that
are subsets of the original data-attribute domain, wavelet representations
transform the data and seek to represent the most significant features in a
wavelet (i.e., “frequency”) domain, and can capture combinations of high
and low frequency information. The most widely discussed wavelet trans-
formation is the Haar-wavelet transform (HWT), which can, in general, be
constructed in time linear in the size of the underlying data array. Picking
the B largest HWT coefficients results in a synopsis that provides the opti-
mal L2 (sum-squared) error for the reconstructed data. Extending from one-
dimensional to multi-dimensional data, as with histograms, provides more
definitional challenges. There are multiple plausible choices here, as well as
algorithmic challenges in efficiently building the wavelet decomposition.

The core approximate query processing task for wavelet summaries is
to estimate the answer to range sums. More general SPJ (select, project, join)
queries can also be directly applied on relation summaries, to generate a sum-
mary of the resulting relation. This is made possible through an appropriately-
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defined approximate query processing algebra that operates entirely in the
domain of wavelet coefficients.

Recent research into wavelet representations has focused on error guaran-
tees beyond L2. These include L1 (sum of errors) or L∞ (maximum error), as
well as relative-error versions of these measures. A fundamental choice here
is whether to restrict the possible coefficient values to those arising under
the basic wavelet transform, or to allow other (unrestricted) coefficient val-
ues, specifically chosen to reduce the target error metric. The construction of
such (restricted or unrestricted) wavelet synopses optimized for non-L2 error
metrics is a challenging problem.

Sketches

Sketch techniques have undergone extensive development over the past few
years. They are especially appropriate for streaming data, in which large
quantities of data flow by and the sketch summary must continually be up-
dated quickly and compactly. Sketches, as presented here, are designed so
that the update caused by each new piece of data is largely independent of
the current state of the summary. This design choice makes them faster to
process, and also easy to parallelize.

“Frequency based sketches” are concerned with summarizing the ob-
served frequency distribution of a data set. From these sketches, accurate es-
timations of individual frequencies can be extracted. This leads to algorithms
for finding approximate “heavy hitters”—items that account for a large frac-
tion of the frequency mass—and quantiles such as the median and its gener-
alizations. The same sketches can also be also used to estimate the sizes of
(equi)joins between relations, self-join sizes and range queries. Such sketch
summaries can be used as primitives within more complex mining operations,
and to extract wavelet and histogram representations of streaming data.

A different style of sketch construction leads to sketches for “distinct-
value” queries that count the number of distinct values in a given multiset.
As mentioned above, using a sample to estimate the answer to a COUNT
DISTINCT query may give highly inaccurate results. In contract, sketching
methods that make a pass over the entire data set can provide guaranteed
accuracy. Once built, these sketches estimate not only the cardinality of a
given attribute or combination of attributes, but also the cardinality of various
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operations performed on them, such as set operations (union and difference),
and selections based on arbitrary predicates.

In the final chapter, we compare the different synopsis methods. We also
discuss the use of AQP within research systems, and discuss challenges and
future directions.

In our discussion, we often use terminology and examples that arise in
classical database systems, such as SQL queries over relational databases.
These artifacts partially reflect the original context of the results that we sur-
vey, and provide a convenient vocabulary for the various data and access mod-
els that are relevant to AQP. We emphasize that the techniques discussed here
can be applied much more generally. Indeed, one of the key motivations be-
hind this survey is the hope that these techniques—and their extensions—will
become a fundamental component of tomorrow’s information management
systems.



2

Sampling

2.1 Introduction

The use of random samples as synopses for approximate query processing
has a twenty year history in the database research literature, with the earliest
major-venue database sampling paper being published in 1984 [252]. This
arguably makes sampling the longest studied method for approximate query
processing. Sampling as a research topic in probability theory and statistics
has an even longer history. Laplace and others famously used sampling to es-
timate the population of the French empire in the 18th century [28]. The study
of survey sampling—sampling from a finite population such as a database—
blossomed and matured as a sub-field of statistics in the first half of the
20th century, due most notably to the pioneering work of Jerzy Neyman. See
Hansen’s 1987 retrospective on survey sampling [160] for an interesting his-
torical perspective on the field of survey sampling from a statistical point of
view.

With such a long history, the breadth and variety of the sampling-based
estimation methodologies that are applicable to approximate query process-
ing are staggering. Given the variety of the work, this chapter will not attempt
to cover and summarize most or even a majority fraction of the work from the

10
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research literature in depth. Rather, the goal of the chapter is to serve as a tu-
torial on the application of sampling to approximate query processing in an
information-management environment; references to papers in the research
literature will be given as appropriate.

The basic topics covered by the chapter, in order, are as follows:

(1) A basic definition and simple examples of sampling for approxi-
mate query processing.

(2) A treatment of the advantages and disadvantages of approximate
query processing using sampling.

(3) An introduction to the basic probability and statistics concepts that
underlie data sampling, including example derivations of bias and
variance, as well as a catalog of the different types of sampling
schemes that are applicable to approximate query processing.

(4) A discussion of how sampling can be applied to estimate the an-
swer to most of the common SQL query constructs.

(5) A discussion of how random samples can actually be drawn from
large data sets that are stored on disk, and how sampling in this
context differs from traditional survey sampling.

(6) A short discussion of online estimation via sampling.

2.2 Some Simple Examples

The basic idea behind sampling is quite simple. Given a data set—which
we sometimes call a “population”—and a query with an unknown (possibly
multi-attribute) numerical result that we wish to estimate, a small number of
elements are first selected at random from the data set. Then a few statistics
are computed over the sample, such as the sample mean and variance. Finally,
these statistics are used to estimate the value of the query result and provide
bounds on the accuracy of the estimate.

For an example of the process, imagine that we wish to answer the query

SELECT SUM (R.a)

FROM R

and that data set R comprises the ten different R.a values

〈3,4,5,6,9,10,12,13,15,19〉.
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A sample of this data of size n = 5 can be obtained by simulating the
rolling of a ten-sided die five times using an appropriate pseudorandom num-
ber generator (PRNG). A PRNG is an algorithm which takes an input a
seed—that is, a string of bits—and then performs a number of numerical
operations on the seed to obtain a new, seemingly random bit string that has
no obvious statistical correlation with the input string. By div-ing or mod-ing
the output string, a number with the appropriate range can be obtained—in
our case, from 1 to 10. See [119] for a discussion of pseudorandom number
generation).

In our example sampling process, rolling the number j on the ith trial
implies that the ith item chosen at random from the population is the jth
item in the population. This straightforward sampling scheme is known as
simple random sampling with replacement because the same element may
be sampled multiple times, so conceptually, an element is returned to the
population for possible re-selection whenever it is selected. Say that we roll
the die five times and obtain the following sequence of numbers:

〈6,3,5,3,9〉

Then the associated sample of R.a values is:

〈10,5,9,5,15〉

Using the resulting sample, it is then quite easy to estimate the answer to
the SUM query. We compute the sum of the sample values, which is 44, and
then scale up this sum by a factor of 2, to compensate for the fact that we
have only seen roughly 5/10 = 1/2 of the values in the population. (We say
“roughly” because we are sampling with replacement.)

There is another, very useful way to derive the foregoing estimator. De-
note by ti the value of the ith item in the population and by Xi the random
variable that represents the number of times that this ith item appears in the
sample. For instance, X6 = 1 and X3 = 2 in our example since the sixth item
(t6 = 10) appears once and the third item (t3 = 5) appears twice. The expected
value of Xi is defined as E[Xi] = ∑

5
j=0 j×Pr[Xi = j], and has the following

interpretation: if we drew many samples of size 5 and recorded the frequency
of item i in each sample, then, with probability 1, the average of these item-
i frequencies would approach the number E[Xi] as the number of samples
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increased. That is, E[Xi] represents the value of Xi we expect to see “on aver-
age.” Now consider the estimator

Y =
N

∑
i=1

Xiti
E[Xi]

= ∑
i∈sample

Xiti
E[Xi]

, (2.1)

where N = 10 is the population size and “sample” denotes the set of distinct
items appearing in the sample (the set comprising items 6, 3, 5, and 9 in
our example). The second equality holds because Xi = 0 for any item i that
does not appear in the sample, so that such an item does not contribute to the
sum. Because E[X +Y ] = E[X ] + E[Y ] and E[cX ] = cE[X ] for any random
variables X , Y and constant c, we have

E[Y ] = E
[ N

∑
i=1

Xiti
E[Xi]

]
=

N

∑
i=1

E
[ Xiti

E[Xi]

]
=

N

∑
i=1

E[Xi]ti
E[Xi]

=
N

∑
i=1

ti.

Observe that the rightmost term is the true query answer Q, and so the estima-
tor Y is unbiased in that E[Y ] = Q. That is, Y is equal to the true query result
on average, which is a desirable property of a sampling-based estimator. The
estimator Y is an example of a Horvitz-Thompson (HT) estimator (see Sarn-
dal, Section 2.8 [268]; the Horvitz-Thomson estimator was first described in
a 1952 paper [171]). To see that Y corresponds to the first “scale-up” estima-
tor that we described, note that at each sampling step, the ith item is included
with probability p = 1/10. Since there are n = 5 sampling steps, it is intu-
itive1 that the expected number of times that item i appears in the sample is
E[Xi] = np = 5/10 = 1/2. Since E[Xi] is the same for each item i, we can see
that Y is computed by simply multiplying the sum ∑

N
i=1 Xiti by 1/E[Xi] = 2.

As discussed previously, this latter sum is simply the sum over all of the sam-
ple items, so that Y indeed corresponds to the scale-up estimator.

For many sampling schemes, such as simple random sampling without
replacement, an item can appear at most once in a sample (Xi = 0 or 1). In
this case E[Xi] = 1×Pr[Xi = 1] = pi, where pi is the probability that item i is
included in the sample. Thus, an HT estimator of a sum is typically expressed
as the sum of the item values in the sample, each divided by the item’s prob-

1Technically, Xi has a binomial distribution, so that Pr[Xi = j] =
(n

j

)
p j(1− p)n− j , and a standard calcu-

lation shows that E[Xi] = np.
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ability of inclusion:

Y = ∑
i∈sample

ti
pi

. (2.2)

Sums of functions of item values, such as ∑
N
i=1 t2

i can be estimated in an anal-
ogous manner, e.g., Y = ∑i∈sample t2

i /pi. An unbiased sampling-based estima-
tor of the average value in the data is Y/N, that is, we divide the HT estimator
for the sum by the number of items in the data. As discussed in the sequel,
other quantities of interest can be expressed as functions of one or more sums,
and hence can be estimated (in an approximately unbiased manner) as corre-
sponding functions of HT estimators of the sums. Thus the HT sampling and
estimation framework is quite general in that, for many sampling schemes,
many estimators for sum-related queries can be represented as an HT estima-
tor or a variant of an HT estimator.

Error bounds (usually probabilistic in nature) for our SUM-query estima-
tor Y defined in (2.1) can be obtained in many ways; see Section 2.4.2 for an
in-depth discussion. One classical approach to error bounds is via the Cen-
tral Limit Theorem (CLT) [96]. First we compute the sample variance of the
sampled item values 〈10,5,9,5,15〉, which is

1
4
(
(10−8.8)2 +(5−8.8)2 +(9−8.8)2 +(5−8.8)2 +(15−8.8)2)= 17.2,

since the average of the five sampled item values is 8.8. (We divide by
n− 1 = 4 rather than n = 5 to compensate for sampling bias.) This serves
as an estimate for the variance of the population. According to the CLT, the
quantity Y/N (which estimates the population mean) will be approximately
normally distributed with a variance of (approximately) 17.2/5, which im-
plies that Y itself is approximately normally distributed, with a variance of
17.2×(100/5) = 344, where 5 is the size of the sample and 100 is the square
of the size of the dataset. This is only an approximation of the variance of Y
because 17.2 is only an approximation of the population variance. Further-
more, slightly more than 95% of the mass of the normal distribution is within
two standard deviations of the mean of the distribution (where the “standard
deviation” is the square root of the variance). Then, since

√
344 = 18.55,

there is (approximately) a 95% chance that our estimate is within ±37.10 of
the correct answer. This range can be used to provide an end user with some
idea of the accuracy of the sampling-based estimate.
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As another example of an HT estimator, this time for a slightly more
complicated query, suppose that we wish to estimate the sum R.a+ 4×S.b

over a cross product of two data sets R and S. We can first independently
sample 10% of the tuples from R and 10% of the samples S, and then take
a cross product of the two samples, thereby obtaining a random sample U
of all of the items in R× S. The probability that a given element (r,s) ∈
R×S is included in the sample U is simply 10%× 10% = 1%, which is the
joint probability that r is sampled from R and s is sampled from S. The HT
estimator of the query result is then Y = (1/0.01)∑(r,s)∈U(r.a+ 4× s.b).
That is, we simply compute the summation over the sample and then scale up
the result by a factor of 100 to compensate for the sampling.2

The above examples illustrate perhaps the simplest applications of ran-
dom sampling to approximate query processing; more complex examples are
given in the sequel. Unless specified otherwise, we will focus on the use of
sampling for approximate answering of aggregation queries, that is, queries
in which relational operations are applied to a set of base relations to pro-
duce an intermediate relation, and then the tuples of this relation are fed into
a function—such as SUM, AVERAGE, and so on—that computes a number (or
small set of numbers) that comprise the final query result. Sampling may also
be applied to a query that returns a set of tuples; the goal here is to produce
a representative sample of these tuples. Such samples are useful for purposes
of auditing, exploratory data analysis, statistical quality control, and privacy
enforcement [243].

2.3 Advantages and Drawbacks of Sampling

Now that we have illustrated the use of sampling with a simple example, we
will next discuss various scenarios in which sampling is, or is not, useful.
Advantages of sampling include:

(1) Simplicity. Conceptually, it is very simple to understand the idea
of drawing items at random from a dataset, then scaling up the
result of a query over the sample to guess the result of applying

2Note that the samples obtained by this process are not, in fact independent samples from the cross
product, which introduces some complications in the analysis of the accuracy of the estimator Y . See
Section 2.6.1 for more details.
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the query to the whole dataset.
(2) Pervasiveness. Sampling is widely supported by database systems,

and support for sampling is part of the current SQL standard
(SQL-2008).

(3) Extensive theory. Almost 100 years of prior research in survey
sampling can be applied directly to sampling massive data. Clas-
sic results such as the CLT can be used to assess the error of es-
timates obtained via sampling, to determine how many samples
to obtain to achieve a desired accuracy, and to develop special-
purpose sampling strategies that obtain high accuracy for difficult
queries.

(4) Immediacy. Sampling is unique in that it need not rely on a pre-
constructed model that has been built offline, before query pro-
cessing has begun. Since (by definition) a sample contains a small
subset of the data—perhaps only a few hundred tuples—it can of-
ten be constructed after a query has been issued, without incurring
a delay that is long enough to be perceptible to an end-user.

(5) Adaptivity. Unlike “one-and-done” approximation methods that
rely on a pre-constructed model, sampling permits online approx-
imation: if a small sample does not provide enough accuracy for
a specific query, then more tuples can be sampled to provide for
more accuracy while the user waits, in an online fashion. In con-
trast, if a data structure such as an AMS sketch [7] does not pro-
vide enough accuracy, the user has no option for incrementally
improving the synopsis.

(6) Flexibility. A “sample” is a very general-purpose data structure
and as such, the same sample can be used to answer a wide vari-
ety of arbitrary queries. The generality results from the fact that
sampling commutes with common query operations such as se-
lection, projection, and grouping. In the context of aggregation
queries, sampling also commutes, in an appropriate sense, with
the cross product and join operations; see Section 2.6.1. That is,
it is often possible to replace the input relations to an aggrega-
tion query by samples from those relations and use the query re-
sult to obtain well behaved estimators of the true query result.
(“Well behaved” estimators are computable from the informa-
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tion at hand, are unbiased or approximately unbiased, improve
in accuracy as the sample size is increased, and come with as-
sessments of estimator accuracy.) This is true no matter what
form the underlying boolean selection or join predicate takes—
equi-joins, greater-than predicates, not-equal-to-predicates, arbi-
trary and complicated CNF expressions—all commute with sam-
pling and so all work seamlessly with sampling. It is also true
whether the underlying attributes are numerical or categorical.

(7) Insensitivity to dimension. The accuracy of sampling-based esti-
mates is usually independent of the number of attributes in the
data. That is, unlike other methods such as wavelets and his-
tograms, there are no combinatorial difficulties induced by the
“dimensionality” of the data.

(8) Ease of implementation. Because sampling commutes with many
of the common query operations, it is possible to use a database
engine itself to evaluate a query over a sample. That is, a database
query can be sped up by first sampling the database, then feed-
ing the sample into the database engine where the original query
is run without modification, and then adjusting the final answer—
for example, by scaling it upwards—to take the sampling into ac-
count. This means that sampling can be used as an approximation
method in a database environment with very little modification to
the source code of the database system. This is precisely the idea,
for example, behind the AQUA project which proposed storing a
sample of a database inside another database instance, and using
the same database engine to process incoming queries using the
sample [3].

However, sampling has its own particular drawbacks as well. Most no-
tably:

(1) Because sampling relies on having a reasonable chance of select-
ing some of the data objects that are relevant for answering a
query, sampling can be unsuitable for approximating the answer to
queries that depend only upon a few tuples from the dataset (that
is, those queries that are highly selective). For example, if only ten
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tuples out of one million contribute to a query answer, then a 1%
sample of the data is unlikely to select any of them, and the re-
sulting estimate can be poor. This is one reason why, despite all of
sampling’s benefits, statistical synopses such as histograms are far
more widely used as tools for selectivity estimation in commercial
database systems.

(2) The fact that samples are generally used for approximate query
processing by simply applying an incoming query to the sample
is sometimes seen as a drawback, and not as a benefit. Evaluating
a query over a large, 5% sample of a database may take 5% of
the time that it takes to evaluate the query over the entire dataset.
A 20× speedup may be significant, but other, more compact syn-
opses such as histograms can provide much faster estimates. This
is another reason that sampling is not widely used for selectivity
estimation—it is widely thought that providing an estimate via a
sample is much more expensive than estimation via other meth-
ods.

(3) Sampling is generally sensitive to skew and to outliers. Recon-
sider our example from the previous section. If our dataset instead
contained the ten items:

〈3,4,5,6,9,10,12,13,15,1099〉

Then any estimate for the final sum will be quite inaccurate. In-
deed, a sample that happens to miss 1099 will radically underesti-
mate the final sum, and a (p× 100)% sample that happens to hit
1099 will overestimate the sum by approximately a factor of 1/p.

(4) There are important classes of aggregation queries for which the
basic Horvitz-Thompson setup of Section 2.2 breaks down, in
which case sampling-based estimation usually becomes very chal-
lenging. One way that an HT estimator can run into trouble is
when the inclusion probability pi of an item into the sample—see
equation (2.2)—depends on the (unknown) distribution of values
in the data population. In this case, the inclusion probabilities are
unknown at estimation time so the HT formula cannot be used di-
rectly. (More generally, the quantities E[Xi] as in equation (2.1)
may be unknown.) For example, consider the problem of evaluat-
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ing the sum of R.a over relation R, subject to the constraint that we
wish to only consider those tuples whose R.b value does not ap-
pear anywhere in attribute S.c from relation S. This is effectively
a NOT IN query of the from:

SELECT SUM (R.a)

FROM R

WHERE R.b NOT IN (SELECT S.c FROM S)

Suppose that one independently samples both R and S (say, with-
out replacement) and then attempts to estimate the query result
using an HT estimator in a manner similar to the final example
in Section 2.2. The probability that a given tuple r is included in
U—the sample set of items from R whose R.a values are to be
summed—depends on whether r fails to find a match in the sam-
ple from S, and this latter probability depends on the frequency
distribution of attribute S.c, which is unknown. Thus it is diffi-
cult to characterize the sample set U . Indeed, some r from R can
actually appear in the result if one samples R and S first and then
runs the query over the samples, even when r does not appear in
the true result set—simply because r has no mate in the sample
from S does not mean that it has no mate in all of S. Thus, it is
hard to use sampling to estimate the answer to this query. NOT IN

queries are not the only example of this. Others that are difficult
are those having the SQL DISTINCT keyword (in other words, du-
plicate removal), as well as those with the IN or EXISTS keywords,
those containing antijoins and outer joins, and most queries with
set-based (as opposed to bag-based) semantics. Another way that
the HT approach can fail is when the aggregate of interest can-
not be expressed in terms of sums or functions of sums. MAX and
MIN queries are typical examples. Sections 2.6.2 and 2.6.3 contain
some current research results related to these hard sampling and
estimation problems.
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2.4 Mathematical Essentials of Sampling

2.4.1 A Mathematical Model For Sampling

Before covering specific work relevant to sampling for approximate query
processing, it is instructive to describe some of the basic statistical princi-
ples underlying sampling, introduce the reader to some of the common ter-
minologies, and demonstrate how those principles might apply to the simple
sampling example from the previous section. Virtually all of the ideas in the
database literature and in the statistics literature are derived directly from the
basic ideas introduced here.

As described previously, a sample is a set of data elements selected via
some random process. The sampling process can be modeled statistically as
follows. As in Section 2.2, denote by t j the jth item or tuple in the dataset
and by X j the random variable that controls the number of copies of the item
that are included in the sample. Intuitively, we view a random variable as a
mathematical object that encapsulates the idea of “random chance”. It can be
thought of as a non-deterministic machine, where “pressing a button” on the
machine causes a random value to be produced; this is known as a “trial” over
the variable. In our case, a trial over X j produces a non-negative integer value
x j. The behavior of the various X j’s defines the behavior of the underlying
sampling process. If x j is zero, then t j is not sampled. Otherwise, t j is sam-
pled x j times. By changing the sampling process (with replacement, without
replacement, biased, unbiased, etc.) we change the statistical properties of the
various X j’s, and change the statistical properties of the sampling process. For
example, if so-called “Bernoulli” sampling is desired (see Section 2.5.3), then
we use a pseudorandom number generator to simulate flipping a biased coin
once for each and every data item. The item is included in the sample if the
coin comes up heads; otherwise, it is not. In this case, each X j takes the value
one if the coin comes up heads, and takes the value zero otherwise.

Given the various X j’s which control the sampling process, the next thing
that is needed to apply sampling to the problem of approximate query pro-
cessing is an estimator that can be used to guess the answer to the query.
An estimator Y can be thought of as nothing more than a function F that has
been parameterized on all of the data elements and all of the random variables
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that control the sampling process:

Y = F
(
〈(t1,X1),(t2,X2), . . . ,(tn,Xn)〉

)
In general, F will satisfy the constraint that:

F
(
〈. . . ,(t j−1,X j−1),(t j,0),(t j+1,X j+1), . . .〉

)
=

F
(
〈. . . ,(t j−1,X j−1),(t j+1,X j+1), . . .〉

)
In other words, F cannot “look at” the tuple t j if the associated x j = 0.
However, this restriction is not absolute; some sampling-based estimators de-
scribed in the database literature make use of summary statistics over the
dataset, such as the pre-computed average value of each tuple attribute [194].
In this case, F may have access to statistics that consider every t j in the
dataset.

Since applying a function such as F to a set of random variables results
in a new random variable, Y is itself a random variable. Performing a trial
over this random variable (that is, performing the sampling process to obtain
each x j and then applying F to the result) gives us an actual estimate for
the answer to the query. It is this estimate that is returned to the user. Often,
the estimate contains a single numerical value. However, in the general case
it may contain a vector of values; for example, Y may be defined so that it
estimates the result of a GROUP BY query.

2.4.2 Bias and Variance: Quantifying Accuracy

In general, the utility or accuracy of Y is quantified by determining Y ’s bias
and variance. The bias of Y is defined as:

bias(Y ) = E[Y ]−Q

where E[Y ] is the expected value of Y and Q is the actual query result. This
determines how far away, on average, Y will be from Q. The variance of Y is:

σ
2(Y ) = E[(Y −E[Y ])2] = E[Y 2]−E2[Y ]

which measures the spread of Y around its average value. High spread is bad,
since it means that the estimator has a great degree of variability and often
falls far from its expected value. If Y has low bias and low variance, then Y is
(usually) a high-quality estimator.
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It is instructive to make these concepts a little more concrete by consid-
ering the application of these principles to an actual sampling process and
estimator. Consider the case of simple random sampling with replacement,
as described in Section 2.2. Without loss of generality and for simplicity of
notation, here and in most of our discussion of sampling we use the notation
t j to denote the jth tuple in the dataset and we assume that t j is a real number.
While this may seem restrictive, it is really not. t j can in fact be the result of
any mathematical or logical expression over actual data items. For example,
consider the query:

SELECT SUM(r.extendedprice * (1.0 - r.tax))

FROM R as r

WHERE l.suppkey = 1234

In this case, we can set t j to be r.extendedprice * (1.0 - r.tax) if
r.suppkey = 1234 where r is the jth tuple in R; otherwise, if r.suppkey
<> 1234 then t j is set to zero.

Since we assume that t j encapsulates any underlying selection predicate
as well as the function to be aggregated, the answer to a single-relation SUM

query can always be written as:

Q = ∑
j

t j

Now imagine that we have a particular dataset instance where 〈t1, t2, . . . , t10〉
take the values 〈3,4, . . . ,19〉, as in our example from Section 2.2. For our
dataset of size 10 and a sample of size 5, we can formalize the estimator from
Section 2.2 as:

Y = F
(
〈(t1,X1), . . . ,(t10,X10)〉

)
=

10
5

10

∑
j=1

t jX j

As discussed in Section 2.2, each X j is a binomially-distributed random vari-
able with parameters p = 1/10 and n = 5 under simple random sampling with
replacement.3 Thus E[X j] = np = 1/2 and hence E[Y ] = Q, so that Y is unbi-
ased. Finally, note that each of the five samples is statistically independent.

3Note that while each X j is binomial, it must be the case that ∑ j X j is 5, since n = 5 samples are taken
overall. Thus, the various X j’s are marginally binomial, but not independent. This correlation does not
affect E[Y ], but must be taken into account when computing E[Y 2], as we discuss subsequently.
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We now consider the variance of this particular estimator. In this case,
since E[Y ] = Q, we have E2[Y ] = Q2. However, in order to compute the vari-
ance, it is also necessary to know E[Y 2]. This can be derived via algebraic
manipulation:

E[Y 2] = E
[(

2∑
j

t jX j)
)2]

= E
[
4∑

i
∑

j
tit jXiX j

]
= E

[
4∑

i
t2
i X2

i +8∑
i< j

tit jXiX j

]
= 4∑

i
(t2

i E[X2
i ])+8∑

i< j
tit jE[XiX j]

This leaves us with two summations. In the first summation, the term E[X2
i ]

must be evaluated. This is simply the second moment of the binomial dis-
tribution, and according to any standard textbook on discrete distributions,
this value is np+n(n−1)p2 = 1

2 + 1
5 = 7

10 . Computing E[XiX j] is more non-
standard due to the constraint that the various X j’s must sum to n, but in this
case its value can be evaluated as n(n− 1)p2 = 1

5 .4 Plugging this into the
above equation, we have:

E[Y 2] =
14
5 ∑

i
t2
i +

8
5 ∑

i< j
tit j

And so the variance of Y , denoted as σ2(Y ), is:

σ
2(Y ) =

14
5 ∑

i
t2
i +

8
5 ∑

i< j
tit j−Q2

Plugging in the actual values for our dataset, we have:

σ
2(Y ) =

14
5
×1166+

8
5
×4025−9216 = 488.8

4The intuition behind the formula E[XiX j] = n(n− 1)p2 is as follows. We can view Xi (and X j) as the
number of heads over a sequence of n coin flips; a “heads” on the kth flip in the sequence associated with
Xi means that the kth tuple sampled was ti. Let Xi,k be a random variable controlling the output of the kth
flip, so that Xi = ∑k Xi,k . Then E[XiX j] = E[∑k1,k2 Xi,k1X j,k2]. Since we can push the expectation into the
sum, we have E[XiX j] = ∑k1,k2 E[Xi,k1X j,k2]. Thus, we need only consider how to evaluate E[Xi,k1X j,k2].
If k1 = k2, then Xi,k1X j,k2 is always zero; that is, if the two coin flips are both the kth flip in the sequence,
then they can never both come up heads—this would imply that the kth sample selected both ti and t j ,
which is not possible. If, on the other hand, the two coin flips are not both the same flip in the sequence,
the probability that both are heads is p2, since the two flips are independent. In this case, E[Xi,k1X j,k2] =
p2. Summing over all n2 pairs of coin flips that contribute to E[XiX j], we have E[XiX j] = n2 p2− np2,
which is n(n−1)p2.
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The observant reader may note that 488.8 differs considerably from the
value 17.2× 100

5 = 344 that was computed via the CLT in the prior section.
The reason for this is that 488.8 is the actual variance of our estimator Y ;
there are no approximations here. The value 344 from the prior section was
obtained by using the sample itself to estimate the variance of the underlying
population (since, in practice, the true population variance of 488.8 would be
unknown to the user).

More generally, for a Horvitz-Thompson estimator Y as in equation (2.1),
based on a sample of size N, let πi = E[Xi] and πi j = E[XiX j] for 1≤ i, j≤ N.
Using the fact that E[Y ] = ∑i ti (because Y is unbiased), algebraic manipula-
tions as before show that

σ
2(Y ) = E[Y 2]−E2[Y ] = E

[(
∑

i

Xiti
πi

)2
]
−
(
∑

i
ti
)2

= E
[
∑

i
∑

j

Xiti
πi

X jt j

π j

]
−∑

i
∑

j
tit j

= ∑
i

∑
j

πi jtit j

πiπ j
−∑

i
∑

j
tit j = ∑

i
∑

j

(
πi j

πiπ j
−1
)

tit j.

(2.3)

In practice, we need to estimate σ2(Y ) from the sample at hand. Observe that
σ2(Y ) is expressed as a sum (over the cross-product of the dataset with itself),
so that we can use the HT trick yet again to derive an unbiased estimator of
σ2(Y ):

σ̂
2(Y ) = ∑

i
∑

j

XiX j

πi j

(
πi j

πiπ j
−1
)

tit j = ∑
i, j∈sample

XiX j

πi j

(
πi j

πiπ j
−1
)

tit j. (2.4)

Plugging the values for our dataset into these formulas yields the same an-
swers as before: σ2(Y ) = 488.8 and σ̂2(Y ) = 344. The variance formulas,
however, also hold for other sampling schemes besides simple random sam-
pling with replacement. If the sampling scheme is such that an item can ap-
pear at most once in the sample—so that the HT estimator has the form given
in equation (2.2)—then πi = pi and πi j = pi j, where pi is the probability that
data item i is included in the sample and pi j is the probability that items i and
j are both included in the sample. Moreover, E[X2

i ] = E[Xi] since Xi = 0 or 1,
so that the above formulas takes on the special forms

σ
2(Y ) = ∑

i

( 1
pi
−1
)

t2
i +2∑

i< j

( pi j

pi p j
−1
)

tit j
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and

σ̂
2(Y ) = ∑

i∈sample

1
pi

( 1
pi
−1
)

t2
i +2 ∑

i, j∈sample
i< j

1
pi j

( pi j

pi p j
−1
)

tit j.

The key point here is that, whereas E[Y ] only depends on the individual inclu-
sion probabilities pi, the variance of Y depends on the joint inclusion proba-
bilities pi j, which can be challenging to calculate. This additional complexity
explains why the variance of an estimator can be much harder to estimate
than the expected value. It also explains why two different sampling schemes
can have the same marginal inclusion probabilities and hence can both lead
to unbiased HT estimators, but the variance properties of the estimators can
differ dramatically if the joint inclusion probabilities differ.

2.4.3 From Bias and Variance To Accuracy Guarantees

Although bias and variance are important statistics that are very useful for
describing the error of a sampling-based estimate, most users are likely to be
more comfortable with probabilistic confidence bounds (see Sarndal et al.,
Section 2.11 [268]). A confidence bound is a probabilistic guarantee of the
form:

“There is a p× 100% chance that the true answer to the query is within the
range l to h.”

Central Limit Theorem. There are many ways to provide for confidence
bounds. The most common method is to assume that the error on an unbiased,
sampling-based estimator Y is normally distributed. That is, we assume that
Y can be modeled as:

Y ≈ Q+N (0,σ2(Y ))

In this equation, N = N (0,σ2(Y )) is a normally-distributed random vari-
able with mean zero and a variance of σ2(Y ). Then, if we choose numbers lo
and hi so that:

p =
∫ hi

lo
fN (x)dx

where fN is the probability density function of N , we know that there is
a p× 100% chance that lo ≤ Q−Y ≤ hi. (Here we use the fact that Q−
Y = −N has the same distribution as N because the normal distribution
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is symmetric about the origin.) By algebraic manipulation, it then holds that
if l = Y + lo and h = Y + hi—here l and h are random variables—there is
a p× 100% chance that the random interval [l,h] contains Q. For example,
since ∫ 1.98σ(Y )

−1.98σ(Y )
fN (x)dx = 0.95,

if we assume normality of the error, then for unbiased Y we are justified
in saying that there is around a 95% chance that Q is within Y − 2σ(Y ) to
Y + 2σ(Y ), which is perhaps the most commonly-used confidence bound.
Such a confidence bound is often inverted to arrive at the equivalent state-
ment that “Y estimates Q to within ±2σ(Y ) with 95% probability.” By ap-
proximating σ2(Y ) with a sample-based estimate σ̂2(Y ) as in Sections 2.2
and 2.4.2, and then taking the square root to get an estimate σ̂(Y ) of σ(Y ),
we can roughly assess the accuracy of Y at estimation time (and potentially
increase the number of samples if the accuracy is not deemed sufficient).

Although there is never any guarantee that the error of Y is normally dis-
tributed, the statistical justification for assuming normality is typically the
CLT, which states that as the number of independent samples taken from a
distribution approaches infinity, the observed difference between the mean of
the distribution and the mean of the samples looks increasingly like a sample
from a normally-distributed random variable. In the authors’ own experience,
for most of the estimators one would encounter in a data analysis environ-
ment, normality is a safe assumption. This seems to be true even when the
samples are correlated (as they will be if sampling without replacement is
used), and when the number of samples is not very, very large. The robustness
of the normality assumption stems from statistical theory—see, for example,
[22, 159]—which asserts that variants of the CLT hold in great generality,
that is, under various weakenings of both the independence and identical-
distribution assumptions. In our experience, normality is especially safe if
the specified p does not exceed 95%; deviations from normality tend to be
most pronounced in the tails of the error distribution. In Section 2.2, we used
exactly the CLT bound to assert that the answer to our example query was
88±37.10 with roughly 95% certainty.

Chebyshev Bounds. However, normality is never guaranteed. The authors
have generally found that statisticians are more accepting of distributional
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assumptions than are computer scientists, who tend to be more conservative.
If one eschews distributional assumptions, then distribution-free bounds can
be used instead. These are looser, but more comforting. One common bound
is due to Chebyshev’s inequality, which implies that for an unbiased estimator
Y ,

Pr[|Y −Q| ≥ p−
1
2 σ(Y )]≤ p

Thus, according to Chebyshev’s inequality, there is a p× 100% chance
that Q is between Y − p−

1
2 σ(Y ) and Y + p−

1
2 σ(Y ). While such bounds are

comforting, they are often much looser than CLT-based bounds. Had we ap-
plied Chebyshev bounds to our example from Section 2.2, we would have
obtained a confidence interval of 88±117.32.

Hoeffding Bounds. Other distribution-free bounds are Hoeffding bounds
[170] and Chernoff bounds [158]. Whereas bounds based on Chebyshev’s
inequality assume that the variance of the underlying distribution is known,
Hoeffding bounds are applicable when Y = 1

n ∑i Xi, where the value of Xi

ranges from lowi to hii. In this case,

Pr[|Y −E[Y ]| ≥ d]≤ 2exp(− 2d2n2

∑i(hii− lowi)2 )

Hoeffding bounds could apply to our example from Section 2.2 as fol-
lows. Recall that we sampled values 〈10,5,9,5,15〉 which we can multiply
by 1

p to obtain the sequence 〈100,50,90,50,150〉; the mean of this sequence
is an unbiased estimate for Q. If we assume that 50 and 150 represent reason-
able low and high bounds on the possible numbers we could obtain via this
process, we can approximate ∑i(hii− lowi)2 by n(150−50)2 = 50,000. We
then solve the equation

0.05 = 2exp(− 2d2n2

50,000
)

for d, giving d = 192.06; this implies that 88± 192.06 is a 95% confidence
interval for the query answer. Note that while this interval is quite wide, it
would have been even wider had we used the correct low and high values
from the dataset, which are often unknown at query time. The excessive width
of Hoeffding bounds is their main drawback; in addition to being distribution-
free, their main benefit is the fact that a variance estimate was not required.
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Obtaining a variance estimate can be quite challenging for some sampling
problems, and Hoeffding bounds are attractive in such circumstances.

Chernoff Bounds. Chernoff bounds are closely related to Hoeffding bounds,
but apply to bounding Y = 1

n ∑i Xi when each Xi can only take the value zero
or one. Thus, they are not used as often as the other bounds for direct con-
struction of confidence bounds for sampling-based estimators, but they do
appear as important tools for constructing accuracy proofs for various dataset
approximation methodologies, sampling-based and otherwise.

Biased Vs. Unbiased Estimates. The preceding discussion has assumed
throughout that Y is unbiased. In practice, not all good estimators are un-
biased. Biased estimators are sometimes more accurate than unbiased esti-
mators, and often easier to construct. For example, consider the problem of
estimating the size of the join of a relation with itself, using a sample of the
relation. An example of such a query is obtained via a slight modification of
the SQL we have been using as a running example:

SELECT COUNT (*)

FROM R as r1, R as r2

WHERE r1.a BETWEEN r2.a - 3 AND r2.a + 3

Imagine that we draw a size n = 5 with-replacement sample of R, then use
the sample as a proxy for R. We join the sample with itself, and scale the
result by 1

n2 p2 = 4. If we had used two independent samples of R rather than a
single one, we would obtain an unbiased estimate for Q via this process (see
Section 2.6.1). But joining the sample with itself produces bias. To show this,
we begin with the expectation of the resulting estimator Y :

E[Y ] = E
[
4∑

j,k
I(t j.a BETWEEN tk.a−3 AND tk.a+3)X jXk

]

where I is the indicator function returning 1 if the boolean argument evaluates
to true and 0 otherwise. We can simplify this as follows, using I(t j.a, tk.a)
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as shorthand for I(t j.a BETWEEN tk.a−3 AND tk.a+3):

E[Y ] = E
[
4∑

j
∑
k

I(t j.a, tk.a)
]

= E
[
4∑

j
I(t j.a, t j.a)X2

j +4×2 ∑
j<k

I(t j.a, tk.a)X jXk

]
= 4∑

j
I(t j.a, t j.a)E[X2

j ]+4×2 ∑
j<k

I(t j.a, tk.a)E[X jXk]

From Section 2.4.2, we know that E[X2
j ] = 7

10 , and E[X jXk] = 1
5 . Thus we

have:

E[Y ] =
14
5 ∑

j
I(t j.a, t j.a)+

8
5 ∑

j<k
I(t j.a, tk.a)

Since Q = ∑ j I(t j.a, t j.a)+2∑ j<k I(t j.a, tk.a), Q 6= E[Y ] and Y is biased. Intu-
itively, the bias here results from the fact that this estimator over-emphasizes
the importance of tuples that join with themselves.

If (as in this case) Y is biased, there are three obvious tactics to use. One
is to ignore the bias. Many estimators exhibit bias that diminishes linearly (or
faster) with increasing sample size. The term asymptotically unbiased is often
used for such estimators. If the bias is significant, a second tactic is to estimate
the bias as well as the query result, correct for the bias, and thus obtain an
unbiased estimator. However, this can sometimes result in an estimator whose
standard error—defined as (bias2(Y ) + σ2(Y ))1/2—is actually greater than
the original biased estimator. A third tactic is to simply accept the bias, then
compute, estimate, or bound the bias to obtain an estimate for the standard
error of the estimator. One can then use either CLT-based or Hoeffding-based
confidence bounds, replacing σ(Y ) in the relevant formulas with the standard
error.

Unfortunately, the standard deviation cannot be replaced by the stan-
dard error with impunity, because as the bias increases, the actual and user-
specified coverage rates for the confidence bounds tend to diverge. A rule-of-
thumb is that for p ≤ 0.95, then it is generally safe to replace the standard
deviation with the standard error as long as the ratio of bias(Y ) to σ(Y ) does
not exceed 0.5; see Sarndal et. al [268], page 165.



30 Sampling

2.5 Different Flavors of Sampling

In this section, we catalog the various sampling schemes applicable in a data
analysis environment. For each scheme, we give a high-level description of
the scheme, and also describe the standard unbiased estimator used along
with the sampling process to provide an unbiased estimate for the query an-
swer Q in the case of a single-relation SUM query. Many of the results follow
directly from our results for HT estimators. The focus here is on the high-
level statistical aspects of the various schemes; actual implementation details
are deferred until Section 2.7.

2.5.1 Simple Random Sampling With Replacement

This is the classic form of random sampling, and is precisely the form of
sampling used in the example estimation procedure detailed in Section 2.4.2.
Logically, to draw a sample of size n from a relation R of size |R|, the follow-
ing two steps are undertaken, n times:

(1) Produce a random number r from 1 to |R|, inclusive.
(2) Obtain the rth item from the dataset and add it to the sample.

For simple random sampling with replacement (SRSWR), the standard
estimator for a single-relation SUM query is a simple generalization of the
estimator from Section 2.4.2:

Y =
|R|
n ∑

j
X jt j

Under SRSWR, it is possible to view the sampling process as performing a
sequence of trials over tuple-valued random variables, where each trial pro-
duces a sampled tuple. Under this view, random variable is independent of the
rest, and each is identically distributed (since each sampled tuples is drawn
from the discrete distribution of all possible tuples). That is, the random vari-
ables controlling the sampling are “i.i.d.” and the classical CLT will apply to
any estimator that sums the sampled values, or that sums some function of
the sampled values. In the case of the SUM query estimate given above, the
variance of this estimator is simply

σ
2(Y ) =

|R|2σ2(R)
n
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and the CLT applies. In this expression, σ2(R) is the variance of the t j’s in the
underlying relation. As discussed above, in practice σ2(R) must be estimated,
and the variance of the sampled data items is substituted for the variance of
the actual relation.

SRSWR as a sampling method has several advantages. First, much of the
statistical analysis is simpler for this kind of sampling because SRSWR is the
only type of sampling where a sample of n tuples can be viewed as a sequence
of trials over n “i.i.d.” random variables. Since much of classical statistics—
for example, the classical version of the CLT—applies most straightforwardly
to such a case, analysis is typically easier.

A drawback of SRSWR is that for most estimation problems, without-
replacement sampling has lower variance than with-replacement sampling
for a fixed sampling size (see the next subsection below). This is especially
the case as the sampling fraction grows large—greater than 5 or 10%. Indeed,
most fixed-size, without-replacement estimators will have zero variance when
the sample size n = |R|, which is not the case under SRSWR.

2.5.2 Simple Random Sampling Without Replacement

In simple random sampling without replacement (SRSWoR), the sampling
process is constrained so that it cannot draw the same data item more than
once. Logically, to draw a sample of size n from relation |R|, the following
two steps are undertaken, until n samples have been obtained:

(1) Produce a random number r from 1 to |R|, inclusive.
(2) If the rth item from the data has not been previously added to the

sample, then obtain this item and add it to the sample.

For SRSWoR, the standard HT estimator for a single-relation SUM query
is identical to the case of SRSWR:

Y =
|R|
n ∑

j
X jt j

However, the variance changes slightly, and becomes:

σ
2(Y ) =

|R|(|R|−n)σ2(R)
n
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It should be clear from the above formula that SRSWoR generally pro-
vides for lower-variance estimates than SRSWR, due to the quantity n being
subtracted from |R| in the variance’s numerator. The intuition behind the re-
duced variance is that SRSWoR controls the number of times that item j is
in the sample (it is always zero or one), whereas SRSWR allows item j to
(possibly) be sampled numerous times, and hence sees fewer of R’s tuples for
a given sample size.

2.5.3 Bernoulli and Poisson Sampling

Bernoulli sampling (and its generalization, known as Poisson sampling) is
quite a bit different from both SRSWR and SRSWoR. In Poisson sampling,
a (possibly separate and unique) inclusion probability p j is associated with
each tuple in the dataset. In Bernoulli sampling, each p j must be the same.
Given all of the p j’s, each X j is an independent Bernoulli (0/1) random vari-
able where Pr[X j = 1] = p j. Since (unlike both SRSWR and SRSWoR) all of
the various X j’s are independent, Pr[XiX j = 1] = E[XiX j] = pi p j. Thus, draw-
ing a sample using Poisson sampling is equivalent to flipping |R| independent
coins in sequence; a “heads” on the jth coin flip implies the that jth tuple
from the dataset is included in the sample.

Specifically, to draw a Poisson sample from a dataset, the following two
steps are undertaken for each data item. For the jth tuple:

(1) Generate a random number r from 0 to 1.
(2) If r is less than p j, include the tuple in the sample.

Note that the sample size is random. Using equation (2.2) and the results
in Section 2.4.2, we see that, under Poisson sampling, the HT estimator Y for
a single-relation SUM query has the simple form

Y = ∑
i∈sample

ti
pi

and, moreover,

σ
2(Y ) = ∑

i
(

1
pi
−1)t2

i

and
σ̂

2(Y ) = ∑
i∈sample

1
pi

(
1
pi
−1)t2

i .
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Since the form of this variance is quite different than for SRSWR and
SRSWoR, it can be challenging to directly compare Poisson sampling with
the other two options. In practice, Poisson sampling can either be marginally
worse than the other options or perhaps far better, depending upon whether
the Poisson sample has been appropriately biased. Since Poisson sampling
results in a variable-sized sample, it will generally have relatively higher vari-
ance compared to the other two options for a comparably-sized sample if the
sampling process is not biased towards particular tuples; that is, if pi = p j for
every i, j pair.

However, one big advantage of Poisson sampling is that by carefully tai-
loring the p j’s so that the process is more likely to select more important
data items, variance can be greatly reduced, sometimes by a very significant
amount. This is often called biased sampling. A carefully biased sample can
more than compensate for any increase in variance due to a variable sample
size. In particular, it should be clear by examining the above variance formula
that by making p j large for those items with a correspondingly large t j while
at the same time keeping the sample size small by making p j small for those
items with a correspondingly small t j, a relatively low-variance estimator can
be produced.

2.5.4 Stratified Sampling

The strength of Poisson sampling is that it is quite easy to bias the sample
to the more important data objects by simply tweaking the various pi’s. SR-
SWR can be biased in a similar fashion by amending the sampling process so
that, rather than giving each data object identical selection probabilities, the
process used to obtain each tuple is biased. Specifically, choose p j’s between
0 and 1 so that ∑ j p j = 1. Then to draw a sample of size n from relation |R|,
the following three steps are undertaken, n times:

(1) Generate a random number r between 0 and 1.
(2) Find j such that ∑i< j pi ≤ r ≤ ∑i≤ j pi.
(3) Obtain the jth item from the dataset and add it to the sample.

Then, at each sampling step,

Pr[ jth item selected] = Pr
[
∑
i< j

pi ≤ r ≤∑
i≤ j

pi

]
= ∑

i≤ j
pi−∑

i< j
pi = p j.
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Unfortunately, it is not so easy to bias SRSWoR in a similar fashion. Imag-
ine that we attempt to apply a similar scheme to SRSWoR. When a tuple is
obtained using SRSWoR, by definition it is not possible to obtain the same
tuple a second time. This means that after adding the jth tuple to the sample
during SRSWoR, all of the other p’s must be updated. Given that the jth tuple
has been sampled, the probability of sampling ti for i 6= j should be larger for
the next sampling step. The difficulty here is that each p becomes a random
variable that changes depending what is observed during the sampling pro-
cess. As a result, attempting to characterize the sampling process statistically
is exceedingly difficult at best.

Due to this difficulty, a different strategy, called stratification, is used to
bias SRSWoR. In stratified sampling, all of the tuples in the dataset are first
grouped into m different subclasses or strata. To obtain a sample of size n,
SRSWoR is performed separately on each strata; the number of samples ob-
tained from the ith strata is ni, where ∑

m
i=1 ni = n. To estimate the answer to

a single-relation SUM query, the total aggregate value of each individual stra-
tum is estimated; by adding up the estimates, an estimate for the sum over
the entire dataset is obtained. Formally, let Ri denote the ith stratum. Then the
HT estimator is defined by setting

Yi =
|Ri|
ni

∑
t j∈Ri

X jt j

and

Y =
m

∑
i=1

Yi.

Since the various sampling processes are independent, the variance of Y is
nothing more than the sum of the individual variances:

σ
2(Y ) =

m

∑
i=1

σ
2(Yi)

Furthermore, since each strata is sampled using SRSWoR, it is easy to calcu-
late σ2(Yi) accordingly.

One of the most classic results in survey sampling theory is the so-called
Neyman allocation, based upon the pioneering work of Jerzy Neyman [241].
The Neyman allocation prescribes a set of ni values to minimize σ2(Y ).
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Specifically, to optimize ni, choose each ni so that:

ni =
n|Ri|σ2(Yi)

∑
m
j=1 |R j|σ2(Yj)

In practice, a small pilot sample can be used to estimate the σ2(Yj)’s and
hence the optimal allocation.

If the dataset can be broken into strata, stratified sampling can provide for
dramatic variance reduction compared to SRSWoR. There are two ways in
which stratification can reduce variance. First, the simple process of break-
ing R into strata provides a natural avenue for variance reduction because one
can create strata that are internally homogeneous, even in a dataset that is
quite heterogeneous. For example, imagine a dataset containing two “clus-
ters” of values; one set of values that are close to 10, and another set that
are close to 100. Mixing them together results in a population with relatively
high variance—with an even number of 10’s and 100’s, σ2(R) will be 2025.
Thus, an estimate obtained via SRSWoR may be relatively inaccurate for
small sample size. However, by stratifying into one set of values that are
close to 10 and one set that is close to 100, it may be that σ2(R1) and σ2(R2)
are both quite small—if R1 is composed entirely of 10’s and R2 is composed
entirely of 100’s, then σ2(R1) = σ2(R2) = 0.

Second, even if it is not possible to produce strata that are all internally ho-
mogeneous, the Neyman allocation naturally targets (biases) more resources
to those strata that are more likely to add to estimation error, thereby reduc-
ing variance in a fashion that is analogous to optimizing the various p j’s in
Bernoulli sampling. The only case where the Neyman allocation cannot help
is when all of the internal strata variances are identical.

Several notable incarnations of stratified sampling have appeared before
in the database literature. As early as 1992, Haas and Swami [157] proposed
the use of stratification for increasing the accuracy of join size estimation via
random sampling. A more recent example of stratification in the database lit-
erature is the paper of Chaudhuri et al. [47] (an extended version of this paper
appeared subsequently [48]). The key idea of this work is to partition the data
into various stratum in such a way as to maximize the accuracy of queries that
are answered using the resulting stratification. As another example, Babcock
et al. [13] propose a stratification scheme where strata are constructed so as
to ensure that, for any particular GROUP BY query, one or more strata can be
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targeted that will potentially contribute many tuples to the query.

2.6 Sampling and Database Queries

Thus far, we have focused mostly on sampling for a simple SUM query over a
single relation. While this is clearly a useful application of sampling, not all
database queries are single-relation queries. In this section, we consider the
problem of sampling for other queries familiar from the database world.

We begin with a discussion of the “easy” case: aggregation queries that
contain a mix of relational selections, projections, cross products (joins), and
grouping operations, followed by the final aggregation operation. These op-
erations are “easy” because for the most part, all of them commute with sam-
pling in the sense that the sampling operation can be pushed past the oper-
ations, deep down into a query plan. In other words, it is possible to first
sample one or more relations, and then apply various combinations of these
operations to obtain a well behaved estimator (often an HT estimator or vari-
ant thereof) of the final query result.

The “hard” case includes queries where the HT approach breaks down,
as discussed in Section 2.3. This includes queries involving duplicate re-
moval, antijoins, and outer joins. These operations do not commute with sam-
pling. For example, sampling a relation and then applying duplicate removal
to the sample breaks the HT approach because tuple inclusion probabilities
depend on the numbers of duplicates in the database—in other words, the
data distribution—and hence are unknown at estimation time. For these hard
queries, much more advanced estimation procedures are needed.

Finally, we conclude the section by considering sampling for other aggre-
gates such as AVERAGE and VARIANCE.

2.6.1 The Easy Case: Rel Ops that Commute with Sampling

For any query plan that contains only selection, projection, cross product
(join), and grouping, making use of a sampling to estimate the final result
is easy: sample each underlying relation first, then use any applicable query
plan to evaluate the desired query over the samples. The final step is to ap-
propriately scale up the query result(s) to compensate for the sampling. In the
setting of the cross-product operation, we have already seen this approach in
action in the final example of Section 2.2. More generally, if the sampling
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fraction for the ith of m relations is pi, then by using any applicable query
plan to evaluate the query over the samples and scaling the aggregate result by
∏

n
i=1 pi, one can obtain an unbiased estimate for the answer to multi-relation

SUM query using the HT approach. Historically, this particular estimator has
appeared many times in the database literature for estimating the size of joins
[271, 154, 153, 172, 173]. Perhaps the most well-known application is the
so-called “ripple join” estimator of Haas and Hellerstein, which seems to be
the first time that the estimator was considered for use beyond COUNT [148].

In more detail, consider an arbitrary select/project/join/grouping query of
the form:

SELECT AGG( f (r1 • r2 • . . .• rm))
FROM R1 AS r1 , R2 AS r2 , . . .

WHERE g(r1 • r2 • · · · • rm)
GROUP BY h(r1 • r2 • · · · • rm)

Here “•” denotes tuple concatenation, and f , g, and h are arbitrary func-
tions which take concatenations of tuples from the base relations as input.
Let t j1, j2,..., jm be the result of concatenating the j1th tuple from R1, the j2th tu-
ple from R2, and so on, to form one candidate input tuple to the AGG operation.
Then, following standard database semantics, the following is the final set of
values that are input into the aggregate function AGG for the group having
identifier gid:

Ans = { f (t j1, j2,..., jm) where g(t j1, j2,..., jm) = true and h(t j1, j2,..., jm) = gid}

Using our definition from Section 2.4, a sample of this result set is a mathe-
matical object taking the form:{
(X j1, j2,..., jm f (t j1, j2,..., jm) where g(t j1, j2,..., jm) = true and h(t j1, j2,..., jm) = gid

}
In this expression, as in the case of single-relation sampling, the various
X j1, j2,..., jm’s control the number of copies of tuples from Ans that appear in
the sample.5

5To keep the notation reasonable, in the remainder of this chapter we will generally use t j1, j2,..., jm to
denote the complex expression “ f (t j1, j2,..., jm ) where g(t j1, j2,..., jm ) = true and h(t j1, j2,..., jm ) = gid and
zero otherwise”. Any time an arithmetic operation such as + or × is applied to a tuple t j1, j2,..., jm , the
reader can assume that this is shorthand for applying the operation to the result of applying f , g, and h
to the tuple.
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Clearly, one way to obtain such a sample is to first materialize the set
Ans, and then apply a sampling scheme such as SRSWoR or SRSWR directly
to Ans. This would define the various X j1, j2,..., jm’s directly according to the
sampling scheme that is used. However, if we first apply a scheme such as
SRSWoR or SRSWR to each base relation, and then answer the query over
the resulting samples, we still obtain a set that is precisely of this form, though
with different X j1, j2,..., jm’s in general. More precisely, if the underlying sam-
pling scheme applied to base relation i defines a random variable X (i)

j which
specifies how many copies of the jth tuple from relation i are included in the
sample from this relation, then it is the case that

X j1, j2,..., jm =
m

∏
i=1

X (i)
ji .

This expression follows immediately from basic query semantics; for a sim-
ple select/project/join/grouping query, if one includes n copies of a tuple t in
a relation, then n copies will appear in the query output for every tuple that
depends upon t.

Given this mathematical definition for X j1, j2,..., jm , it is quite simple to de-
fine an HT estimator that is unbiased for SUM queries and works by first sam-
pling the underlying relations, then applying the query to the samples, and
then scaling up the result. For example, imagine that we perform Bernoulli
sampling on each underlying relation, and that the probability of including
any given tuple in the result set is p. Because the sampling of each relation is
independent, we have

E[X j1, j2,..., jm ] =
m

∏
i=1

E[X (i)
ji ] = pm

Thus, an unbiased HT estimator for the answer to a SUM query over a group
with identifier gid is simply

Y = ∑
j1

∑
j2

· · ·∑
jm

X j1, j2,..., jmt j1, j2,..., jm

pm =
1
pm ∑

j1,..., jm∈sample
t j1, j2,..., jm .

In the general case, it is possible to use this tactic to create an unbiased estima-
tor when applying almost any sampling scheme to the underlying relations.
As long as the various samplings are independent, it will always be the case
that

E[X j1, j2,..., jm ] =
m

∏
i=1

E[X (i)
ji ].
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Thus, the desired HT estimator is obtained by multiplying each t j1, j2,..., jm in
the final sample by 1/∏

m
i=1 E[X (i)

ji ].
We have not discussed (and will not discuss) how to compute and estimate

the variance of an estimator such as Y . Conceptually it is not too difficult to
generalize equations (2.3) and (2.4) to the general setting considered here, but
the derivations can be quite tedious and error prone. As in all variance com-
putations, one must compute the expected value of products of pairs of the
variables that control the sampling process: Xi1,i2,...,im×X j1, j2,..., jm . In contrast
to computing the expected value of X j1, j2,..., jm = ∏

m
i=1 X (i)

ji —which is quite
simple because the input relations are sampled independently—computing
the expected value of Xi1,i2,...,im ×X j1, j2,..., jm is more involved because both
Xi1,i2,...,im and X j1, j2,..., jm have constituent parts that refer to tuples sampled
from the same input relations. Specifically, E[X (k)

ik X (k)
jk ] 6= E[X (k)

ik ]E[X (k)
jk ] in

general, because these random variables refer to tuples that are both sampled
from the kth relation; clearly X (k)

ik and X (k)
jk are not independent when ik = jk,

since both random variables then refer to the same tuple. Even when ik 6= jk,
the random variables X (k)

ik and X (k)
jk will be statistically dependent under any

fixed-size sampling scheme, since ∑ j X (k)
j = nk, where nk is the fixed number

of tuples sampled from the kth relation. Thus potentially tricky correlations
arise, and the possible cases must be considered carefully. We refer the inter-
ested reader to several research papers which include the relevant derivations
[190, 147].

This section has explained some of the basic concepts behind sampling
for general, multi-relation join queries. Given the vast scope for exploring
both the theory and practice of sampling for such queries, many details have
been left out. Thus, we encourage the interested reader to look more carefully
at this topic. The best place to start is with the Haas-Hellerstein ripple join
paper [148]. We close this subsection by trying to address a few of the more
important details, at least at a high level.

Sampling and Joining: Do They Really Commute? We note that several
papers in the database literature—see, for example, [50, 244]—explicitly or
implicitly claim that sampling cannot be pushed down past a join a query
plan, and that the only way to sample from the result of a join of R and S is
to sample from R and then fully join that sample with all of the tuples in S

(or vice versa). On the surface, this seems to conflict with much of what has
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been presented in this section, so some clarification is in order.
For a sampling scheme S over a population U and a subset A ⊆U , de-

note by PS (A;U) the probability that scheme S will output A as a sample.
Then two sampling schemes S1 and S2 over U are said to be equivalent if
PS1(A;U) = PS2(A;U) for all A⊆U . For certain sampling schemes, such as
Bernoulli sampling, and certain database operations, such as selection, the
sampling scheme in which selection precedes sampling is equivalent, in the
above sense, to the scheme in which selection follows sampling. In general,
however, sampling relations R and S and then joining the samples is not equiv-
alent to joining R and S and then sampling from the join. For example, sup-
pose that in scheme S1 we take a 10% Bernoulli sample from each of R and
S and join the samples. In scheme S2, we take a 1% Bernoulli sample from
the join of R and S. It is true that the sample-inclusion probability for a tuple
r•s is 1% for both schemes. However, suppose that r joins with both tuples
s and t from S. Under S1, the probability that both r•s and r•t are in the
sample is

Pr[r, s, and t are sampled] = 0.1×0.1×0.1 = 0.001,

whereas under S2, the probability is

Pr[r•s and r•t are sampled] = 0.01×0.01 = 0.0001,

and the schemes are not equivalent. Indeed, as discussed before, S1 intro-
duces statistical dependencies between the sampled elements of the join. So
in this sense, the sampling and join operations do not commute.

However, when estimating the result of an aggregation query—such as
a SUM query—over a join, we do not care that sampling does not commute
with join in the foregoing sense. We can still push sampling below the join in
the query plan, as long as we compute our HT estimator properly, that is, as
long as we scale up properly. Of course, the scale-up procedure for schemes
such as S1 and S2 may differ, since the Xi, j random variables may have
different distributions, but in both cases we can compute an HT estimator.
So in this sense, sampling and join do commute. Note that, in our exam-
ple, both schemes actually use the same HT estimator Y , since the individual
item-inclusion probabilities are the same. The variance σ2(Y ), however, dif-
fers sharply between the schemes, because—as we demonstrated—the joint
inclusion probabilities differ.
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Fig. 2.1 An example join of two input relations

Sampling and then Joining: Accuracy Concerns. That being said, there
are some valid concerns associated with pushing samples through more com-
plex query plans. The most significant concern relates to the potentially high
variance of estimators that result from sampling and then joining. Sampling
and then joining differs from sampling over a single-relation query in that for
the case of a single-relation query, the sampling fraction is relatively unim-
portant; even a few hundred samples from a billion-tuple relation can result
in an estimate having high accuracy if the values that are being aggregated
themselves have low variance. This is not the case when sampling multiple
relations and then joining. This process is far more sensitive to the sampling
fraction and may need much larger sample sizes than sampling when for the
result of a single-relation query.

Consider the case of a two-relation join of R1 and R2, as illustrated in Fig-
ure 2.1. This figure depicts the two-dimensional grid that results from com-
puting the cross product of the two input relations, where the tuples from one
relation create the x-axis of the grid, and the tuples from the second relation
create the y-axis of the grid. The tuples from the cross product that actually
contribute to the answer to the query are the black cells in the grid. The dif-
ficulty of sampling for the answer to this query is that if the relations are
sampled first and then the samples are joined, a black cell is present in the
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resulting sample only if both of its constituent tuples from R1 and R2 were
present in the sample. In this particular example, since each tuple in R1 joins
with exactly one tuple in R2, we have a foreign-key join and there are 11 tuples
in the answer set. If three samples are taken from both R1 and from R2 and then
joined, then the expected number of answer tuples found is 3

11 ×
3
7 ×11 = 9

7 ,
or slightly more than one out of the eleven result tuples. This is an “effective”
sampling rate of less than 12%, even though the sampling rates for the two
input relations were 43% and 27%, respectively.

In the general case of a foreign-key join where the size of the join is
equivalent to the size of the larger relation, the expected number of samples
found by sampling first and then joining is:

(no. of samples from R1)× (no. of samples from R2)
size of the smaller relation

If each relation contains N tuples and we want to sample n tuples per rela-
tion to achieve a final expected sample size of c, where c is on the order of
several hundred, then we must take n = (cN)1/2 samples from each relation,
which corresponds to a sampling fraction of f = n/N = (c/N)1/2. If we want
our sampling fraction in each relation to be less than or equal to f , then we
must have N ≥ c/ f 2. For example, with a target sampling fraction per rela-
tion of at most 1% and a target sample size of c = 200 tuples, each relation
must contain at least two million tuples. For a foreign-key star join involving
k relations, the required absolute sample size per relation in the worst-case
configuration (that is, the smallest possible join size) is n = c1/kN1−(1/k) and
the required relation size for a sampling fraction of f is N = c/ f k. So for a
three-way join, each relation must have at least 200 million tuples. So clearly
the sample-then-join approach breaks down for foreign-key joins if the re-
lations are not very large or if many relations are involved in the join. (See
[155] for a detailed discussion of the effectiveness of sample-then-join in the
setting of join selectivity estimation.) In any case, unlike the single-relation
scenario, the required absolute sample sizes are quite large, and grow with
the size of the input relations.

This particular drawback of multi-relation sampling is widely recognized.
One key idea in the database literature aimed at getting around this problem
is Archarya et al.’s proposal for using join synopses [4]. Since most database
queries make use of foreign key joins, Archarya et al. propose the idea of
(logically) pre-joining the database relations across those foreign keys, then
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drawing a sample of the resulting relation. This sample (called a join syn-
opsis) is maintained for use in approximate query processing. Any multi-
relation query which employs a subset of the pre-computed, foreign key joins
in the join synopsis can then be re-written as a single relation query over the
synopsis, thereby avoiding the inaccuracy incurred via the sampling of multi-
ple relations. The drawback of this method is that it only handles those joins
that are built into the join synopsis.

Another proposal for dealing with such hard cases is the stratification-
based scheme called bifocal sampling proposed by Ganguly et al. [104]. For
each possible join key, this method first partitions each relation into two sub-
sets: those tuples with dense keys (appearing many times in the relation), and
those with sparse keys (only appearing a few times). Samples are obtained
from both sets. When joining two relations, the total aggregate value obtained
by joining only those tuples with dense keys is estimated using the standard
sample-then-join estimation procedure described in this section. The intuition
is that this is the “easy case”, where sampling followed by a join works quite
well. Then the total aggregate value involving tuples with sparse keys is es-
timated with the help of an index. That is, for a sampled tuple from R, the
precise set of matching tuples from S is located using an index, which effec-
tively reduces the sampling process to single-relation sampling from R. The
index is used because sparse keys can be problematic when sampling and then
joining: if an important key value which joins with many tuples from the other
relation is not included in the sample, then a severe underestimate is likely.
In this way, the very hard case for sampling and then joining is avoided.

2.6.2 The Hard Case: Rel Ops that Do Not Commute

The reason that sampling “commutes” with the operations of selection, pro-
jection, joins, and grouping is that for such queries, whether one samples first
and then runs a query plan, or whether runs a query plan and then samples,
one can always derive an appropriate random variable of the form X j1, j2,..., jm
that controls the number of copies of t j1, j2,..., jm in the answer set. Further-
more, the statistical properties of X j1, j2,..., jm depend only upon the sampling
process, and not upon the actual data in the database. Thus, quantities such
as the expected value of X j1, j2,..., jm are easily derived and HT estimators can
be computed.
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As discussed previously, this approach fails for certain types of queries.
Consider the following antijoin example, which is similar to the NOT IN ex-
ample of Section 2.3:

SELECT SUM(EMP.SALARY)

FROM EMP WHERE NOT EXISTS (

SELECT * FROM SALES

WHERE EMP.ID = SALES.ID)

The problem here is that if one first samples EMP and SALES and then runs
the query, the statistical properties of the random variable Xi, which controls
whether or not the ith tuple from EMP contributes to the final sum, actually
depend upon the data itself. If there are many tuples in SALES that match up
with the ith tuple in EMP, then this tuple is more likely to be discounted via a
match with some member of the sample of SALES and Xi is more likely to be
zero. If there are few tuples in SALES that match up with the ith tuple in EMP,
then Xi is more likely to be non-zero.

Thus, if one samples first and then runs the query, it is difficult to char-
acterize the random process that governs which tuples appear in the resulting
“sample”. The end result is that for all practical purposes, the antijoin opera-
tion does not commute with sampling. Other operations, such as outer joins,
duplicate removal, and semijoin are all closely related to antijoin—for exam-
ple, the antijoin generalizes the duplicate removal operation—and hence they
share many of the difficulties experienced when sampling for the result of an
antijoin.

Although these operations do not commute with sampling, the situation is
not hopeless; sampling-based estimation for aggregation queries is still pos-
sible. One cannot, however, simply apply these operations to samples of the
underlying relations and then scale up the final answer in a simple manner.
More sophisticated estimation techniques are required. We summarize some
of the significant results from the database literature below.

Sampling and Duplicate Removal. The most widely-studied of these “dif-
ficult” operations is the SQL DISTINCT operator (that is, duplicate removal)
over a single relation, in conjunction with the COUNT aggregate. This is the
so-called “COUNT-DISTINCT problem”. The COUNT-DISTINCT problem has
received so much attention for a number of reasons. First, a good solution to
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the COUNT-DISTINCT problem would be of great utility in cost-based query
optimization. It can be expensive to compute the exact number of distinct val-
ues for a column in a relation, and yet this quantity is of key importance when
estimating the size of a join—hence, estimating the number of distinct values
using a small sample is desirable. Second, when using sampling to estimate
the answer to a GROUP BY query, it is always possible that one or more groups
may exist in the data, and yet no samples from the group have yet been ob-
tained. Thus, an estimate for the number of distinct values for the grouping
attribute/s would give a user an idea of how many such unseen groups still
exist. Finally, in a ROLAP setting, estimating the size of a datacube—that
is, the number of nonempty cells—for purposes of storage allocation often
amounts to estimating the number of distinct combinations of dimension at-
tributes present in the underlying dataset.

Perhaps the earliest paper in the database literature to consider this prob-
lem is due to Hou et al. [172], where they suggest using Goodman’s esti-
mator, which first appeared in the statistical literature in 1949 (see Section
3.4 of Hou et al. for more details). The most widely-referenced paper in the
database literature to consider this problem is due to Haas et al. [152]. In an
extension of this paper, Haas and Stokes [156] comb both the statistical liter-
ature and the database literature and come up with eight different estimators
(including Goodman’s estimator), which they show can all be viewed as “gen-
eralized jackknife” estimators, and derive error formulas for such estimators.
They then empirically test the estimators on 47 different real data sets. They
observe that for low skew cases—that is, where the duplication factors for
various distinct values do not differ widely—an “unsmoothed second-order
jackknife” or a “stabilized” version of this estimator works best (see Shao
[272] for an introduction to the jackknife). For high skew cases, an estimator
from the statistical literature (Schlosser’s estimator) works best. The authors
therefore propose a hybrid estimator that combines the three estimators. To
use this estimator, the squared coefficient of variation of the distinct-value du-
plication factors is first estimated from the sample, and then one of the three
estimators is selected accordingly.

Charikar et al. [44] note that there is a spectrum of instances for the
COUNT-DISTINCT problem; at one extreme there are those problem instances
with little or no skew (for example, there is just one distinct value that encom-
passes the entire dataset), and at the other there are those problem instances
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with a tremendous amount of skew (there is one distinct value that encom-
passes most of the dataset, and a large number of values with one tuple each).
The problem is that with a small sample, no estimator can handle both cases
well. Thus, an estimator must always do a poor job on one or the other, which
sets a theoretical bound on the accuracy of any COUNT-DISTINCT estimator.
They go on to propose a quite simple estimator that meets this theoretical
bound. This is called the “Guaranteed-Error Estimator”. They also propose a
version of the Guaranteed-Error Estimator that is analogous to Haas et al.’s
hybrid estimator, with the additional goal of providing for a smooth transition
from the low-skew to high-skew case. Experiments show that this new, adap-
tive estimator works well in practice, though we have found that the relative
performance of the various estimators is rather sensitive to the accuracy crite-
rion used. Overall, sampling-based estimation of COUNT-DISTINCT queries
remains a very challenging problem.

SUM Aggregates over Antijoins and Semijoins. Very few papers have tried
to attempt sampling-based estimates for these more general queries. Jer-
maine et al. [191] consider the problem of sampling for two-relation, NOT
IN queries (such as the EMP and SALES example given above), and charac-
terize the bias of the estimator which samples the two input relations first,
then joins the samples. They suggest that one way to handle such queries in
practice is to use an approach that samples the two input relations, then se-
lects a few of the tuples from the outer relation (EMP in our example). For
those tuples, exact counts of the number of matches in the inner relation are
computed. This information is used to unbias the resulting estimate.

One problem with this approach is that it requires the use of an index
on the inner relation. In subsequent work, Joshi and Jermaine [196] consider
estimation procedures for antijoins that do not require any such index. An
unbiased estimator is developed, which unfortunately has high variance. The
authors therefore consider the application of a “superpopulation method” to
the problem (see Sarndal, Section 13.6 [268]) which first learns a generative
model for the data, and then develops a biased estimator that happens to work
well on datasets that are generated using the learned model.

In the (somewhat biased!) opinion of the author of this chapter, sampling-
based estimates for the answer to queries containing antijoins, semijoins, and
other difficult operations is an under-studied problem, and there are still many



2.6. Sampling and Database Queries 47

limitations in the state-of-the-art. Chief among those is that existing work is
limited to antijoins or semijoins of two relations, and not to more complex
query plans that contain other operations such as additional joins in the inner
or outer query. Thus, we hope that more research attention will be paid to this
problem.

2.6.3 Beyond SUM Aggregates

The final topic that we discuss with respect to SQL queries over samples
is the problem of estimating the answer to aggregate functions other than
SUM (and COUNT, which is nothing more than the aggregate SUM(1)). Our
discussion largely follows Haas [145], who provides an in-depth discussion
of estimating (and giving confidence bounds for) the AVERAGE, STD DEV and
VARIANCE aggregate functions over multi-relation queries.

We begin by considering those aggregate functions that can be written
as arithmetic functions of multiple SUM queries. These include AVERAGE,
STD DEV and VARIANCE.

Average. We first consider AVERAGE queries of the form:

SELECT AVERAGE( f (r1 • r2 • · · · • rm))
FROM R1 AS r1 , R2 AS r2 , . . .

WHERE g(r1 • r2 • · · · • rm)

This can be written as the ratio of two individual SUM results. The numerator
is:

SELECT SUM( f (r1 • r2 • · · · • rm))
FROM R1 AS r1 , R2 AS r2 , . . .

WHERE g(r1 • r2 • · · · • rm)

And the denominator is:

SELECT SUM(1)

FROM R1 AS r1 , R2 AS r2 , . . .

WHERE g(r1 • r2 • · · · • rm)

Given this relationship, one obvious tactic is to estimate these two quantities
at the same time, using the same samples, to obtain two estimators which we
call YSUM and YCOUNT. By dividing these two estimators, we obtain an estimator
for the final AVERAGE. Fortunately, “ratio estimators” of this sort over sam-
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ples result in an (approximately) unbiased estimate for the final query result,
and so YAVERAGE = YSUM/YCOUNT is generally a high quality estimate for the ac-
tual query result. Not only is this estimator approximately unbiased, but in
practice it also has very low variance; typically much lower than the variance
of either the numerator or the denominator. The reason is that since the two
estimates use the same samples, they are highly correlated. If the numerator
overestimates (or underestimates) the SUM, the denominator will also overes-
timate (or underestimate) the COUNT, and the resulting estimate may still be
high quality.

Although it is intuitively clear that the estimator YAVERAGE has low variance,
actually computing this variance is challenging. The problem is the division
operation in the estimator’s definition. Since the variance of any estimator Y
is E[Y 2]−E2[Y ], the variance of our AVERAGE estimator is written as

E
[ Y 2

SUM

Y 2
COUNT

]
−E2

[ YSUM
YCOUNT

]
.

The difficulty here is that YSUM and YCOUNT are themselves sums over many
different, correlated X j1, j2,..., jm random variables, and so each of the two terms
in the variance is a ratio of two correlated, complex sums. One might ob-
tain a reasonable estimator for E2[ YSUM

YCOUNT
] by squaring YSUM

YCOUNT
, but dealing with

E[ Y 2
SUM

Y 2
COUNT

] is particularly nasty, since it requires computing the expected value
of a ratio of two complicated squares.

Fortunately, there are some tools at our disposal for handling this diffi-
cult computation. The standard way that this is handled in statistics is via use
of the so-called delta method, also known as Taylor linearization; see Sarn-
dal [268, Section 5.5]. In our example, the technique uses a first-order Taylor
series to remove the ratios from the variance computation. Specifically, write
the AVERAGE estimator as

YAVERAGE = g(YSUM,YCOUNT) =
YSUM

YCOUNT
.

To apply the delta method, expand the function g(x,y) = x/y in a first-order
Taylor series around the true query results QSUM and QCOUNT to obtain the ap-
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proximation YAVERAGE ≈ ỸAVERAGE, where

ỸAVERAGE = g(QSUM,QCOUNT)+
∂g
∂x

(QSUM,QCOUNT)× (YSUM−QSUM)

+
∂g
∂y

(QSUM,QCOUNT)× (YCOUNT−QCOUNT)

=
QSUM

QCOUNT
+

1
QCOUNT

(YSUM−QSUM)−
QSUM

Q2
COUNT

(YCOUNT−QCOUNT).

The justification is that for a sufficiently large sample size, YSUM. and YCOUNT
will be close to QSUM and QCOUNT, so that the Taylor series will be a good
approximation. We then approximate the variance of YAVERAGE by the variance
of ỸAVERAGE. Computing the variance of a linear function of random variables
is relatively easy, using the fact that σ2(aX +c) = a2σ2(X) and σ2(X +Y ) =
σ2(X)+σ2(X)+2Cov(X ,Y ) for any random variables X , Y and constants a,
c, where “Cov” denotes covariance. We obtain

σ
2(ỸAVERAGE) =

1
Q2
COUNT

σ
2(YSUM)+

Q2
SUM

Q4
COUNT

σ
2(YCOUNT)

−2
QSUM

Q3
COUNT

Cov(YSUM,YCOUNT).
(2.5)

We can compute the variances of YSUM. and YCOUNT (somewhat tediously) as
discussed in Section 2.6.1; the covariance computation is similar. When esti-
mating σ2(YAVERAGE) from a sample, we replace the unknown constants QSUM

and QCOUNT in equation (2.5) by their estimates YSUM and YCOUNT.

Variance. VARIANCE is a trickier extension of AVERAGE, since the variance
of a set of values is the average squared value in the set, minus the square
of the average value in the set. To develop an estimator for this quantity, we
consider the following SUM query:

SELECT SUM( f 2(r1 • r2 • · · · • rm))
FROM R1 AS r1 , R2 AS r2 , . . .

WHERE g(r1 • r2 • · · · • rm)

We then define an estimator YSUM2 that is appropriate for this query. Given
YCOUNT, YSUM, and YSUM2 , the following is a reasonable estimator for the query
result:

YSUM2

YCOUNT
− Y 2

SUM

Y 2
COUNT
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Note that this estimator may have some bias, because while the term YSUM2
YCOUNT

is
(nearly) unbiased for the average squared value of all t j1, j2,..., jm in the data, and
while YSUM

YCOUNT
is (nearly) unbiased for the average t j1, j2,..., jm in the data, squaring

YSUM
YCOUNT

does not necessarily result in an unbiased estimate for the square of
the average t j1, j2,..., jm . In fact, squaring an estimator generally results in an
estimator with at least some upward bias; thus, in the authors’ experience the
resulting, overall estimator can underestimate the variance. However, as the
sampling fraction increases, the bias shrinks and the resulting estimator is
very reasonable. Just as in the case of AVERAGE, an estimate for the variance
of this estimator can be obtained via application of the Taylor linearization
method.

Standard Deviation. An estimator for the STD DEV aggregate is obtained by
simply taking the square root of the estimator for AVERAGE. While this may
induce some additional bias, it is also a reasonable choice. Again, an estimate
for the variance of the estimator can be obtained via the Taylor linearization
method.

Median. Though MEDIAN is not one of the standard SQL aggregate functions
(because it cannot always be evaluated in a single pass through the dataset) it
is quite common in practice, and it is also amenable to sampling. The obvious
estimator is applied by simply obtaining the median value of the items that
have been sampled from the dataset. A procedure for estimating the variance
of this estimator is more involved; we point the reader to Sarndal et al. [268],
Section 5.11 for details of the variance computation in the case of a single
relation.

Min and Max. Sampling for the MIN and MAX aggregate functions from a fi-
nite population is an exceedingly difficult task. The problem is that a dataset
can define an arbitrary distribution, and without any prior or workload knowl-
edge it is virtually impossible to use a sample to guess the largest (or smallest)
value without inspecting every data item. For example, imagine that a relation
contains the following values:

〈1,1,2,4,5,7,8,1010〉

Now, imagine a second relation that contains the following values:

〈1,1,1,7,12,19,36,45〉.
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It should be clear that without domain knowledge, any estimator for the MAX
aggregate function which generally works well on a relation that resembles
the first instance will not work well on a relation that resembles the second.
The problem is that if an estimator works well on the first type of dataset
by scaling up some statistic that is computed over the sampled data items,
it will (likely) radically overestimate the MAX value for the second type. By
the same token, an estimator tailored for the second type of dataset would
radically underestimate on those of the first type.

Given its difficulty, the problem has not been studied extensively in the
database literature. The relevant statistical literature focuses mostly on esti-
mation procedures for parametric distributions [213]. The only paper in the
database literature which proposes using sampling for aggregates of this form
employs a so-called “Bayesian” estimator [242] that does, in fact, employ
prior information to make the problem more reasonable [293]. The basic idea
is to first (offline) learn what the distribution of values in common queries
tends to look like. This can be done by looking at a historical query work-
load. For example, we might first construct a statistical model that says that
one half of the time, the set of tuples queried looks like the first relation; the
other half of the time, the set of tuples queries looks like the second. Then,
when a query is issued and a sample is obtained, the original, offline model
is updated to take into account the new samples that have been obtained (this
is a classic example of the Bayesian approach). This additional information
can be used to construct a relatively high-quality estimator. For example, if,
after taking five samples we obtain 〈1,1,7,32,45〉, we might more accurately
guess that we are in the second regime, and so taking the largest value in the
sample (45) will provide a reasonable estimate for the query answer. If we
determine that we are in the first regime, then we might estimate the MAX as
being much larger than the largest sampled item.

Top-k. A top-k query computes the k most frequent values in a dataset R,
along with their frequencies. The challenge is that simply taking the top-k
values in a random sample of size n and scaling the corresponding frequen-
cies upward by a factor of |R|/n overestimates the true frequencies of the
top-k values, even though such a scale-up procedure unbiasedly estimates the
frequency of any individual, specified value in the data. This difficulty stems
from the fact that the expectation of the maximum of a set of random variables
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(the frequency estimators) is greater than the maximum of their expectations
(the true frequencies). Cohen et al. [55] provide sampling and estimation pro-
cedures for this problem.

2.7 Obtaining Samples from Databases

Thus far, we have focused exclusively on how one might make use of random
samples from a dataset. We now consider the question of how one might ob-
tain random samples from a dataset that is stored, for example, by a database
management system on a modern hard disk. Specific topics include: tuple-
based versus block-based sampling, sampling in a single pass from a relation,
sampling from an index, and single-pass sampling in such a way as to take
into account deletions.

2.7.1 Block-Based vs. Tuple-Based Sampling

At the present time, most (large) datasets are stored on hard disks, and this
situation will continue for at least the next few years. This fact is of funda-
mental importance in sampling, because hard disks are mechanical devices.
To obtain a random tuple from the dataset (for example, when implementing
SRSWoR), the disk head must physically be moved to the track containing
the desired data, and the disk must spin until the desired tuple falls under the
disk head before it can be transferred to the CPU. Because the moving parts
in a hard disk are subject to the laws of Newtonian physics, it is difficult to
accelerate the disk head fast enough to cut the cross-disk “seek” time down
under a few milliseconds. Furthermore, due to the huge forces involved in
spinning a disk quickly, a full revolution of the disk will always require a few
more milliseconds. This means that the process of obtaining an item from a
randomly-selected location on disk takes around three to five milliseconds,
even for the fastest disks. Such considerations can often make random sam-
pling from a disk a very expensive proposition—at 5ms per sample, this is
only 200 samples per disk, per second.

One way around this problem is to obtain an entire block of data tuples at
one time, as opposed to a single tuple. Datasets are naturally organized into
blocks (or pages) that are atomic in the sense that if one tuple from a page
is read into main memory, then all of the tuples are read into memory. The
reason for such an organization is that the additional cost to read hundreds
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or thousands of tuples that are co-located with a given tuple is small or even
negligible due to the density with which bits are written on the surface of
the disk. In many applications, it is hard to justify wasting this data. In the
remainder of this section, we refer to the tactic of obtaining an entire page or
block of tuples from a randomly selected location on disk (as opposed to a
single tuple) as block-based or block-level random sampling.

Obviously, block-based random sampling radically increases the rate at
which data can be randomly sampled from disk. However, the X j random vari-
ables governing how many copies of each tuple are selected via block-based
random sampling do not retain their statistical properties vis-a-vis tuple-based
sampling, and quite strange correlations can be induced. For example, imag-
ine that tuples are generally clustered on disk via their insertion time into
the dataset. This makes it more likely that block-based sampling will select
groups of tuples that were inserted into the dataset at roughly the same time,
which may alter the statistical properties of any subsequent estimators.

Fortunately, this issue can be dealt with. Imagine that rather than viewing
a relation R as a pool of |R| tuples that may be sampled, the relation is viewed
as a pool of |R|b blocks that might be sampled, and the sampling process is
used to select those blocks at random, rather than tuples. For example, to
implement SRSWoR in order to obtain n blocks, we might run the following
two steps, until n blocks have been obtained:

(1) Produce a random number r from 1 to |R|b, inclusive.
(2) If the rth block from the dataset has not been previously added to

the sample, then obtain this block and add it to the sample.

Given such a sampling process, most of the estimators discussed thus far
(most notably, the standard selection/projection/join/grouping estimator from
Section 2.6.1) can be applied with only a slight modification. This is done as
follows. Rather than letting t j1, j2,..., jm refer to the value obtained after applying
functions f , g, and h to the result of concatenating tuple j1 from the first
relation with tuple j2 from the second relation and so on (see Section 2.6.1),
t j1, j2,..., jm instead refers to the total aggregate value obtained by applying f ,
g, and h to the cross product of all of the tuples in the j1th block from the
first relation, the j2th block from the second relation, and so on. Specifically,
let B(i)

j refer to the set of tuples in the jth block from the ith relation and let
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f ′(t) = f (t) if g(t) = true and h(t) = gid; otherwise, f ′(t) = 0. Then let

t j1, j2,..., jm = ∑
t1∈B(1)

j1

∑
t2∈B(2)

j2

· · · ∑
tm∈B(m)

jm

f ′(t1 • t2 • · · · • tm).

Also redefine X j1, j2,..., jm to be the random variable that controls whether the
sample contains block j1 from relation 1, block j2 from relation 2, and so on.
Given these redefinitions of t j1, j2,..., jm and X j1, j2,..., jm in terms of blocks rather
than tuples, our prior discussion about sampling for SUM, COUNT, AVERAGE,
VARIANCE, and STD DEV over joins and grouping formally applies without
modification. Crucially, the analysis of variance and unbiasedness still holds
without modification, and all of the estimation and variance computations
formulas hold as written (but with the new block-level interpretation). Per-
haps this result is not surprising, since we have merely redefined the block as
the atomic sampling unit.

The resulting estimator will usually be more accurate than if only one
tuple is used from each sampled block. Furthermore, if the tuples in each
block are truly uncorrelated, then the extra accuracy gained by using all of
the data in a block or page can be very significant. A block or page may have
hundreds or thousands of tuples. Since variance generally decreases linearly
with sample size in the case where samples are uncorrelated, using all of the
tuples in a block can result in a thousand-fold decrease in variance for the
same number of disk-head movements.

We note, however, that block-based sampling is not always the preferred
retrieval method. We refer the interested reader to Haas and König, who care-
fully consider the issue [150]. For example, as the authors point out, it may
be that one is worried not just about the number of random seeks, but also
about the CPU cost of processing all of the tuples in a block, which can
sometimes be expensive. In this case, tuple-based sampling may be the better
choice, or a hybrid scheme that samples blocks and tuples may be preferred.
Also, the foregoing trick—of simply redefining the estimation process so that
it uses sampled blocks rather than sampled tuples—is only applicable when
the underlying computation makes use of summations over tuples that can
be redefined as summations over blocks. For example, the computation un-
derlying a COUNT-DISTINCT query does not use such summations. For such
queries, the question of block-based versus tuple-based sampling is much
more complicated. See Haas et al. [151] for a partial discussion of how to
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apply block-based sampling to the COUNT-DISTINCT problem. In general,
current COUNT-DISTINCT estimators based on block-level sampling schemes
tend to be extremely variable; more work on this problem is needed. Finally,
see Chaudhuri et al. [49] for other applications of block-based sampling.

2.7.2 Sampling via a Full Scan

Compared to either block-based or tuple-based sampling, the fastest way to
get data off of a disk is always via a sequential scan: first, the disk head is
moved to the beginning of the data file, and then data are read in sequence
from start to finish. A sequential scan will typically read tuples from disk ten
times as fast as a block-based algorithm, and possibly tens of thousands as
times as fast as a tuple-based algorithm.

The goal is to read all of the tuples in a file from start to finish such that,
for any n ≥ 1, a size n random sample of the file is available after n tuples
have been read. The problem, of course, is that the first n tuples in a data file
are likely not anything close to a random sample of the tuples in the file. This
situation is easily remedied if the data in the file have been randomly shuffled
before the scan is started. This idea was pioneered by Hellerstein, Haas, and
Wang [165] in their paper on “online aggregation.” To perform the required
random shuffling, it is easiest to attach a random bit string to each tuple in
the dataset. Then, an efficient, external sort (such as a two-phase, multi-way
merge sort) is used to order the data so that they are sorted in ascending order
of this bit string. After the sort, the first n tuples in the file are equivalent
to n tuples selected via SRSWoR. Another approach is to use spare compute
resources to perform the required re-ordering in the background, so that as
new data are added, the random order is still maintained [261].

2.7.3 Sampling From Indexes

One of the difficulties associated with implementing tuple-based sampling is
ensuring that tuples are selected with the correct probability. This can be non-
trivial because each disk page may have a different number of tuples on it. If
one first selects a page at random, then selects a random tuple from within the
page, tuples on pages that have fewer tuples are more likely to be sampled.
This can result in bias.

One way to overcome this problem is using an available indexing struc-
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ture to guide the sampling process. The pioneering work in this area is due
to Olken and Rotem. In one paper, they consider how to use the structure of
a hashed file to implement sampling so that each tuple is selected with the
appropriate probability [247]. In that paper, a number of accept/reject-based
sampling algorithms are proposed. “Accept/reject” methods first locate a tu-
ple at random, then compute the probability of locating the tuple, and then
decide randomly whether to accept or reject the random tuple. If the tuple has
a large probability of being located, then it is rejected with high probability
to compensate for the higher probability of being located.

In another paper, Olken and Rotem consider accept/reject algorithms for
sampling from B+-Trees [245]. One problem with such accept/reject algo-
rithms is that if things go poorly, many, many tuples may need to be located
before any tuple is accepted for inclusion in the sample. Antoshenkov [9] fol-
lows up Olken and Rotem’s B+-Tree algorithms and attempts to address the
problem with accept/reject sampling in this context by proposing the use of
a “pseudo-ranked” B+-Tree. If a B+-Tree contains “rank” information (that
is, each node in the tree contains statistics on how many tuples are contained
in each of its subtrees) then sampling is quite easy, and an accept/reject algo-
rithm is not needed. Specifically, a random number r from 1 to |R| is gener-
ated, and the rank information is used to locate the rth tuple in the tree. But
(as Antoshenkov points out) maintaining the rank information is costly when
the tree is updated, because it requires updates to all of the nodes from root
to leaf at each and every insertion into the tree. Thus, Antoshenkov proposes
pseudo-ranked B+-Trees, where only bounding information on the number of
tuples in each subtree is stored. If this bound is reasonably tight, then the vast
majority of the rejections can be avoided.

We close this subsection by noting that one very desirable characteristic of
algorithms for sampling from B+-Trees is that they can be used for sampling
directly from the result of a relational selection predicate, without having to
sample the entire relation and then filter the samples to obtain a sample of a
desired size. For example, a database may store data corresponding to many
years of retail sales, but a user query might focus on only two days’ worth of
data. If the tuple timestamps are indexed by a B+-Tree, it is possible to use the
structure of the tree to sample directly from those two days. Any branches of
the tree falling outside of the desired range are treated as having zero tuples,
and the accept/reject or ranked sampling algorithm is modified accordingly.
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2.7.4 Sampling From Tuple Streams

Most of the methods discussed thus far for drawing a sample from a dataset
have assumed that the dataset is fully materialized and the goal is to draw a
single tuple at random. A larger sample is drawn via repeated invocations of
the sampling algorithm. This is not always the case. It may be that the data
are treated as a “stream”, where the goal is to maintain a sample of all of the
data that have been encountered thus far, or to maintain data structures that
allow a sample to be produced once the last tuple from the stream as been
encountered. Such a stream-based scenario is relevant when the data flow
through the system at high speed without ever being stored on disk [74]. It
is also relevant when one wishes to draw a sample of non-trivial size from a
data file, so it is better to draw the sample in batch in a single, sequential pass
rather than via a large number of random accesses.

In this subsection, we give only the briefest overview of stream-based
sampling algorithms. For a more detailed treatment, we refer the interested
reader to Haas’ chapter “Data-Stream Sampling: Basic Techniques and Re-
sults” in Garofalakis et al.’s book on data stream processing [107], as well as
to the recent PhD dissertation of Gemulla [113].

Certain stream-based sampling algorithms are trivial. For example,
Bernoulli (or Poisson) sampling over a stream in one pass is easy. Suppose
that the inclusion probability for the jth tuple is p j. As this tuple passes by,
we need only simulate a coin-flip where the probability of seeing “heads” is
p j. If a heads is obtained, the tuple is added to the sample. Otherwise, the
sample is ignored. Rather than simulating individual coin flips, we can speed
up the algorithm by simulating the gaps between subsequent acceptances: at
each acceptance, the algorithm simulates the gap until the next acceptance—
which can be done quite easily—and then essentially “goes to sleep” until the
next accepted tuple arrives.

Perhaps the most classic stream-based sampling algorithm is the SR-
SWoR algorithm for a data stream of unknown size, which is known as the
reservoir algorithm. The basic idea was proposed at least once or twice in the
early 1960’s; see, for example, Fan et al. [95] and their “method 4.” It was
then refined and made popular in the computer science research literature by
Vitter [283]. The underlying concept is quite simple, and many variations are
possible, each with its own performance characteristics. The algorithm starts
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by selecting the first n tuples from the input stream and putting them into an
array called the “reservoir.” These tuples are trivially a size-n “random sam-
ple” of the tuples seen so far. Subsequently, when the ith tuple in the stream
arrives (i > n), the tuple is accepted into the reservoir with probability n/i, re-
placing a randomly chosen reservoir element; with probability 1− (n/i), the
ith tuple is ignored. It can be shown that, at any time during processing, the
contents of the reservoir form a uniform, size-n random sample of all tuples
seen so far. (A sampling scheme is uniform if any two population subsets of
the same size are equally likely to be output by the scheme; samples produced
by a uniform sampling scheme are also called “uniform.”) Vitter shows how
the algorithm can be speeded up by simulating the gap between acceptances,
as described for Bernoulli sampling; in the current setting however, simulat-
ing the gap is far from trivial, and accept/reject techniques are needed.

Several variations of the reservoir algorithm have appeared in the database
literature. Brown and Haas [27] consider use of the reservoir algorithm for
sampling in parallel from multiple streams. Several papers [114, 192] con-
sider the case when the sample to be maintained is too large to keep in mem-
ory, and must be stored on disk.

Another widely-known stream-based sampling algorithm from the
database literature is the algorithm for producing concise samples and its
close cousin, the algorithm for producing counting samples [125]. Both of
these algorithms attempt to produce a bounded-size, compressed representa-
tion of a uniform sample, where not only is each sampled tuple included in
the representation, but information on the number of repetitions in the stream
is also represented. In the extreme case where only a few values ever appear
in the stream, these sampling algorithms may not even need to sample at all,
and the entire stream can be summarized via a set of (tuple, count) pairs.

A unique problem when sampling from a data stream in a dynamic envi-
ronment is that the data stream may also contain deletions of existing data,
as well as insertions of new data. This is especially relevant if the goal is to
maintain a sampling-based synopsis of a large dataset in an online fashion
by only monitoring the insert/delete stream, so that at any instant, one always
has access to a sample of the current version of the underlying dataset without
having to look at any of the base data.

Gemulla et al. [116, 118] have provided a state-of-the-art algorithm for
maintaining a bounded-size SRSWoR from a data stream in a single pass
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while allowing both insertions and deletions. Bounded-size samples are desir-
able because they reduce the complexity of memory management and allow
control of the computational costs for algorithms that use the samples. The
authors propose a “random pairing” (RP) algorithm, assuming that the data
size is relatively stable. The idea is to “compensate” for prior deletions by
pairing each inserted tuple with an “uncompensated” prior deletion. In more
detail, when a deletion is encountered, the RP algorithm removes the tuple
from the reservoir, if it is present. If the deleted tuple is present, a counter c1

is incremented; if it is not, c2 is incremented. If both counters equal 0 just be-
fore a new insertion is encountered, the insertion is processed according to the
classical reservoir algorithm. Otherwise, the insertion is randomly “paired”
either with a “bad” prior deletion that resulted in a tuple being removed from
the reservoir or with a “good” deletion that did not affect the reservoir; the
respective pairing probabilities are c1/(c1 + c2) and c2/(c1 + c2). If the new
insertion is paired with a bad deletion, it is added to the reservoir, so that
the reservoir size increases, and c1 is decremented by 1. If the new inser-
tion is paired with a good deletion, it is not added to the reservoir and c2 is
decremented by 1. In a later paper [117], the authors consider the problem of
maintaining a Bernoulli sample over a multiset in the presence of insertions
and deletions.

A problem that has plagued the literature in this area is that some stream-
ing algorithms which attempt to bound the sample size (including some of
the foregoing algorithms) introduce subtle departures from the asserted uni-
formity of the samples. The problems usually arise from attempts to combine
Bernoulli sampling—which has unbounded sample size—with a bounding
step that involves ideas such as periodically purging the Bernoulli sample
or switching over to reservoir sampling when the sample sizes hits an up-
per bound. Nonuniformity for the concise/counting samples previously men-
tioned and for a scheme called “Bernoulli sampling with purging” is demon-
strated in [27] and [113, Sec. 3.5.1B], respectively. The “hybrid Bernoulli”
(HB) scheme in [27] and a “random pairing with resizing” (RPR) algorithm
given in [116, 118] (designed to extend the RP algorithm to handle datasets
that grow over time), also can be shown to suffer from this drawback.

One general approach for handling this problem is to settle for probabilis-
tic bounds on the sample size that are exceeded with very small probability.
Alternatively, the nonuniformity problem for the HB scheme can be elimi-
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nated for an insertion-only stream by suitably randomizing the time at which
a switchover to reservoir sampling starts. Gemulla [113, Sec. 4.2] shows that
the RPR scheme can also be repaired. The basic idea when enlarging a sam-
ple from size n to size n′ (> n) is to initially convert the sample to one that is
statistically equivalent to a sample produced by an RP scheme with maximum
sample size n′ and d uncompensated deletions. (Here d is a parameter of the
resizing algorithm.) This conversion requires access to the base data, but the
author shows that any resizing algorithm must involve such access. After the
initial conversion, the RP algorithm is run until the number of uncompen-
sated deletions drops to 0, which implies that the sample size is equal to n′.
The parameter d can be chosen to optimize the trade-off between the cost of
accessing the base data and the cost of waiting for new stream elements to
arrive.

The discussion so far has focused on uniform samples, but it is often desir-
able to obtain a sample from a stream in a biased way. For example, Babcock
et al. [14] consider how to maintain a sample of the k most recent tuples from
the stream. This involves expiring data that were included in the sample but
are not in the k most recent tuples. Aggarwal [5] considers how to decay the
inclusion probability of each tuples as new tuples arrive in the stream, so that
with high probability, only the most recent tuples are included in the sam-
ple. In this work, the “recency” of a tuple t is defined in terms of the num-
ber of tuples that have appeared since t passed by on the stream. Gemulla
and Lehner [115] consider the obvious question of how to maintain a sample
when the “recency” of t is defined in terms of the time that has passed since
t first appeared on the stream. This is challenging, since the rate at which
tuples appear over time can change. If t arrives at a time when many tuples
have recently arrived, but then (over time) fewer and fewer tuples show up,
t will have its inclusion probability rise over time. This means that it is not
acceptable to simply throw out all of the tuples that are not immediately in-
cluded in the sample, and so it is not possible to guarantee a particular sample
size using bounded space. In response to this, the authors develop a sampling
scheme that works using bounded space, and does provide a lower bound on
the expected sample size. Other interesting schemes for biased sampling have
been proposed in the setting of network monitoring and related problems; see
[54] and references therein.
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2.7.5 Materialized Sample Views

Finally, we mention the problem of trying to maintain a materialized sample
view in the presence of updates to the dataset. Just as a materialized view is
a pre-computed query result for some important query, a materialized sample
view is a materialized sample from the query result for some important query.
Perhaps the best sources for information on this problem are Olken’s PhD
thesis [243] and Olken and Rotem’s paper on the subject [246].

2.8 Online Aggregation Via Sampling

We close the chapter on sampling with a brief discussion of online aggre-
gation. One of the key advantages of sampling is that it is additive: if one
obtains a small sample, then adds some data to it, one obtains a larger (and
presumably more accurate) synopsis of the base data. This means that if a
user is not happy with the accuracy incurred via a sampling-based estimate,
then more data can be added to the sample via an incremental procedure,
and the estimate can be computed once again. Indeed, the process of adding
more data and then re-estimating the query answer can be repeated again and
again until the desired accuracy has been obtained; this process is known as
online aggregation. The ability to support online aggregation is quite unique
to sampling. The assumption which generally underlies online aggregation is
that data are randomly shuffled on disk, so that an efficient relation scan can
obtain random samples of larger and larger size. In contrast, other approxi-
mate query processing methods such as wavelets, sketches, etc., are “one and
done” methods—if the estimate obtained is not accurate enough, then the user
has no recourse except to create a larger synopsis, usually at great expense.

The idea of online aggregation was first proposed by Hellerstein, Haas,
and Wang in their 1997 paper [165]. The goal was to provide quick interactive
access to large datasets, allowing the user to determine on the fly whether the
current query results were “sufficiently” accurate; if so, then the query could
be terminated, thereby letting the user get on to their next interactive query.
In their original paper, they considered single-relation queries with (possibly)
a GROUP BY thrown in. One of the key technical innovations of the original
online aggregation paper (originally suggested by M.R. Stonebraker) is the
idea of “index striding,” where the convergence of the different groups to the
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true query answer is controlled by using an index to sample from the different
groups at different rates. This is in contrast to the obvious way of handling
a GROUP BY query: drawing a single sample without regard to the grouping
operation, and then applying a series of different estimators to the sample,
with one estimator for each group—a group’s estimator assigns zero values
to all of those tuples that do not belong to its group.

Later, Haas and Hellerstein extended their idea to multi-relation queries
[147, 148], and they proposed the idea of a ripple join. In a ripple join of two
relations R and S, a group of random tuples are first read from R, then a group
of random tuples are read from S. These tuples are joined, and an estimate
is produced. Then another group of tuples are read from R; all of the tuples
read thus far from R are joined with all of the tuples read thus far from S, and
another estimate is produced. Next, another group of tuples are read from S;
all tuples read thus far from S are joined with all tuples read thus far from
R, and another estimate is produced. This process is repeated until all of the
tuples from R and S have been joined. The sampling rates are dynamically
adjusted to that sampling effort is biased toward the input relation with the
most variable data. The basic idea of a ripple join was later extended so that
the ripple join was applicable in a parallel database environment [219].

One big problem with the ripple join is that it is not scalable—it only
works if the results become sufficiently accurate quickly, so that the query can
be aborted very early on. The whole algorithm relies on obtaining a few more
tuples from an input relation, and then being able to efficiently join those
tuples with all of the tuples obtained thus far from the other input relation.
In practice, this means storing each relation in a hash table, and probing the
hash table for matches when new tuples are read into memory. Unfortunately,
this does not work if the tuples read thus far from both relations can not be
stored in such an in-memory hash table due to the amount of data. In such a
case, the ripple join must go to disk to find matches for new tuples, which is
an exceedingly expensive proposition.

In response to this issue, Jermaine et al. propose a system for online ag-
gregation called DBO that uses a whose sequence of ripple joins in tandem
with a full query evaluation plan [189]. Every time that main memory fills
with tuples, another ripple join estimate is produced and used to increase the
accuracy of the current estimate for the query result. Then, all of those tu-
ples are sorted and written back to disk as part of a sort-merge join. As new
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data are read, main memory again fills and another ripple join estimate is pro-
duced. Again, this estimate is incorporated into the current estimate for the
ultimate query result. Those tuples are again sorted and written back to disk.
This is repeated until all of the input relations have been broken into sorted
runs. Furthermore, the sort-merge joins make use of a randomized sort order,
so that the merge phase of each sort-merge join outputs tuples in random or-
der. Thus, those tuples can be used as input for ripple joins higher up in the
query plan. In this way, it is possible to obtain tighter and tighter estimates
via additional ripple joins throughout query processing, up until the time that
the final answer is produced.



3

Histograms

The histogram is a venerable and well studied dataset synopsis, used in a
wide variety of modern computer systems. In the database setting, histograms
have been an integral component of query optimizers since at least the mid-
1990’s [43, p. 662], and are often used by the information management and
statistical communities for purposes of data visualization. So far, histograms
have not been used extensively for approximate query processing in com-
mercial systems, but have great potential for this purpose. As a consequence,
histogram-based approximation techniques have been extensively studied by
the database research community; the AQUA approximate querying system
developed at Bell Laboratories [126] is a notable example of a research pro-
totype. A renewed surge of interest in histogram techniques has been driven
by the networking community, who need small-space synopses to summa-
rize patterns in packet traffic, in order to reduce congestion, detect denial-of-
service attacks, and so forth. This new generation of histograms must contend
with stringent space and time requirements, as well as the ever shifting statis-
tical characteristics of streaming data.

As discussed in the review paper of Ioannidis [180], use of histograms
and bar charts for data summarization and visualization goes back to the 18th
century, and the term “histogram” itself was coined by statistician Karl Pear-

64
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son in the 1890’s. Histograms have been studied in the database literature for
over 25 years, starting with the paper of Piatetsky-Shapiro and Connell [252].
Not surprisingly then, the statistical and database literature on histograms is
enormous. As with other approximation techniques, we do not attempt to give
an exhaustive survey. Rather, we focus on distinguishing those aspects of his-
tograms that are pertinent to approximate query processing; key themes of
our development are the adoption of a model-free point of view and the gen-
eralization of the notion of a histogram far beyond its classical origins. Our
emphasis throughout is on those results and techniques that appear to have
the greatest potential for practical use.

In the remainder of this chapter, we first introduce the key issues pertinent
to histograms via a discussion of several simple, classical histograms, and de-
lineate some important differences between the statistical and database view-
points. We then focus on the use of one-dimensional (1D) histograms for ap-
proximate query answering, especially for “range-sum” queries, e.g., queries
that specify the number of data items having values in a specified range. Al-
though multi-dimensional histograms and general queries are of primary im-
portance in our setting, a careful discussion of 1D-histograms is worthwhile
because of their relative simplicity, well-developed theory, and historical im-
portance. Moreover, techniques developed for 1D-histograms often appear as
components of more elaborate algorithms for multi-dimensional histograms.
We then discuss multi-dimensional histograms and approximate answering of
general queries. It will be apparent from our discussion that 1D-histograms
for range sums have received a disproportionate share of attention in the lit-
erature; perhaps by highlighting the relative paucity of results on multidi-
mensional histograms and general queries, we will inspire further research
on these challenging but important topics. We conclude the chapter by dis-
cussing histograms over streaming data, as well as specialized techniques for
real-valued data.

3.1 Introduction

To ease our way into the topic of histograms, we first give an extended exam-
ple of two classical types of histograms over real-valued data: equi-width and
equi-depth. We then summarize the key features of the histogram approach to
approximate query answering. Finally, we contrast the statistical and database



66 Histograms

0 1

1

2

2

3

3

4

4

5

5
value

frequency

S1 S2 S3 S4

Fig. 3.1 Classical equi-width histogram on continuous data

approaches to histogram construction and use.

3.1.1 Classical Histograms on Real-Valued Data

We first consider the classical equi-width histogram on real-valued data, in-
stantly recognizable to anyone who has taken a basic course in statistics. For
example, we can approximately represent the set of twelve data points

D = {1.61,1.72,2.23,2.33,2.71,2.90,3.41,4.21,4.70,4.82,4.85,4.91}

by the histogram pictured in Figure 3.1. Each data point is assigned to one
of four disjoint buckets, or subsets, denoted S1, S2, S3, and S4. In our exam-
ple, the buckets correspond to the four disjoint subintervals of the data-value
domain [1,5] that are displayed on the horizontal axis; each data point is as-
signed to the bucket whose associated subinterval contains the point. The
height of each histogram bar corresponds to the number of points that fall in
the associated bucket, i.e., to the frequency for the bucket.

This histogram is specified by the lower boundary of the leftmost bucket
(1.0), the bucket width (1.0), and the four frequency counts for the four buck-
ets (2, 4, 1, 5). Although, in this example, the data has merely been reduced
from twelve numbers to six numbers, it is clear that the degree of compression
can be much higher, e.g., a similar histogram representing 106 points having
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values between 1 and 5 would still be represented by six numbers. Clearly,
the histogram is a lossy representation of the data.

If the bucket boundaries are specified a priori (and hence are known to
bracket the data values), then the histogram can be constructed during a single
pass through the data, using four counters to compute the bucket frequencies.
Thus the histogram requires O(1) time per item—or O(N) time in total—and
O(B) space to construct, where N is the number of data values and B is the
number of buckets. Also note that the histogram is easy to maintain in the
presence of insertions and deletions: simply determine the bucket associated
with an insertion or deletion transaction, and increment or decrement the cor-
responding counter as appropriate.

Suppose that we are given the histogram in Figure 3.1 and wish to es-
timate the number of points N whose values lie between 1.1 and 4.5. This
corresponds to a range-count query that can be expressed in SQL syntax as

SELECT COUNT(*) FROM D

WHERE D.val >= 1.1 AND D.val <= 4.5

Clearly, the contribution from the buckets S2 and S3 to the query answer
are four points and one point, respectively, and these numbers are exact.
The computations for these buckets are easy since they are completely con-
tained within the query range [1.1,4.5]. The problem is to estimate the con-
tributions from the buckets S1 and S4, each of which partially overlaps the
query range. A standard approximation is the continuous-value assumption,
which simply assigns a count by multiplying the bucket frequency by the
fraction of the bucket interval that lies within the query range. In our exam-
ple, the fraction of the S1 and S4 intervals that lie within the query range
are (2.0− 1.1)/(2.0− 1.0) = 0.9 and (5.0− 4.5)/(5.0− 4.0) = 0.5, respec-
tively. Thus the respective contributions from these two buckets are esti-
mated as (0.9)(2) = 1.8 and (0.5)(5) = 2.5, leading to an overall estimate
of N̂ = 1.8 + 4 + 1 + 2.5 = 9.3 for the query answer. Since the actual query
answer is N = 8, the approximation overestimates the answer by about 16%.
In general, the time required to answer such a range-sum query is O(B).

As can be seen from the above discussion, a simple equi-width histogram
can be constructed, maintained, and queried very efficiently, and can result in
a high degree of data compression. One deficiency of this histogram type is
that the lowest and highest data values must be known (or at least bracketed)
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in order to determine the bucket boundaries. More importantly, the accuracy
of an equi-width histogram can be quite poor. To see this, consider the his-
togram of Figure 3.1, and suppose that we add 999,999 additional data points,
all taking values in the interval [3.8,3.9], so that the count for bucket S3 is
now 106. If we issue a range-count query that counts the number of points
that lie in the interval [3.0,3.5], the continuous-value assumption yields an
estimate of N̂ = 500,000. The true answer is N = 1 (which corresponds to
the original data value of 3.41), so that the estimate is high by over 5 orders
of magnitude. Indeed, for any given data-value range and specified number
of buckets, there exist datasets and queries having arbitrarily large errors. If,
in our specific example, we add more buckets, and hence decrease the bucket
width, so that the details of the data distribution in the interval [3.8,3.9] are
captured adequately, then most of the resulting buckets will be empty; this
problem is exacerbated in higher dimensions. We can record only the non-
empty buckets, but then we must also, in general, record not only the bucket
frequencies, but also the bucket boundaries, which in turn reduces the number
of buckets that can be stored within a given space allocation, and increases
the time required to answer queries. The histogramming methods discussed
in subsequent sections provide a number of different approaches, both heuris-
tic and theoretical, to controlling histogram error while providing acceptable
performance.
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For the present, we briefly outline a classical approach to bounding
worst-case estimation error, namely, equi-depth histograms. This class of
histograms—first proposed in the database literature by Piatetsky-Shapiro
and Connell [252]—selects bucket boundaries so that each bucket contains
the same number of data points. Selecting bucket boundaries for N data points
and B buckets is essentially equivalent to computing the (N/B)-quantiles of
the dataset. Figure 3.2 displays a 4-bucket equi-depth histogram for the data-
set D given above. (Note that the equi-depth representation is not unique in
general.) For such a histogram, one must store the lower boundaries of each
bucket, the upper boundary of the rightmost bucket, and the total number of
data points. Using the equi-depth histogram together with the continuous-
value assumption, the estimated answer to the previous range-count query
on [1.1,4.5] is N̂ = 3 + 3 +

(
(4.5− 3.4)/(4.8− 3.4)

)
3 = 8.4, and the over-

estimation error is now only about 5%. More importantly, we know that the
estimated answer to any range-count query can be off by at most ±6, since
at most two buckets can partially overlap the query range, and each bucket
can erroneously include or exclude at most 3 points. More generally, for a B
bucket equi-depth histogram and any query that selects at least 100s% of the
data points, the error in the query answer is at most±

(
200/(sB)

)
%. Thus we

can control the worst-case error for a large class of queries and datasets.
We pay a price, however, for the increased control: to construct the his-

togram, one either has to sort the data or use a quantile-computation algo-
rithm. The former approach is expensive for large datasets, requiring Ω(N)
space—typically unacceptable in practice—for an in-memory sort of a data-
set containing N points, and otherwise requiring multiple passes over the data
for an external sort. Specialized algorithms for directly computing quantiles
are similarly expensive. Indeed, Munro and Paterson [234] have shown that,
for any such algorithm, at least Ω(N) memory is required to compute a spec-
ified quantile in a single pass. The memory requirement can be reduced to
O(N1/p) at the expense of requiring p passes through the data, which is also
typically unacceptable. One must therefore resort to approximate computa-
tion of quantiles. Greenwald and Khanna [132], for example, give an algo-
rithm that computes an ε-approximate quantile, that is, an element whose
rank r′ is within ±εN of the nominal rank r. The space requirement of this
algorithm is O

(
ε−1 log(εN)

)
. Various versions of the quantile-digest algo-

rithm [68, 168] can also be used in this setting. See [296] for a recent litera-
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ture review.

3.1.2 Key Issues for Histograms

We see from the foregoing discussion that a histogram is obtained by par-
titioning the dataset into buckets (i.e., subsets) and, for each bucket, storing
summary statistics about the data values in the bucket. Information about the
buckets themselves, such as bucket boundaries, is also stored. At query time,
the summary and bucket information is used to (approximately) reconstruct
the data in the bucket in order to approximately answer the query. Important
aspects of a histogram include:

• Bucketing scheme As discussed in the sequel, buckets need not
be disjoint in general, and may even be recursive, in order to bet-
ter capture the structure of the data. Data items can be assigned to
buckets based on local considerations such as similarity of values
or value frequencies, or on broader criteria such as “global opti-
mality” of the histogram with respect to a workload or specified
class of queries.

• Statistics stored per bucket In our examples so far, the only in-
formation stored for a bucket is the number of points in the bucket,
together with information about bucket boundaries. The choice of
which information to store is usually determined by the method
used to approximate the data values in the bucket. As discussed
previously, there is a trade-off between the amount of information
stored per bucket and the number of buckets that can be main-
tained.

• Intra-bucket approximation scheme The only scheme discussed
so far has been the continuous-value assumption for frequency
counts, but many other approaches are possible. The approxima-
tion scheme also depends on the class of queries that the histogram
is being used to answer.

• Class of queries answered Historically, much of the focus has
been on answering range-count queries of the type discussed
above, as well as point-count queries (or simply point queries)
for discrete data, such as
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SELECT COUNT(*) FROM D

WHERE D.color = ’red’

Such queries correspond to “selectivity estimation” queries that
are used extensively in database query optimizers. More recently,
there has been increasing interest in approximate answers to
online analytical processing (OLAP) queries and general SQL
queries.

• Efficiency Here efficiency refers to the space and time require-
ments for constructing the histogram, as well as the cost of using
the histogram to approximately answer a query. The space require-
ments, in particular, can determine whether or not use of a given
histogram is practically feasible—for some histograms the space
needed for construction exceeds the size of the data itself. The
construction costs depend on how the data is accessed; we dis-
tinguish between “datacube” and “relational” access models for
discrete data, as defined in Section 3.2.2.

• Accuracy The goal is usually to give the most accurate answers
possible, given a constraint on the allowable size (in bytes) of
the histogram. Many different notions of accuracy have been pro-
posed, and much research has gone into producing histograms
that are “optimal” in the sense of having the smallest approxi-
mation error subject to a size constraint. Especially in the case
of 1D-histograms and in the context of selectivity estimation for
query optimization, many of the different histogram types dis-
cussed in the sequel have similar (and practically acceptable) ac-
curacies, provided that the histograms are allocated “sufficient”
storage space; e.g., the experiments in [286] indicate that, for 1D-
histograms, the marginal benefits of increasing the bucket count
diminish sharply beyond about 20 buckets. The differences are
more marked for multi-dimensional histograms, and even 1D-
histograms might only be allocated a small amount of memory
if many histograms are being maintained in parallel; see, for ex-
ample, the discussion of a “synopsis warehouse” architecture in
[19, 27]. Also, the precision requirements might be higher for gen-
eral approximate query answering than for the special case of se-
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lectivity estimation in the context of query optimization (where
many other sources contribute to the uncertainty of a query-plan
cost estimate). Because approximate query-answering systems are
not yet in wide use, there is a paucity of practical guidance on ac-
curacy requirements.

• Error estimates This issue is closely related to, but different
from, the issue of histogram accuracy. Since histograms yield ap-
proximate query answers, it is highly desirable to provide the user
with tight error bounds for the specific query of interest. Some his-
togram construction methods provide a guarantee on the overall
“average” error over a set of queries, which does not yield a use-
ful error estimate for an individual query, or on the maximum error
over a class of queries, which usually provides a query-specific er-
ror estimate that is too loose. Similarly, some methods guarantee
that the histogram is optimal (or ε-close to optimal) for a class of
queries, but again this does not yield individual error estimates.

• Incremental maintenance Especially when summarizing high-
speed data streams, it is often important to efficiently update a
histogram in the presence of insertions to and deletions from the
dataset.

3.1.3 Statistical vs Database Viewpoint

In the statistics literature, histograms originally were used simply to sum-
marize and visually represent data. More recently, however, histograms have
often been viewed as nonparametric density estimators [270]. That is, the
dataset is modeled as a collection of independent and identically distributed
(i.i.d.) samples from an unknown probability density function f , and the his-
togram is a piecewise-constant approximation of f . (The estimation problem
is “nonparametric” in that f is not assumed to lie in any particular paramet-
ric family of distributions such as the normal, exponential, or gamma fami-
lies.) A typical problem in this setting is to choose bucket widths in a one-
dimensional equi-width histogram to minimize the mean integrated squared
error, defined as

MISE = E
[∫

[ f̂ (x)− f (x)]2 dx]
]
,
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where E is the expectation operator and f̂ is the piecewise-constant histogram
approximation to the density function. (Note that f̂ , being computed from
random samples from f , is viewed as a random function, and hence the
expectation operation appears in the definition of MISE.) If, for example,
the number of data points N is large, f is twice differentiable, and the first
derivative f ′ is square integrable, then the MISE is minimized by choosing
the bucket width equal to cN−1/3, where the constant c = c( f ) depends on
the specific form of f . Scott [270] describes various data-based bounds and
approximations to the unknown constant c( f ). In general, there are better,
smoother approximants to f , including frequency polygons, averaged shifted
histograms, and kernel density estimators.

In contrast, the database literature almost always takes a model-free point
of view, considering the data that is present in the database as the only data of
interest.1 The goal is simply to obtain a low-error compressed representation
of the dataset. As discussed in Section 3.7.2 below, however, direct appli-
cation of statistical histogramming techniques to real-valued data sometimes
leads to good estimation accuracy, even in the absence of a rigorous statistical
model.

Another key difference between the two points of view is that the vast
majority of enterprise database applications center on discrete data, i.e., dis-
crete numerical data or categorical data. Without loss of generality, we can
take the domain of a discrete attribute to be a set of integers of the form
U = {1,2, . . . ,M }. We often use interval notation and denote this set by
[1,M]; this is convenient since buckets are often defined via disjoint segments
of [1,M], analogous to the partitioning of the real line as in Figure 3.1. For
discrete numerical data or ordered categorical data, there is usually a natural
mapping of the discrete values to the integers, e.g., day-month-year data can
be expressed in terms of the number of days elapsed since a fixed reference
date. In principal, we can also map unordered categorical data to integers,
since the queries of interest in this setting are point queries so that the map-
ping can be arbitrary. Maintaining histograms on unordered categorical data
is problematic, however, because an index is needed to map each categori-
cal value to a histogram bucket; the space and query-time requirements for

1We assume throughout that data values are known with certainty; see Cormode et al. [62] for a discussion
of histograms over uncertain data.
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such a mapping index are typically unacceptable in practice. We henceforth
reserve the term “discrete data” for data whose domain has a natural mapping
to the integers. Note that real-valued data can also be mapped to the integers
by discretizing, but, as discussed in Section 3.7.2, methods that are especially
tailored to real-valued data tend to have superior performance. Conversely,
techniques developed for real-valued data can have inferior performance in
the discrete setting.

3.2 One-Dimensional Histograms: Overview

In the next few sections we study 1D-histograms in the setting of approximate
query processing. Except for Section 3.7.2, we focus on discrete data.

3.2.1 Basic Notation and Terminology for 1D-Histograms

As discussed above, we can think of a multiset D of discrete data as having
domain U = [1,M], and we denote by f (i) the number of points in D having
value i ∈U , i.e., the frequency of value i. The queries considered so far have
focused on computing counts, i.e., sums of frequencies, over regions of the
domain of data values. In order to encompass not only multisets of discrete
data, but also a range of important applications including selectivity estima-
tion, time series processing, and OLAP queries, we generalize this setup as
follows. Let g be a nonnegative function defined on U , and consider the
problem of estimating quantities such as α = ∑i∈Q g(i), where Q⊆U is the
query region. When g = f and Q is of the form Q = { l, l +1, l +2, . . . ,u} or
Q = { i}, this goal corresponds to approximating the answers to a range-count
or a point-count query, respectively. For general functions g, this goal corre-
sponds to approximating the answers to range-sum and point-sum queries.
For example, g(i) might be the total sales revenue for a company on day i,
and we might be interested in approximately answering the range-sum query

SELECT SUM(SALES) FROM D

WHERE D.day >= 7 AND D.day < 14

The assumption that g is nonnegative slightly simplifies the mathematics, and
entails no loss of generality, because a dataset containing negative g values
can always be shifted by subtracting the smallest such value from each data
element. In Section 3.6, we discuss the use of histograms for estimating the
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answers to more general types of SQL queries.
Our discussion initially focuses on bucketing schemes that partition the

domain [1,M] into exhaustive, mutually disjoint segments. We first discuss
methods for estimating the answer to query result, given a fixed set of buckets.
We then consider the problem of determining a high quality set of bucket
boundaries, and also discuss more complex, hierarchical bucketing schemes.

3.2.2 Data Access Models

To help focus attention on practical histogram schemes, we need to identify
histograms whose construction and usage costs are acceptable for various ap-
plications. When analyzing the cost of a specific algorithm for constructing
a histogram on discrete data, we first need to specify the format in which
the data is available; the data access model strongly influences the cost of
histogram construction. In this section we discuss data access models and in
the following section we discuss histogram costs. We assume throughout a
centralized, sequential processing model. Recent work—see, e.g., Kempe et
al. [207]—has focused on the computation of histograms in novel process-
ing environments such as distributed peer-to-peer networks, but this topic is
beyond the scope of our discussion.

We focus on two primary data access models: the “datacube” and “re-
lational” models. In the datacube model, the data is accessed as described
previously, namely, as a list of values in the form g(1),g(2), . . . ,g(M). This
scenario corresponds, for example, to the case where each i is the index of a
cell in a (one-dimensional) datacube and g(i) is the “measure value” in the
cell, as in the previous sales-revenue example. The assumption here is that the
number of cells M is so large that the datacube will not fit in memory, and a
histogram synopsis is needed to quickly answer OLAP queries. In the impor-
tant special case where g equals the frequency function f , the datacube model
assumes that the exact frequency distribution has been tabulated for the data,
but that there are so many distinct data values that this distribution needs to be
summarized. The datacube model also encompasses the discrete time-series
model, where g(1),g(2), . . . ,g(M) are viewed as time-ordered observations.
We emphasize that, despite our classical-sounding terminology, these models
are relatively abstract, and hence apply in settings that go beyond traditional
database management systems.
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CityId ( jn) Sales (vn)
2 20
2 30
1 40
5 10
3 5
3 7
4 15
2 6

Relational model

i: 1 2 3 4 5
g(i): 40 56 12 15 10

Datacube model

Fig. 3.3 Data access models (SUM aggregate), N = 8 and M = 5

In contrast, the relational model assumes that the data is available simply
as a list of length N of the form ( j1,v1),( j2,v2), . . . ,( jN ,vN), where each jn
is an element of [1,M] and vn is a value associated with jn. The data can be
viewed as a sequence of “tuples” from a two-column relational table. The
value g(i) is obtained by applying an aggregation operation such as SUM or
AVERAGE to the elements in the set Ai = {vn : jn = i}. E.g., (in,vn) might
represent a transaction in which vn dollars worth of merchandise was sold on
day in, so that, using the SUM aggregate, g(i) represents the total revenue
on day i. In relational-database terms, the tuples are grouped by the first at-
tribute and then aggregated. Figure 3.3 contrasts the relational and datacube
access models (using the SUM aggregate as above); the relational access
model corresponds to a scan of the table whereas the datacube access model
corresponds to a scan of the array. We usually restrict attention to the most
common case of the relational model, in which vn = 1 for all n and the aggre-
gation operator is SUM. This corresponds to the case in which the dataset D
is available as a list of values in [1,M] and g = f , so that g(i) is the number
of points in D having value i. This corresponds to the situation in a relational
database where the data comprises a single column of a relational table, and
we are executing a COUNT query over the column, grouping by column val-
ues. To simplify notation, we drop the vn variables and simply assume that
D = ( j1, j2, . . . , jN). Clearly, histogram construction is more expensive under
the relational model, since the data elements have not been pre-grouped ac-
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cording to data value. We assume, unless specified otherwise, that the values
in D are unsorted in the relational model. If the values are sorted, then the
data can be easily converted to datacube format during a scan. In general,
conversion of relational data to datacube format requires at least one pass
over the data prior to histogram construction [139]. Typically such an explicit
conversion is impractical, and histogram construction algorithms tailored to
relational data are needed—see the discussion at the end of Section 3.4.2—
or the input to a datacube-based algorithm must be obtained by converting
a sample of the relational data, as described in the following section. Unless
otherwise specified, we assume the datacube access model.

3.2.3 Histogram Cost Considerations

What are “reasonable” costs for constructing and using a histogram? For at
least some applications and data sizes, the user is able to tolerate a complete
pass through the data, or perhaps even two passes, for histogram construction,
provided that the per-item processing cost is small. This is especially true for
the datacube access model, and less so for the relational data access model.
When the amount of data is massive, an increasingly important scenario, then
even a single pass through the data might be prohibitively expensive.

In this latter case, a common approach is to build a histogram from a
small uniform sample of the data [235, 252, 258]. As discussed by Poosala
et al. [258], for example, Kolmogorov’s Theorem implies that the sampling
error can be controlled simultaneously for all possible range queries by tak-
ing a sufficiently large sample. Donjerkovic and Ramakrishnan [91] point
out that the sample size needs to be inflated to deal with the information
loss incurred by compressing the sample into a histogram; e.g., for an equi-
depth histogram with B buckets, the authors use Kolmogorov’s Theorem to
obtain the rule-of-thumb formula s ≈ 100B2 for the required sample size s,
under the assumption that the sampling error should be an order of magnitude
smaller than the histogram error. On the other hand, when using “maxdiff”
and related histograms for query optimization—see Section 3.4.1—Poosala
et al. found experimentally that a sample size of 2000 was more than suf-
ficient for 1D-histogram construction. Chaudhuri et al. [51] consider a more
sophisticated approach to collecting a sample on which to build an equi-depth
histogram. For tuple-level sampling schemes, they use Chernoff bounds to
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compute the sample size necessary to bound either a maximum-error metric
or a stronger “symmetric difference” error metric. For page-level sampling
schemes—which are far more I/O efficient than tuple-level schemes but in-
cur dependencies between tuples stored on the same disk page—the authors
propose an adaptive sampling method. At each step of the sampling process,
the adaptive method uses cross-validation to estimate the sampling error in
the equi-depth histogram that is computed from the disk pages sampled so
far. If the error exceeds the target, the sampling process continues; otherwise,
sampling stops.

Although the foregoing sampling approaches are currently used in com-
mercial systems such as DB2 and Microsoft SQL Server, they raise the ques-
tion of whether the sample could instead be used directly for approximate
query answering. Moreover, any potential histogram-related error bounds for
an individual query must be inflated to reflect the additional error due to sam-
pling, and the resulting overall error bounds will then be probabilistic in na-
ture. In addition, any optimality assertions about a histogram—see, e.g., the
algorithms in Section 3.4.2—will then be compromised.

Even when a complete pass through the data is acceptable, many pub-
lished algorithms have an unacceptably large Ω(M) or Ω(N) space require-
ment (under the datacube or relational access model, respectively) for con-
structing the histogram. One possibility for dealing with this situation is to
use a sample, as discussed above. For example, an early histogram imple-
mentation in DB2 piggybacked a reservoir-sample computation [283] on top
of a complete database scan by the RUNSTATS statistics-collection utility,
and then computed a “compressed histogram” (see Section 3.4.1) from the
sample. Indeed, any synopsis computed from a full scan can be used in this
manner, provided that the histogram can be computed directly from the syn-
opsis without having to first generate the complete (approximated) dataset.
E.g., Gilbert et al. [128] use sketches to limit the space needed to construct
a histogram; see Section 3.7.1. Again, this approach raises the question as to
whether the underlying synopsis could instead be used directly for query an-
swering. A related strategy is to first take a sample, which is used to determine
the histogram buckets, and then compute the bucket statistics via a complete
data scan. Under this strategy, there is no sampling error for the bucket statis-
tics, since they are computed exactly. The buckets themselves may be chosen
suboptimally, however, and hence any optimality guarantees are weakened
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Fig. 3.4 A discrete dataset and three buckets

(but not as much as when bucket statistics are also estimated). An alternative
strategy is to use a disk-based algorithm to compute the histogram. There has
been very little research in this area; one exception is literature on disk-based
algorithms for computing quantiles (as needed, for example, to compute an
equi-depth histogram); see [144]. Of course, use of a disk-based algorithm
will typically incur a significant increase in the time required for histogram
construction. Finally, the memory requirement can be reduced by computing
a suitable approximation to the desired histogram—we will give many ex-
amples of this approach in the sequel. This latter strategy can be extremely
effective.

3.3 Estimation Schemes

We focus on the datacube access model and assume that we have parti-
tioned [1,M] into mutually disjoint buckets S1,S2, . . . ,SB, where each S j is
of the form S j =

{
l j, l j +1, . . . ,u j

}
. For each bucket S j, we want to sum-

marize the array of numbers Vj =
(
g(l j),g(l j + 1), . . . ,g(u j)

)
so that the

summary is compact, and can later be exploited to reconstruct Vj with low
error. For “sparse” datasets, many of the entries in Vj might equal 0. For
example, Figure 3.4 shows a set of discrete data with U = [1,10] and
V = (0,0,8,10,0,0,7,5,0,0). If the function g is interpreted as a frequency
function, then the dataset can be viewed as containing thirty data points, with
eight points having value 3, ten points having value 4, and so forth. Alter-
natively, the i values might be interpreted as indicating time, and g(i) might
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Fig. 3.5 Histograms using uniform estimation schemes

denote inches of rainfall (rounded to the nearest inch) on day i. The domain
U has been partitioned into three buckets for purposes of histogram cre-
ation: S1 = {1,2,3,4}, S2 = {5,6}, and S3 = {7,8,9,10}. The value sets
are V1 = (0,0,8,10), V2 = (0,0), and V3 = (7,5,0,0).

3.3.1 Uniform Schemes

The continuous-value assumption described previously can be applied es-
sentially unchanged to discrete data. For each bucket S j, store the quan-
tity g+

j = ∑i∈S j g(i). Then, during approximate query processing, estimate
the contribution α j = ∑i∈S j∩Q g(i) of bucket S j to the query result as α̂ j =
(|S j ∩Q|/|S j|)g+

j , where |W | denotes the number of elements in set W . Note
that the continuous-value assumption is equivalent to approximating the func-
tion g within a bucket S j as ĝ(i) = g+

j /|S j| for each i ∈ S j, and then approxi-
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mating the query answer as α̂ = ∑i∈Q ĝ(i).
An alternative estimation scheme, called the uniform-spread assumption,

explicitly takes into account the discrete nature of the data, and also facilitates
approximate answering of JOIN and GROUP BY queries (see Section 3.6).
For each bucket S j, store both the sum g+

j defined above, as well as d j, the
number of “positive values” i ∈ S j such that g(i) > 0.2 Then approximate Vj

by first assuming that the positive values are evenly spread across the range
of S j. That is, approximate the true set Pj of positive values, e.g., by the set
P̂j =

{
l j, l j + k j, l j +2k j, . . . , l j +(d j−1)k j

}
, where k j =

⌊
(u j− l j +1)/d j

⌋
and bxc denotes the largest integer less than or equal to x. Finally, approximate
the function g within S j by setting

ĝ(i) =

{
g+

j /d j if i ∈ P̂j;

0 if i 6∈ P̂j.

The approximate query answer is then α̂ = ∑i∈Q ĝ(i). Note that if the data
is dense, in that g(i) > 0 for all i ∈ Sk, then the uniform-spread assump-
tion coincides with the continuous-value assumption. One disadvantage of
the uniform-spread assumption is that, in the discrete-data setting where g(i)
is the frequency of value i, one must compute the number of distinct values
present in each bucket, which is nontrivial under the relational model of data
storage. Exact computation is typically too expensive, so that the number of
distinct values in a list of discrete data points must be estimated based on
either a hash-sketch, which uses limited memory but requires a scan of the
data—see Section 5.4—or on a sample of the data points in a bucket—see
[44, 156, 258] and Section 2.6.2. Such estimation can noticeably increase the
time and space requirements for histogram construction, and the sampling-
based approach, in particular, can yield inaccurate estimates even at reason-
able sample sizes.

Figure 3.5 displays histograms for the dataset in Figure 3.4 based on the
continuous-value and uniform-spread assumptions. For the range-sum query
with Q = {3,4,5,6,7}, for which the exact result is α = 25, the two schemes
yield respective estimates of α̂ = 12 and α̂ = 15, respectively. Although the
uniform-spread assumption outperforms the continuous-value assumption in
this example, a fairly comprehensive set of experiments conducted by Wang

2If g(i) is the frequency of value i, then d j is simply the number of distinct values that appear in S j .
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Fig. 3.6 Linear spline-based estimation scheme

and Sevcik [288] indicate that, in general, the opposite result holds true for
OLAP queries (both one-dimensional and multi-dimensional) over discrete
data.

3.3.2 Spline-Based Schemes

The foregoing schemes approximate the g-values in a bucket S j, i.e., the Vj

array, via a simple average. A more elaborate approach fits a linear func-
tion to these values, in an attempt to capture the values more accurately.
Such a histogram is sometimes called a spline histogram [209, 295], and is
closely related to the notion of a “frequency polygon” from the statistical lit-
erature [270, Ch. 4]. Instead of storing a single average value for a bucket S j, a
spline histogram stores the intercept β j and slope γ j of the fitted line. The con-
tribution from S j is now estimated as α̂ j = ∑i∈S j∩Q(γ ji+β j). For each bucket,
the line can be fit using a standard least-squares algorithm. This estimation
scheme is well suited to “turnstile” streaming scenarios (see Section 3.7.1):
for a fixed set of buckets, the fitted line can be incrementally updated as the
g-values in the bucket change due to updates; see, e.g., Zhu and Larson [298].
Figure 3.6 illustrates the use of the spline estimation scheme for the dataset
of Figure 3.4. For the range-sum query given above, with Q = {3,4,5,6,7},
the approximate answer is α̂ = 23.5, yielding a lower error than the uniform-
spread and continuous-value schemes.

Zhang and Lin [295] found that the approximation can be improved
further by modifying the line-fitting procedure to enforce the constraints
∑i∈S j(γ ji+β j) = ∑i∈S j g(i) and ∑i∈S j i(γ ji+β j) = ∑i∈S j ig(i). When the func-
tion g coincides with the frequency function f , then the constraints require
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that both the number and the sum of the data points in Sk must match their
true values. (The method in [295] actually assumes that the number d j of dis-
tinct values in S j is known, and initially applies a uniform-spread assumption.
Thus the sums appearing on the left side of the above constraints are actually
over the set P̂j rather than S j, where P̂j is defined as in Section 3.3.1.)

This approach can, in principle, be extended by using polynomial rather
than linear functions to model the data points. It is not clear whether such
additional complication is worth the effort, however, since then more coef-
ficients must be stored for each bucket, to the detriment of the number of
buckets that can be maintained. Also, the fitting process becomes ever more
expensive. Even in the case of linear splines, other techniques, such as the
4LT method discussed below, seem to have superior performance in general.

3.3.3 Four-Level Trees

Buccafurri et al. [37] have provided an extremely effective estimation scheme
that involves storing, for each bucket S j, the usual bucket total g+

j , together
with an additional integer that encodes a description of the data distribution
in the bucket. This description can be represented as a four-level tree (4LT)
that hierarchically represents partial sums of the g function. The experiments
in [37] show that the increase in accuracy of the 4LT representation far out-
weighs any accuracy loss caused by the decrease in the number of buckets that
will fit into allocated memory. The technique has been developed for func-
tions g whose domain is a subset of the integers, but the ideas can potentially
be extended to other g functions.

We illustrate the method using an example taken from [37], where inte-
gers are assumed to comprise 32 bits. Consider a fixed bucket Sk consisting
of 16 values, specifically,

Vk = (7,5,18,0,6,10,0,6,0,6,9,5,13,0,8,7).

When Vk is divided into j (≥ 1) equally sized segments, denote by σi/ j the
sum of the values in the ith such segment, so that σ1/1 = 100 is the sum of
all of the values, σ2/4 = 6 + 10 + 0 + 6 = 22 is the sum of the values in the
second quarter of Vk, and so forth. The 4LT for this bucket is illustrated in
Figure 3.7. The nodes at the jth level of the tree (1 ≤ j ≤ 4) correspond to
the partial sums σ1/n j ,σ2/n j , . . . ,σn j/n j , where n j = 2 j−1. The root node at
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m1/2 = 33 = 100001
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m7/8 = 7
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= 01101

m = 100001|10010|01101|0110|1011|0101|0111

Fig. 3.7 4LT representation of g-values in a bucket

level 1 is represented exactly, using 32 bits. At level j > 1, the value of σi/n j

is represented approximately, using b j bits, where b2 = 6, b3 = 5, and b4 = 4.
More precisely, we compute and store the b j-bit integer

mi/ j =

〈
σi/ j

σ∗i/ j
(2b j −1)

〉
,

where σ∗i/ j is the (exact) σ value at the parent of the node corresponding to
σi/ j, and 〈x〉 denotes the integer value obtained from x by rounding. Then, at
query time, the value of σi/ j is approximated as

σ̂i/ j =
〈(

mi/ j

2b j −1

)
σ̂
∗
i/ j

〉
,

where σ̂∗i/ j is the approximated3 value of σ∗i/ j. For example, σ5/8 = 6 is ap-
proximated using four bits by computing

m5/8 =
〈

σ5/8

σ3/4
(24−1)

〉
=
〈

6
20

(15)
〉

= 5 = 01012.

3The values are approximated starting at the root—where the “approximation” is trivial—so that the value
of σ̂∗i/ j is available when σ̂i/ j is to be computed.



3.3. Estimation Schemes 85

Then σ5/8 is approximated4 as

σ̂5/8 =
〈(m5/8

15

)
σ̂3/4

〉
= 〈(5/15)(20)〉= 7.

In the figure, the approximated value of each σi/ j is shown in parentheses.
The final 32-bit integer that is stored with the bucket is obtained by con-

catenating the mi/ j values corresponding to the shaded nodes in the figure.
The mi/ j values for the non-shaded nodes do not need to be stored, because
the corresponding σi/ j values can be approximated directly by subtracting the
approximated σ value for the node’s sibling from the approximated σ value
for the node’s parent. E.g., we approximate σ6/8 as σ̂6/8 = σ̂3/4 − σ̂5/8 =
20− 7 = 13. To actually estimate the contribution of the bucket to a range-
sum query, we simply add up the σ̂ values that cover the elements con-
tained in Q; we try to use the σ̂ values at the highest levels of the tree, since
these have the greatest accuracy. If necessary, the continuous-value assump-
tion is used to estimate g-values at a finer granularity than is provided by
the leaf nodes of the 4LT. For example, if the query region Q overlaps the
first thirteen values in the bucket, then we estimate the bucket’s contribution
as σ̂1/2 + σ̂3/4 + 0.5σ̂7/8 = 52 + 20 + (0.5)(13) = 78.5, where the first two
terms estimate (exactly, as it happens) the contributions of the first eight plus
the next four g-values, and the last term estimates the thirteenth g-value using
the continuous-value assumption. The true answer is 85, so the error in the
estimate is approximately 8%.

3.3.4 Heterogeneous Estimation Schemes

Ioannidis [179] notes that histogram accuracy can be improved by allowing
different estimation schemes in different buckets. Although such histograms
are relatively expensive to compute, they may be appropriate when high ac-
curacy is needed and storage space for the histogram is limited.

Wang and Sevcik [288] developed a specific approach along these lines,
defining a “hierarchical model-fitting” (HMF) histogram that uses one of the
continuous-value, uniform-spread, or 4LT schemes for a given bucket, de-
pending on which scheme best approximates the data in the bucket. The

4This example may seem somewhat artificial, because we can already represent the integer σ5/8 = 6 using
only four bits; identifying such “simple” cases, however, would require at least one more bit, and would
complicate the algorithm further.
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criterion used to compare schemes is inspired by the “minimum descrip-
tion length” principle from statistics [265], which attempts to balance model
complexity and accuracy in a principled manner. As discussed in [288],
a scheme M2 for a bucket is preferred over a scheme M1 if k2 ≤ k1 and
D(p‖q2) < D(p‖q1), where kl is the number of “parameters” of Ml , that is,
the number of summary statistics that scheme Ml requires to be stored for the
bucket, and D(p‖ql) is a “relative entropy” measure of the distance between
the true and estimated g-values in the bucket. In more detail, the g-values
(assumed nonnegative) in bucket S j can be normalized to a probability mass
function p by dividing each value g(i) by the bucket sum g+

j . The approxi-
mated g-values under scheme Ml can similarly be normalized to a probability
mass function ql . The relative-entropy distance of ql from p may then be
defined as D(p‖ql) = ∑i∈S j p(i) log

(
p(i)/ql(i)

)
. (The authors actually use a

slightly different, more complex definition that more effectively measures the
distance between the two probability mass functions when the data in a bucket
is sparse.) If D(p‖q2) < D(p‖q1) but k2 > k1, then M2 is preferred to M1 if
the benefit/cost ratio

ρ =
D(p‖q1)−D(p‖q2)

k2− k1

is sufficiently large, i.e., if the decrease in distance per additional parameter
is large enough.

Buccafurri et al. [32] also propose the use of different estimation methods
in different buckets, in the context of a histogram having a recursive bucket
structure (see Section 3.4.3). They also use a greedy algorithm to determine
the overall design of the histogram.

Recently, Kanne and Moerkotte [198] have proposed a heterogeneous es-
timation scheme that uses several new types of buckets. The simplest buckets
store the number of distinct values and, instead of the traditional average
bucket frequency, the “q-middle” frequency. This latter frequency is defined

for bucket S as
√(

mini∈S g(i)
)(

maxi∈S g(i)
)
. In addition, a bucket might

also store the average frequency and the frequencies of the values that de-
fine the bucket boundaries. The idea is to approximate each frequency in the
bucket by the q-middle frequency for point queries or range queries with
relatively short ranges, and by the average frequency for range queries with
longer ranges, using a threshold on range length to determine which esti-
mation scheme to use. Several other bucket types tailored to range queries
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are also proposed, as well as a bucket type that stores exact frequencies in a
compressed form. The goal is to control the “q-error” of the histogram; see
Section 3.4.2 for definitions.

3.3.5 A Probabilistic Scheme

Buccafurri et al. [33] follow an approach that is quite different from the fore-
going methods, using a probability model over datasets. Suppose that the
total sum s of the g-values in the dataset and the total number d of posi-
tive g-values are known. Fix a range-sum query Q and consider the class of
histograms such that the summary data stored in each bucket comprises the
average of the g-values in the bucket, together with the number of positive
g-values in the bucket. Denote by G the finite set of all nonnegative func-
tions defined on U such that the sum of the g-values is s and exactly d of
the g-values are positive. For a given histogram H, denote by GH the subset
of functions in G that are “compatible” with H; that is, g ∈ GH if and only if
the partitioning of g according to the buckets of H yields summary statistics
that coincide exactly with those in H. The maximum-entropy-style method in
[33] imposes a probability distribution over GH in which each of its elements
is equally likely. This distribution then induces a probability distribution over
the answer to Q. The authors provide closed-form formulas for the mean and
variance of this latter distribution—the mean is the estimated query answer
and the variance is taken as a measure of the precision of the answer.

Importantly, this approach can gracefully incorporate additional knowl-
edge about the data by restricting the set G appropriately. The authors focus
on knowledge that comprises either a lower bound on the number of posi-
tive g-values lying within the query range or a lower bound on the number
of g-values in the range that are equal to 0. Under many bucketing schemes,
the leftmost and the rightmost g-values in a bucket are forced to be non-zero,
and this knowledge can lead to more precise query-answer estimates than are
obtained under, e.g., the continuous-value or uniform spread assumptions.

3.3.6 Error Estimates for Individual Queries

The bucketing schemes in Section 3.4.2 below provide, as a byproduct, an
estimate of the aggregate error of the entire histogram, e.g., the maximum
error for a point query, or the average L2 error over all point queries, or even
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a workload-weighted average error. In a similar spirit, Donjerkovic and Ra-
makrishnan [91] provide a sampling-based scheme for assessing the worst-
case estimation error for range queries in an equi-depth histogram. None of
these estimates, however, give the user precise feedback about the estimation
error for the particular query that is being evaluated. An estimate such as the
maximum error over any point query is likely to be very conservative with
respect to a specific query. The probabilistic method of the previous section
returns a “precision number” in the form of a variance, but this number is
more an indicator of the degree of potential error than a metric of the true er-
ror of the approximate answer relative to exact answer that is computed over
the actual g-values that comprise the dataset.

To address the precision issue, one simple scheme—c.f. Poosala et
al. [256]—stores the maximum and minimum g-value in a bucket, along with
the usual summary statistic(s), such as the average g-value. Then a rough
precision estimate can be returned to the user. For example, consider a range-
sum query α that is approximately answered using a given histogram, where
we summarize each bucket by its average g-value. Suppose that all but one
bucket is contained within the query range. Also suppose that, for the par-
tially covered bucket S j, values g(i),g(i + 1), . . . ,g(i + n− 1) lie within the
query range. Then, since the contributions to the query answer from the com-
pletely covered buckets are exact, we know that α̂−L ≤ α ≤ α̂ +U , where
L = n(gavg

j − gmin
j ) and U = n(gmax

j − gavg
j ). If the histogram is effective at

minimizing the variability of g-values in a bucket, then gmax
j and gmin

j will be
close to gavg

j , and the bounds will be useful. Jagadish et al. [186] suggest a
similar idea, and Read et al. [263] elaborate on the approach in the setting
of more complex histograms. Of course, the additional information inflates
the per-bucket memory requirements, so that a histogram that incorporates
the foregoing scheme will have fewer buckets, and hence less accuracy. This
trade-off seems worthwhile, however, in order to provide users with feedback
on the quality of their approximated query-answers.

3.4 Bucketing Schemes

The scheme used to assign data points to buckets for purposes of summariza-
tion is crucially important to achieving good approximate query answers. In
this section, we describe a range of bucketing schemes for 1D-histograms,
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ranging from heuristic to provably optimal. We focus, as usual, on general
range-sum queries under the datacube access model, i.e., estimating quan-
tities of the form α = ∑i∈Q g(i), where Q ⊆ U = [1,M] for some M ≥ 1;
Section 3.7.2 describes techniques especially suitable for real-valued data.

As seen from the discussion in Section 3.3, the crux of histogram-based
estimation is to approximate the g-values in a bucket with a few summary
numbers, such as an average or the slope and intercept of a line. As shown
in early work by Ioannidis and Christodoulakis [178, 182] (in the context of
using histograms to estimate join sizes for categorical data), it follows that
good (and sometimes optimal) approximations are often obtained by group-
ing together elements of U having similar g-values. For example, a serial
histogram first sorts the elements of U by g-value to obtain an ordered se-
quence U ′ = (i1, i2, . . . , iM) with g(i1)≤ g(i2)≤ ·· · ≤ g(iM), and then assigns
elements of U to buckets by partitioning U ′ into disjoint segments. Arbi-
trary bucketing by g-values is impractical, however, because then an index is
needed to map i-values to buckets. We therefore restrict attention to bucketing
schemes that partition the domain [1,M] into disjoint segments.

3.4.1 Heuristic Schemes

We first consider various heuristic schemes—specifically the equi-width,
equi-depth, “compressed,” and “maxdiff” bucketing methods—that have
been adopted in commercial database systems for use within the query op-
timizer because of their relatively low construction costs. These methods do
not come with optimality guarantees: they typically perform well on average,
occasionally providing a seriously inaccurate result for some unlucky query.

Equi-Width Histograms

The equi-width histogram technique described in Section 3.1.1 can be applied
to discrete data as well as continuous data. The histogram can be computed in
a single pass with O(1) cost per data item and the space complexity is O(B),
under either the datacube or relational access models. (Recall the definitions
of these models from Section 3.2.2, as well as the discussion on construction
costs.)
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Equi-Depth Histograms

The equi-depth bucketing scheme of Section 3.1.1 can also be applied to dis-
crete data. In the current setting, the goal is to have the sum of g-values be the
same for every bucket, i.e., ∑i∈S j g(i) = ∑i∈Sk

g(i) for all j and k. When defin-
ing the buckets, some minor technical complications can arise when certain
data values are very frequent, so that multiple quantiles coincide; see [252]
for details.

Under the datacube model, and assuming that the sum g+ = ∑i g(i) of g-
values is known, the list of g-values is simply scanned once to determine the
bucket boundaries, requiring O(B) space in total; if g+ is unknown, then an
additional scan of the data is required. Under the relational model, comput-
ing the histogram corresponds to finding B− 1 equally-spaced quantiles. A
naive algorithm scans the data into memory (if possible), sorts it, and reads
off the quantiles, incurring an O(N) space cost and an O(N logN) time cost.
Alternatively, a disk-based sort can be used, but this requires multiple passes
over the data. Typically these straightforward approaches are impractical, but
can be applied to a sample of the data. The disk-based quantile algorithm
in [144] assumes that the dataset is stored in K disk-resident blocks, and as-
sumes a fixed-size memory buffer for holding data. Using algorithms that
employ an efficient median-finding algorithm, the authors show how to com-
pute an exact set of buckets with O(K logB) I/O cost and O(K logB) CPU
cost; these costs are still quite high. In practice, as discussed in Section 3.1.1,
algorithms for computing approximate quantiles must be employed in order
to achieve acceptable space and time complexity. For example, the one-pass
algorithm of Greenwald and Khanna [132] has a worst-case time complex-
ity O

(
Nε−1 log(εN)

)
and a space complexity of O

(
ε−1 log(εN)

)
. The recent

algorithm of Zhang and Wang [296] requires more space, O
(
ε−1 log2(εN)

)
,

but less time, O
(

N log
(
ε−1 log(εN)

))
.

Singleton-Bucket Histograms

An SB-histogram places elements of [1,M] having extremely large or small
g-values into singleton buckets, and reverts to a classical bucketing scheme to
represent the remaining data. E.g., an end-biased histogram [178, 182] places
the B1 elements of [1,M] having the largest g-values and the B2 elements
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having the smallest g-values in singleton buckets, and uses a single bucket to
represent the remaining values (via the continuous-value assumption). When
B2 = 0, such a histogram is called a high-biased histogram. A compressed
histogram [258] is similar to a high-biased histogram, except that an equi-
depth histogram is used to represent the g-values for the M−B1 non-singleton
elements of [1,M]; in the usual implementation, the g-value for a singleton
bucket must exceed g+/B, where g+ = ∑i g(i) as before.

Under the datacube model, two passes through the data are needed, each
with O(1) processing cost per item: one to identify the k largest g-values and
compute the sum of the remaining g-values, and one to compute the equi-
depth histogram for the non-large g-values. The overall space requirement
for construction is O(B), as with the equi-depth histogram.

Under the relational model, both quantiles and highly frequent values
must be computed. Computation of quantiles is the same as for an equi-depth
histogram. The frequencies of the most frequent values usually can be esti-
mated with high precision from a simple uniform sample, as in [258]; Cohen
et al. [55] give a more elaborate scheme for estimating the k highest frequency
values, and Gemulla et al. [117] give a sampling algorithm that provides un-
biased, low-variance estimates of both high and low frequencies, at the ex-
pense of storing “tracking counters” in the sample. Note in this connection
that the more skewed the frequency distribution, the more important it is to
estimate the frequent values and the easier this estimation problem becomes.
One simple algorithm, proposed in [258], is to take a small sample and create
a counter for each distinct value in the sample. The exact frequencies of these
distinct values are then computed exactly based on a full scan of the data. The
idea is that highly frequent values with appear in the sample with high prob-
ability. For example, if 106 data points have values distributed according to
a Zipf(0.86) distribution (roughly an “80-20” law), then a 0.1% sample will
contain the 10 most frequent values with probability approximately 99.9%.
Alternatively, more sophisticated full-scan limited-memory algorithms can
be used; see, e.g., [46, 65], as well as Section 5.3.4.1.

Maxdiff Histograms

A maxdiff histogram [258] with B buckets partitions the sequence [1,M] by
placing a bucket boundary between elements i and i + 1 if the difference
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|g(i+1)−g(i)| is among the B−1 largest such differences. For the datacube
model, only a single scan is needed, with O(1) processing cost per item, and
the total space requirement is O(B). For the relational model, the data-values
must be converted to the datacube format and then processed as above. Such
a conversion requires a complete sort of the data, which is usually unaccept-
able in practice. For this reason, the maxdiff histogram for relational data is
typically computed from a sample, as in [258].

Generalizing Bucketing Schemes

The foregoing bucketing schemes can be generalized by imposing a homo-
geneity requirement not on the g-values within a bucket, but on other data
properties. For example, when the data is sparse, so that many g-values are
equal to 0 and the uniform-spread estimation scheme is applicable, then
similarity of g-values within a bucket is not the only criterion for a good
bucketing scheme; similar spacing between successive positive elements in
a bucket is also desirable. For i ∈ [1,M] with g(i) > 0, define the spread of
i as s(i) = min{ j ∈ [i+1,M] : g( j) > 0}− i, where we take s(i) = M− i if
g( j) = 0 for j ∈ [i + 1,M]. Similarly define the area of i as a(i) = g(i)s(i).
We can then replace the function g in the definition of the above bucketing
scheme by the functions s or a [258]. That is, the bucketing schemes try to
make the spreads or areas within each bucket as homogeneous as possible.
The motivation behind the use of area is to balance the goals of equalizing
g-values and equalizing spreads. The cumulative function c(i) = ∑

i
j=1 g(i)

has also been proposed. Adapting the terminology in [258], one can then talk
about, e.g., a maxdiff(g), maxdiff(s), maxdiff(c), or maxdiff(a) histograms,
depending on whether the function g, s, c, or a is used when determining the
buckets.5 (As usual, the area scheme reduces to the g-value scheme as the
data becomes dense.) Virtually all other bucketing schemes can be similarly
generalized, and even unified in some cases. For example, we can view equi-
width and equi-depth histograms as “equi-sum(s)” and “equi-sum(g)” his-
tograms, where an equi-sum(h) histogram selects buckets so that the bucket
sum h+

j = ∑i∈S j h(i) is the same for each j. Under the datacube model, the
bucketing algorithms are virtually unchanged, except that a lookahead buffer

5The original paper [258] considered the special case where g equals the frequency function f , and re-
ferred to frequency, spread, and area as the possible “source parameters” for determining buckets.
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of length 1 is required to compute spreads. Under the relational model, the
spreads must be estimated. Poosala et al. [258] found that computing spreads
from a data sample yielded acceptable results; more sophisticated estimates
of spreads can be derived from estimates of the number of distinct values in
a bucket; see the discussion of equi-depth histograms in Section 3.3.1.

The experiments in [258] indicate that, for moderately sparse data,
the maxdiff(a) scheme yields the best accuracy, but the accuracy of the
maxdiff(g), compressed(g), and compressed(a) schemes is almost as good.
Because of their good balance of accuracy and practicality, versions of the
maxdiff and compressed histograms are currently used in SQLServer and
DB2 products; see [180, 183]. As noted in Giannella and Sayrafi [121], how-
ever, the experimental results in the early literature on heuristic bucketing
schemes are far from definitive, and no heuristic scheme uniformly domi-
nates the others.

3.4.2 Schemes with Optimality Guarantees

In light of the purely empirical performance studies for the foregoing heuris-
tic schemes, and the limitations of these studies, the question naturally arises
of whether there exist efficient algorithms for determining a set of provably
“optimal” or “near-optimal” histogram buckets that maximize estimation ac-
curacy, subject to an upper bound on the histogram size. To formulate the
problem more precisely, one must specify the estimation scheme used for the
buckets, the class of bucketing schemes allowed, and the accuracy criterion.
A large literature has grown up around this topic, which we briefly summa-
rize in this section. Unless specified otherwise, all of the algorithms assume
the datacube access model, so that the input g-values are given in the form
g(1), . . . ,g(M). As discussed previously, all of these algorithms assume at
least one complete pass through the data; if sampling is necessary, then the
optimality statements will not hold in general, because the bucket boundaries
will not be based on the complete data. Another running assumption is that
the maximum g-value R is such that logR = O(logM), which is typically the
case when g-values correspond to frequency counts. When the g-values are
real, they are assumed to be of bounded precision, so that they can be rescaled
to integers and satisfy the above assumption.
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A Basic Dynamic-Programming Approach

We first describe the basic dynamic programming (DP) method of Jagadish
et al. [186], which was the first optimality result to appear in the database
literature.6 This basic algorithm—which focuses on minimizing an L2-error
metric—typifies a broad class of optimal-histogram algorithms and is perhaps
the easiest to understand. As will be seen, the cost of the algorithm is often
unacceptable in practice, so much subsequent work has focused on improving
the basic algorithm either by using approximate DP techniques or by focusing
on more tractable error metrics such as L∞.

The (somewhat limited) class of histograms considered determines buck-
ets by decomposing the domain U = [1,M] into disjoint segments and esti-
mating the g-values for the elements within a bucket using the continuous-
value assumption; that is, for each i ∈ [1,M], the histogram estimates g(i) as
the average g-value for the bucket containing i. The accuracy metric for the
histogram is the (squared) L2 distance between the vector of actual and es-
timated g-values: E(H) = ∑

M
i=1
(
g(i)− ĝH(i)

)2, where ĝH(i) is the estimated
g-value for i ∈ [1,M], based on the histogram H. Such a histogram is called a
v-optimal histogram in [183].

The DP approach exploits the fact that the error metric E(H) decomposes
into the sum of errors for the individual buckets. Fix k ∈ [2,M], j ∈ [1,M] and
i ∈ (1, j], and consider an arbitrary but fixed k-bucket histogram over [1, j]
whose rightmost bucket is Sk = [i, j]. By the decomposability of the error
metric, the L2 error Ek[1, i, j] of this histogram can be expressed as Ek[1, i, j] =
E0

k−1[1, i)+ L2[i, j], where E0
k−1[1, i) is the contribution to the L2 error from

the first k−1 buckets over [1, i) and L2[i, j] is the contribution from bucket Sk.
Clearly, a better histogram is obtained by adjusting the first k− 1 buckets to
coincide with those of the optimal (k−1)-bucket histogram over [1, i). Denote
the error of this latter histogram by E∗k−1[1, i), so that the improved version
of the original k-bucket histogram has overall error E∗k−1[1, i)+ L2[i, j]. This
is the minimum possible error for a k-bucket histogram over [1, j] having
rightmost bucket [i, j]. Thus the best k-bucket histogram over [1, j] is obtained
by choosing a histogram of this latter type, using the best possible value of
i, i.e., choosing i to minimize E∗k−1[1, i)+ L2[i, j]. The error E∗k [1, j] for this

6As pointed out by Karras and Mamoulis [203], the algorithm can be viewed as a special case of a curve-
approximation scheme due to Bellman [18].
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optimal histogram thus satisfies the equation

E∗k [1, j] = min
i∈(1, j]

E∗k−1[1, i)+L2[i, j]. (3.1)

This is the Bellman optimality equation of dynamic programming, and we
denote by I∗k, j the value of i that minimizes the right side; that is, I∗k, j is the
position of the lower boundary of the rightmost bucket in an optimal k-bucket
histogram on [1, j]. For convenience, also set T ∗k, j = E∗k [1, j], so that T ∗k, j is the
L2 error of the optimal k-bucket histogram on [1, j].

The DP algorithm proceeds by computing—via (3.1)—and storing T ∗k, j
and I∗k, j for k = 1,2, . . . ,B and j = 1,2, . . . ,M. Observe in this connection
that the L2 errors can be computed efficiently by precomputing the quantities
R(1)

i = ∑
i
l=1 g(i) and R(2)

i = ∑
i
l=1 g2(i) for each i∈ [1,M]. Then the L2 error for

a bucket with end points a and b is computed as follows, where m = b−a+1:

L2[a,b] =
b

∑
i=a

(
g(i)− (1/m)

b

∑
j=a

g( j)
)2

=
b

∑
i=a

g2(i)− (1/m)
( b

∑
j=a

g( j)
)2

=
(
R(2)

b −R(2)
a−1

)
− (1/m)

(
R(1)

b −R(1)
a−1

)2
.

To start the computation, we set T ∗1, j = E∗1 [1, j] = L2[1, j] for j ∈ [1,M]; we
can set each I∗1, j to an arbitrary value. After every T ∗i, j and I∗i, j has been com-
puted, the lower bucket boundaries for the optimal B-bucket histogram are
determined in order of decreasing position as

iB = I∗B,M,

iB−1 = I∗B−1,iB−1,

iB−2 = I∗B−2,iB−1−1,

...

i2 = I∗2,i3−1,

i1 = 1.

The L2 error of the optimal histogram is simply T ∗B,M.

The time and space complexity for computing the R(1)
i and R(2)

i constants
is O(M). Computation of each (I∗k, j,T

∗
k, j) pair requires O(M) operations, cor-
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responding to exploring all possible values of i for the minimization in Bell-
man’s equation. There are O(MB) such pairs, which also must be stored.
Thus the overall time complexity is O(M2B)—with multiple passes required
over the data—and the space complexity is O(MB). The algorithm can be ex-
tended to other accuracy metrics, but the time complexity for the general case
is O(M3B); see [203], as well as Lin and Zhang [217]. (The latter paper gives
a DP algorithm for spline histograms under a uniform-workload-based error
metric for range queries.) Guha [134] provides a general technique for reduc-
ing the space complexity of synopsis construction algorithms, and shows how
the technique can be specialized to reduce the space complexity of the fore-
going algorithm from O(MB) to O(M). The basic idea is to use a divide-and-
conquer strategy for placing bucket boundaries, where a dynamic program
is used to find the dividing point; Guha shows that this program has smaller
space complexity than the original dynamic program, and an overall space
reduction is achieved because the resulting set of subproblems can share the
same working space.

A key strength of the DP approach is that it extends straightforwardly to
a broad range of different error measures, for example,

• the L1 error, defined as E(H) = ∑
M
i=1 |g(i)− ĝH(i)|, where each

ĝH(i) is the median of the g-values in the bucket containing i;
• the χ2 error, defined as E(H) = ∑

M
i=1
(
g(i)− ĝH(i)

)2
/ĝH(i), where

ĝH(i) =
√
|S j|−1 ∑l∈S j g2(l) and S j is the bucket containing i;

• workload-weighted versions of the L2 and L1 error metrics; and
• the KL metric of Giannella and Sayrafi [121], defined as E(H) =

∑
B
j=1 |S j|E j, where |S j| is the length of bucket S j and

E j = log |S j|−∑
i∈S j

g(i)
g+

j
log

g(i)
g+

j
,

with g+
j , as before, the sum of the g-values in bucket S j.

The approach can also handle other estimation schemes, such as g-value
summaries comprising the geometric mean or the median of the values in a
bucket, or the spline-based schemes as described in Section 3.3.2. The precise
formulas for time and space complexity may change, however, depending on
the details of the error metrics and estimation schemes; see, for example,
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[139, Sec. 4].
Jagadish et al. [185], extend this approach to the problem of globally op-

timizing a set of 1D histograms. Specifically, the problem is to allocate a total
of B buckets among the histograms in order to minimize a global error met-
ric. This metric is a weighted sum of the L2 errors for the histograms in the
set, where the weight of a histogram corresponds to the probability that an
incoming query will probe the attribute associated with the histogram; these
probabilities are estimated from a query workload. The authors provide both
a DP and a greedy algorithm.

Improved DP Algorithms

Even with the improvement of Guha [134], the performance of the basic algo-
rithm is likely to be unacceptable in practice. To address this issue, a number
of algorithms have been developed to solve a relaxed version of the optimality
problem. Such algorithms produce a histogram whose error is at most (1+ε)
times the minimum possible error—where ε is specified by the user—and are
sometimes called ε-approximate histograms. The best results in this area are
largely contained in recent work by Guha et al. [139]. For example, under the
L2 error metric, the authors provide a one-pass algorithm that produces a near-
optimal histogram while having a near-linear time complexity of O(M +Qτ)
and a space complexity of O(Bτ + Q), where τ = min(Bε−1 logM,M) and
Q = B(Bε−1 logτ + logM) logτ . For typical values of B and ε , it holds that
τ�M and Q� Bτ logM. The algorithm is rather intricate, and the reader is
referred to the original paper for details; the key idea is to follow the DP ap-
proach outlined above, but, for each k ∈ [2,B], to efficiently and dynamically
approximate the quantity E∗k−1[1, i) in Bellman’s equation by a piecewise-
constant function of i.

Guha et al. [139] show that their techniques extend to any error metric E
such that

• the error E[a,b] of a bucket with end points a and b only depends
on a, b, and the g-values in the bucket;

• the overall histogram error is the sum of the bucket errors;
• O(1) information can be maintained for each i value such that

E[a,b] can be computed efficiently, e.g., the quantities R(1)
i and
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Case γ j Bucket error

c≤min≤max 2∗max∗min
max+min

max−min
max+min

min≤max≤−c 2∗max∗min
max+min

min−max
max+min

−c < min < c≤max max(min+c)
max+c

max−min
max+c

min≤−c≤max≤ c max(c−max)
c−min

max−min
c−min

−c≤min≤max≤ c max+min
2

max−min
2c

min≤−c < c≤max 0 1

Table 3.1 Optimal g-value summary under the L∞ relative-error metric

R(2)
i in the basic DP algorithm; and

• the error metric is “interval monotone” in that E[a,b]≤ E[a−1,b]
and E[a,b]≤ E[a,b+1].

This class of metrics includes those described in the previous section. Note,
however, that, e.g., the authors’ scheme for the L1 metric requires a prepro-
cessing step having O(M logM) time and space complexity, which may be
practically infeasible. Other metrics amenable to the methods in [139] in-
clude certain relative-error metrics [142] such as the L2 relative error metric
∑

M
i=1
(
g(i)− ĝH(i)

)2
/w2

i . Here wi = max
(
g(i),c

)
and ĝH(i) = γ j with S j being

the bucket that contains i and γ j being a constant chosen to minimize the con-
tributions to the error from the g-values in S j. Specifically, γ j = C j−B2

j−A j,
where A j = ∑i∈S j(1/w j), B j = ∑i∈S j

(
g(i)/w(i)

)
, and C j = ∑i∈S j

(
g2(i)/w(i)

)
.

Note that c is a sanity constant that prevents undue influence by very small
g-values. The methods in [139] also apply to the L1 relative-error metric but,
as with the simpler L1 absolute-error metric mentioned in the previous sub-
section, the space complexity is unacceptably high.

Maximum-Error Metric

In general, the L∞ metric—that is, the maximum error metric—is more
tractable than other metrics such as L1 and L2. Guha et al. [142] provide
an algorithm for computing a near-optimal histogram under the L∞ relative-
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error metric. This metric is defined as max1≤i≤M |g(i)− ĝH(i)|/|wi|, where,
as before, wi = max

(
g(i),c

)
and ĝH(i) = γ j with S j being the bucket that

contains i. As with the L2 relative error metric, γ j is chosen to minimize
the error contribution from bucket S j. In this case, the formula for γ j is
encapsulated in Table 3.1, which also gives the resulting error contribu-
tion from the bucket. (The overall histogram error is the maximum of the
bucket errors.) In the table, “min” and “max” refer to the minimum and max-
imum g-values in S j, and c is the sanity constant; see [141] for a derivation.
The time complexity of the algorithm is O(M) and the space complexity is
O
(

B2ε−1 logM
(
log logM + log(B/ε)

)3
)

.
For the L∞ absolute-error metric, defined as max1≤i≤M |g(i)− ĝH(i)|,

Buragohain et al. [38] provide several simple approximate histogram algo-
rithms that have excellent space and time complexities relative to other ap-
proaches; these algorithms are not based on dynamic programming. Their
one-pass Min-Merge algorithm has space and time complexities of O(B)
and O(M logB), and constructs a histogram using at most 2B buckets that
has L∞ error less than or equal to the error for the optimal B-bucket his-
togram. The buckets of the histogram store the minimum and maximum g-
values, and approximate each of the g-values in the bucket by the single value
(max+min)/2, which gives a bucket error of (max−min)/2. The algorithm
is quite simple, and works by dynamically maintaining a set of buckets that
form a histogram of the values seen so far. Each arriving value is assigned its
own bucket and appended to the right end of the histogram. Whenever the ad-
dition of a new bucket causes the budget of 2B to be exceeded, two adjacent
buckets are merged; this bucket pair is chosen so as to minimize the increase
in error.

The Min-Increment algorithm in [38] requires that the g-values lie in
a subset of the integers that contains R > 1 elements; this condition is, of
course, satisfied when g(i) corresponds to the frequency of data value i. The
algorithm produces a histogram having at most B buckets and an L∞ error
that lies within a (1+ε) factor of the minimum possible error. The space and
time complexities are O(ε−1B logR) and O(ε−1M logR). The Min-Increment
algorithm proceeds by solving the “dual” problem of finding the histogram
with the minimal number of buckets whose error does not exceed a given
bound. This dual problem is solved for a range of exponentially increasing
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error values of the form ei = (1 + ε)i for i = 1,2, . . . , logR/ε , which lie in
the range [1,R] of possible error values. The algorithm for solving the dual
problem, called Greedy-Insert, is very simple. A list of buckets is maintained,
with the rightmost bucket being “open” and the rest being “closed.” The al-
gorithm starts with a single, open bucket. Arriving points are added to the
open bucket as long as the error does not exceed the specified error bound
e; if the bound is about to be exceeded, the bucket becomes closed and the
arriving g-value is placed in a new, open bucket. Observe that, because suc-
cessive ei values are separated by a factor of (1 + ε), there exists an i∗ such
that ei∗−1 ≤ eopt ≤ ei∗ ≤ (1 + ε)eopt, where eopt is the L∞ error of the opti-
mal B-bucket histogram. The minimum bucket histogram with bound ei∗ is
the desired approximate histogram, and the challenge is to identify i∗, since
eopt is unknown. The Min-Increment algorithm simply maintains a set of
histograms as in the Greedy-Insert algorithm, one for each ei value. When-
ever the bucket count for such a histogram exceeds B, it is discarded; by the
minimal-bucket property of Greedy-Insert, the error for such a histogram is
less than or equal to ei∗−1. After all of the g-values have been processed,
the surviving histogram with the smallest ei value is the desired approximate
histogram. Buragohain et al. [38] extend the Min-Merge and Min-Increment
algorithms to handle spline histograms as in Section 3.3.2.

Range-Query Error Metric

All of the algorithms so far use an error metric that is oriented toward min-
imizing “pointwise” errors in reconstructing the value of each g(i). If a his-
togram is primarily to be used in approximately answering range queries, it
makes sense to use an error metric that reflects this fact. Guha et al. [140]
provide an algorithm that attempts to minimize error with respect to a work-
load W of hierarchical range queries. A range query Qi j with i ≤ j asks
for the range sum αi j = g(i)+ g(i + 1)+ · · ·+ g( j). A set Q of hierarchical
range queries satisfies the property that, for each pair Qi j,Qkl ∈Q, either the
ranges [i, j] and [ j,k] are disjoint or one contains the other. A workload W

comprises a set Q of hierarchical range queries together with a probability
distribution P =

{
pi j
}

over the queries in Q such that pi j denotes the prob-
ability that an incoming query Q will correspond to Qi j ∈Q, i.e., will be a
range query over [i, j]. Let α̂H

i j denote the estimate of αi j for a given histogram
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H, and denote by eH
i j = (αi j− α̂H

i j )
2 the corresponding squared error. Next,

let EH = ∑(i, j) eH
i j pi j be the expected (squared) error with respect to the work-

load when using histogram H. Finally, let H∗ be the histogram that minimizes
the error and denote by E∗ = EH∗ the minimal error. Guha et al. develop an
efficient DP algorithm that, for any ε ∈ (0,1), produces a histogram having
O(B/ε) buckets and whose expected error with respect to W is the mini-
mal B-bucket error E∗. The time complexity is O(M +B2ε−5Mε |Q|) and the
space complexity is O(Bε−3M2ε/3). The key idea is to restrict computation
to a “sparse” system of intervals that covers the ranges in Q, increasing the
number of histogram buckets in the process but reducing the overall DP com-
plexity. This method can be potentially extended to other error metrics and
estimation schemes.

The foregoing bucketing schemes assume the datacube access model. To
handle the relational access model (with SUM aggregate) in a one-pass man-
ner, one needs algorithms that can incrementally update a histogram upon
scanning a data item of the form (i,v) for some i∈ [1,M], which has the inter-
pretation “increment the current value of g(i) by v.” As usual, a key example
has v≡ 1, so that g is interpreted as the frequency of data value i. Algorithms
for handling this situation are a special case of algorithms for maintaining
histograms over streaming data, and are discussed in Section 3.7.1.

q-Error Metric

Recently, Kanne and Moerkotte [198] have forcefully argued for the use of
the q-error to evaluate the quality of a histogram, especially in the context
of query optimization. If nonnegative g-values g(1),g(2), . . . ,g(M) are ap-
proximated by histogram estimates ĝH(1), ĝH(2), . . . , ĝH(M) then the q-error
of the approximation is defined as max1≤i≤M max

(
g(i)/ĝH(i), ĝH(i)/g(i)

)
. A

key motivation for the use of q-error rests on recent results of Moerkotte
et al. [231] that directly relate q-errors of cardinality estimates to query-
plan costs. For example, for a query consisting of multiple sort-merge joins
or Grace hash joins, it can be shown that C(P̂) ≤ q4C(P), where C(P̂) and
C(P) are the query costs for optimal plans based on estimated and exact join
cardinalities and q represents a worst-case q-error in the intermediate join-
cardinality estimates. In [198], a dynamic-programming-style algorithm is
given for exact computation of a “q-optimal” histogram. Such a histogram
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has minimal size, subject to an upper bound on the q-error. The class of his-
tograms considered allows heterogeneous bucket types, as described in Sec-
tion 3.3.4. The exact algorithm is costly, and so a greedy heuristic is also
provided. The experiments reported in [198] indicate that, for a wide range
of datasets, it is possible to obtain a heterogeneous histogram of reasonable
size for which the q-error at most 2. Note that special care must be taken to
deal with the case g(i) = 0, since the q-error for such a value can be infinite.

3.4.3 Hierarchical Bucketing Schemes

The bucketing schemes discussed so far simply partition the range [1,M] into
disjoint segments. More elaborate schemes attempt to better capture the struc-
ture of the data by defining buckets in a hierarchical manner. The resulting
data structures lie on the boundary between histograms and synopses such as
wavelets. We describe two such proposals below, n-level trees and lattice his-
tograms. In the context of multi-dimensional histograms, Section 3.5.1 below
describes the hierarchical STHoles bucketing scheme of Bruno et al. [30].

n-Level Trees

The n-level tree (nLT) introduced in [35] is designed to answer hierarchical
range queries. In an exact nLT, sums over the data are stored as an n-level
binary tree. The root node stores the sum of g(1)–g(M). The left child node
stores (roughly) the sum of g(1)–g(M/2), and the right child stores the sum
of g(M/2)–g(M). This scheme continues recursively, with the left child of a
node storing the sum of g-values over the first half of the node’s range and
the right child storing the sum over the right half. The storage requirement
of the nLT is then reduced by using the same tricks and approximations as in
the 4LT method described in Section 3.3.3. Namely, only the sums for left-
child nodes are stored, because the right-child sums can be reconstructed as
a difference between the left-child sum and the parent-node sum. Moreover,
the number of bits used to represent the sums decreases as the node level in-
creases. Specifically, the sum for the root node (level 0) is represented using
32 bits, the sum of the left-child node (level 1) is represented using k (< n)
bits. From then on, the number of bits in the representation decreases by 1 as
the level increases by 1. The nLT is used to answer a query in a manner simi-
lar to the hierarchical-range-query histogram of Guha et al. [140] described in
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Fig. 3.8 Two lattice histograms on eight data values

Section 3.4.2. The idea is to attempt to cover the query range by one or more
nodes that are as high up in the tree as possible. If, after such an attempted
covering, a portion of the query range is not completely covered, then the
sum over this remaining portion is estimated using the continuous-value as-
sumption. Experiments in [35] show that the accuracy of this approach can
be superior to maxdiff, v-optimal, and wavelet approaches.

The price for this improved accuracy is that, under the datacube access
model, the nLT requires O(M logM) time to construct and O(logM) time to
answer a query. The nLT is relatively easy to update, requiring O(logM) time
complexity to handle a change in g(i) for some specified value of i.

Lattice Histograms

We conclude our discussion of 1D-histograms by describing recent work by
Karras and Mamoulis [199, 201] on a synopsis called a lattice histogram
(LH), which is actually a hybrid of a histogram and a wavelet synopsis. The
motivation for this work is to try and exploit both the traditional histogram’s
ability to flexibly and accurately capture locally smooth data, yielding buck-
ets containing similar data values, while also exploiting any underlying hi-
erarchies of the data in order to capture non-local interrelations, as is done
effectively by hierarchical synopsis structures such as wavelets. Following
[201], Figure 3.8 illustrates two LHs, each summarizing M = 8 g-values. The
space occupied by a LH is proportional to the number of occupied nodes, each
of which contains a numerical value; these correspond to the gray nodes in
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the figure. Nodes cannot be occupied in an arbitrary fashion: the constraint is
that, for any pair of occupied nodes, either their respective sets of leaf descen-
dants must be disjoint, or one set must completely contain the other. A data
value is reconstructed as the value of the lowest occupied ancestor node. For
example, in the LH of Figure 3.8(b), the reconstructed values are ĝ(1) = c10,
ĝ(2) = c22, ĝ(5) = c25, and ĝ(8) = c35. Note that the constraint on the occu-
pation of nodes ensures that there is always a unique lowest ancestor. The LH
of Figure 3.8(a) shows how the LH framework can capture traditional his-
tograms as a special case: here the data has been partitioned into the buckets
S1 = {1,2,3}, S2 = {4}, S3 = {5,6}, and S4 = {7,8}, and the values in the
occupied nodes correspond to bucket averages.

For a given space budget B, Karras and Mamoulis [201] provide a dy-
namic programming algorithm to construct a LH that approximately min-
imizes a general error metric. The g-values are discretized into multiples
of a constant δ , but otherwise the algorithm is exact. This discretization
means that the error of the constructed LH exceeds the minimum possible
error by no more than δ/2. The time and (working) space complexities are
O(δ−1M3B2) and O(δ−1MB), respectively. A DP algorithm specialized to
the L∞ maximum-error metric reduces these requirements to O(δ−1M3) and
O(δ−1M), but clearly the time and space costs are impractical. To address this
problem, the authors recommend a divide-and-conquer procedure in which
the g-values are first partitioned using a “primary” synopsis such as an or-
dinary histogram, and then a set of LHs are constructed, one per bucket. In
follow-on work that focuses on the class of weighted L∞ metrics (which in-
clude maximum-relative-error metrics), Karras [199] provides an algorithm
for constructing a LH that exactly minimizes the error metric of interest,
along with a much less expensive greedy algorithm that is shown empiri-
cally to produce LH’s that are close to optimal. The idea is to develop exact
and greedy algorithms that minimize the LH size subject to a given error
bound, and then solve the original space-bounded problem by combining the
error-bounded algorithms with binary search. The time and space complex-
ities for the exact algorithm are O(M4) and O(M3), and the corresponding
complexities for the greedy algorithm are O(M + B2) and O(M). The space
complexity even of the greedy algorithm may still be impractical but again
the divide-and-conquer procedure can potentially be applied. An interesting
line of research would try and further improve efficiency by incorporating
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approximate DP ideas along the lines of Guha et al. [139].

3.5 Multi-Dimensional Histograms

The foregoing discussion has focused primarily on histograms for a single
attribute. In practice, however, the paramount need is to capture multidi-
mensional distributions, i.e., the statistical relationships between different at-
tributes. In query optimization, for example, failure to capture dependencies
is the key cause of poor selectivity estimates and consequent selection of bad
query plans.

Given a bucketing scheme, most of the estimation schemes described for
1D-histograms generalize in a straightforward manner. The major focus of
our discussion is therefore on bucketing schemes. As discussed below, multi-
dimensional histograms present much greater technical challenges than 1D-
histograms, because there are many more degrees of freedom for choosing
bucket boundaries, and the potential for an exponential explosion in time and
memory costs is great. Moreover, data tends to be sparser in higher dimen-
sions, making efficient proximity-based compression difficult. The problem
of providing accurate multi-dimensional histograms at reasonable cost is an
ongoing research area, and the following results are provisional at best.

As before, we focus on the problem of estimating quantities such as
α = ∑i∈Q g(i), but now i = (i1, i2, . . . , id) for some dimension d > 1, and
the query region Q—as well as each histogram bucket S j—is a subset of
U = [1,M1]× [1,M2]×·· ·× [1,Md ]; typically, both Q and S j are hyperrect-
angles. Thus the total number of g-values in the dataset is M = M1M2 · · ·Md ;
e.g., M = md if M1 = M2 = · · ·= Md = m. (Typically, however, many of these
g-values are equal to 0.) Unless specified otherwise, we assume the datacube
access model throughout. Indeed, none of the techniques below can directly
handle the relational access model, except for equi-width histograms, which,
as discussed in Section 3.5.1 below, are impractical. Thus techniques such
as sampling or sketching might need to be used; c.f. Section 3.2.3. Muralikr-
ishna and DeWitt [235], for example, found that sampling worked well with
their multi-dimensional histogramming method—see Section 3.5.1 below—
for up to three dimensions.
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3.5.1 Bucketing Schemes

We first discuss why the bucketing problem is extremely challenging, and
then review a range of bucketing strategies that have been proposed in the
literature. Even the most successful of these schemes do not perform well
when the dimensionality of the data is high. For high-dimensional data, the
most promising practical approach maintains a collection of low-dimensional
histograms, of the type discussed in this section, and combines estimates
from the different histograms into an overall approximate query answer.
Section 3.5.2 describes this multi-histogram approach. In connection with
this strategy, some potentially useful low-dimensional histograms include the
heuristic algorithm of Wang and Sevcik [287] and the approximate algorithms
for optimal 2D-histograms in Muthukrishnan et al. [238]; they each require
a minimal number of passes over the data to construct. Both of these algo-
rithms, and others, are discussed in the sequel.

Challenges

To appreciate the fundamental difficulties of the bucketing problem for a
d-dimensional histogram, first observe that the number of buckets in a d-
dimensional equi-width histogram grows exponentially in d; for many real-
world datasets, the vast majority of the cells will be empty, and a waste of
storage. Moreover, to achieve good accuracy in a region of the data domain
where the data values are highly nonuniform, the cell widths for this region,
and hence for the entire histogram, will need to be small, further amplifying
the memory-consumption problem. Conversely, for a given (small) memory
bound, the accuracy of an equi-width histogram will typically be unaccept-
able, unless the data is uniform.

Combatting the above accuracy problem typically incurs large space
and/or time costs for constructing the histogram. Indeed, under the datacube
access model, any construction algorithm that requires a complete pass over
the input data—an O(M) time requirement in our previous notation—will be
restricted to small values of d, because M grows exponentially in d. Many of
the bucketing schemes proposed in the literature, though yielding much better
accuracy than the equi-width approach, require multiple passes over the data,
which severely limits their practicality. The VI histogram technique of Wang
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Fig. 3.9 Muralikrishna and DeWitt bucketing scheme

and Sevcik [287], described below, partially addresses this issue.
Theoretical results confirm the difficulty of the d-dimensional bucketing

problem. Recall from Section 3.4.2 that an exact v-optimal 1D-histogram can
be constructed in polynomial time, specifically, O(M2B) under the datacube
access model. In contrast, Muthukrishnan et al. [238] show that, even when
d = 2, this problem is NP-hard, as are a broad class of related histogram-
construction problems. Even computing an ε-approximate equi-depth his-
togram with a specified number B of buckets in each dimension is challeng-
ing [208]. As a consequence, most of the bucketing schemes studied so far
have been heuristic.

A related issue is that the number of buckets intersected by a query is
likely to increase as the number of dimensions increases. This potentially
slows down the process of efficiently answering a query. Carefully designed
data structures are needed to ameliorate this problem.

Multi-Pass Schemes

We first describe bucketing schemes that require multiple passes over the
input data. Besides being of historical interest, recent work has shown that
these schemes can be incorporated into more efficient construction algorithms
that require only a single pass.

The first of the multi-pass bucketing algorithms was the method of Mu-
ralikrishna and DeWitt [235]. This top-down algorithm begins with a single
bucket that contains all of the d-dimensional data, and proceeds by choosing
an arbitrary dimension and splitting the bucket along this dimension using
an equi-depth scheme (after projecting the data points onto the splitting di-
mension). Each resulting bucket is then recursively split along the remaining
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dimensions. The number of splits is predetermined—typically the same num-
ber in each dimension—so that the total number of buckets does not exceed
the space budget. See Figure 3.9 for the case of two-dimensional data; in the
figure, there are three splits (i.e., four disjoint intervals) in each dimension
and, arbitrarily, dimension 1 is split before dimension 2. To answer queries
efficiently, the histogram data is stored in an R-tree-like structure that reflects
the recursive nature of the bucketing scheme. More specifically, the height
of the tree corresponds to the number of dimensions, with descending levels
corresponding to the successive splitting dimensions. Each internal node cor-
responds to an interval, demarcated by adjacent split points, along the dimen-
sion corresponding to the node’s level. A leaf node contains the bounding-box
information for a histogram bucket, such that the intervals defining the bucket
boundaries are contained in the intervals of the bucket’s ancestor nodes. This
organization ensures that only buckets in the neighborhood of the query re-
gion will be visited. In the setting of 2D-histograms, Pham and Sevcik [251]
performed a set of empirical experiments to systematically explore the prob-
lem of how to order the dimensions for splitting, and how many splits to use
in each dimension. Given an overall budget of B buckets, they recommend
partitioning each dimension into

√
B buckets, validating Muralikrishna and

DeWitt’s original recommendation of B1/d , at least when d = 2. To deter-
mine the splitting dimension at each step, they define the density of a bucket
S j as g+

j /|S j|, and recommend choosing the currently un-split dimension that
has the largest variance of density values over the buckets. (They did not,
however, systematically consider alternative heuristics for choosing the split-
ting order, of which there are many; see, e.g., the discussions of the MHIST
and HiRed algorithms immediately below.)

Poosala and Ioannidis [257] point out that, in the foregoing method, the
splits in each dimension can be chosen according to any one-dimensional
bucketing scheme such as maxdiff, v-optimal, and so forth. They refer to
their generalization as the PHASED bucketing method, which thus includes
the method of Muralikrishna and DeWitt as a special case. They also propose
a more significant generalization, which they call MHIST. This top-down al-
gorithm again starts with a single bucket for the entire dataset, and splits an
existing bucket into two buckets at each step. The bucket to be split and the
dimension of this bucket along which to split are chosen greedily, according
to the one-dimensional bucketing scheme being used. E.g., for the v-optimal
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Fig. 3.10 MHIST bucketing scheme

scheme, the bucket and dimension having the largest L2 error value are cho-
sen for splitting. The algorithm stops when the number of buckets reaches
the maximum allowed value. The MHIST approach permits a more flexi-
ble choice of bucket boundaries than the PHASED method, leading to better
empirical accuracy; see Figure 3.10 for an example of a possible MHIST
splitting sequence.

Baltrunas et al. [16] give a variant of the MHIST algorithm, called HiRed,
where a bucket is split in half along each of its dimensions; for each split of
a bucket S into buckets S1 and S2 along a specified dimension, a variabil-
ity measure |g+

1 − ḡ|+ |g+
2 − ḡ| is computed, where g+

i is the sum of the g-
values in bucket Si and ḡ = (g+

1 + g+
2 )/2. If the variability measure exceeds

a user-specified threshold, then the split becomes permanent; otherwise, the
split is removed. The multi-dimensional version of Wang and Sevcik’s HMF
histogram—see Section 3.3.4—also proceeds in a manner similar to MHIST,
iteratively and greedily splitting a selected bucket into two buckets, along a
selected dimension, with the additional complication that (possibly different)
estimation schemes must be chosen for each of the newly created buckets.
As with the one-dimensional algorithm, the various splitting possibilities are



110 Histograms

ranked using a metric based on relative entropy and inspired by the minimum
description length principle. Note that the PHASED, MHIST, and HiRed ap-
proaches, though more general than the original scheme of Muralikrishna
and DeWitt [235], still explore only a subset of all possible (disjoint) bucket
configurations, since some valid two-dimensional configurations cannot be
achieved by hierarchical schemes.

Gunopulos at al. [143] obtain additional flexibility relative to PHASED,
MHIST, and Hired by allowing buckets to overlap. Their algorithm, called
GENHIST, works roughly as follows. Define the density of a bucket S as
fS = ∑i∈S g(i)/g+, where g+ denotes, as usual, the sum of all g-values in the
dataset. A GENHIST histogram consists of a set S of overlapping buckets,
and the g-values are estimated as ĝ(i) = g+

∑S∈Si fS, where Si is the set of
buckets in S that contain i. The algorithm computes buckets by first com-
puting a “fine-grained” equi-width partitioning of the data domain and iden-
tifying a set of “dense” buckets; a bucket is dense if its density is higher than
the “average local density,” i.e., the average of the densities in its neighbor-
ing buckets. For each dense bucket, a subset of the data points in the bucket
is “assigned” to the bucket and removed from the dataset, and the bucket is
then added to the histogram. That is, MHIST records the bucket boundaries
and bucket density, where the density is defined as the number of assigned
points, divided by g+. Assigned points are chosen randomly and uniformly
from the points within a bucket, and the number of assigned points is chosen
such that the remaining points in the bucket region have a density equal to the
local average density. Thus the reduced dataset (consisting of the remaining
data points) has a more uniform distribution and can be approximated us-
ing a coarser partitioning; this process is similar to the assignment of a large
g-value to its own bucket in a high-biased histogram (c.f. the discussion on
singleton bucket histograms in Section 3.4.1). The process is then iterated on
the remaining data points, using a coarser equi-width partition. The iterations
continue until either all points have been removed or the partitioning coarsens
to a single bucket.

Figure 3.11 illustrates the process for d = 2. In iteration 1—see Fig-
ure 3.11(a)—the domain is partitioned into 16 equi-width buckets via a 4×4
partitioning. The upper left bucket is identified as dense and added to the his-
togram; the density a assigned to the bucket represents the excess over the
local average density. In iteration 2—see Figure 3.11(b)—the domain is par-
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Fig. 3.11 GENHIST bucketing scheme

titioned into 4 equi-width buckets, and the upper left and lower right buckets
are each identified as dense and added to the histogram, with respective den-
sities b and c. In iteration 3—see Figure 3.11(c)—the partitioning has coars-
ened to a single bucket, which is added to the histogram. In this case the den-
sity d of the bucket is computed as the sum of the g-values remaining in the
dataset, divided by the sum g+ of the entire original set of g-values. The final
density approximation for a given region is computed as the sum of the den-
sities of the buckets that contain the region, as illustrated in Figure 3.11(d).
Note that the bucket having density b overlaps (in fact completely contains)
the bucket having density a; in general, arbitrary overlaps are possible.

Although the GENHIST method provides very accurate query-result es-
timates, the costs for constructing and using the histogram are quite high, as
are the space requirements for computing and storing the histogram. E.g., the
complexity of the initial density computations is exponential in the dimen-
sion of the data. Experiments by Baltrunas et al. [16] indicate that, given a
space budget, the simple HiRed histogram can dominate GENHIST in speed
and accuracy, at least on some datasets.

A related bucketing scheme is the STHoles method of Bruno et al. [30],
which we discuss for the case in which g(i) corresponds to the frequency of
a value i. In this scheme, high-density regions are completely, not partially,
removed, in a recursive fashion. Thus buckets can have “holes,” which are
themselves buckets that can have holes, and so forth; see Figure 3.12. Unlike
the other bucketing schemes discussed so far, the method for creating buck-
ets (“drilling holes”) and assigning summary values to buckets rests not upon
a scan of the data, but rather on observing query feedback, i.e., the actual
numbers of tuples that satisfy selection queries issued by users. Srivastava et
al. [275] improve upon the original STHoles scheme by updating the bucket
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Fig. 3.12 STHoles bucketing scheme

summary values using a maximum entropy approach that ensures consistency
of the bucket counts with respect to the feedback observations. Recently,
Kaushik et al. [206] have extended the maximum entropy approach to handle
feedback information that includes information about distinct-value counts.
He et al. [164] predict the future query workload, based on past queries, and
create a “proactive” STHoles histogram from this workload, which is then
merged with the ordinary “reactive” STHoles histogram when the future time
arrives. Luo et al. [220] provide methods for scheduling queries so as to max-
imize the rate at which an STHoles histogram converges to an accurate repre-
sentation of the data, and also introduce an interpolation method that leads to
improved accuracy for regions in a bucket that are “close” to holes. The vari-
ous STHoles construction techniques are somewhat tangential to our setting,
in which queries are answered approximately, and not exactly. However, one
could envision a scenario where the system switches back and forth between
a training regime—in which queries are processed exactly and the feedback is
used to build or refine histograms—and an approximate-processing regime.
The system would switch to the training regime whenever the error in the
approximate answers exceeds a specified threshold.

In general, there is a trade-off between the flexibility of a bucketing
scheme and the amount of data that needs to be stored in order to specify the
buckets. The more information that needs to be stored per bucket, the fewer
buckets that can be maintained. Fuchs et al. [100] give a scheme for com-
pressing the bucket information in STHoles, and show that use of this tech-
nique can reduce the relative error by up to 40%. The compression technique
is to quantize the each coordinate of a bucket relative to the corresponding
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coordinate of the smallest enclosing bucket.

Single-Pass Schemes

As discussed previously, the multi-dimensional equi-width histogram can be
constructed in a single pass (or at most two passes if the range of data values
is unknown), but this histogram performs extremely poorly as the dimension
d increases. Wang and Sevcik [287] propose the VI (values and intervals)
histogram, a high-biased histogram that can be constructed in a single pass
through the data.7 The algorithm has the important advantage that it need
only scan the positive g-values, leading to significant reductions in time com-
plexity when only positive g-values in a dataset are explicitly stored. The idea
is to place any g-value larger than g+/20 into its own bucket; the threshold
is chosen to limit the possible number of such buckets (to 20) and is based
on empirical studies. The remaining values are stored in a relatively coarse
memory-resident equi-width histogram (with about 20 buckets in each di-
mension), which is then compressed into a PHASED histogram. The VI his-
togram comprises the PHASED histogram together with the singleton buck-
ets. The experiments in [287] indicate that this technique has the potential to
strike a good balance between histogram accuracy and practicality.

In related work, Pham and Sevcik [251] study the problem of determin-
ing the number of singleton buckets to maintain in a more systematic fashion.
They focus on thresholds of the form g+/(αB), where the parameter α de-
termines the priority placed on singleton buckets. Poosala et al. [258] used
this type of threshold (with α = 1) for the original maxdiff histogram. Pham
and Sevcik found empirically that the optimal choice of α is highly sensitive
to the particular bucketing scheme used, with, e.g., a value of α ≈ 3 being
roughly optimal for PHASED histograms with equi-depth partitioning.

Optimal Histograms

Results on optimal and near-optimal multidimensional histograms are quite
sparse, and indeed are found primarily in a paper by Muthukrishnan et
al. [238] that contains the NP-hardness result cited earlier. Recall that the

7Actually, the algorithm requires that g+ be known (or well approximated) a priori, and so might require
two passes rather than one, as with the multi-dimensional equi-width histogram.
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Fig. 3.13 Quad-tree bucketing scheme

thrust of this result is that there appear to be no efficient algorithms to com-
pute optimal histograms even in the case of d = 2. This raises the question
of whether there exist efficient algorithms for computing histograms that are
near-optimal, i.e., histograms with a specified space allocation of B buckets
and having an approximation error within a factor of (1+ε) of the minimum
possible error for a B-bucket histogram. This question is still unresolved,
but Muthukrishnan et al. [238] provide several algorithms for approximately
solving the dual problem in two dimensions: for a specified error bound δ ,
find a 2D-histogram achieving this error bound and having at most kB∗ buck-
ets for some specified k, where B∗ is the minimal number of buckets required
to satisfy the error bound. For example, in the case of hierarchical (i.e., re-
cursive) bucketing, as in MHIST, the authors give an algorithm that runs in
O(M1+ε) time with k = O(1/ε2); here M is the total number of g-values in the
two-dimensional dataset, as per our previous notation. The algorithm uses dy-
namic programming, and seems to have a prohibitive space complexity. The
paper [238] contains similar results for p× p grid-like bucketing schemes and
for arbitrary bucketing schemes.

Buccafuri et al. [34] obtain optimal and near-optimal algorithms that
avoid the NP hardness issue by focusing on two-dimensional data and
strongly restricting the allowable partitioning scheme. Specifically, the par-
titioning scheme starts with a single bucket. At each step, an existing bucket
is split into 4 buckets by placing a bucket boundary at the midpoint of each di-
mension, in a manner similar to the scheme of Baltrunas et al. [16] described
previously; see Figure 3.13. Given a space budget B, a dynamic program-
ming algorithm can compute the v-optimal histogram—i.e., minimizing the
L2 error over all possible quad-tree partitionings—in time O(BM logM). This
complexity is still impractical, and so the authors provide a greedy algorithm
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having O(B logB) time complexity; the idea is to greedily choose a bucket to
split, specifically, the bucket having the maximum L2 error. The greedy al-
gorithm can further be improved using the two-dimensional generalization of
the techniques described in Section 3.3.3, namely, storing a subset of bucket
sums explicitly and using these to derive sums for non-stored buckets, and
using an analog of the 4LT to better estimate values within each bucket.

We conclude this section by briefly discussing connections to multi-
dimensional indexes. We have seen that, for the PHASED-type histogram
of Muralikrishna and DeWitt, the histogram is stored in a data structure that
looks similar to an R-tree, except that the leaf nodes, instead of holding point-
ers to data items, contain count values. This close relationship between his-
tograms and indices has been pointed out by several authors; see, for example,
the survey by Ioannidis [180]. Indeed, Read et al. [263] propose augmenting
existing B+-tree indices to hold summary statistics for use in aggregation
queries, and Aoki [10] proposes analogous modifications of the Generalized
Search Tree (GiST) in the context of selectivity estimation. The overall hope
is to leverage the highly effective technology that has been developed for
indexing multi-dimensional data.

3.5.2 Collections of Histograms

Even the best of the foregoing bucketing methods has difficulty dealing with
data of very high dimension. One possibility for dealing with this problem is
to approximate the full datacube via a collection of histograms, where each
histogram is constructed over a small subset of the total set of dimensions. A
graphical statistical model captures the global correlation structure of the data
and is used to combine results from the different histograms into an overall
approximation. We describe a couple of such methods below.

To simplify the exposition, we focus on point-count queries and
assume that the g function coincides with the frequency function f .
Thus our data is a multi-dimensional array of frequencies with entries
of the form f (v1,v2, . . . ,vd), where 1 ≤ vk ≤ Mk for k ∈ [1,d]. I.e.,
f (v1,v2, . . . ,vd) is the number of data points x = (x1,x2, . . . ,xd) with
xi = vi for i ∈ [1,d]. We denote by N the total number of points and
by h the relative frequency function: N = ∑v1,v2,...,vd

f (v1,v2, . . . ,vd) and
h(v1,v2, . . . ,vd) = f (v1,v2, . . . ,vd)/N. We denote marginal relative frequen-
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cies over a collection of dimensions A ⊆ {1,2, . . . ,d } using subscripts;
e.g., h2,4(u,w) = ∑v1,v3,v5,...,vd

h(v1,u,v3,w,v5, . . . ,vd). Conditional relative
frequencies are defined analogously to conditional probabilities, e.g., h2|3(u |
v) = h2,3(u,v)/h3(v). Thus if W is the collection of points whose third di-
mension has value v, then h2|3(u | v) is the fraction of points in W having
second dimension equal to u. Two dimensions i and j are independent if
hi, j(u,v) = hi(u)h j(v) for all i ∈ [1,Mi] and j ∈ [1,M j]. This notion corre-
sponds to the usual notion of statistical independence if we select a point
X at random from the dataset; the quantity hi(u) is then the probability that
Xi = u, the quantity hi, j(u,v) is the probability that Xi = u and X j = v, and so
forth. Dimensions i and k are conditionally independent, given dimension j,
if hi,k| j(u,w | v) = hi| j(u | v)hk| j(w | v) for all u,v,w.

Decompositions Based on Graphical Models

Deshpande et al. [84] capture the correlation structure of the data dimen-
sions by means of a “decomposable interaction model.” Such a model can
be represented graphically as a Markov network, i.e., an undirected graph in
which the nodes represent dimensions and an edge represents a direct cor-
relation between the dimensions that it connects. Two dimensions i and k
that are separated by a dimension j are conditionally independent, given di-
mension j. The Markov network serves to define a collection of (possibly
non-disjoint) groups of dimensions, which correspond to the cliques (max-
imal completely connected subgraphs) of the network. A joint histogram
is maintained for each clique, and desired joint distributions are computed
by combining marginal relative frequencies for the various histograms ac-
cording to rules that are determined by the interaction model. In one sim-
ple scenario, for example, the cliques correspond to disjoint groups of cor-
related dimensions, and dimensions in different cliques are considered to
be independent. Thus, if a dataset contains dimensions i, j, k, and l, and
there are two cliques [i, j] and [k, l], then we estimate hi,l(t,w) as ĥi,l(t,w) =
ĥi, j

i (t)ĥk,l
l (w), where ĥi, j is the approximate relative frequency function for

dimensions i and j, based on the 2D-histogram over these dimensions, ĥi, j
i

is the approximate marginal relative frequency function for dimension i that
is computed from ĥi, j, and similarly for dimensions k and l. More gener-
ally, the model can deal with conditional independence relationships, e.g.,
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in which dimensions i and k are independent, given the value of a third di-
mension j. For this example, the cliques would be [i, j] and [ j,k], and we
estimate hi, j,k(u,v,w) as ĥi, j,k(u,v,w) = ĥi, j(u,v)ĥ j,k(v,w)/ĥ j,k

j (v) or, equiva-
lently, ĥi, j,k(u,v,w) = ĥi, j(u,v)ĥ j,k(v,w)/ĥi, j

j (v). To limit computational com-
plexity, cliques are constrained to contain at most three or four dimensions.
The interaction model is fitted using a heuristic “forward selection” search
process, in which full independence is assumed initially—so that there is ex-
actly one singleton clique per dimension—and cliques are built up incremen-
tally based on improvements in the approximation, as measured by decreases
in Kullback-Liebler distance between h and ĥ. For a given proposed interac-
tion model, the number of buckets per histogram is allocated using a greedy
algorithm, and bucket boundaries within each histogram are also selected in a
greedy fashion. The resulting overall candidate model is then scored. Lim et
al. [215] have developed a feedback-based variant of the foregoing algorithm,
which they call SASH.

Getoor et al. [120] explore an approach somewhat similar to the one
above, but based on a Bayesian network representation. Here the network
is represented as a directed acyclic graph, and a given dimension is indepen-
dent of its non-descendants, given its parents. In this framework, the relative
frequency distribution is represented via a set of conditional univariate proba-
bility distributions, where the distribution of a given dimension is conditioned
on the values of its parents. As in [84], the statistical graphical model is fitted
to the data using a heuristic search through possible correlation structures.
For a given candidate structure, the needed conditional probabilities are sim-
ply estimated via sample frequencies when the number of frequency values
is not too large; otherwise, bucketing techniques analogous to those in [84]
must be used.

Both of the foregoing techniques can be modified to use more sophis-
ticated types of histograms of the type discussed previously, but the con-
struction costs will increase accordingly. In general, the construction costs
for these algorithms are fairly heavy, but can potentially be alleviated using,
e.g., sampling techniques. In any case, the decomposition of the entire joint
distribution into a family of related distributions seems necessary in order to
summarize high-dimensional data using histograms, so this line of research
deserves further exploration.



118 Histograms

Approximating a Hierarchical Datacube

In a somewhat different setting, Poosala and Ganti [255] consider the problem
of identifying an optimal configuration of histograms—MHIST histograms
in particular—that approximate the different subcubes of a hierarchical dat-
acube. A hierarchical datacube in d dimensions comprises a collection of
2d − 1 subcubes, where a subcube corresponding to the dimensions in the
set D ′ ⊆ D = {1,2, . . . ,d } is obtained by aggregating over the dimensions
in D \D ′. Thus a given subcube corresponding to a set D ′ of dimensions
can be approximated directly by a |D ′|-dimensional histogram, or may be
approximated indirectly by first approximating a subcube with dimension set
D ′′ ⊃ D ′, and then aggregating over the dimensions in D ′′ \D ′. The prob-
lem is to identify a collection of subcube histograms that occupy minimal
space, subject to an upper bound on the allowable maximum approximation
error over all subcubes. To approximately answer a given OLAP query once
a solution has been obtained, all approximated subcubes whose dimensions
cover the query dimensions are considered, and the subcube having mini-
mum average relative approximation error—as computed during histogram
creation—is used. (This technique contrasts with the other techniques in this
section, in which multiple partial histograms are combined together, via as-
sumptions of independence or conditional independence, to approximately
answer a query.) The authors show that a solution to the minimum weighted
set cover problem (MWSC) yields a set of histograms that satisfy the error
bound and whose space requirement is within a constant factor of the space
required for the optimal configuration. A standard greedy algorithm for solv-
ing MWSC is employed to compute the near-optimal histogram configura-
tion.

3.6 Approximate Processing of General Queries

The discussion so far has concentrated on the use of histograms for approx-
imate answering of range-sum queries, which are central to OLAP applica-
tions. As we have seen, there has been an enormous amount of research in this
area. A smaller but perhaps even more important line of work has attempted
to extend histogram methodology to the more general setting of SQL queries
that involve multi-table operations such as joins. Work in this area has fo-
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cused on the estimation of COUNT queries over the result of a select-project-
join (SPJ) query over a set of tables (typically in the context of selectivity
estimation for query optimization), as well as approximating the results of
set-valued queries. In this section, we describe the key results in this area,
which still poses a tremendous challenge to histogram technology.

3.6.1 Aggregation Queries Over Joins

In this section, we consider the problem of approximating the answer to a
simple COUNT(*) query over a table that is itself obtained via a join oper-
ation over a set of base tables. (In the query optimization setting, this task
corresponds to estimating the size of a multi-table join.) As pointed out by
Dobra [87], this framework extends straightforwardly to queries of the form

SELECT AGG(h1(A1)*h2(A2)*· · ·*hk(Ak))

FROM R1,R2, . . . ,Rk

WHERE . . .

where each hi is a real-valued function on a set Ai of attributes from Ri, the
WHERE clause contains local and join predicates, and AGG is an aggregation
function such as SUM, COUNT, AVG, or STDDEV. As discussed below, there
have been a number of theoretical results that characterize the difficulty of
this problem, that compare the relative effectiveness of histograms and other
types of synopses, and that provide some guidance in configuring a histogram
to answer such queries.

A Negative Result

The database community first contributed to the theory of histograms via the
work of Ioannidis and Christodoulakis [181]. The study in [181] focuses on
a setting in which all joins are equality joins, but need not be key to foreign-
key joins. Exactly one column in each table serves as the join column for
all joins in which the table participates (“t-clique” joins). Individual single-
bucket histograms are maintained on the join columns, using the continuous-
values estimation scheme within the bucket. The analysis in [181] shows that
the estimation error grows exponentially as the number of joins increases,
indicating that this approach, in general, will work poorly, unless each his-
togram is exceedingly accurate or the estimation problem (data and or query)
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has special properties that can be exploited (see below).

Refinements: Relative Effectiveness of Histograms

Dobra [87], refines the above theoretical results by identifying some special
conditions under which accurate results can be obtained, and compares his-
tograms to samples and sketches in several scenarios. To highlight the main
ideas, we focus on the case of size estimation for a simple two-table equal-
ity join, where, for each table R and S, a single-bucket uniform histogram is
maintained on the join column. Suppose that the join column values have do-
main U = [1,M], and, for i ∈U , denote by ri and si the frequency of the ith
join value in R and S. The histogram-based estimate of the join size is simply
Mr̄s̄, where r̄ is the average of r1,r2, . . . ,rM, and similarly for s̄. Clearly, this
estimate will be accurate if ri ≈ r̄ and si ≈ s̄ for all i ∈ U , but such a uni-
formity condition is usually violated in practice. A more general condition
allows both the ri’s and the si’s to be heterogeneous, but requires that there
be no “systematic relationship” between ri and si as i varies. Conceptually,
one can envision specifying the ri’s and the si’s, but then randomly permuting
the si’s to break any relationship, i.e., to replace each si by sσ(i), where σ is a
random permutation of the elements of U . This model is called the random-
shuffling assumption, and it can be shown that, under this probabilistic model,
the histogram estimate is unbiased for the true join size, and is close to the
true join size with high probability.8

Dobra extends this result to multi-bucket histograms which are “aligned”,
in the sense that the R-histogram and S-histogram use the same set of buck-
ets. He then shows that, under the random shuffling assumption, aligned his-
tograms are much more accurate, on average, than samples and sketches. On
the other hand, when the random-shuffling assumption does not hold, aligned
histogram estimates are poor, on average, unless the histogram sizes are close
to the column sizes. In particular, for estimating the size of a self join, aligned
histograms are shown to perform fundamentally worse, on average, than sam-
ples or sketches. As pointed out in [87], however, non-aligned histograms,
such as high-biased histograms, may do substantially better than aligned his-
tograms, so no general conclusions can be drawn in this case. The foregoing

8The unbiasedness result was originally proved by Ioannidis [178], but for a different purpose.
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results are theoretical in that they cannot be applied a priori to choose between
synopses for a specific query workload and set of tables.

Kaushik et al. [205] provide a number of fundamental theoretical results
pertaining to the relative effectiveness of histogram synopses for estimating
the size of general SPJ queries. These results analyze the space complexity
of histograms and other types of synopses. Under a general estimation model
that includes both deterministic and probabilistic estimation methods, they
establish the following results in a precise, information-theoretic sense:

• Under the usual absolute, ratio, and relative error metrics, and with
no assumptions on the data distribution, efficient estimation is im-
possible for any synopsis, in that it is impossible to simultaneously
guarantee “small” errors (constant or polylogarithmic in the data
size) and a small synopsis size, even for single-column equality
selection queries on a single table; c.f. the informal example in
Section 3.1.1.

• Under a looser “threshold” error criterion, which only tries to es-
timate whether the result size is smaller or larger than a specified
threshold, efficient estimation is possible for single-column selec-
tions as above but not for range selection queries.

• For single-table selections, histograms are the most space-efficient
type of synopsis; the resulting errors, although “large” in the above
sense, are typically acceptable in practice, validating the observed
efficacy of histograms in this setting.

• For specific, skewed, data distributions and a given space bud-
get, the worst case error guarantees can be substantially improved,
again supporting practical experience.

• The space complexity for handling COUNT queries over arbitrary
joins is substantially higher that the space complexity for single-
table queries; this result complements and strengthens the results
in [181].

• The above negative result does not hold for the special case of
key-foreign key joins, and an effective technique for handling such
queries is to use as a synopsis a small sample from the precom-
puted join, in an extension of the “join synopsis” technique of
Acharya et al. [3]. Kaushik et al. [205] show that their proposed
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Fig. 3.14 A non-serial and a serial bucketing scheme

synopsis has near-optimal space complexity.

A histogram-oriented analogue to the above synopsis of Kaushik et al.
is the notion of Statistics on Intermediate Tables (SITs) introduced for use
in the query optimizer for the SQL Server product by Bruno and Chaud-
huri [29]; In DB2 for LUW [52], SITs are called “statistical views.” The idea
is to create histograms, rather than samples, on intermediate query results.
The major challenges of this approach (and to that of Kaushik et al.) are: (a)
determining for which of the many sub-expressions of an SQL workload the
system should collect SITs, and (b) ensuring that the system can effectively
exploit the SITs. Standard view-matching algorithms can potentially be used
to handle challenge (b); challenge (a) has not received attention in the general
setting of approximate query answering.

Guidance on Histogram Configuration

As can be seen, using a histogram to estimate even a simple COUNT query
over joins is a challenging problem. The foregoing discussion raises the ques-
tion of whether there is any theoretical guidance on classes of histograms that
will minimize overall estimation error. The results on this problem are rather
limited.

Ioannidis and colleagues [178, 182, 183] consider a class of general
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equality-join queries (not necessarily t-clique), where, for each table, a multi-
dimensional histogram is maintained on the set of all join attributes. For
a given set of distinct-value frequencies per table, it is shown that, when
these frequencies are assigned to values such that the join-result size is
maximized—which corresponds to the worst-case absolute estimation error
for the histograms—this worst-case error is minimized by using serial his-
tograms. Such histograms generalize the definition in Section 3.4 for the
one-dimensional case, and group values into buckets based on similarity of
frequencies; Figure 3.14, adapted from [183], illustrates a frequency distribu-
tion for two-dimensional data, along with a non-serial and a serial bucketing
scheme (for two buckets).9 For t-clique queries with a large number of joins,
estimation error is minimized using high-biased histograms—in which, as
discussed in Section 3.4.1, the values with the highest frequencies are as-
signed to singleton buckets and the remaining values are assigned to a com-
mon bucket.

Some results on choosing the optimal serial histogram for a given join
attribute are presented in [178, 182]. These results only apply to the worst-
case-error scenario described above, and depend on the both specific query
of interest and the precise contents of all of the tables; thus the optimal his-
tograms are sensitive to changes in the data. It is shown in [183] that, using
a v-optimality criterion, optimal histograms can be determined separately for
each table, and independent of a particular query. Specifically, it suffices to
determine a histogram for a join attribute A on a table R that is optimal with
respect to the join of R to itself. This optimal histogram will be a serial his-
togram in general, which can be extremely expensive to construct and use.
Consequently, based on empirical evidence, the authors recommend the use
of end-biased histograms. Of course, practically speaking, any of the his-
tograms discussed previously can be considered, once optimality guarantees
are no longer being provided.

3.6.2 Set-Valued Queries

Ioannidis and Poosala [184] initiated the study of how to use histogram
techniques to approximate the answers to set-valued queries over discrete

9Note that, in the figure, the frequencies decrease from top to bottom and from left to right. This arrange-
ment, when applied to each table, maximizes the join size as discussed above.
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Fig. 3.15 Uniform-spread assumption in two dimensions

data. They assume that a multi-dimensional bucketing scheme has been
specified for each table in the database (Section 3.5.1), and use the multi-
dimensional version of the uniform-spread assumption (Section 3.3.1) to ap-
proximate the data values. That is, given that a bucket—i.e., a hyper-rectangle
in d-dimensional space—contains mi distinct values in the ith dimension
(1 ≤ i ≤ d), the set of (multivariate) distinct values present in the bucket is
approximated as a set of m1m2 · · ·md distinct values, uniformly spread out
over the bucket. The frequency for each of these distinct value is the average
frequency for the bucket, i.e., the total number of data points in the bucket
divided by the quantity m1m2 · · ·md . See Figure 3.15 for an example in two
dimensions, involving an 8×8 bucket; in the figure, black dots correspond to
distinct data values, with the corresponding frequency displayed next to the
value. Thus the original data in the bucket comprises 45 tuples having five
distinct tuple values (1,3), (2,3), (4,5), (5,5), and (6,1), with respective fre-
quencies 9, 8, 7, 8, and 13; here there are m1 = 5 distinct values (1, 2, 4, 5,
and 6) in dimension 1 and m2 = 3 values (1, 3, and 5) in dimension 2. The
approximated data comprises m1m2 = 5× 3 = 15 distinct tuple values, each
with frequency 45/15 = 3 and spaced evenly throughout the bucket.

The authors perform approximate query processing by, in effect, applying
the query Q of interest to the approximate tables R̂1, R̂2, . . . , R̂k corresponding
to the histogram synopses H1,H2, . . . ,Hk of the original tables R1,R2, . . . ,Rk,
thereby producing an output table Ŝ that approximates the true result table S.
To achieve acceptable performance, the system actually proceeds by storing
each histogram Hi in relational form and transforming Q into an equivalent
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query Q′ that is applied directly over H1,H2, . . . ,Hk to produce a result his-
togram H ′, which is then expanded to the (approximate) result relation Ŝ. The
query Q′ is generated so as to ensure that H ′ is indeed a synopsis of Ŝ.

To illustrate the process, consider a table R having a single attribute A

and let H be a histogram synopsis of R. Assume that H is stored as a rela-
tion H with schema H(lo, hi, dv, avg, sp). Each row of H represents
a histogram bucket, having bucket boundaries lo and hi, and containing dv

distinct values. The columns avg and sp represent the average frequency and
spread of the values in the bucket, and are used to approximate the data dis-
tribution in the bucket (using the uniform-spread assumption as previously
described). All 1D-histograms in the system share this schema. Consider the
selection query Q: SELECT A FROM R WHERE A = c. We rewrite this query
to a new query Q′ over H:

SELECT c, c, 1, avg, 0

FROM H

WHERE (c >= lo) AND (c <= hi) AND (MOD(c-lo,sp) == 0)

If the selection is nonempty, then this query creates an output histogram H’

having exactly one singleton bucket containing the value c, i.e., a bucket for
which the lower and upper boundaries both equal c, the number of distinct
values is exactly 1, and the average spread is trivially 0. To create this out-
put bucket, the query finds the bucket in H that potentially contains the value
c (via the first two clauses of the WHERE expression). Next, the query checks
whether c is a multiple of the spread (via the final clause of the WHERE expres-
sion); under the uniform-spread assumption, such multiples, and only such
multiples, have positive frequency, namely avg, and this avg value is re-
turned as the frequency of c in the singleton output bucket. A (slightly tricky)
SQL query can then be applied to transform H ′ into an approximate result
relation Ŝ consisting of avg rows, each equal to c. Observe that, with this
approach, we never have to expand H into an approximate relation—which
can be as large as the original relation R—thereby reducing processing costs.
These techniques extend to multi-dimensional histograms and other relational
operators besides selection.

In related work, Poosala et al. [256] observe that the foregoing technique
can also be applied to aggregation queries over relational expressions. The
idea is to first proceed as above in computing an output histogram H ′ which is
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a synopsis of an approximation to the relational expression. Then, instead of
expanding H ′ into an approximate output relation as above, we simply apply
the original aggregation operator to H ′—after rewriting it appropriately—
to produce an approximate answer to the original aggregation query. E.g.,
consider a histogram H ′ as above for a table Ŝ that approximates a single-
column table S of sales data, where S is computed via join queries over
multiple base tables and Ŝ is created by executing analogous queries over
histogram synopses of the base tables. If the original aggregation query is
SELECT SUM(SALES) FROM S, then the answer to this query can be approx-
imated as the answer to the query

SELECT SUM(avg*(dv*lo+0.5*dv*(dv-1)*sp))

FROM H’

This query, in effect, computes the answer to the query SELECT SUM(SALES)

FROM Ŝ. Observe that, for a given bucket of the histogram H ′, the transac-
tion amounts that occur with positive frequency are lo, lo+sp, lo+2*sp,
. . ., lo+(dv-1)sp under the uniform-spread assumption; these numbers sum
to dv*lo+0.5*dv*(dv-1)*sp. Because each of these values occurs with
frequency avg, the total contribution to the sum of sales from the bucket is
avg*(dv*lo+0.5*dv*(dv-1)*sp). The above query simply sums up the
contributions from the different buckets.

3.7 Additional Topics

We conclude this chapter with a discussion of histograms over streaming data,
as well as techniques targeted specifically toward real-valued data.

3.7.1 Histograms Over Streaming Data

As mentioned at the end of Section 3.4.2, histograms over streaming data
are needed to handle the relational data access scenario. Such histograms are
becoming ever more important in their own right, due to the increasing im-
portance of streaming data, such as the data from sensor and IP networks. In
this section we describe algorithms for maintaining histograms over stream-
ing data. We first discuss methods for one-dimensional data, and then briefly
describe extensions to multidimensional data.

We consider turnstile and sliding-window streaming-data models. The
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turnstile model was described at the end of Section 3.4.2: each new trans-
action is of the form “increment the current value of g(i) by v.” When v is
constrained to be a positive integer, one obtains the cash-register model as
a special case. Sliding-window models are described later in the section. We
note that the term “streaming data” is sometimes used to describe the scenario
where a histogram construction algorithm takes a single pass over a finite set
of N items and uses o(N) memory—and often O(1) memory in practice—to
construct the histogram. We would maintain that this level of performance is
requisite for an algorithm to be practically useful, and do not reserve the term
“streaming data” for this scenario.

Early work by Donjerkovic et al. [90] proposed a histogram maintenance
algorithm that supports the cash-register model. Their approach, however,
does not control the approximation error over time.

Gilbert et al. [128] provide a histogram maintenance algorithm that sup-
ports the full turnstile model. The algorithm maintains a sketch based on
distance-preserving random projections—see Chapter 5—and in turn uses
the sketch to maintain an accurate wavelet representation of the data—see
Chapter 4. On demand, the algorithm recovers, with high probability, a near-
optimal histogram; i.e., the error is optimal within a factor of (1 + ε), with
respect to an L1 or L2 error metric. The algorithm, which is rather compli-
cated, has space complexity that is polynomial in τ = Bε−1 logM, and re-
quires O(τ) time to process each transaction. Muthukrishnan et al. [240] ex-
tend these results to a workload-dependent L2 metric, i.e., a metric of the
form ∑

M
i=1 wi

(
g(i)− ĝ(i)

)2, where w = (w1,w2, . . . ,wM) represents a weight
or probability distribution over possible point queries. Results are given for
both the datacube and turnstile models, and for cases where the workload
vector w is provided either in compressed form (e.g., using the Ziv-Lempel
encoding) or in uncompressed form.

Qiao et al. [259] provide a heuristic adaptive scheme for histogram main-
tenance (no error guarantees) that splits and merges buckets to try and ensure
narrower buckets in regions that are near the boundaries of range queries or
values that are queried more frequently. An exponential smoothing approach
is used to summarize a changing workload.

The problem of dynamically maintaining an (approximate) equi-depth
histogram under the turnstile model is equivalent to the problem of dynam-
ically maintaining (approximate) quantiles under this model. Sketches have
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been successfully employed for this problem; see Section 5.3.4.3.
A related approach, also applicable to the turnstile model, maintains a

random sample of data values, called a backing sample, and constructs an
approximate histogram from the sample. Gibbons et al. [127] propose such a
scheme for maintaining an approximate equi-depth or compressed histogram;
we focus here on the simpler equi-depth case. The algorithm takes an initial
sample and then computes a corresponding initial equi-depth histogram. As
records are inserted and deleted into the database, the algorithm maintains the
backing sample and increments or decrements the bucket counts, as appropri-
ate. Recall that, ideally, the bucket counts for an equi-depth histogram with
B buckets should all be equal to |R|/B, where |R| is the number of records in
the database; if the count for a bucket becomes very large or very small rela-
tive to the other bucket counts, then the algorithm recomputes the histogram
from scratch, using the current backing sample. The algorithm actually tries
to reduce the number of such recomputations by splitting and merging adja-
cent buckets to even out the counts. The method for maintaining a backing
sample handles database insertions by using a standard reservoir sampling
algorithm, and handles deletions by removing the tuple from the reservoir,
if present. Whenever a tuple is removed from the reservoir, the method de-
creases the reservoir size by 1; when the reservoir size reaches a specified
lower threshold, the method recomputes the sample from scratch. Gemulla et
al. [117, 118] give improved algorithms for maintaining a backing sample,
which can be used in conjunction with the foregoing histogram maintenance
algorithm.

Buragohain et al. [38] show that their Min-Increment algorithm—see the
discussion of maximum-error metrics in Section 3.4.2—can be extended to a
sliding-window model. In this model, the goal is to maintain, after a total of
n g-values have been observed, a histogram of the most recent w of these n
values, i.e., of the values {g(n−w+1),g(n−w+2), . . . ,g(n)}. We assume
here that each g(i) value belongs to some finite subset of the integers that con-
tains R elements. Such an algorithm must take only one pass over the data,
have low per-item processing cost, and have a o(w) space complexity. The ex-
tended version of Min-Increment is the first such algorithm having optimality
guarantees. Specifically, the L∞ error is within a (1+ ε) factor of the optimal
error for a B-bucket histogram, while using at most B+1 buckets; the memory
requirement is O(ε−1B logR), which is indeed o(w), and a processing time of
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O(ε−1B logR) per arriving data item. The algorithm is similar to the original
Min-Increment algorithm in that it maintains a set of histograms as in the
Greedy-Insert algorithm, one for each error bound ei as defined previously.
The difference is that a histogram bucket is eliminated if and only if either (1)
all of the data points in the bucket fall outside the window or (2) the number
of buckets exceeds B+1, in which case the oldest bucket is deleted. Observe
that the number of buckets may exceed B; it might be hoped that, by increas-
ing the number of buckets by some factor β , the L∞ error bound could be
reduced to match that of the optimal B-bucket histogram, thereby eliminating
the (1+ε) approximation factor. The authors prove, however, that this is im-
possible. Using a dynamic-programming approach, Guha et al. [139] provide
a sliding-window algorithm called AHIST-L-∆ that maintains a data structure
of size O(w+B2ε−1) with O(1) processing cost per arriving data item; an ε-
approximate histogram can be produced on demand for a time complexity of
O(B3 log2 w + τB2ε−1), where τ = min(Bε−1 logw,w). Although the space
requirements are heavy relative to the method of Buragohain et al., there is
no restriction to L∞ error.

Buccafurri and Lax [36] provide a variant of the n-level tree—see Sec-
tion 3.4.3—suitable for approximately answering range-sum queries over a
sliding window. The key difference from the original nLT is that a running
range sum for the r most recent g-values is maintained in a buffer, where
r = w/2n−1 with w = the window size and n = the number of levels in the
tree. When the buffer fills up, the sum is added to the tree by overwriting the
oldest leaf node and propagating the update to all of the nodes on the path
connecting the leaf to the root. In this way, the per-item update cost, as well
as the time to approximately answer a range-sum query, is O(logw).

The above sliding-window model might more precisely be called a “dat-
acube” sliding-window model, since it is closely related to the datacube
model of data access (Section 3.2.2). Note that the g(i) values are parti-
tioned according to time, i.e., according to the i values. A sliding-window
setting that corresponds to the relational model of data access assumes a se-
quence of values d1 = ( j1,v1),d2 = ( j2,v2), . . . as in Section 3.2.2—so that
each jn is an element of [1,M]—together with a specified partition of [1,M]
into B buckets. Thus data items are assigned to buckets based on the jn val-
ues, which do not correspond, in general, to the arrival order of the items.
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Suppose that each g(i) is obtained applying the SUM aggregate to the set
Ai = {vn : jn = i}. This special case can be viewed as a modified turnstile
model in which, at the arrival of data item di, the value g( ji) is incremented
by vi, and the value of g( jm) is decremented by vm; here the index m = i−w
corresponds to the data item that is dropping out of the window.10 Now further
assume that each vi is an integer lying in the range [1,R] for some R≥ 1. Then
the sliding-window problem is to maintain a histogram having the specified
set of buckets, where the g-values are computed from the last w data items
{dn−w+1,dn−w+2, . . . ,dn }. As usual, the most important special case occurs
when each vi equal 1, so that g(i) is the number of the last w data items having
value i. Datar et al. [78] provide a data structure called an “exponential his-
togram” that can be used to maintain, for each bucket, the sum of the g-values
to within a factor of 1+ε , thereby approximating the true histogram over the
sliding window (where we use the continuous-value assumption within each
bucket). The total space requirement is O

(
Bε−1 logw(logR+ logw)

)
, and the

worst-case per-item processing time is O(logw+ logR).
We now consider multi-dimensional data. Several of the foregoing meth-

ods for maintaining 1D-histograms under the general turnstile model can be
extended to the multi-dimensional case. In particular, the backing-sample ap-
proach of Gibbons et al. can be adapted for use with the multi-dimensional
equi-depth histogram of Muralikrishna and Dewitt.

Moreover, Thaper et al. [278] have extended the sketch-based technique
of Gilbert et al. [128] to a multi-dimensional setting; see also Section 5.3.5.1.
Recall that this algorithm maintains a sketch of the data stream based on
random projections, and then produces a near-optimal histogram on de-
mand. For the multidimensional algorithm, the time to produce a histogram
having error at most (1 + ε) times the minimum possible error is roughly
O
(
M log(MB/ε2)

)
. Muthukrishnan and Strauss [239] improve on this result

using advanced techniques based on tensor products of Haar wavelets.

3.7.2 Techniques for Real-Valued Data

The discussion so far has focused on discrete data. Some experimental evi-
dence in Blohsfeld et al. [23] and Korn et al. [210] indicates that, for COUNT

10Note that turnstile algorithms cannot be applied to this problem, since the value vm is not available when
di arrives.
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queries on real-valued data, superior performance might be obtained by us-
ing (and extending) classical statistical methods, which were originally devel-
oped under the assumption that the data are i.i.d. samples from a continuous
probability density function (see Section 3.1.3). These methods are also po-
tentially desirable for the case of discrete data in which the domain size M
is large and the multiplicity of each distinct value in the dataset is close to 1.
We loosely describe such data also as “real-valued.”

The basic tool used is kernel density (KD) estimation [86, 163, 270,
273, 285], which has been extensively studied in the statistical literature. We
briefly describe this approach below, and the discuss its application in the
database setting, first to one-dimensional data and then to multi-dimensional
data.

One motivation behind KD methods that the bucket values—and hence
the estimates—of a classical equi-width histogram can be very sensitive to
the placement of the bucket boundaries. This suggests that multiple his-
tograms be obtained from a “base” equi-width histogram by systematically
shifting the histogram (i.e., uniformly shifting the bucket boundaries) by var-
ious amounts. Approximate COUNT values are then obtained by averaging
the results from these histograms. Letting the number of shifted histograms
increase to infinity, we obtain a special case of a KD estimator having a “rect-
angular kernel”.

The general form of a one-dimensional KD estimator based on data values
x1,x2, . . . ,xn is

fh(u) =
1

nh

n

∑
i=1

K
(u− xi

h

)
,

where the function K is called the kernel and the positive, real-valued smooth-
ing parameter h is called the bandwidth. In general, h can be a function of the
data. One theoretical motivation for KD estimators is the fact that, when the
observed data are indeed i.i.d. samples from a density function f , then, under
very mild conditions, E

[∫
| f − fh|

]
→ 0 as h→ 0 and nh→ ∞. That is, the

function fh is a consistent estimator of f in an L1 sense.
Intuitively, each data point xi influences the value of fh at a given point

x. The kernel K determines the shape of the “influence function” and the
bandwidth determines how quickly the influence of xi dies off with increasing
distance; the smaller the value of h, the more rapidly the influence dies off.



132 Histograms

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

x

K
(x

)

fh(x)

x1 x2

Kh(x − x1) Kh(x − x2)

Fig. 3.16 Univariate KD estimation (two training points, bandwidth h = 0.1)

Some common one-dimensional kernels include the Gaussian kernel

KG(x) =
1√
2π

e−x2/2

and the Epanechnikov kernel

KE(x) =
3
4

max(1− x2,0)

both defined for all real x. See Figure 3.16 for an illustration of these ideas,
using the Gaussian kernel. In the figure and in the sequel, we use the nota-
tion Kh(x) = h−1KG(x/h). Experience in a variety of applications has shown
that the overall estimation quality is more sensitive to the choice of band-
width than to the form of the kernel [270]. Indeed, the problem of selecting
an optimal or near-optimal bandwidth for a given kernel and set of training
data is very challenging, and the subject of much research. There are a vari-
ety of rules-of-thumb, as well as more elaborate schemes, such as the cross-
validation techniques in [86] or the Markov chain Monte Carlo techniques in
[297].
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In the database setting, KD estimators have been used to approximately
answer range-count queries. Such a query estimates the fraction of data points
that fall in a specified range [a,b]. The estimated answer is

∫ b
a fh(u)du =

(1/n)∑
n
i=1
∫ b

a Kh(u− xi)du. This expression can be simplified further, based
on the explicit form of Kh. Note that the space and time complexity of using
the KD estimator to answer queries is O(n), which is unacceptable. There-
fore, the KD estimator is based on a sample of training points.

Blohsfeld et al. [23] investigate a simple one-dimensional KD estimator
that uses the Epanechnikov kernel together with a well known rule-of-thumb
for the bandwidth: h = 2.345sn−1/5, where s is the minimum of (1) the sam-
ple standard deviation of the training points and (2) the interquartile range11

divided by 1.348. They also modify the basic estimator to provide better es-
timates near the boundary of the data domain. The authors also consider a
hybrid approach in which the data is partitioned into buckets, and then a KD
estimator is computed for each bucket.

Korn et al. [210] develop a KernelSpline estimator. The estimator is based
on a standard KD estimator that uses a Gaussian kernel, together with a band-
width formula given by h = 0.25(log2 n+1). KernelSpline uses the KD esti-
mator to estimate the value of fh at a fixed set of p grid points during a single
pass over the data, incurring a time complexity of O(n) and a space complex-
ity of O(p). The algorithm then uses a cubic-spline interpolation scheme to
estimate fh(x) for arbitrary values of x, thus approximating the range-query
result

∫ b
a fh(u)du by a simple polynomial expression.

The experiments in [23, 210] both show that the KD based methods pro-
vide better accuracy than maxdiff histograms for real-valued data, reducing
the error of some estimates by almost a factor of 6. Thus there is an argument
for using specialized techniques when dealing with real-valued data.

The foregoing KD techniques for one-dimensional data can be extended
to multidimensional data; this fact was explicitly recognized in the database
setting in [143]. The general form of a D-dimensional estimator is

fh(u) =
1

nh1h2 · · ·hD

n

∑
i=1

K
(u1− xi1

h1
,
u2− xi2

h2
, . . . ,

ud− xiD

hD

)
,

where now h = (h1,h2, . . . ,hD) and xi = (xi1,xi2, . . . ,xiD). For example, K

11The IQR is defined as the 75th percentile minus the 25th percentile.
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might be a multivariate Gaussian density or a product of one-dimensional
kernels. To simplify computations, the above model is often specialized to an
axis-aligned, product-form estimator:

fh(u) =
1

nh1h2 · · ·hD

n

∑
i=1

K1

(u1− xi1

h1

)
K2

(u2− xi2

h2

)
· · · ,Kd

(ud− xiD

hD

)
,

where each Ki is a one-dimensional KD estimator. This form is used in [143],
with each Ki equal to the Epanechnikov kernel. Only one pass through the
data (or a sample of the data) is needed to construct a KD estimator, and so
there is a significant cost advantage. The downside, indicated by experiments
in [143], is an increase in relative error relative to techniques such as GEN-
HIST (up to 250% in some experiments).
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Wavelets

4.1 Introduction

Wavelets are a useful mathematical tool for hierarchically decomposing data-
sets in ways that are both efficient and theoretically sound. Broadly speaking,
the wavelet transform of a dataset consists of a coarse overall approximation
together with detail coefficients that influence the dataset at various scales.
The wavelet transform has a long history of successful applications in signal
and image processing [187, 222, 276]. More recently, several studies have
demonstrated the effectiveness of the wavelet transform as a basic tool for
approximate query processing over massive relational tables and continuous
data streams. Briefly, the idea is to apply the wavelet transform to the in-
put relation to obtain a compact data synopsis that comprises a select small
collection of wavelet coefficients. The excellent energy compaction and de-
correlation properties of the wavelet transform allow for concise and effective
approximate representations that exploit the structure of the data. Further-
more, wavelet transforms are generally simple linear transformations, thus
allowing for efficient synopsis-construction algorithms.

Compared to sampling and histograms, wavelets are a relative newcomer
to the field of approximate query processing, and they have not yet been

135
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adopted for use in commercial database systems. Still, the area of wavelet-
based approximation has seen intense interest from database and algorithms
researchers in the last few years, and several novel tools and techniques with
potential for practical use have been developed. In the remainder of this chap-
ter, we first introduce the key concepts of the wavelet transform and wavelet-
based data synopses, focusing on the one-dimensional Haar wavelet decom-
position. Our initial discussion concentrates on the construction and proper-
ties of wavelet synopses optimized for L2 (i.e., sum-squared) error metrics.
We then proceed to cover more recent results on the challenging problem of
optimizing wavelet synopses for non-L2 error measures. As in the case of his-
tograms, perhaps due to the inherent limitations of the infamous “curse of di-
mensionality”, the vast majority of algorithmic and theoretical work on wave-
let synopses has concentrated on the one-dimensional case. Later in the chap-
ter, we discuss multi-dimensional wavelets and techniques for efficient ap-
proximate query processing over wavelet synopses. Finally, we conclude the
chapter by discussing wavelets over streaming data, techniques that optimize
synopsis storage (e.g., for multi-measure data or better compression), and
“hybrid” synopses that combine ideas from both wavelets and histograms.

Following the bulk of the database literature on wavelets, our discussion
in this chapter focuses primarily on the Haar Wavelet Transform (HWT). Con-
ceptually, Haar is probably the simplest wavelet basis (based on recursive
pairwise averaging and differencing), and the resulting wavelets are easy to
compute and have been found to perform well in practice for a wide vari-
ety of applications ranging from image editing and querying to OLAP and
streaming-data approximations. Furthermore, many of the ideas and tech-
niques developed for Haar wavelets naturally carry over to more sophisticated
wavelet bases.

4.2 One-Dimensional Wavelets and Wavelet Synopses:
Overview

We start by defining one-dimensional Haar wavelets and exploring some of
their key properties as a data-reduction tool. We then describe a simple, one-
pass algorithm for building wavelet synopses optimized for L2-error, as well
as the use of such synopses for range-query estimation. Finally, we draw some
parallels between wavelets and histograms as data-reduction mechanisms.
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4.2.1 Haar Wavelets: Definitions and Key Properties

Suppose we are given the one-dimensional data vector A containing the
M = 8 data values A = [2,2,0,2,3,5,4,4]. The HWT of A can be com-
puted as follows. We first average the values together pairwise to get a new
“lower-resolution” representation of the data with the following average val-
ues [2,1,4,4]. In other words, the average of the first two values (that is, 2
and 2) is 2, that of the next two values (that is, 0 and 2) is 1, and so on. Ob-
viously, some information has been lost in this averaging process. To be able
to restore the original values of the data (treated as a data array or vector), we
need to store some detail coefficients, that capture the missing information.
In Haar wavelets, these detail coefficients are simply the differences of the
(second of the) averaged values from the computed pairwise average. Thus,
in our simple example, for the first pair of averaged values, the detail coef-
ficient is 0 since 2− 2 = 0, for the second we again need to store −1 since
1− 2 = −1. Note that no information has been lost in this process — it is
fairly simple to reconstruct the eight values of the original data array from
the lower-resolution array containing the four averages and the four detail
coefficients. Recursively applying the above pairwise averaging and differ-
encing process on the lower-resolution array containing the averages, we get
the following full decomposition:

Resolution Averages Detail Coefficients
3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, -1, -1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [-5/4]

The wavelet transform (also known as the wavelet decomposition) of A
is the single coefficient representing the overall average of the data values
followed by the detail coefficients in the order of increasing resolution. Thus,
the one-dimensional HWT of A is given by WA = [11/4,−5/4, 1/2, 0, 0,−1,

−1, 0]. Each entry in WA is called a wavelet coefficient. The main advantage
of using WA instead of the original data vector A is that for vectors containing
similar values most of the detail coefficients tend to have very small values.
Thus, eliminating such small coefficients from the wavelet transform (i.e.,
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treating them as zeros) introduces only small errors when reconstructing the
original data, resulting in a very effective form of lossy data compression.

Note that, intuitively, wavelet coefficients carry different weights with re-
spect to their importance in rebuilding the original data values. For example,
the overall average is obviously more important than any detail coefficient
since it affects the reconstruction of all entries in the data. In order to equal-
ize the importance of all wavelet coefficients, we need to normalize the final
entries of WA appropriately. A common normalization scheme is to scale each
wavelet coefficient by

√
M/2l = 2(logM−l)/2, where M is the number of in-

put data values and l denotes the level of resolution at which the coefficient
appears (with l = 0 corresponding to the “coarsest” resolution level). Thus,
the normalized ith HWT coefficient, c∗i , is simply c∗i = ci

√
M

2level(ci)
. (As we

discuss later, this normalization scheme ensures the orthonormality of the
underlying Haar wavelet basis.)

The Haar-Tree Representation. A helpful tool for exploring and under-
standing the multi-resolution nature and key properties of the HWT is the
Haar-tree structure [225]. The Haar tree is a hierarchical structure built based
on the wavelet transform process (even though it is primarily used as a con-
ceptual tool, a Haar tree can be easily constructed in linear O(M) time). Fig-
ure 4.1 depicts the Haar tree for our simple example data vector A. Each in-
ternal node ci (i = 0, . . . ,7) is associated with a wavelet coefficient value, and
each leaf A[i] (i = 0, . . . ,7) is associated with a value in the original data array;
in both cases, the index i denotes the positions in the (data or wavelet trans-
form) array. For example, c0 corresponds to the overall average of A. Note
that the values associated with the Haar tree nodes c j are the unnormalized
coefficient values; the resolution levels l for the coefficients (corresponding to
levels in the tree) are also depicted. (We use the terms “node”, “coefficient”,
and “node/coefficient value” interchangeably in what follows.)

Given a Haar tree T and an internal node t of T , t 6= c0, leftleaves(t)
(rightleaves(t)) denotes the set of leaf (i.e., data) nodes in the sub-
tree rooted at t’s left (resp., right) child; furthermore, we let leaves(t) =
rightleaves(t)∪leftleaves(t), i.e., the set of all leaf nodes in t’s subtree.
Also, given any (internal or leaf) node u, path(u) is the set of all (internal)
nodes in T that are proper ancestors of u (i.e., the nodes on the path from u to
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Fig. 4.1 Haar-tree structure for our example data array A (M = 8).

the root of T , including the root but not u) with non-zero coefficients. A key
property of the HWT is that the reconstruction of any data value A[i] depends
only on the values of coefficients on path(A[i]); more specifically, we have

A[i] = ∑
c j∈path(A[i])

signi, j · c j, (4.1)

where signi, j = +1 if A[i]∈ leftleaves(c j) or j = 0, and signi, j =−1 other-
wise. Thus, reconstructing any data value involves summing at most logM+1
coefficients. For example, in Figure 4.1, A[4] = c0− c1 + c6 = 11

4 − (−5
4)+

(−1) = 3.
The support of a coefficient ci (denoted support(ci)) is defined as the

region of (contiguous) data values that ci is used to reconstruct (i.e., the range
of data/leaf nodes in the subtree rooted at ci); the support of a coefficient ci

is uniquely identified by its coordinate i. Note that the supports of all coef-
ficients at resolution level l of the HWT are exactly the 2l (disjoint) dyadic
ranges of size M/2l = 2logM−l over the domain U = [0,M−1], defined as

Rl,k = [k ·2logM−l, . . . ,(k +1) ·2logM−l−1] for k = 0, . . . ,2l−1,

for each resolution level l = 0, . . . , logM. 1 Furthermore, the supports of the
Haar wavelet coefficients are naturally nested across levels: Given any pair

1To simplify the exposition in this chapter, we assume that the domain U is indexed starting from 0 and
that the domain size M is a power of 2 (e.g., by padding the array with zero entries).
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of (distinct) coefficients ci and c j, their support sets are either completely
disjoint (i.e., support(ci) ∩ support(c j) = /0) or one is completely con-
tained within the other (i.e., support(ci)⊂ support(c j) or support(c j)⊂
support(ci)).

The Haar Wavelet Basis for RM. The mathematical foundation of the
HWT relies on vector inner-product computations over the vector space RM

using the Haar wavelet basis. In general, a wavelet basis {φi}M−1
i=0 for RM is a

basis where each vector is constructed by dilating a single function, referred
to as the mother wavelet φ . The Haar mother wavelet is defined as:

φH(t) =


1 if 0≤ t < 1/2
−1 if 1/2≤ t < 1
0 otherwise.

The Haar wavelet basis for RM is composed of the vectors

φl,k[i] =

√
2l

M
·φH

(
i− k ·2logM−l

2logM−l

)
=

√
2l

M
·φH

(
i ·2l− kM

M

)
, (4.2)

where i ∈ [0,M−1], l = 0, . . . , logM−1 and k = 0, . . . ,2l−1, plus their or-
thonormal complement vector ψM = 1√

M
1M. (Here 1M denotes the M-vector

whose entries are all equal to 1.) Note that the φl,k vectors are essentially di-
lated and translated versions of the mother wavelet function φH over the cor-
responding Rl,k dyadic support intervals. To simplify notation, we denote the
Haar wavelet basis of RM as the collection of vectors {φi : i = 0, . . . ,M−1},
where φ0 = ψM and φi = φl,k with l = blog ic and k = i− 2blog ic for i =
0, . . . ,M− 1. It is then not difficult to see that each of the (normalized) co-
efficients c∗i i = 0, . . . ,M−1 in the HWT of A can be expressed as the inner
product of A with the corresponding Haar basis vector φi; more formally,

c∗i = 〈A,φi〉 =
M−1

∑
j=0

A[ j] ·φi[ j].

It can be shown that the above Haar vector basis {φ}i=0,...,M−1 is an orthonor-
mal basis of RM; that is, for any pair of vectors φk,φl in the basis, 〈φk,φl〉= 1
if k = l and 0 otherwise. The original data array A∈RM can then be expressed
in the Haar wavelet basis as a linear combination of the Haar basis vectors us-
ing the corresponding HWT coefficients: A = ∑

M−1
i=0 c∗i φi. Haar wavelets are
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also an example of a wavelet system with compact support; that is, for any
basis vector φk there exists a closed interval I = [a,b] such that φk[x] = 0 for
any x 6∈ I. Interestingly, Haar wavelets (discovered in 1910) were the only
known wavelets of compact support until the discovery of the Daubechies
wavelet families in 1988 [79].

4.2.2 Wavelet-based Data Reduction: Minimizing L2 Error

Given a limited amount of storage for approximating a large data array A,
our goal is to build a sparse representation of A in the Haar wavelet basis.
Such a sparse representation (also known as wavelet synopsis) of A is con-
strained to use a number of basis elements that is much smaller than the size
M of the target data array; of course, the data-reduction benefits of sparsity
are counteracted by a loss in the fidelity of the representation and its abil-
ity to accurately capture the data. More specifically, a wavelet synopsis of a
data array A retains a certain number B�M of the coefficients in the wave-
let transform of A as a highly-compressed approximate representation of the
original data (the remaining coefficients are implicitly set to 0).

A key step here is a coefficient thresholding process in order to determine
the “best” subset of B coefficients to retain, so that some overall error measure
in the approximation is minimized. The thresholding method of choice for
most early work on wavelet-based data reduction and approximation [41, 42,
225, 226, 284] is conventional coefficient thresholding that greedily retains
the B largest HWT coefficients in absolute normalized value. Let Â denote
the approximate data array reconstructed by using a subset B of only B�M
Haar coefficients in a wavelet synopsis of the original data array A. By the
orthonormality of the Haar wavelet basis, the HWT preserves the Euclidean
length or L2-norm of any vector (Parseval’s Theorem) [222, 276]; then, for
the error vector A− Â, we have

||A− Â||2 =

√
M−1

∑
i=0

(A[i]− Â[i])2 =
√

∑
c∗i 6∈B

(c∗i )2. (4.3)

Thus, the conventional thresholding method of retaining the B largest coeffi-
cients in absolute normalized value is in fact provably optimal with respect
to minimizing the overall L2-norm (or, sum-squared) error in the data ap-
proximation for the given amount of space B. Despite its simplicity, L2-error
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thresholding may not always be the best choice for approximate query pro-
cessing systems — we discuss wavelet thresholding schemes for other error
metrics later in this chapter.

Similar to histogram-based summaries, the construction of wavelet syn-
opses can take place during an offline statistics-collection process, whose
goal is to create concise statistical approximations for the value distributions
of either individual attributes or combinations of attributes in the relations of
a DBMS [3, 108, 179]. (Statistics collection is usually an off-line process,
carried out during night-time or other system-idling periods.) Once created,
such statistical summaries are typically stored as part of the DBMS-catalog
information. More specifically, a wavelet synopsis comprising B wavelet co-
efficients can be stored as a collection of B pairs {(i j,ci j) : j = 1, . . . , B},
where i j and ci j denote the index and value (respectively) of the jth retained
synopsis coefficient. Wavelet-synopsis information in the DBMS catalog can
then be exploited for several different purposes, including result-size estima-
tion for cost-based query optimization and approximate query processing.

4.2.3 Efficient Wavelet Decomposition

As in the case of histograms, we consider two primary data-access models:
In the datacube model, the data is accessed as described previously, that
is, in the form of an M-component data array A. Here, i denotes the cell
index in a (one-dimensional) datacube and A[i] is the corresponding “mea-
sure value”. In contrast, the relational model assumes that the data is avail-
able simply as an (unordered) unaggregated list of N (index, value) pairs
(i1,v1),(i2,v2), . . . ,(iN ,vN), where each ik is an index value in U = [0,M−1]
and vk is an associated value. The ith entry A[i] of the data array then corre-
sponds to the aggregate of the vk values appearing with index i in a relational
representation. For instance, in the important special case of a frequency dis-
tribution array A, we have vk = 1 for all k, and A[i] is the total frequency f (i)
of value i in the relational list. Recall that conversion of relational data to the
datacube format requires at least one pass over the data, and can be impracti-
cal, especially in the case of sparse, multi-dimensional data (considered later
in this chapter). Unless otherwise specified, we assume the datacube model
in the ensuing discussion.

One of the key benefits of wavelets is that they generally represent a lin-
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ear transformation of a data array, and, thus, they are simple and efficient to
compute (typically, requiring a single pass over the array). In the case of a
one-dimensional data array A, there is an easy one-pass algorithm based on
the Haar-tree structure (Figure 4.1) for computing a synopsis comprising the
B largest (normalized) Haar coefficients [131]. (Our discussion in this sec-
tion focuses on L2 coefficient thresholding.) The algorithm steps through the
array entries A[i] (for i = 0, . . . ,M−1) maintaining the following two sets of
(partial) coefficients:

(1) The B highest HWT coefficient values for the portion of A seen
thus far; and,

(2) The current logM + 1 straddling partial HWT coefficients, one
for each level of the Haar tree. At level l, the kth detail coefficient
straddles a given data element A[i] if and only if i belongs to the
coefficient’s dyadic support region, that is, if and only if i ∈ [k ·
2logM−l, (k +1) ·2logM−l−1]. (Note that there is at most one such
coefficient per level.)

When processing A[i], the value for each of the affected straddling coeffi-
cients is updated. Following these updates, some coefficients may no longer
be straddling (i.e., their computation is now complete). In that case, the value
of these newly-completed coefficients is compared against the current set of
B highest coefficients, and only the B largest coefficient values in the com-
bined set are retained. Also, for levels where a straddling coefficient has been
completed, a new straddling coefficient is initiated (with an initial value of 0).
Thus, using a max-heap for maintaining the top B HWT coefficients, we can
compute a B-term wavelet synopsis in a single pass over a one-dimensional
data array using O(B + logM) space and O(logM) processing time per data
item [131].

4.2.4 Range-Aggregate Query Estimation

Typically, concise data synopses are used as a tool for enabling effective
(compile-time) estimates of the result sizes of relational operators for the
purpose of cost-based query optimization. (Accurate estimates of such re-
sult sizes play a critical role in choosing an effective physical execution plan
for an input SQL query.) Probably the most fundamental such estimation task
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is estimating the selectivity of (i.e., the number of data tuples satisfying) a
range-predicate selection like l ≤ X ≤ h. Assuming our input data array A
holds the (one-dimensional) frequency distribution for the target relational
attribute X , this estimation task is equivalent to estimating the result of the
range-COUNT query A(l : h) = ∑

h
i=l A[i]. Based on the rule for data-value re-

construction using Haar wavelets, it is not difficult to see that an internal
node c j contributes to the range-COUNT A(l : h) only if c j ∈ path(A[l])∪
path(A[h]). More specifically, A(l : h) = ∑c j∈path(A[l])∪path(A[h]) x j, where

x j =
{

(h− l +1) · c j, if j = 0
(|leftleaves(c j, l : h)|− |rightleaves(c j, l : h)|) · c j, otherwise.

where leftleaves(c j, l : h) = leftleaves(c j)∩ {A[l],A[l + 1], . . . ,A[h]}
(i.e., the intersection of leftleaves(c j) with the summation range) and
rightleaves(c j, l : h) is defined similarly [284]. (Note that coefficients
whose subtree is completely contained within the summation range have a net
contribution of zero, and can be safely ignored.) For instance, in the example
array of Figure 4.1, A(2 : 6) = 5c0 + (2− 3)c1− 2c2 = 5× 11

4 − (−5
4)− 1

= 14. In other words, given a B-coefficient synopsis of the d array, com-
puting A(l : h) (for any boundaries l, h) only involves retained coefficients
in path(A[l])∪ path(A[h]) and, thus, can be estimated by summing only
min{B, 2logM +1} synopsis coefficients [284].

4.2.5 The Connection between Histograms and Wavelets

At this point, it is interesting to consider the key similarities and differences
between wavelets and histograms as data-reduction tools. Clearly, both wa-
velets and histograms rely on partitioning the underlying data domain into
continuous ranges (i.e., sub-intervals of [0,M− 1]) and using a piecewise-
constant approximation for each data range.2 A B-bucket histogram defines
exactly B piecewise-constant ranges; in contrast, a B-coefficient Haar wave-
let synopsis can define anywhere between B and 3B + 1 such ranges. To see
this, note that each Haar basis function is a piecewise-constant function of 4
pieces (3 interval boundaries). Thus, a B-coefficient Haar wavelet synopsis
can equivalently be seen as a histogram of up to 3B + 1 buckets. This ob-
servation seems to suggest that, for a given space budget, Haar wavelets are

2In this discussion we focus on basic histograms as in Section 3.3.1.
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better than histograms in accurately modeling data sets with a larger number
of discontinuities [203]. It is also important to note, however, that while his-
togram ranges can form any arbitrary partitioning of [0,M− 1], the wavelet
ranges are (by definition) constrained to a subset of the collection of dyadic
ranges Rl,k over [0,M−1].

In the other direction, any piecewise-constant function fI over an arbi-
trary interval I ⊆ [0,M− 1] can be expressed in the Haar wavelet basis as
fI = ∑ j〈 fI,φ j〉φ j, and there are only 2logM +1 basis functions φ j for which
the corresponding coefficient (inner product) is non-zero — these are exactly
the coefficients whose support intersects an endpoint of I. Thus, a Haar wa-
velet representation can simulate a histogram over [0,M− 1] with at most a
2 logM+1 = O(logM) blowup in space (i.e., number of required terms). This
also naturally implies that an L2-error optimal Haar wavelet synopsis with
(2logM + 1)B coefficients approximates a given data array A ∈ RM as well
as the L2-optimal (or, v-optimal) B-bucket histogram (Section 3.4.2). Guha et
al. [137] exploit this observation for the efficient construction of near-optimal
histogram representations of streaming data by first building a robust approx-
imate representation based on Haar wavelets.

4.3 Wavelet Synopses for Non-L2 Error Metrics

Conventional wavelet synopses optimized for overall L2 error may not always
be the best choice for approximate query processing systems. The quality of
the approximate answers such synopses provide can vary widely, and users
have no way of knowing the accuracy of any particular answer. Even for the
simplest case of approximating a value in the original data set, the absolute
and relative errors can show wide variation. Consider the example depicted
in Table 4.1. The first two lines show the 16 original data values (the exact
answer), whereas lines 3–4 show the 16 approximate answers returned when
using conventional wavelet synopses and storing the 8 largest (normalized)
coefficients. Although the first half of the values is basically a mirror im-
age of the second half, all the approximate answers for the first half are 65,
whereas all the approximate answers for the second half are exact! 3 Sim-
ilar data values have widely different approximations, e.g., 30 and 31 have

3In this (carefully crafted) example, conventional L2 thresholding ends up retaining all 8 coefficients in
the left part of the Haar tree, and no coefficients from the right subtree [110].
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approximations 30 and 65, respectively. The approximate answers make the
first half appear as a uniform distribution, with widely different values, e.g.,
3 and 127, having the same approximate answer 65. Moreover, the results do
not improve when one considers the presumably easier problem of approxi-
mating the sum over a range of values: for all possible ranges within the first
half involving x = 2 to 7 of the values, the approximate answer will be 65 · x,
while the actual answers vary widely. For example, for both the range A[0]
to A[2] and the range A[3] to A[5], the approximate answer is 195, while the
actual answer is 285 and 93, respectively. On the other hand, exact answers
are provided for all possible ranges within the second half.

Original data values 127 71 87 31 59 3 43 99
100 42 0 58 30 88 72 130

Wavelet answers 65 65 65 65 65 65 65 65
100 42 0 58 30 88 72 130

Table 4.1 Errors with Conventional Wavelet Synopses.

The simple example above illustrates that conventional wavelet synopses
suffer from several important problems, including the introduction of severe
bias in the data reconstruction and wide variance in the quality of the data
approximation, as well as the lack of non-trivial guarantees for individual
approximate answers. To address these shortcomings, recent work has pro-
posed novel thresholding schemes for building wavelet synopses that try to
minimize different, non-L2 approximation-error metrics, that might be bet-
ter suited for various approximate query processing scenarios. For instance,
to provide error guarantees in the approximation of individual data values, a
wavelet synopsis could be constructed to minimize error metrics such as the
maximum absolute error or the maximum relative error (with an appropriate
sanity bound s) in the data reconstruction; 4 that is, minimize maxi{absErri}
or maxi{relErri}, where

absErri = |A[i]− Â[i]| and relErri =
|A[i]− Â[i]|

max{|A[i]|,s}
.

4The role of the sanity bound is to ensure that relative-error numbers are not unduly dominated by small
data values [157, 284].



4.3. Wavelet Synopses for Non-L2 Error Metrics 147

Another important class of error metrics is the Lp-norm error

||A− Â||p =

(
∑

i
|A[i]− Â[i]|p

) 1
p

in the data reconstruction (for any p ≥ 0), as well as the (more general)
weighted Lp-norm error

||A− Â||p,w =

(
∑

i
wi · |A[i]− Â[i]|p

) 1
p

,

where a weight vector w = (w0,w2, . . . ,wM−1) is used to associate different
“significance” to the errors for different values in the underlying data do-
main [112]. Such weights are an important tool for capturing the importance
of individual data values, for example, based on the non-uniformities of the
observed query workload (see also Section 4.3.3). Note that maximum-error
metrics correspond to L∞-norm error (i.e., p = ∞), whereas relative-error met-
rics are special cases of weighted Lp-norm error (with wi = 1/max{|A[i]|,s}).

Wavelet thresholding algorithms for optimizing such non-L2 error metrics
can be classified into two broad categories. Most early work on the problem
(e.g., [109, 110, 112]) focused solely on the case of restricted wavelets, where
the algorithm selects values retained for the synopsis from the standard HWT
coefficient values (i.e., computed by standard pairwise averaging and differ-
encing). However, as observed by Guha and Harb [135], such a restriction
makes little sense when optimizing for non-L2 error, and can, in fact, lead
to sub-optimal synopses. Their work considers unrestricted Haar wavelets,
where the values retained in the synopsis are specifically chosen to optimize
a general (weighted) Lp-norm error metric. In what follows, we survey these
two related lines of research. We also discuss the concurrent efforts of Ma-
tias and Urieli [223, 224] on building workload-optimal wavelet synopses
through the design of appropriate weighted Haar wavelet bases that allow for
optimal greedy thresholding based on Parseval’s theorem.

4.3.1 Restricted Haar Wavelets for Non-L2 Error

We start with a brief description of early work on probabilistic thresholding
schemes that implicitly try to optimize for maximum error through the mini-
mization of appropriate probabilistic metrics. We then discuss techniques for
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deterministic wavelet thresholding that select HWT values to directly opti-
mize various (non-L2) error metrics.

4.3.1.1 Probabilistic Wavelet Synopses

The problems and biases of conventional, greedy wavelet thresholding were
first observed by Garofalakis and Gibbons [109, 110]. Their work introduces
probabilistic wavelet synopses that rely on probabilistic thresholding algo-
rithms based on ideas from randomized rounding [233]: The key idea is to de-
terministically retain the most important coefficients while randomly round-
ing the other coefficients either up to a larger value (called a rounding value)
or down to zero. The probability of rounding up vs. down is selected so that
the expected value of the rounded coefficient equals the original coefficient.
By carefully selecting the rounding values (through appropriate optimization
procedures), the thresholding algorithm ensures that (1) the expected total
number of coefficients in the synopsis is B, and (2) a desired maximum-error
metric (e.g., maximum relative error) in the reconstruction of the data is min-
imized [110].

More specifically, each non-zero coefficient ci in the wavelet transform of
the data array A is associated with a random variable Ci such that (1) Ci takes
the value zero (i.e., ci is discarded from the synopsis) with some (possibly
zero) probability, and (2) E[Ci] = ci. The probabilistic wavelet synopsis
for A, comprises the values for those random variables Ci with non-zero
values.5 The general form of these random variables is determined using a
randomized rounding scheme, with a rounding value, λi, for each non-zero
ci such that Ci ∈ {0,λi}, 0 < ci

λi
≤ 1, and

Ci =

{
λi with probability ci

λi

0 with probability 1− ci
λi

Thus, the thresholding scheme essentially “rounds” each non-zero wavelet
coefficient ci independently to either λi or zero by flipping a biased coin
with success probability ci

λi
. For this rounding process, the expected value

of each rounded coefficient is E[Ci] = λi · ci
λi

+0 · (1− ci
λi

) = ci (i.e., the actual

5Note that the values stored in the synopsis can be different from those of the corresponding HWT coeffi-
cients. Still, we chose to classify this as a “restricted” approach since it insists on maintaining the values
of individual HWT coefficients on expectation.
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coefficient value), and its variance is simply Var(Ci) = E[C2
i ]− (E[Ci])2 =

λ 2
i ·

ci
λi
−c2

i = (λi−ci) ·ci. (For the special case where a coefficient is determin-
istically retained, λi = ci, and indeed Var(Ci) = 0.) Let Â[i] (Â(l : h)) denote
the estimator for the data value A[i] (resp., the range sum/count A(l : h)), as
calculated based on the coefficient values retained in a probabilistic wavelet
synopsis. By the linearity of point and range-sum reconstruction (Section 4.2)
and linearity of expectation, it is not difficult to prove that these estimators
are unbiased; that is, E[Â[i]] = A[i] and E[Â(l : h)] = A(l : h) [110].

The above development holds for any choice of rounding values λi, as
long as 0 < ci

λi
≤ 1. The choice of the λi’s is crucial, however, because it deter-

mines the variances of probabilistic estimators as well as the expected number
of coefficients retained. Indeed, the key to providing “good” error guarantees
for individual data values and range sums lies in selecting the λi’s to ensure
small variances for data-value reconstruction while not exceeding the pre-
scribed space limit for the synopsis. (Note that, essentially, the retention prob-
abilities ci

λi
can be seen as the amount of fractional storage assigned to indi-

vidual coefficients ci.) Based on these observations, [109, 110] propose novel
thresholding algorithms based on dynamic-programming (DP) formulations
over the Haar-tree structure that explicitly minimize appropriate probabilistic
metrics (such as the maximum normalized standard error or the maximum
normalized bias) in the randomized synopsis construction; these formula-
tions are then combined with a quantization of the potential fractional-storage
allotments to give polynomial-time combinatorial techniques [110]. More
specifically, employing a quantization that allocates fractional storage to coef-
ficients at multiples of 1/q (where q> 1 is an integer input parameter), the DP
algorithms of [110] construct a B-coefficient probabilistic wavelet synopsis in
time O(Mq2B log(qB)). Since this complexity can be problematic, especially
for large synopsis sizes B, Deligiannakis et al. [80] propose an approximation
scheme that, given a desired approximation factor ε , builds a B-coefficient
probabilistic wavelet synopsis in O(Mq logqmin{logM logR/ε,Bq}) (where
R is roughly proportional to the maximum absolute Haar-coefficient value in
the decomposition), while guaranteeing that the quality of the final solution
is within a factor of (1+ε) of that obtained by the (exact) techniques of [110]
for the same problem instance.
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4.3.1.2 Deterministic Thresholding Techniques

The probabilistic synopses of [109, 110] try to probabilistically control data-
value reconstruction error through the optimization of appropriate proba-
bilistic measures (like normalized standard error or bias [109, 110]). Such
schemes can suffer from important shortcomings, including the potential pit-
falls of randomized techniques (e.g., a “bad” sequence of coin flips resulting
in a poor synopsis), and the ad-hoc nature of the space-quantization require-
ment of [109, 110] whose impact on the quality of the final solution is not
entirely clear. Furthermore, the synopsis space bound is only preserved on
expectation, and the estimated variance in the space usage can be large [135].

To address these issues, Garofalakis and Kumar [111, 112] design a more
direct, deterministic solution that explicitly minimizes the error metric of in-
terest. Their DP-based, deterministic thresholding algorithms for building co-
efficient synopses provably optimize the maximum relative error or absolute
error in the data-value reconstruction (the key metrics considered in [110]).
Furthermore, their algorithmic techniques are directly applicable to a much
broader class of distributive approximation-error metrics (which includes, for
instance, weighted Lp-norm error) [112]. We now briefly overview some of
the key ideas of their solution.

Given a target error metric err∈ {relErr, absErr}, the goal is to efficiently
select the B Haar coefficients that minimize maxi∈{1,...,M} erri, where erri is
the reconstruction error for A[i]. The challenge here is that, since each coef-
ficient contributes with different signs to each half of its support range, these
error metrics do not have a simple monotonic structure along the Haar-tree
structure. To formulate a valid DP recurrence for maximum error metrics, the
key idea is to condition the optimal error value for an error subtree not only
on the root node c j of the subtree and the amount B of synopsis storage al-
lotted, but also on the error that “enters” that subtree through the coefficient
selections made on the path from the root to node c j (excluding c j itself),
i.e., coefficient selections on path(c j). The basic observation here is that,
since the depth of the Haar tree is O(logM), we can afford to tabulate all
such possible selections while keeping the running-time of the algorithm in
the low-polynomial range [111, 112].

More formally, let B denote the total space budget for the synopsis, and
let Tj be the subtree of the Haar-tree rooted at node c j, with coeff(Tj)
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(data(Tj)) denoting the set of coefficient (respectively, data) values in Tj.
Finally, let E[ j,b,S] denote the optimal (i.e., minimum) value of the max-
imum error (relative or absolute) among all data values in Tj assuming a
synopsis space budget of b coefficients for the Tj subtree, and that a sub-
set S⊆ path(c j) (of size at most min{B−b, logM +1}) of proper ancestors
of c j have been selected for the synopsis; that is, assuming a relative-error
metric (i.e., err = relErr),

E[ j,b,S] = min
S j⊆coeff(Tj),|S j|≤b

{
max

A[i]∈data(Tj)
relErri

}
,

where

relErri =
|A[i]−∑ck∈path(A[i])∩(S j∪S) signi,k · ck|

max{|A[i]|,s}
.

(The case for absolute error (i.e., err = absErr) is defined similarly.) The
E[ j,b,S] entries can be efficiently computed through a DP recurrence [112]
(discussed below); clearly, E[0,B,φ ] gives the desired optimal error value at
the root node of the Haar tree (the corresponding error-optimal wavelet syn-
opsis can then be built by simply re-tracing the choices of the DP computation
using standard techniques).

The base case for the DP recurrence occurs for data (i.e., leaf) nodes in
the Haar tree; that is, for c j = A[ j−M] with j ≥M (see Figure 4.1). In this
case, E[ j,b,S] is not defined for b > 0, whereas for b = 0 and for each subset
S⊆ path(A[ j−M]) (of size ≤ min{B, logM +1})

E[ j,0,S] =
|A[ j−M]−∑ck∈S sign j−M,k · ck|

r
,

where r = max{|A[ j−M]|,s} for err = relErr, and r = 1 for err = absErr.
In the case of an internal Haar-tree node c j with j < M, the DP algorithm

has two distinct choices when computing E[ j,b,S], namely either drop coef-
ficient c j or keep it in the final synopsis. If c j is dropped from the synopsis,
then it is easy to see that the maximum error from c j’s two child subtrees
(i.e., c2 j and c2 j+1) will be propagated upward; thus, the minimum possible
maximum error E[ j,b,S] for Tj in this case is simply

Edrop[ j,b,S] = min
0≤b′≤b

max
{

E[2 j,b′,S] , E[2 j +1,b−b′,S]
}

. (4.4)
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If, on the other hand, c j is kept in the synopsis (assuming, of course, b ≥ 1),
the least possible error E[ j,b,S] for Tj is computed as

Ekeep[ j,b,S] = min
0≤b′≤b−1

max
{

E[2 j,b′,S∪{c j}] ,

E[2 j +1,b−b′−1,S∪{c j}]
}

. (4.5)

(Note that the right-hand side of the recurrence is well-defined in both cases.)
The final value for E[ j,b,S] is defined as the minimum of the two possible
choices for coefficient c j (Equations (4.4) and (4.5) above); that is,

E[ j,b,S] = min{ Edrop[ j,b,S] , Ekeep[ j,b,S] }.

The above recurrence can be translated to a DP algorithm in a straightfor-
ward manner; furthermore, both the time and (total) space complexity of
the algorithm can be shown to be O(M2) [112, 133]. (Assuming that un-
necessary parts of the DP matrix can be paged out, the working-space re-
quirement of the algorithm is only O(M min{B, logM}) [112].) Guha [134]
proposes a space-efficient implementation of this dynamic program that re-
quires only O(B logM) space while slightly increasing the time complexity to
O(M2 logB). The key technical idea is to avoid tabulating the solutions to all
Haar-subtree problems and repeatedly solve the same subproblems in a top-
down fashion in order to determine the optimal synopsis (essentially, trading
time for space).

Interestingly, the above algorithmic solutions have general applicability
for a natural, wide class of distributive error metrics [112]. Briefly, an error
metric f () is distributive if and only if for any collection of disjoint domain
ranges R1, . . . , Rk,

f (∪k
i=1Ri) = g( f (R1), . . . , f (Rk)),

where g() is some combining function for the errors over individual regions.
In addition to maximum absolute/relative error metrics, the class of distribu-
tive error functions also naturally encompasses several other important er-
ror metrics, including (the pth power of) Lp-norm and weighted Lp-norm er-
ror [112].

Heuristics and Related Approaches. The quadratic O(M2) time and space
complexity of the optimal DP thresholding algorithm of [111, 112] can be
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problematic for large data sets. To overcome such potential limitations, Kar-
ras and Mamoulis [202] propose a greedy heuristic solution for maximum-
error thresholding that guarantees near-linear complexity. We now briefly re-
view the main ideas of their thresholding scheme.

Let serri = Â[i]−A[i] denote the signed accumulated error in the synopsis
for a data node A[i] after some coefficient deletions. For a coefficient node c j

not yet discarded from the synopsis, the maximum potential absolute error
MAk that ck can effect on the synopsis is

MAk = max
A[i]∈leaves(ck)

{|serri− signi,k · ck|}.

The greedy algorithm for maximum absolute error discards, at each step, the
coefficient in the running synopsis with the maximum value of MAk [202].
The key observation here is that the maintenance of MAk for any coefficient ck

can be performed efficiently, without accessing all data nodes in leaves(ck).
More specifically, since the removal of a coefficient ck impacts equally the
signed errors in its left or right subtrees, the maximum and minimum signed
errors in the left (right) subtree of ck are decreased (increased) by exactly
ck. And, clearly, the maximum absolute error incurred by the removal of ck

must occur at one of these four positions of error extrema: Letting maxl
k,

minl
k (maxr

k, minr
k) denote the maximum and minimum signed errors in the

left (right) subtree of ck, we can compute MAk as follows:

MAk = max{ |maxl
k− ck|, |minl

k− ck|, |maxr
k + ck|, |minr

k + ck| }.

Thus, by maintaining these four quantities maxl
k, minl

k, maxr
k, and minr

k at
each coefficient node, the greedy algorithm can compute MAk in constant
time using the above formula. To determine the next coefficient to discard, all
coefficients are placed in a min-heap structure H based on their MA values,
and the coefficient ck at the root of the heap is removed. After the removal
of ck the min/max error information for all descendant and ancestor coef-
ficients of ck in the Haar tree must be updated. The total number of such
updates can be shown to be O(M logM) and each such update can require an
O(logM) re-positioning in the heap — this gives an overall time complexity
of O(M log2 M) while the space complexity is O(M) (constant information
for each coefficient node) [202].

For maximum relative error minimization, the greedy heuristic of [202]
discards, at each step, the coefficient with the minimum maximum potential
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relative error:

MRk = max
A[i]∈leaves(ck)

{ |serri− signi,k · ck|
max{|A[i]|,s}

}
.

In this case, however, the effect of removing a coefficient ck is different for
each data value in leaves(ck); thus, the algorithm maintains the values af-
fected for each ck in an augmented max-heap Hk based on their potential rel-
ative error values, so that the value causing the maximum potential error can
be accessed in constant time. These per-coefficient heaps raise the time/space
costs by a factor O(logM), raising the overall time and space complexity of
the greedy algorithm to O(M log3 M) and O(M logM), respectively [202].

Also motivated by the quadratic time complexity of the optimal DP in
[111, 112], Muthukrishnan [237] considers the special case of weighted L2-
error metrics where the weight vector w = (w0,w2, . . . ,wM−1) is k-flat, that is
it comprises k�M piecewise constant partitions (or, equivalently, w is repre-
sented as a k-bucket histogram over [0,M−1]). The key technical observation
here is that the optimization problem for each piecewise constant (in terms of
weight) portion of the Haar tree can be solved greedily through a local appli-
cation of Parseval’s theorem. This implies that the expensive optimal dynamic
program needs to be executed only over the portion of the Haar tree up to
internal nodes that correspond to dyadic ranges contained within piecewise
constant portions of w; essentially, such piecewise constant tree nodes are
treated as leaves in the DP. Thus, for such k-flat weight vectors, the weighted
L2 optimization problem can be solved in time O(MB2k logM) [237].

4.3.2 Unrestricted Haar Wavelets for Non-L2 Error

In its most general form, wavelet synopsis construction is a sparse wavelet
representation problem where, given a wavelet basis {φi}M−1

i=0 for RM and an
input data vector (or, signal) A ∈ RM, the goal is to construct an approximate
representation Â as a linear combination of at most B basis vectors so as
to minimize some normed distance between A and Â.6 The sparse B-term
representation Â belongs to the non-linear space {∑M−1

i=0 ziφi : zi ∈ R, ||Z||0 ≤
B}, where the L0 norm ||Z||0 denotes the number of non-zero coefficients
in the vector Z = (z0,z1, . . . ,zM−1). (We use ÂZ to denote the approximate

6This is an instance of the general non-linear approximation problem in approximation theory [85].
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representation for a specific coefficient vector Z.) For the case of L2 error, by
Parseval’s theorem, the L2 norm of A− Â is preserved in the wavelet space;
thus, generalizing Equation (4.3), we have

||A− ÂZ||22 = ∑
i

(
A[i]−∑

j
z jφi[ j]

)2

= ∑
i
(〈A,φi〉− zi)2.

It is clear that the optimal solution under the L2 error measure is to retain
the largest B inner products 〈A,φi〉 which are exactly the largest (normalized)
coefficients c∗i in the HWT expansion of A. Thus, the greedy thresholding
approach of Section 4.2.2 is optimal for L2-error minimization even in this
generalized setting. For other error norms, however, restricting the zi’s to the
set of computed HWT coefficients of A can result in suboptimal solutions. As
a simple example, consider the data vector A = [1,4,5,6] whose HWT gives
[4,−1.5,−1.5,−0.5]. Assuming B = 1, the optimal solution for maximum
absolute (or, L∞) error is Z∗= [3.5,0,0,0], whereas the best solution restricted
to the computed HWT coefficients is [4,0,0,0]; furthermore, the example can
be generalized to any B and larger error gaps by simply scaling and repeating
the values in A with alternating signs [135].

A first step in solving the generalized (unrestricted) sparse Haar wave-
let representation problem is demonstrating the existence of a bounded set
R from which coefficient values in Z can be chosen while ensuring a solu-
tion that is close to the optimal unrestricted solution (where zi’s range over
all reals). Guha and Harb [135] prove that, for Lp-error minimization, the
maximum (un-normalized) coefficient value in the optimal solution Z∗ satis-
fies maxi{|z∗i |} ≤ 2M1/pαmax, where αmax = maxi{|A[i]|} (i.e., the maximum
absolute value in the input data).7 Furthermore, they demonstrate that, by
rounding the coefficient values in the optimal solution Z∗ to the nearest mul-
tiple of some δ > 0 (obtaining a “rounded” solution Ẑδ ) introduces bounded
additive error in the target Lp norm; more specifically,

||A− ÂẐδ
||p ≤ ||A− ÂZ∗ ||p + δM1/p min{B, logM}. (4.6)

Thus, the above additive error over the optimal solution can be guaranteed

7Following [135], we focus on the un-normalized Haar basis in order to simplify the statement of the
results.
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while restricting the search for coefficient values over a set of size [135]:

|R| = 2 · maxi{|z∗i |}
δ

≤ 4M1/pαmax

δ
. (4.7)

The search for the optimal sparse wavelet representation is conducted
using a dynamic program that is very similar to the DP formulation for
the restricted case [111, 112], with two key differences: First, the search
at a given Haar-tree node j also ranges over all possible value selections
at node j (i.e., over all values in R); and, second, the optimal error at a
Haar-tree node j is conditioned on the on the sum of values of ancestors
of j (which can also be restricted to R) [135]. Letting E[ j,b,V ] denote the
minimum Lp error for subtree Tj using exactly b coefficients and assum-
ing that the ancestors of node j add up (with the proper signs) to value V
in the final solution. Then, similar to the restricted case, we can compute
E[ j,b,V ] = min{Edrop[ j,b,V ],Ekeep[ j,b,V ]}, where

Edrop[ j,b,V ] = min
b′∈[0,b]

{
E[2 j,b′,V ] , E[2 j +1,b−b′,V ]

}
Ekeep[ j,b,V ] = min

b′∈[0,b−1],r∈R

{
E[2 j,b′,V + r] , E[2 j +1,b−b′−1,V − r]

}
represent the choice of dropping or keeping the basis function at node j.
Note that, in the case that j is kept, the search also ranges over all pos-
sible coefficient values in R. The running time of this DP is O(|R|2MB),
while its working-space requirement is O(|R|B log(M/B)). (In the case of
maximum (L∞) error, binary search over R can be used, reducing the run-
ning time complexity to O(|R|2M log2 B).) Combined with Equations (4.6)-
(4.7), this implies that the unrestricted Lp-optimal Haar wavelet synop-
sis can be approximated to within an additive error of εαmax (where
αmax = maxi{|A[i]|}) in time O( 1

ε2 M1+4/pB(min{B, logM})2) and space
O( 1

ε
M2/pBmin{B, logM} log(M/B)) [135].
The approach also extends to weighted Lp error and relative error norms;

however, the time and space complexities become dependent on the value
of the minimum weight coefficient mini{wi} and the minimum normalizing
factor max{mini{A[i]},s}, respectively [135]. It is also interesting to note
that removing the restriction of choosing Haar coefficient values enables the
streaming computation of the (near-optimal) sparse wavelet representation in
one pass over the entries of A — see Section 4.6.1.



4.3. Wavelet Synopses for Non-L2 Error Metrics 157

In more recent theoretical work, Guha and Harb [136, 161] demonstrate
how one can extend the dynamic-programming ideas described above to ob-
tain a true (1 + ε) approximation scheme for unrestricted sparse Haar wa-
velet representations under Lp error that runs in time O( 1

ε2 M1+2/pB log3 M)
and uses O( 1

ε
M1/pB log3 M) space. (As earlier, the running time for the case

of maximum error (p = ∞) can be reduced by a factor of B/ log2 B by us-
ing binary search.) Their work also examines the gap between the restricted
and unrestricted versions of the wavelet approximation problem, proving that
a restricted solution which greedily retains at most B wavelet coefficients is
a O(M1/p logM) approximation to the optimal unrestricted solution for all
Lp norms; in fact, this result holds for any wavelet family of compact sup-
port [136].

Optimizing Maximum-Error through the Dual Problem. For the special
case of (weighted) maximum (L∞) error metrics, Karras et al. [204] propose
an alternative approach to constructing near-optimal unrestricted Haar syn-
opses based on the dual problem of finding error-bounded Haar summaries:
Given an upper bound E on the error, find a space-optimal synopsis that guar-
antees maximum error≤ E .8 A key observation here is that there exists a nat-
ural DP formulation for this dual problem, that avoids the two-dimensional
tabulation over all possible incoming values v and space allotments b for ev-
ery Haar tree node — this essentially eliminates the dependence of running
time and space on the synopsis size B, which can result in significant effi-
ciency gains [204].

More specifically, let S[ j,v] denote the minimum number of non-zero co-
efficients that need to be retained in subtree Tj assuming an incoming value
V (from the ancestor nodes of node j), in order to ensure a maximum error
bound of E ; then, S[ j,V ] can be recursively computed through the following
DP recurrence:

S[ j,V ] = min
r∈R j,V

{S[2 j,V + r]+S[2 j +1,V − r]+ (r 6= 0)},

where (r 6= 0) denotes the boolean indicator variable that is 1 iff r 6= 0, and
R j,V is the set of possible values for node j given an incoming value V . By

8Some preliminary ideas on using the dual formulation for the restricted problem are also sketched in the
short article by Muthukrishnan [237].
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quantizing the potential values into multiples of a small resolution step δ

(as earlier), the size of the set of possible values at each node can be shown
to be |R j,V | = O(E

δ
); this, in turn, implies a DP algorithm for constructing

the error-bounded Haar synopsis in O((E
δ
)2M logM) time using O(E

δ
logM)

space [204]. This error-bounded algorithm can be used as a subroutine in a
solution to the original space-bounded maximum-error synopsis construction
problem that uses binary search over a range defined by lower/upper bounds
on the optimal maximum error for a B-coefficient synopsis until the “right”
error value is discovered. Compared to the time requirements of the error-
bounded solution, this binary search increases the running time of the space-
bounded procedure by a factor of O(logE ∗), where E ∗ denotes the optimal
(minimum) maximum-error value for a B-coefficient synopsis [204].

Pang et al. [248] also address the (dual) error-bounded version of the un-
restricted maximum-error wavelet representation problem, and propose fast,
linear-time (i.e., O(M)) approximation algorithms that have a logM approxi-
mation guarantee (that is, the space for the resulting synopsis is at most logM
times the size of the optimal synopsis for the given maximum-error bound
E ). Their key technical observation is that unrestricted coefficient values in
the synopsis can be viewed as simple shift transformations on the ranges of
values in Haar subtrees. The idea is then to employ such shift transformations
in a bottom-up manner over the Haar-tree structure in a manner that ensures
that the error ranges in the underlying subtrees satisfy the given error bound
E . Their most sophisticated strategy (termed S-Shift) computes only ranges
of shift values in the bottom-up pass, and then uses a top-down pass to per-
form “late-binding” of shift coefficients in a smart way that tries to further
reduce the size of the synopsis [248].

4.3.3 Weighted Haar Wavelets for Workload-based Error

Weighted error metrics, such as the weighted L2 error
√

∑i wi(A[i]− Â[i])2,
generalize standard error norms making it possible to model the distribu-
tion of the query workload. The idea here is that the weight vector w =
(w0,w1, . . . ,wM−1) with wi ∈ [0,1] and ∑i wi = 1 captures the distribution
of individual point queries, with wi being the probability of occurrence for a
query on A[i]. Thus, the wi weights represent the “significance” of individual
data points in the query workload, and minimizing the weighted error norm
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is essentially equivalent to minimizing the expected query-answering error.
Matias and Urieli [223, 224] have proposed a methodology for designing

wavelet synopses that specifically targets such weighted (workload-based) er-
ror metrics. Their solution relies on exploiting the weight vector w to define
appropriate weighted inner-product and norm operators, and design a corre-
sponding orthonormal weighted Haar wavelet basis for RM; then, by Parse-
val’s theorem, the largest coefficients in this weighted basis are guaranteed to
minimize the corresponding weighted error metric.

Consider the weighted L2 error norm ||A− Â||2,w =
√

∑i wi(A[i]− Â[i])2.
Based on the workload vector w, define a weighted inner product

〈a,b〉w = M
M−1

∑
i=0

wi ·a[i]b[i].

Note that this is a generalization of the standard inner product (which as-
sumes wi = 1/M for all i), that also satisfies all the mathematical conditions
for an inner-product operator [224]. Furthermore, it is easy to verify that the
corresponding weighted-inner-product norm is exactly√

〈a,a〉w =
√

M · ||a||2,w,

that is, directly proportional to the target weighted L2 norm. Thus, minimizing
the weighted-inner-product norm for the error vector A− Â is equivalent to
minimizing the weighted L2 error. The next step is to define a weighted Haar
wavelet basis that is orthonormal with respect to the weighted-inner-product
operator 〈·〉w. This is accomplished by retaining the support and general shape
of the original Haar basis functions (Equation (4.2)) and, for each basis func-
tion φi, scaling its positive (negative) part by some factor xi (resp., yi). Thus,
in contrast to the original Haar basis, where all coefficients at resolution level
l are scaled by

√
2l/M (Equation 4.2)), the weighted Haar basis functions

φi,w are of the form illustrated in Figure 4.2, where the positive and negative
scaling factors xi and yi are not necessarily equal.

The scales xi and yi for each basis function φi,w are chosen to ensure or-
thonormality of the resulting weighted basis with respect to the corresponding
weighted-inner-product. Letting li (ri) denote the sum of workload weights wi

under the positive (resp., negative) half of φi,w (Figure 4.2), it can be shown



160 Wavelets

r   =

Σ wkl   =

xi

iy

i Σ wk

i

Fig. 4.2 Weighted Haar basis function φi,w.

that choosing

xi =
√

ri

M(liri + l2
i )

and yi =

√
li

M(liri + r2
i )

,

guarantees that the resulting weighted Haar wavelet basis is orthonormal; that
is, 〈φi,w,φ j,w〉w = 1 if i = j and 0 otherwise [224]. (The root basis vector
(overall average) remains φ0,w = 1√

M
1M.) Note that the weighted Haar basis

generalizes the standard Haar basis: for a uniform workload (i.e., wi = 1/M
for all i), both scaling factors for a basis function at level l are exactly

√
2l/M,

resulting in the standard Haar basis functions (Equation (4.2)).
Given a workload vector w, computing the weighted Haar basis can

be done bottom-up (in a manner similar to the HWT process) in O(M)
time. Similarly, computing the weighted Haar wavelet transform for an in-
put data vector A ∈ RM can also be done in O(M) time — the key dif-
ference from standard HWT is that the basic steps of the decomposition
now involve weighted averaging and differencing [224]. By the orthonor-
mality of the weighted Haar basis and Parseval’s theorem, it immediately
follows that retaining the B largest weighted HWT coefficients in the synop-
sis of A is optimal with respect to minimizing the weighted L2-error norm
||A− Â||2,w. Furthermore, the methodology can be easily extended to han-
dle other workload-based sum-squared-error metrics. For instance, consider
the problem of minimizing the weighted sum-squared relative error norm

∑
M−1
i=0 wirelErr2

i = ∑
M−1
i=0 wi

(A[i]−Â[i])2

max{A[i]2,s2} . Then, by simply defining a modified
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weight vector w′ = (w′0,w
′
1, . . . ,w

′
M−1), where w′i = wi

max{A[i]2,s2} , the problem
is transformed to weighted L2-error minimization (using workload w′) and
the foregoing approach is immediately applicable [224].

4.4 Multi-Dimensional Wavelets

The foregoing discussion has focused on the case of Haar wavelets for one-
dimensional data arrays (i.e., for a single data attribute). As in the case of
histograms, effective data and query approximations become much more
challenging for multi-dimensional data arrays capturing a joint data distri-
bution over a domain U = [0,M1 − 1]× ·· · × [0,Md − 1] of some dimen-
sionality d > 1. The Haar wavelet decomposition can be extended to such
multi-dimensional data arrays using two distinct methods, namely the stan-
dard and nonstandard Haar decomposition [276]. Each of these transforms
results from a natural generalization of the one-dimensional decomposition
process described in Section 4.2, and both have been used in a wide variety of
applications (including approximate query answering over multi-dimensional
data sets [41, 42, 284]).

• The standard decomposition first fixes an ordering for the data di-
mensions (say, 1,2, . . . ,d) and then proceeds to apply the complete
one-dimensional wavelet transform for each one-dimensional
“row” of array cells along dimension k, for all k = 1, . . . ,d.

• The nonstandard decomposition alternates between dimensions
during successive steps of pairwise averaging and differencing.
Given an ordering for the data dimensions (1,2, . . . ,d), we per-
form one step of pairwise averaging and differencing for each
one-dimensional row of array cells along dimension k, for each
k = 1, . . . ,d. We then recurse on the quadrant containing the aver-
ages across all d dimensions. See Section 4.4.1.2 for details and
an example.

As in the one-dimensional case, the (standard or nonstandard) HWT of
a d-dimensional data array A results in a d-dimensional wavelet-coefficient
array WA with the same dimension ranges and number of entries. Each data
cell in A can be accurately reconstructed by adding up the contributions (with
the appropriate signs) of those coefficients whose support regions include the
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Fig. 4.3 Support regions and signs for the sixteen nonstandard two-dimensional Haar basis
functions. The coefficient magnitudes are multiplied by +1 (−1) where a sign of + (respec-
tively, −) appears, and 0 in blank areas.

cell. (To simplify the exposition to the basic ideas of multi-dimensional wa-
velets, in this section, we assume all dimensions of the input array to be of
equal size Mi = m; thus, the total number of data cells is M = ∏

d
i=1 Mi = md .)

Consider a d-dimensional wavelet coefficient c in the (standard or nonstan-
dard) wavelet-coefficient array WA. c contributes to the reconstruction of a
d-dimensional rectangular region of cells in the original data array A (i.e.,
c’s support region). Further, the sign of c’s contribution (+c or −c) can vary
along the quadrants of c’s support region in A.

As an example, Figure 4.3 depicts the support regions and signs of the
sixteen nonstandard, two-dimensional Haar coefficients in the corresponding
locations of a 4× 4 wavelet-coefficient array WA. The blank areas for each
coefficient correspond to regions of A whose reconstruction is independent
of the coefficient, i.e., the coefficient’s contribution is 0. Thus, WA[0,0] is the
overall average that contributes positively (i.e.,“+WA[0,0]”) to the reconstruc-
tion of all values in A, whereas WA[3,3] is a detail coefficient that contributes
(with the signs shown in Figure 4.3) only to values in A’s upper right quad-
rant. Each data cell in A can be accurately reconstructed by adding up the
contributions (with the appropriate signs) of those coefficients whose support
regions include the cell.
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Haar-tree structures for d-dimensional Haar coefficients can also be nat-
urally defined based on the specifics of the multi-dimensional decomposition
process and the natural inclusion relationships that arise between coefficient
support regions. In the case of nonstandard decomposition, the Haar-tree is
essentially a d-dimensional quadtree, where each internal node t corresponds
to a set of (at most) 2d−1 Haar coefficients, and has 2d children correspond-
ing to the quadrants of the (common) support region of all coefficients in t. A
key difference is that, in a d-dimensional Haar tree, each node (except for the
root, i.e., the overall average) actually corresponds to a set of 2d−1 wavelet
coefficients that have the same support region but different quadrant signs and
magnitudes for their contribution.9 (Note that the sign of each coefficient’s
contribution to the leaf (data) values residing at each of its children in the tree
is determined by the coefficient’s quadrant sign information.) As an example,
Figure 4.4 depicts the Haar-tree structure for the two-dimensional 4×4 Haar
coefficient array in Figure 4.1(b). Thus, the (single) child t of the root node
contains the coefficients WA[0,1],WA[1,0], and WA[1,1], and has four children
corresponding to the four 2×2 quadrants of the array; the child correspond-
ing to the lower-left quadrant contains the coefficients WA[0,2],WA[2,0], and
WA[2,2], and all coefficients in t contribute with a “+” sign to all values
in this quadrant. The formula for data-value reconstruction (Equation (4.1))
naturally extends to nonstandard multi-dimensional Haar wavelets using this
quadtree structure. Once again, the reconstruction of A[i] depends only on the
coefficient sets for all Haar-tree nodes in path(A[i1, . . . , id ]), where the sign
of the contribution for each coefficient c in node t ∈ path(A[i1, . . . , id ]) is de-
termined by the quadrant sign information for c. Thus, each data value can be
reconstructed as a simple linear combination of (2d − 1) logm + 1 nonstan-
dard HWT coefficients.

In the case of standard Haar wavelets, each dimension is decomposed in-
dependently, giving rise to d distinct one-dimensional Haar trees for each in-
dividual dimension (Figure 4.5). Each standard coefficient in the transformed
array has d indices (one for each dimension), where each index identifies a
position in the Haar tree for the corresponding dimension; furthermore, the

9The number of children (coefficients) for an internal Haar-tree node can actually be less than 2d (respec-
tively, 2d−1) when the sizes of the data dimensions are not all equal. In these situations, the exponent for
2 is determined by the number of dimensions that are “active” at the current level of the decomposition
(i.e., those dimensions that are still being recursively split by averaging/differencing).
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Fig. 4.4 Haar-tree structure for the sixteen nonstandard two-dimensional Haar coefficients for
a 4×4 data array (data values omitted for clarity).

support of the coefficient is the d-dimensional rectangle whose sides are de-
fined by the cross-product of the corresponding dyadic intervals along each
of the d dimensions. (This is in contrast to the nonstandard Haar basis where
support regions are always cubic [276].) The coefficients required for recon-
structing data values in the original array are also determined through the d
per-dimension Haar trees. For instance, a single data value A[i1, . . . , id ] cor-
responds to a root-to-leaf path in each of the d per-dimension Haar trees, or,
equivalently, a set of one-dimensional coefficient indices — the cross product
across these d index sets defines the standard multi-dimensional HWT coef-
ficient indexes that are used to reconstruct A[i1, . . . , id ]. Thus, reconstructing
an original data value requires (logm + 1)d standard HWT coefficients (the
signs of each coefficient are determined based on the corresponding one-
dimensional signs). As an example, Figure 4.5 depicts the standard multi-
dimensional Haar-tree structures for a 4×4 data array, and an example data-
cell reconstruction.

4.4.1 Multi-Dimensional Wavelet Decomposition Algorithms

The complexity in designing efficient Haar-wavelet decomposition algo-
rithms for a multi-attribute relational table R comes from the fact that such
algorithms cannot afford to build the multi-dimensional joint-frequency ar-
ray AR (i.e., the datacube representation) of R. The problem here is that the
number of cells M in this datacube array AR grows exponentially in the di-
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Fig. 4.5 Haar-tree structures for the standard HWT of a 4×4 data array A. The shading indi-
cates the nine standard HWT coefficients used in reconstructing data cell A[2,1].

mensionality d, and is typically orders of magnitude larger than the number of
tuples in R. Thus, computation- and I/O-efficient decomposition algorithms
for multi-dimensional data have to work off the relational “set-of-tuples” rep-
resentation of R. Such efficient decomposition algorithms have been proposed
for both forms of the multi-dimensional HWT.

4.4.1.1 Standard HWT Decomposition

Recall that, in the standard decomposition, the complete one-dimensional
HWT is applied to each one-dimensional “row” of cells along dimension
k, for all k = 1, . . . ,d. For instance, in the two-dimensional case, the one-
dimensional HWT is first applied to each row of the data; then, we treat
the transformed rows as data and apply another pass of the one-dimensional
HWT to each column.

Vitter and Wang [284] propose I/O-efficient algorithms for the standard
multi-dimensional HWT of a (ROLAP) relation R, which is assumed to be
in dimension order 〈d,d− 1, . . . ,1〉; that is, the indices of the tuple entries
change most rapidly along the rightmost dimension 1, next most rapidly
along dimension 2, and so on. In the multi-dimensional data space, the en-
tries for which the values in the k-prefix of the dimensions d, . . . ,d− k + 1
are fixed form a (d− k)-dimensional hyperplane denoted as 〈d− k, . . . ,1〉.
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The key idea in the decomposition algorithms of [284] is to break the stan-
dard HWT computation into hyperplanes (in the chosen dimension order),
such that the complete decomposition for each hyperplane can be carried out
entirely in-memory. Assuming a memory of size S and a disk-block size b,
their first algorithm partitions the dimensions into groups (i.e., hyperplanes
〈i + j, . . . , i + 1, i〉 such that the product of the group’s dimension sizes sat-
isfies Mi× ·· ·×Mi+ j ≤ S− 2b (reserving two block-sized buffers for I/O).
Assuming g such groups, the algorithm performs g passes over the data, pro-
cessing the groups in reverse order (i.e., in increasing order of the start index
i), one per pass. In the (g−m+1)-st pass, each hyperplane in the mth dimen-
sion group is read in, one by one, and processed (performing an in-memory
standard HWT); then, the results are written out to disk for the next pass. Af-
ter each pass, the output produced on disk needs to be transposed in order to
regroup the cells according to the dimension order required by the next pass;
this transposition step can be performed in a logarithmic number of distribu-
tion passes over the data.

The second algorithm of [284], exploits intelligent buffering and knowl-
edge of the dimension sizes to avoid explicit transposition steps between
passes. The key idea is to employ a double output buffer for each cell of the
hyperplane to appropriately re-order the output of each pass; in this manner,
the transposition is essentially achieved “for free” as a result of the buffering
mechanism. (Of course, the size of the hyperplanes for each pass must be
smaller to account for all the output buffers needed — more specifically, the
product of the dimension sizes in a hyperplane now has to be ≤ S/(2b+1).)
Letting M = ∏i Mi denote the number of cells in the data array, the I/O com-
plexity of both algorithms in [284] can be shown to be O( |R|S logS/b

M
b ) — that

is, they both require O(logS/b
M
b ) passes over the tuples in R [284].

4.4.1.2 Nonstandard HWT Decomposition

Abstractly, the nonstandard Haar decomposition alternates between dimen-
sions during successive steps of pairwise averaging and differencing: given
an ordering for the data dimensions (1,2, . . . ,d), it performs one step of pair-
wise averaging and differencing for each one-dimensional row of array cells
along dimension k, for each k = 1, . . . ,d. (The results of earlier averaging
and differencing steps are treated as data values for larger values of k.) This
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Fig. 4.6 Non-standard decomposition in two dimensions. (a) Computing pairwise averages and differ-
ences and distributing them in the wavelet transform array. (b) Example decomposition of a 4×4 array.

process is then repeated recursively only on the quadrant containing averages
across all dimensions. One way of conceptualizing this procedure is to think
of a 2×2×·· ·×2(= 2d) hyper-box being shifted across the data array, per-
forming pairwise averaging and differencing, distributing the results to the
appropriate locations of the HWT array WA (with the averages for each box
going to the “lower-left” quadrant of WA) and, finally, recursing the compu-
tation on the lower-left quadrant of WA. This procedure is demonstrated pic-
torially for a (two-dimensional) 2 j× 2 j data array A in Figure 4.6(a). More
specifically, Figure 4.6(a) shows the pairwise averaging and differencing step
for one positioning of the 2× 2 box with its “root” (i.e., lower-left corner)
located at the coordinates [2i1,2i2] of A followed by the distribution of the
results in the wavelet transform array. This step is repeated for every possi-
ble combination of i j’s, i j ∈ {0, . . . ,2 j−1−1}. Finally , the process is recursed
only on the lower-left quadrant of WA (containing the averages collected from
all boxes).

Chakrabarti et al. [42] present an efficient nonstandard decomposition al-
gorithm that employs a “chunk-based” organization of R, where the joint-
frequency array AR is (conceptually) split into d-dimensional chunks, and tu-
ples of R belonging to the same chunk are stored contiguously on disk. (If R is
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not chunked, then an extra sorting step is required.) Their algorithm assumes
that each chunk can fit in memory, and uses the nonstandard methodology
described in Figure 4.6 to compute and distribute coefficients in the HWT ar-
ray in a recursive, “depth-first” fashion. The key observation here is that the
decomposition of the d-dimensional array AR can be computed by recursively
computing the full decomposition for each of the 2d quadrants of AR and then
performing pairwise averaging and differencing on the computed 2d quadrant
averages. Thus, the entire computation for decomposing a chunk can be per-
formed when the chunk is loaded from disk for the first time (hence no chunk
is read twice). Lower resolution coefficients are computed by first accumu-
lating, in main memory, averages from the 2d quadrants (generated from the
previous level of resolution) followed by pairwise averaging and differenc-
ing, thus requiring no extra I/O. The end result is a fairly simple recursive
algorithm for efficiently computing the nonstandard HWT [42]. Assuming a
relation R already stored in chunks, the algorithm of [42] only needs one pass
over the tuples of R; if R is not already chunked, then an extra sorting step is
needed, thus resulting in an I/O complexity that matches that of the standard
HWT algorithms in [284].

4.4.2 Multi-Dimensional HWT Coefficient Thresholding

L2 Error Thresholding. Modulo a simple normalization step, both the stan-
dard and nonstandard multi-dimensional HWT bases retain the orthonormal-
ity property. Thus, as in the one-dimensional case, Parseval’s theorem guar-
antees that retaining the B largest multi-dimensional HWT coefficients in ab-
solute normalized value is the optimal strategy for minimizing the overall L2

error in the data approximation [222, 276].
A potential issue with the multi-dimensional HWT is that, due to the re-

peated averaging and differencing of neighboring cells, the density of the
data (i.e., number of non-zero cells) continuously increases (by a factor as
high as O(logM)) during each pass of the decomposition process. Thus, the
decomposition algorithms have to process more and more entries during suc-
cessive passes, even though a large portion of the entries can be very small in
magnitude. To avoid this problem, Vitter and Wang [284] propose an adaptive
thresholding scheme that discards intermediate coefficient values in each pass
via an on-line learning process. (A similar technique is also used in [42].) The
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key idea is to dynamically maintain a cutoff value based on on-line statistics
on the distribution of intermediate coefficient values maintained during each
pass. Coefficients smaller than the cutoff are discarded on the fly. The cut-
off value is adjusted periodically as the statistics on the observed coefficient
values shifts. Despite its heuristic nature, this adaptive technique works quite
well in practice [42, 284].

Non-L2 Error Thresholding. There are very few known results on the
problem of effectively thresholding multi-dimensional Haar wavelets for non-
L2 error metrics. The basic DP approaches for restricted and unrestricted wa-
velet synopses (Sections 4.3.1.2 and 4.3.2) can be naturally extended to the
case of multi-dimensional data (based on the appropriate multi-dimensional
Haar-tree structures, e.g., Figure 4.4). However, the time and space complex-
ity of the dynamic program increase explosively with data dimensionality
rendering the approach inapplicable even for relatively small dimensionali-
ties (e.g., 2–5). For the restricted case, Garofalakis and Kumar [112] intro-
duce efficient approximation schemes based on approximate dynamic pro-
grams that explore a much smaller number of options than the optimal DP
formulation, while offering tunable ε-approximation guarantees for the final
target maximum-error metric.

4.4.3 Multi-Dimensional Range-Aggregate Query Estimation

For range-count aggregates, the observations and techniques discussed in the
case of one-dimensional data (Section 4.2.4) can be naturally extended to
the multi-dimensional case. In the case of the d-dimensional standard HWT
(where the Haar “tree” structure can conceptually be thought of as the cross-
product of the d one-dimensional Haar trees), a coefficient with value v at
location (i1, i2, . . . , id) contributes to the range-COUNT query A(l1 : h1, . . . , ld′ :
hd′) only if id′+1 = · · · = id = 0, and its contribution is given by the for-
mula [284]:

v ·
d′

∏
j=1

(|leftleaves j(i j, l j : h j)|− |rightleaves j(i j, l j : h j)|)×
d

∏
j=d′+1

M j,

where |leftleaves j(i j, l j : h j)| denotes the size of the intersection of the leaf
set in the left child subtree of coefficient i j (along dimension j) and the cor-
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Fig. 4.7 Processing relational query operators efficiently in the wavelet-coefficient domain (i.e., the
“down-then-right” execution path) [42].

responding one-dimensional query range [l j,h j] (with |rightleaves j(i j, l j :
h j)| defined similarly). Using this fact, it can be shown that, given a syn-
opsis comprising B standard HWT coefficients of A, the range-COUNT A(l1 :
h1, . . . , ld′ : hd′) can be estimated in time O(min{B,∏d′

i=1 Mi}) [284]. Similar
bounds and estimation algorithms can also be given for the case of the non-
standard decomposition, by exploiting the regular quadtree structure of the
nonstandard Haar tree (Figure 4.4).

4.5 Approximate Processing of General SQL Queries

We now turn our attention to techniques for fast approximate processing of
full-fledged SQL queries using wavelet synopses of data (thought of as re-
lations). Going beyond simple range aggregations, Chakrabarti et al. [42]
propose an approximate query processing algebra (which includes all con-
ventional aggregate and non-aggregate SQL operators, such as select,
project, join, sum, and average) that operates directly over the wave-
let synopses of relations, while guaranteeing the correct relational operator
semantics. Query processing algorithms for these operators work entirely in
the wavelet-coefficient domain — that is, their input(s) and output are sets of
wavelet coefficients (rather than relational tables). This allows for extremely
fast response times, since the approximate query execution engine can do the
bulk of its processing over compact wavelet synopses, essentially postpon-
ing the (expensive) expansion/rendering step into relational tuples until the
end-result of the query (Figure 4.7).

In the approximate query processing framework of [42], a HWT coef-
ficient is represented by a triple W = 〈R,S,v〉, where: (1) W.R is the d-
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dimensional support hyper-rectangle of W (represented by low and high
boundary values along each dimension); (2) W.S stores the coefficient sign
information for different regions of W.R, which can be captured by a 2-bit
sign vector (storing the sign value (+/−) for the low/high end of the coeffi-
cient range) plus the value where the sign changes, for each of the D dimen-
sions; and, (3) W.v is the (scalar) magnitude of the coefficient. Based on this
coefficient representation, the semantics of basic relational operators can be
defined in a natural manner.

Selection, Projection, and Join. Consider a selection operator over a wa-
velet synopsis (i.e., set of HWT coefficients) WT , selectpred(WT ), where
pred represents a generic conjunctive predicate on a subset of k ≤ d data
attributes. This select operator effectively filters out the portions of the
wavelet coefficients in the synopsis WT that do not overlap with the k-
dimensional selection range, and thus do not contribute to cells in the selected
hyper-rectangle [42]. Similarly, the projection operator projectXi1 ,...,Xik

(WT )
(where Xi1 , . . . ,Xik denote the k ≤ d projection attributes) effectively projects
out the remaining d − k dimensions for each coefficient support hyper-
rectangle and adjusts the coefficient’s magnitude by an appropriate multi-
plicative constant (to aggregate the contributions of array cells that are “pro-
jected out”) [42].

The most interesting operator in this approximate, wavelet-based rela-
tional algebra is probably the join, with the general form joinpred(WT1 ,WT2),
where T1 and T2 are (approximate) relations of dimensionality d1 and d2, re-
spectively, and pred is a conjunctive k-ary equi-join predicate of the form
(X1

1 = X2
1 )∧ . . .∧ (X1

k = X2
k ), where X i

j ( j = 1, . . . ,di) denotes the jth attribute
of Ti (i = 1,2). (Assuming, without loss of generality, that the join attributes
are the first k ≤min{d1,d2} attributes of each joining relation.) Note that the
result of the join operation is a set of (d1 +d2−k)-dimensional wavelet coef-
ficients; that is, the join operation returns coefficients of (possibly) different
dimensionality than any of its inputs.

To understand the join processing algorithm of [42], consider the multi-
dimensional joint-frequency arrays AT1 and AT2 corresponding to the join op-
erator’s input arguments. Let (i11, . . . , i

1
d1

) and (i21, . . . , i
2
d2

) denote the coordi-
nates of two cells belonging to AT1 and AT2 , respectively. If the indexes of the
two cells match on the join dimensions, i.e., i11 = i21, . . . , i

1
k = i2k , then the cell
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Fig. 4.8 Processing a join operation in the wavelet-coefficient domain.

in the join result array with coordinates (i11, . . . , i
1
d1

, i2k+1, . . . , i
2
d2

) is populated
with the product of the count values contained in the two joined cells. Since
the cell counts for ATi are derived by appropriately summing the contribu-
tions of the HWT coefficients in WTi and a numeric product can always be
distributed over summation, the join operator can be processed entirely in
the wavelet-coefficient domain by considering all pairs of coefficients from
WT1 and WT2 . Briefly, for any two coefficients from WT1 and WT2 that overlap
in the join dimensions, and, therefore, contribute to joining data cells, define
an output coefficient with magnitude equal to the product of the two joining
coefficients and a support hyper-rectangle with ranges that are (a) equal to the
overlap of the two coefficients for the k (common) join dimensions, and (b)
equal to the original coefficient ranges along any of the d1 +d2−2k remain-
ing dimensions [42]. The sign information for an output coefficient along any
of the k join dimensions is derived by appropriately multiplying the sign-
vectors of the joining coefficients along that dimension, taking care to ensure
that only signs along the overlapping portion are taken into account. (The sign
information along non-join dimensions remains unchanged.) An example of
this process in two dimensions (d1 = d2 = 2, k = 1) is depicted in Figure 4.8.

Aggregation. Most conventional aggregation operators, like count, sum,
and avg, can also be naturally processed over the wavelet-coefficient do-
main10 [42]. As before, the input to each aggregate operator is a set of wa-
velet coefficients WT . If the aggregation is not qualified with a GROUP-BY

10Like sampling and histograms, wavelet synopses are also inherently limited to trivial answers when it
comes to “extrema” aggregates (e.g., min or max).
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clause, then the output of the operator is a simple scalar value for the aggre-
gate. In the more general case, where a GROUP-BY clause over dimensions
D ′ = {X1, . . . ,Xk} has been specified, the output of the aggregate operator
consists of a k-dimensional array spanning the dimensions in D ′, whose en-
tries contain the computed aggregate value for each cell [42].

Rendering into Approximate Relations. The final step of a wavelet-based
approximate query processing plan is to render an output set WS of d-
dimensional wavelet coefficients into an approximate result relation (Fig-
ure 4.7). A naive, inefficient approach to rendering WS would simply consider
each cell in the multi-dimensional array AS and sum the contributions of every
coefficient in WS to that cell in order to obtain the corresponding tuple count.
A more efficient rendering algorithm (proposed in [42]) exploits the fact that,
since the number of coefficients in WS is typically much smaller than the
number of cells in AS, the result approximate array consists of large, contigu-
ous multi-dimensional regions, where all the cells contain the same count.
(In fact, because of the sparsity of the data, many of these regions will have
counts of 0.) Furthermore, the total number of such “uniform-count” regions
in AS is typically considerably smaller than the number of AS cells. Thus,
an efficient rendering algorithm can partition the multi-dimensional array AS,
one dimension at a time, into such uniform-count data regions and output
the (single) count value corresponding to each such region (the same for all
enclosed cells). In order to partition AS into uniform-count ranges along di-
mension i, the only points that should be considered are those where the cell
counts along i could potentially change. These are precisely the points where
a new coefficient’s support hyper-rectangle starts or ends, or the sign of the
coefficient’s contribution changes (along dimension i). The process can be
carried out efficiently using a priority queue for the coefficients in WS [42].

4.6 Additional Topics

We conclude this chapter with a discussion of wavelet-based synopses over
streaming data, techniques to optimize coefficient storage (e.g., for handling
multi-measure data sets or compressing the synopsis), and “hybrid” methods
combining features of both wavelets and histograms.
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4.6.1 Wavelets over Streaming Data

When dealing with streaming data, the goal is to continuously track a com-
pact synopsis of B wavelet coefficient values for a dynamic data vector A
that is rendered as a continuous stream of updates. Algorithms for this prob-
lem should satisfy the key small space/time requirements for streaming algo-
rithms; more formally, streaming wavelet algorithms should (ideally) guar-
antee (1) sublinear space usage (for storing a synopsis of the stream), (2)
sublinear per-item update time (to maintain the synopsis), and (3) sublinear
query time (to produce a, possibly approximate, wavelet summary), where
“sublinear” typically means polylogarithmic in the (large) domain size M.
The streaming wavelet summary construction problem has been examined
under two distinct data streaming models.

Wavelets in the Ordered Aggregate Model

The bulk of the results on wavelets over streaming data assumes the limited
ordered aggregate (or, time-series) model. Here, the entries of the input data
vector A are rendered over time in the increasing (or, decreasing) order of
the index domain values; this means, for instance, that A[0] (or, the set of all
updates to A[0]) is seen first, followed by A[1], then A[2], and so on. Thus,
the synopsis construction algorithm works with the datacube access model
but is essentially allowed only one pass over the A[i] entries and memory that
is significantly smaller than the size M of the data (typically in the order of
B or polylog(M)). Note that the algorithm for L2-optimal wavelet synopses
described in Section 4.2.3 is in fact such a streaming algorithm for time-
series data that uses O(B + logM) space and O(logM) processing time per
item [131].

For non-L2 error, Karras and Mamoulis [202] describe heuristic exten-
sions of their greedy maximum absolute/relative error algorithms (for the re-
stricted version of the problem) that operate in a single pass over the A[i] data
entries employing only O(B) memory. Their streaming methods work by dis-
carding a pair of coefficients for each arriving pair of data entries: As in the
static case, the pair is selected greedily (based on minimizing the maximum
potential error), but with the scope now limited to the already-built part of
the Haar tree. Through the use of appropriate data structures and auxiliary
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information, the time complexity of the algorithm is also shown to be O(B)
per stream element [202].

For the unrestricted case, Guha and Harb [135] observe that the com-
putation of their approximate DP algorithm (Section 4.3.2) can naturally be
performed in a streaming fashion over the entries of A, using the general
paradigm of “stream-and-merge” in a manner similar to the L2 streaming
algorithm in Section 4.2.3. The key observation is that, in order to com-
pute the error array E[i, ·, ·] at an internal node i, the algorithm only re-
quires knowledge of the error arrays in i’s two child nodes, E[2i, ·, ·] and
E[2i + 1, ·, ·]. For instance, in Figure 4.1, when A[0] arrives, the algorithm
computes the error array associated with that leaf node, say EA[0]. When A[1]
arrives, the error array EA[1] is computed, and immediately combined with
EA[0] to compute the error array E[4, ·, ·] for node c4, after which both EA[0]
and EA[1] are discarded. Proceeding in this manner, it is easy to see that, at
any point in time, there is at most one error array stored at each level of
the underlying Haar tree. This implies a streaming DP algorithm that em-
ploys the same space as the offline algorithm described in Section 4.3.2; for
instance, the streaming algorithm guarantees an approximation of the un-
restricted Lp-optimal Haar wavelet synopsis to within an additive error of
εαmax (where αmax = maxi{|A[i]|}) in time O( 1

ε2 M1+4/pB(min{B, logM})2)
and space O( 1

ε
M2/pBmin{B, logM} log(M/B)) (which is sublinear for p >

2) [135]. Analogous results hold for weighted and relative Lp error, as well
as maximum (L∞) error [135].

It is interesting to note that the unrestricted optimization of coefficient
values actually enables the above streaming DP computation: Error arrays
can be computed at each internal node i based on the estimated range R of
incoming values and value selections at the node (Section 4.3.2), and this
can be done independently of coefficient values at ancestors of i (which are
required in the optimal restricted dynamic program of [112]). Using this ob-
servation, Guha and Harb [135] also suggest a simpler, faster variant of their
unrestricted DP algorithm that offers a guaranteed additive-error approxima-
tion of the optimal restricted solution in the aggregate streaming model: The
key idea is to only consider at each internal node i the better of rounding up or
rounding down the coefficient value ci to the nearest multiples of the round-
ing step δ (rather than considering the entire range R). This simplification
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improves the running time by a factor of |R|, while guaranteeing an additive
error of εαmax over the optimal restricted wavelet synopsis [135].

Wavelets in the General Turnstile Model

As discussed in Chapter 3, the general turnstile streaming model allows up-
dates to the data vector A to appear in arbitrary order in the stream; at any
time point, the value of a vector entry is simply the aggregate of all updates
for that entry seen so far. I.e., each streaming update is a pair of the form
(i,±v), denoting a net change of ±v in the A[i] entry; that is, the effect of
the update is to set A[i]← A[i]±v. (The model naturally generalizes to multi-
dimensional data: for d data dimensions, each update ((i1, . . . , id),±v) effects
a net change of ±v on entry A[i1, . . . , id ].) The problem of maintaining an ac-
curate wavelet summary becomes significantly more complex when moving
to this much more general streaming model. For instance, Gilbert et al. [131]
prove a strong lower bound on the space requirements of the problem — their
result essentially shows that, for arbitrary data vectors rendered in the turn-
stile streaming model, nearly all of the data must be stored to recover the
exact top-B HWT coefficients.

In early work on incremental wavelet maintenance, Matias et al. [226]
consider the problem of maintaining the top-B HWT coefficients (i.e., an L2-
optimized Haar wavelet synopsis) in the presence of such turnstile updates to
the data. They observe that, given an update (i,∆(i)) to entry A[i], the value of
a coefficient c j ∈ path(A[i]) in the synopsis can be updated in constant time
using the simple formula

c j,new =

{
c j,old + ∆(i)

2logM−l( j) if A[i] ∈ leftleaves(c j)
c j,old− ∆(i)

2logM−l( j) if A[i] ∈ rightleaves(c j)
,

where l( j) denotes the level of resolution of coefficient c j. Still, a key prob-
lem is how to detect that a new coefficient becomes significant and needs to
enter the top-B synopsis (due to a shift in the underlying data distribution),
and what value should be assigned to this new coefficient given that it was not
monitored as part of the previous top-B collection. Matias et al. [226] propose
a solution based on a probabilistic counting technique [233]: Given an update
to A[i] that affects coefficient c j (i.e., c j ∈ path(A[i])), a coin is flipped with
a probability p( j) of heads. If the coin flip gives heads, then coefficient c j
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is set to a value v( j), and it replaces the smallest coefficient in the current
top-B synopsis. Intuitively, the idea is to set the parameters p( j) and v( j) so
that 1/p( j) corresponds to the (expected) number of updates needed at leaf
A[i] to bring the magnitude of coefficient c j from its initial value of zero to
|v( j)|. Based on the earlier formula, this gives p( j) = 1/(|v( j)| ·2logM−l( j)).
The value of parameter v( j) depends on both the current synopsis and the
position of the update; more specifically, the magnitude |v( j)| is heuristically
determined as a constant multiple of the minimum coefficient magnitude in
the synopsis, while the sign of the coefficient is a + (−) if the update occurs
in its left (resp., right) subtree [226]. This probabilistic counting heuristic
extends naturally to multi-dimensional wavelets and seems to perform ade-
quately in practice [226]; however, it cannot provide any guarantees on the
quality of the maintained synopsis.

More recent solutions for maintaining an L2-optimized wavelet synopsis
over turnstile data streams rely on randomized schemes that return only an
approximate synopsis comprising (at most) B Haar coefficients that is prov-
ably near-optimal (in terms of the underlying L2 error) assuming that the data
vector satisfies the “small-B property” (i.e., most of its energy is concentrated
in a small number of HWT coefficients) — this assumption is typically sat-
isfied for most real-life data distributions [131]. One of the key ideas is to
maintain a randomized AMS sketch [7], a broadly applicable stream synop-
sis structure comprising randomized linear projections of the streaming data
vector A. The AMS sketch and its applications are examined in detail in Chap-
ter 5; here, we just briefly outline some of its main properties in the context
of dynamic wavelet maintenance. An atomic AMS sketch of A is simply the
inner product 〈A,ξ 〉= ∑i A[i]ξ (i), where ξ denotes a random vector of four-
wise independent ±1-valued random variates. Such variates can be easily
generated on-line through standard pseudo-random hash functions ξ () using
only O(logM) space (for seeding) [7, 131]. To maintain this inner product
over the stream of updates to A, initialize a running counter X to 0 and set
X ← X ± vξ (i) whenever the update (i,±v) is seen in the input stream. An
AMS sketch of A comprises several independent atomic AMS sketches (i.e.,
randomized counters), each with a different random hash function ξ ().

It can be shown that, for any two M-vectors (say, A and B), if we let Z
denote the O(log(1/δ ))-wise median of O(1/ε2)-wise means of independent
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copies of the atomic AMS sketch product (∑i A[i]ξ j(i))(∑i B[i]ξ j(i)), then,
|Z−〈A,B〉| ≤ ε||A||2||B||2 with probability ≥ 1− δ [7, 6]. In other words,
using (lower-dimensional) AMS sketches comprising only O( log(1/δ )

ε2 ) (typ-
ically, � M) atomic counters we can approximate the vector inner product
〈A,B〉 to within ±ε||A||2||B||2 (hence, implying an ε-relative error estimate
for the squared L2 norm ||A||22).

The above property, in conjunction with the fact that Haar coefficients
of A are inner products of A with a fixed set of wavelet-basis vectors,
forms the key to developing efficient, approximate wavelet maintenance algo-
rithms in the turnstile model. Gilbert et al. [131] propose a solution (termed
“GKMS” in the remainder of our discussion) that focuses primarily on the
one-dimensional case. GKMS maintains an AMS sketch for the streaming
data vector A. To produce the approximate L2-optimized B-term representa-
tion, GKMS employs the constructed sketch of A to estimate the inner prod-
uct of A with all wavelet basis vectors, essentially performing an exhaustive
search over the space of all wavelet coefficients to identify important ones.
More formally, assuming that there is a B-coefficient approximate representa-
tion of the signal with energy at least η ||A||22 (“small B property”), the GKMS
algorithm uses a maintained AMS sketch to exhaustively estimate each Haar
coefficient and selects up to B of the largest coefficients (excluding those
whose square is less than ηε||A||22/B, where ε < 1 is the desired accuracy
guarantee). GKMS also uses techniques based on range-summable random
variables constructed using Reed-Muller codes to reduce or amortize the cost
of this exhaustive search by allowing the sketches of basis vectors (with po-
tentially large supports) to be computed more quickly. Summarizing, the key
result of [131] states that, assuming there exists a B-term representation with
energy at least η ||A||22, then, with probability at least 1−δ , the GKMS algo-
rithm finds a representation of at most B coefficients that captures at least
(1− ε)η of the signal energy ||A||22, using O(log2 M log(M/δ )B2/(ηε)2)
space and per-item processing time.

A potential problem lies in the query time requirements of the GKMS
algorithm: even with the Reed-Muller code optimizations, the overall query
time for discovering the top coefficients remains superlinear in M (i.e., at
least Ω( 1

ε2 M logM)), violating our third requirement on streaming schemes.
This also renders direct extensions of GKMS to multiple dimensions infeasi-
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ble since it implies an exponential explosion in query cost (requiring at least
O(M) = O(md) time to cycle through all coefficients in d dimensions). In
addition, the update cost of the GKMS algorithm is linear in the size of the
sketch since the whole data structure must be “touched” for each update. This
is problematic for high-speed data streams and/or even moderate sized sketch
synopses.

To address these issues, Cormode et al. [64] propose a novel solution that
relies on two key technical ideas. First, they work entirely in the wavelet do-
main: instead of sketching the original data entries, their algorithms sketch
the wavelet-coefficient vector WA as updates arrive. This avoids any need
for complex range-summable hash functions (i.e., Reed-Muller codes). Sec-
ond, they employ hash-based grouping in conjunction with efficient binary-
search-like techniques to enable very fast updates as well as identification of
important coefficients in polylogarithmic time.

• Sketching in the Wavelet Domain. The idea here is that it is pos-
sible to efficiently produce sketch synopses of the stream directly
in the wavelet domain; that is, the impact of each streaming up-
date can be translated on the relevant wavelet coefficients [64]. By
the linearity properties of the HWT and the earlier description, an
update to the data entries corresponds to only polylogarithmically
many coefficients in the wavelet domain. Thus, on receiving an
update to A, it can be directly converted to O(polylog(M)) updates
to the wavelet coefficients, and an approximate (sketch) represen-
tation of the wavelet coefficient vector WA can be maintained.
• Time-Efficient Updates and Large-Coefficient Searches. Sketch-

ing in the wavelet domain means that, at query time, an approxi-
mate representation of the wavelet-coefficient vector WA is avail-
able, and can be employed to identify all those coefficients that
are “large”, relative to the total energy of the data ‖WA‖2

2 = ‖A‖2
2.

While AMS sketches can provide such estimates (a point query is
just a special case of an inner product), querying remains much
too slow taking at least Ω( 1

ε2 M) time to find which of the M co-
efficients are the B largest. Instead, the schemes in [64] rely on
a divide-and-conquer or binary-search-like approach for finding
the large coefficients. This requires the ability to efficiently esti-
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b buckets

c subbuckets

x h(id(x))

t repetitions

f(x) +u   (x)ξ

Fig. 4.9 The GCS data structure: Element x is hashed (t times) to a bucket of groups (using
h(id(x))) and then a sub-bucket within the bucket (using f (x)), where an AMS counter is
updated.

mate sums-of-squares for groups of coefficients, corresponding to
dyadic subranges of the domain [0,M− 1]. Low-energy regions
can then be disregarded, recursing only on high-energy groups —
this guarantees no false negatives, as a group that contains a high-
energy coefficient will also have high energy as a whole.

The key to the solution of [64] is a hash-based probabilistic synopsis data
structure, termed Group-Count Sketch (GCS), that can estimate the energy of
fixed groups of elements from a vector W of size M under the turnstile stream-
ing model. This translates to several streaming L2-norm estimation problems
(one per group). A simple solution would be to keep an AMS sketch of each
group separately; however, there can be many (e.g., linear in M) groups, im-
plying space requirements that are O(M). Streaming updates should also be
processed as quickly as possible. The GCS synopsis requires small, sublinear
space and takes sublinear time to process each stream update item; more im-
portantly, a GCS can provide a high-probability estimate of the energy of a
group within additive error ε‖W‖2

2 in sublinear time. The GCS synopsis first
partitions items of w into their group using an id() function (which, in the
case of Haar coefficients, is trivial since it corresponds to fixed dyadic ranges
over [0,M− 1]), and then randomly maps groups to buckets using a hash
function h(). Within each bucket, a second stage of hashing of items to sub-
buckets is applied (using another hash function f ()), where each contains an
atomic AMS sketch counter in order to estimate the L2 norm of the elements
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in the bucket.11 As with most randomized estimation schemes, a GCS synop-
sis comprises t independent instantiations of this basic randomized structure,
each with independently chosen hash function pairs (h(), f ()) and ξ families
for the AMS estimator; during maintenance, a streaming update (x,u) is used
to update each of the t AMS counters corresponding to element x. (A picto-
rial representation of the GCS synopsis is shown in Figure 4.9.) To estimate
the energy of a group g, for each independent instantiation m = 1, . . . , t of
the bucketing structure, the squared values of all the AMS counters in the
sub-buckets corresponding to bucket hm(g) are summed, and then the median
of these t values is returned as the estimate. Summarizing, the analysis of
[64] demonstrates that the GCS can estimate the energy of item groups of the
vector w within additive error ε‖w‖2

2 with probability ≥ 1−δ using space of
O
( 1

ε3 log 1
δ

)
counters, per-item update time of O

(
log 1

δ

)
, and query time of

O
( 1

ε2 log 1
δ

)
.

To recover coefficients with large energy in the w vector, the algorithm
[64] employs a hierarchical search-tree structure on top of [0,M− 1]: Each
level in this tree structure induces a certain partitioning of elements into
groups (corresponding to the nodes at that level), and per-level GCS synopses
can be used to efficiently recover the high-energy groups at each level (and,
thus, quickly zero in on high-energy Haar coefficients). Using these ideas,
Cormode et al. [64] demonstrate that the accuracy guarantees of [131] can
be obtained using O(B3 logM

ε3η3 · log B logM
εηδ

) space, O(log2 M · log B logM
εηδ

) per item

processing time, and O( B3

ε3η3 · logM · log B logM
εηδ

) query time. In other words,
the GCS-based solution guarantees sublinear space and query time, as well as
per-item processing times that are sublinear in the size of the stream synopsis.
Their results also naturally extend to the multi-dimensional case [64].

Optimizing Non-L2 Error. To the best of our knowledge, there are no
known results on approximating (restricted or unrestricted) wavelet synopses
optimized for non-L2 error metrics in the turnstile streaming model. This
is a challenging problem that appears to mandate novel solution techniques,
as traditional sketch-based approaches are only useful in the discovery of
large-magnitude coefficients (concentrating a large portion of the data-vector

11Note that this second-level bucket structure essentially results in a “fast AMS” sketch (Section 5.3.3.1)
that is used for L2 estimation.
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energy).

4.6.2 Optimizing Coefficient Storage: Extended and Hierarchically-
Compressed Wavelet Synopses

Extended Wavelets. Massive complex tabular data sets with multiple mea-
sures (multiple numeric entries for each table cell) arise naturally in several
application domains, including OLAP environments and time-series analy-
sis/correlation systems. As an example, a corporate sales database may tab-
ulate, for each available product, (1) the number of items sold, (2) revenue
and profit numbers for the product, and (3) costs associated with the prod-
uct, such as shipping and storage costs. Similarly, real-life applications that
monitor continuous time-series typically have to deal with several readings
(measures) that evolve over time; for example, a network-traffic monitoring
system takes readings on each time-tick from a number of distinct elements,
such as routers and switches, in the underlying network and typically several
measures of interest need to be monitored (e.g., input/output traffic numbers
for each router or switch interface) even for a fixed network element.

Traditionally, two obvious strategies, termed Individual and Combined,
have been employed when adapting wavelet-based methods over such multi-
measure data sets [276]. The Individual algorithm performs the wavelet de-
composition on each of the individual measures, and stores the important
coefficients for each measure separately. On the other hand, the Combined
algorithm performs a joint wavelet decomposition on the multi-measure data
set by treating all the measures as a vector of values and, at the end, deter-
mines a subset of vectors of coefficient values to retain in the synopsis (e.g.,
based on the L2 norm of the coefficient vectors). As an example, Table 4.2
depicts the set of combined HWT coefficients for a data set with µ = 2 mea-
sures, where the values for the first measure (i.e., first vector row) are identical
to those in our first example array in Section 4.2.1, while the values for the
second measure (i.e., second row) are [4,6,3,5,2,8,3,3].

Such “obvious” Individual and Combined approaches can lead to poor
synopsis-storage utilization and suboptimal solutions even in very simple
cases [81]. Due to the nature of the wavelet decomposition and the possi-
ble correlations across different measures, there are many scenarios in which
multiple – but not necessarily all – wavelet coefficients at the same coor-
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Table 4.2 Example Combined Wavelet Decomposition.

dinates have large values, and are thus beneficial to retain, for instance, in
an L2-optimized synopsis. In such cases, the Individual algorithm essentially
replicates the storage of the shared coordinates multiple times, wasting valu-
able synopsis storage. The Combined algorithm, on the other hand, stores all
coefficient values sharing the same coordinates, thus wasting space by storing
small, unimportant values for certain measures. To address these shortcom-
ings, Deligiannakis et al. [81, 82] introduce the notion of an extended wavelet
coefficient as an efficient, flexible storage format for retaining any subset of
coefficient values. Briefly, an extended wavelet coefficient EC for a data set
with µ measures is defined as a triple EC = 〈C,β ,V 〉 consisting of: (1) The
coordinates C of the coefficient; (2) A bitmap β of size µ where the ith bit
denotes the existence or absence of a coefficient value for the ith measure;
and, (3) The set of stored coefficient values V . A key problem is then to con-
struct an extended-coefficient synopsis that optimizes the weighted sum of
L2-error norms across all µ measures; more formally, letting A j[i] denote the
ith data value for the jth measure, to goal is to select a synopsis S of extended
coefficients such that minimizes

µ

∑
j=1

(
w j×∑

i
(A j[i]− Â j[i])2

)
subject to the space constraint ∑

EC∈S
|EC| ≤B,

where |EC| denotes the space requirement of an extended coefficient EC.
By Parseval’s theorem, the above loss minimization problem is equivalent to
maximizing the total benefit of the coefficients selected in the synopsis S ,
where the benefit of the (normalized) ith coefficient for the jth measure c∗ji is
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exactly its weighted squared magnitude w j(c∗ji)
2 [81, 82]; that is, maximize

∑
EC=〈C,β ,V 〉∈S

(
∑

j,β ( j)=1
w j× (c∗ji)

2

)
under the constraint ∑

EC∈S
|EC| ≤ B.

Deligiannakis et al. [81, 82] design an optimal DP algorithm for solving
the above extended wavelet synopsis construction problem given the full se-
quence of combined wavelet coefficients for a multi-measure data set. A key
complication here arises from the storage dependencies across measures due
to the fact that the storage penalty for an extended coefficient’s “header” (i.e.,
the (coordinates, bitmap) information) is shared across all chosen coefficient
values. Thus, their solution relies on two mutually-recursive DP recurrences
that are tabulated in parallel to compute an optimal solution using O(MµB)
time and space. They also propose a simpler, faster greedy algorithm that
selects coefficient values for the synopsis based on their benefit-to-space ra-
tio, and requires only O(Mµ2 log(Mµ)) time and O(Mµ) space; furthermore,
they prove that their greedy solution is a min{2,1 + 1

B
MAX−1

} approximation
for the extended-coefficient benefit-maximization problem, where MAX is
the maximum space requirement for an extended coefficient (i.e., storing all
µ values) [81]. Finally, they discuss the extension of earlier results on non-L2

error minimization for single-measure data [110, 112] to the multi-measure
setting using the idea of Partial-Order DP over the µ measure dimensions,
as well as more efficient greedy heuristics for the problem [81].

In follow-up work, Guha et al. [138] make the crucial observation that
the DP solution only needs to decide the number p ∈ [0,µ] of values to store
for each combined coefficient, since the p values that rank highest in terms of
weighted benefit w j(c∗ji)

2 always give the highest benefit among all p-subsets.
This allows for a simpler and more efficient optimal DP solution that runs in
O(Mµ(log µ + logB)+µ2B2) time and O(µB+B2) space. Furthermore, they
propose an efficient O(Mµ(log µ + logB)) greedy strategy (also based on the
coefficient values’ benefit-to-space ratio) that guarantees a benefit that is no
less than that of the optimal solution while using only slightly more space
(B+MAX instead of B) [138].

Hierarchically-Compressed Wavelet Synopses. One of the key ideas of
extended wavelets is that the storage of coordinates for related coefficient val-
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Fig. 4.10 Example Haar-tree structure depicting two hierarchically-compressed coefficients.

ues can be effectively shared in order to improve the quality of wavelet syn-
opses for complex, multi-measure data. Sacharidis et al. [267] observe that
similar ideas can also be exploited across hierarchically-related coefficients
to effectively compress conventional, single-measure wavelet synopses. In a
nutshell, the idea is to store entire paths of wavelet coefficients using only
the coordinates of the bottom-most coefficient cbot on the path, along with
the set of coefficient values (ancestors of cbot) and a small bitmap indicating
the number of nodes on the stored path. A Hierarchically-Compressed Wave-
let Synopsis (HCWS) then comprises a set of such hierarchically-compressed
(HC) coefficients whose total storage requirements do not exceed a given
space budget B. As an example, Figure 4.10 depicts two hierarchically-
compressed coefficients over the Haar tree of a 16-entry data array —
the corresponding triples of (bottom-most coordinates, bitmap, {values})
are (11,11110,{−11,−5,−5.5,15.5,20}) and (15,110,{−18,−9,−4.5})
(where the last 0 entry in the bitmap acts as a stop bit).

By avoiding the explicit storage of coefficient coordinates, a HCWS can
allow more coefficient values to be stored for the given space budget, thus re-
sulting in potentially significant gains in accuracy. This is especially the case
for data sets with multiple spikes and discontinuities where the Haar-wavelet
differencing process across averages of neighboring regions can give multiple
hierarchically-nested coefficients with large values [267]. For the example in
Figure 4.10, assuming a coordinate and a coefficient value each require 32
bits, the two HC coefficients store 8 coefficient values requiring a total of 328
bits, which would only allow storing only 5 coefficient values in the tradi-
tional scheme — the difference in the respective L2 errors is also significant
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Fig. 4.11 Example Haar+-tree structure over a 4-element data array.

(over 60%). Sacharidis et al. [267] formulate and solve the problem of con-
structing an L2-optimal HCWS for a given space budget B. They propose an
optimal DP algorithm that employs two mutually-recursive DP arrays (sim-
ilar to the dynamic program in [81, 82]) computed over the Haar-tree struc-
ture in O(MB) time using O(M logB) space. Their work also proposes faster
approximation algorithms and greedy heuristics for the HCWS construction
problem, and discusses extensions to multi-dimensional and streaming data.

4.6.3 Histogram-Wavelet Hybrids: The Haar+ Tree

Hierarchical histogram synopses, such as lattice histograms (Section 3.4.3),
attempt to capture the underlying data distribution using a collection of his-
togram buckets defined on a hierarchical structure over the data domain.
Such hierarchical bucketing structures are clearly reminiscent of Haar wave-
let coefficients; there is, however, one key difference: a bucket can only con-
tribute positively to its descendants in the hierarchy. A more direct histogram-
wavelet hybrid that tries to reap the benefits of both summarization techniques
is the Haar+-tree synopsis proposed by Karras and Mamoulis [203].

Figure 4.11 depicts a simple one-dimensional Haar+ tree over a four-
element data vector. As in a conventional Haar tree, the root coefficient node
c0 contributes its value (with a positive sign) to all data values; however,
conventional Haar detail coefficient nodes have been replaced by coefficient
triads (denoted C1–C3). In each triad, the head (or, root) coefficient (c1, c4,
and c7) behaves as a conventional HWT detail coefficient: it contributes its
value positively to its left subtree and negatively to its right subtree; the other
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two, left and right supplementary coefficients in each triad (e.g., c2 and c3

in C1) contribute their value only positively in their corresponding support
interval. For instance, if a value for c3 is retained in the Haar+ synopsis, it
contributes positively in the reconstruction of A[2] and A[3]. (As noted in
[200], the Haar+ tree can be seen as a direct merger of Haar trees and the
Compact Hierarchical Histograms of Reiss et al. [264].)

The Haar+-tree structure has some interesting properties [203]: First, it
generalizes the traditional Haar tree, which is essentially a Haar+ tree with
all supplementary coefficients set to zero. Second, in a manner similar to
Haar trees, each data (i.e., leaf) node value A[i] is estimated through the
sum ∑c j∈path(A[i]) δi, jc j, where δi, j = −1 if (i− 1) mod 3 = 0 and A[i] ∈
rightleaves(c j), and δi, j = +1 otherwise. Finally, define the state of a
coefficient triad (ci,ci+1,ci+2) in a given Haar+ tree as a 4-element vector
[v,a,b,c], where v = ∑c j∈path(ci) δi, jc j is the reconstructed value from the root
up to (head) coefficient ci (i.e., the incoming value at ci), and a,b,c are the
values at ci, ci+1, and ci+2, respectively. It is easy to see that this triad state
produces the pair of incoming values v+a+b and v−a+c to its left and right
child triads, respectively. A first observation here is that a triad in a Haar+ tree
never needs to include both a non-zero head and a non-zero supplementary
coefficient: A non-zero head can always be “pushed down” to its children, by
transforming the state [v,a,b,c] to the equivalent state [v,0,b+a,c−a] (pro-
ducing exactly the same output). Similarly, a triad in the state [v,0,b,c] can
be reduced to the equivalent state [v+ b+c

2 , b−c
2 ,0,0] with the triad containing

only one non-zero coefficient, by “pushing up” the average b+c
2 to the parent

coefficient of the triad. Applying this transformation in a bottom-up fashion
over the Haar+-tree structure, allows the transformation of any Haar+ tree
H into an equivalent Haar+ tree H ′ (producing exactly the same data val-
ues), such that H ′ is at least as sparse as H (i.e., contains the same or smaller
number of non-zero coefficients) and every triad in H ′ contains at most one
non-zero coefficient [203].

The above analysis simplifies the search for error-optimal B-term Haar+-
tree representations, since it implies that the search only needs to consider at
most one non-zero coefficient in each triad of the optimal solution. Letting
E[i,b,v] denote the minimum error value at coefficient triad Ci with an in-
coming value of v and space b allocated to the subtree rooted at Ci, Karras
and Mamoulis [203] present a generalization of the unrestricted DP thresh-
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olding algorithm in Section 4.3.2 that can construct error-optimal Haar+-tree
synopses for a wide class of distributive error metrics (that include the var-
ious Lp-norm errors). A key result of [203] is an analysis of the Haar+-tree
structure that allows the effective delimitation of the search space for possible
incoming and coefficient values to a range of values bounded by a small con-
stant multiple of ∆ = maxi{A[i]}−mini{A[i]} (i.e., the range of underlying
data values). Using an analysis similar to that of Section 4.3.2, the Haar+-tree
DP algorithm is shown to run in time O((∆

δ
)2MB), where δ is small quantiza-

tion parameter that controls additive approximation error [203]. Extensions
of Haar+-tree synopses to multiple dimensions, as well as maximum-error
optimization techniques based on the dual (space-bounded) problem are dis-
cussed in [200].



5

Sketches

5.1 Introduction

Of all the methods for generating data synopses presented in this volume,
sketches have the shortest history, and consequently have had the least direct
impact on real systems thus far. Nevertheless, their flexibility and power sug-
gests that they will surely become a fixture in the next generation of tools and
systems for working with large data. Certainly, they have already had signif-
icant impact within various specialized domains that process large quantities
of structured data, in particular those that involve the streaming processing of
data.

The notion of streaming has been popularized within recent years to cap-
ture situations where there is one chance to view the input, as it “streams”
past the observer. For example, in processing financial data streams (streams
of stock quotes and orders), many such transactions are witnessed every sec-
ond, and a system must process these as they are seen, in real time, in order to
facilitate real time data analysis and decision making. Another example that
is closer to the motivating applications discussed so far is the sequence of up-
dates to a traditional database—insertions and deletions to a given relation—
which also constitute a stream to be processed. Streaming algorithms typi-

189



190 Sketches

x = vector
sketch

data
(as a column vector)

sketch matrix

Fig. 5.1 Schematic view of linear sketching

cally create a compact synopsis of the data which has been observed, which
is usually vastly smaller than the full data. Each update observed in the stream
potentially causes this synopsis to be modified, so that at any moment the syn-
opsis can be used to (approximately) answer certain queries over the original
data. This fits exactly into our model of approximate query processing: pro-
vided we have chosen the right synopsis, the summary becomes a tool for
AQP, in the same sense as a sample, or histogram or wavelet representation.

The earliest non-trivial streaming algorithms can be traced back to the
late 1970s and early 1980s, when “pass efficient” algorithms for finding the
median of a sequence and for finding the most frequently occurring items
in a sequence were proposed [234, 229]. However, the growth in interest in
streaming as a mechanism for coping with large quantities of data was stim-
ulated by some influential papers in the late 1990s [7, 167], resulting in an
explosion of work on stream processing in the first decade of the 21st Cen-
tury.

We restrict our focus in this chapter to a certain class of streaming sum-
maries known as sketches. This term has a variety of connotations, but in this
presentation we use it to refer to a summary where each update is handled in
the same way, irrespective of the history of updates. This notion is still rather
imprecise, so we distinguish an important subset of linear sketches. These
are data structures which can be represented as a linear transform of the in-
put. That is, if we model a relation as defining a vector or matrix (think of the
vector of discrete frequencies summarized by a histogram), then the sketch of
this is found by multiplying the data by a (fixed) matrix. This is illustrated in
Figure 5.1: a fixed sketch matrix multiplies the data (represented as a column
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vector) to generate the sketch (vector). Such a summary is therefore very flex-
ible: a single update to the underlying data (an insertion or deletion of a row
in the relational data example) has the effect of modifying a single entry in the
data vector. In turn, the sketch is modified by adding to the sketch the result
of applying the matrix to this change alone. This meets our requirement that
an update has the same impact irrespective of any previous updates. Another
property of linear sketches is that the sketch of the union of two relations can
be found as the (vector) sum of their corresponding sketches.

Any given sketch is defined for a particular set of queries. Queries are an-
swered by applying some (technique specific) procedure to a given sketch. In
what follows we will see a variety of different sketches. For some sketches,
there are several different query procedures that can be used to address dif-
ferent query types, or give different guarantees for the same query type.

We comment that the idea of sketches, and in particular the linear trans-
form view is not so very different from the summaries we have seen so far.
Many histogram representations with fixed bucket boundaries can be thought
of as linear transforms of the input. The Haar Wavelet Transform is also a
linear transform1. However, for compactness and efficiency of computation,
it is not common to explicitly materialize the (potentially very large) matrix
which represents the sketch transform. Instead, all useful sketch algorithms
perform a transform which is defined implicitly by a much smaller amount
of information, often via appropriate randomly chosen hash functions. This
is analogous to the way that a histogram transform is defined implicitly by
its bucket boundaries, and the HWT is defined implicitly by the process of
averaging and differencing.

5.2 Notation and Terminology

As in the preceding sections, we primarily focus on discrete data. We think
of the data as defining a multiset D over a domain U = {1,2, . . . ,M} so that
f (i) denotes the number of points in D having a value i ∈ U . These f (i)
values therefore represent a set of frequencies, and can also be thought of
as defining a vector f of dimension M = |U |. In fact, many of the sketches

1A key conceptual difference between the use of HWT and sketches is that the HWT is lossless, and
so requires additional processing to produce a more compact summary via thresholding, whereas the
sketching process typically provides data reduction directly.
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we will describe here also apply to the more general case where each f (i)
can take on arbitrary real values, and even negative values. We say that f is
“strict” when it can only take on non-negative values, and talk of the “general
case” when this restriction is dropped.

The sketches we consider, which were primarily proposed in the con-
text of streams of data, can be created from a stream of updates: think of
the contents of D being presented to the algorithm in some order. Following
Muthukrishnan [236], a stream updates is referred to as a “time-series” if the
updates arrive in sorted order of i; “cash-register” if they arrive in some ar-
bitrary order; and “turnstile” if items which have previously been observed
can subsequently been removed. “Cash-register” is intended to conjure the
image of a collection of unsorted items being rung up by a cashier in a super-
market, whereas “turnstile” hints at a venue where people may enter or leave.
Streams of updates in the time-series or cash-register models necessarily gen-
erate data in the strict case, whereas the turnstile model can provide strict or
general frequency vectors, depending on the exact situation being modeled.

These models are related to the datacube and relational models discussed
already: the cash-register and turnstile models, and whether they generate
strict or general distributions, can all be thought of as special cases of the
relational model. Meanwhile, the time-series model is similar to the datacube
model. Most of the emphasis in the design of streaming algorithms is on the
cash-register and turnstile models. For more details on models of streaming
computations, and on algorithms for streaming data generally, see some of
the surveys on the topic [236, 12, 106].

Modeling a relation being updated with insert or delete operations, the
number of rows with particular attribute values gives a strict turnstile model.
But if the goal is to summarize the distribution of the sum of a particular
attribute, grouped by a second attribute, then the general turnstile model may
be generated. In both cases, sketch algorithms are designed to correctly reflect
the impact of each update on the summary.

5.2.1 Simple Examples: Count, Sum, Average, Variance, Min and Max

Within this framework, perhaps the simplest example of a linear sketch com-
putes the cardinality of a multiset D: this value N is simply tracked exactly,
and incremented or decremented with each insertion into D or deletion from
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D respectively. The sum of all values within a numeric attribute can also be
sketched trivially by maintaining the exact sum and updating it accordingly.
These fit our definition of being a (trivial) linear transformation of the input
data. The average is found by dividing the sum by the count. Here, in ad-
dition to the maintenance of the sketch, it was also necessary to define an
operation to extract the desired query answer from the sketch (the division
operation). The sample variance of a frequency vector can also be computed
in a sketching fashion, by tracking the appropriate sums and sums of squared
values.

Considering the case of tracking the maximum value over a stream of
values highlights the restriction that linear sketches must obey. There is a
trivial streaming algorithm to find the maximum value of a sequence—just
remember the largest one seen so far. This is a sketch, in the sense that every
value is treated the same way, and the sketch maintenance process keeps the
greatest of these. However, it is clearly not a linear sketch. Note that any
linear sketch algorithm implicitly works in the turnstile model. But there can
be no efficient streaming algorithm to find the maximum in a turnstile stream
(where there are insertions and deletions to the dataset D): the best thing to do
is to retain f in its entirety, and report the greatest value i for which f (i) > 0.

5.2.2 Fingerprinting as sketching

As a more involved example, we describe an method to fingerprint a data set
D using the language of sketching. A fingerprint is a compact summary of
a multiset so that if two multisets are equal, then their fingerprints are also
equal; and if two fingerprints are equal then the corresponding multisets are
also equal with high probability (where the probability is over the random
choices made in defining the fingerprint function). Given a frequency vector
f , one fingerprint scheme computes a fingerprint as

h( f ) =
M

∑
i=1

f (i)α i mod p

where p is a prime number sufficiently bigger than M, and α is a value chosen
randomly at the start. We observe that h( f ) is a linear sketch, since it is a
linear function of f . It can easily be computed in the cash register model,
since each update to f (i) requires adding an appropriate value to h( f ) based
on computing α i and multiplying this by the change in f (i) modulo p.
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The analysis of this procedure relies on the fact that a polynomial of de-
gree d can have at most d roots (where it evaluates to zero). Testing whether
two multisets D and D′ are equal, based on the fingerprints of their corre-
sponding frequency vectors, h( f ) and h( f ′), is equivalent to testing the iden-
tity h( f )− h( f ′) = 0. Based on the definition of h, if the two multisets are
identical then the fingerprints will be identical. But if they are different and
the test still passes, the fingerprint will give the wrong answer. Treating h()
as a polynomial in α , h( f )−h( f ′) has degree no more than M: so there can
only be M values of α for which h( f )−h( f ′) = 0. Therefore, if p is chosen to
be at least M/δ , the probability (based on choosing a random α) of making
a mistake is at most δ , for a parameter δ . This requires the arithmetic opera-
tions to be done using O(logM + log1/δ ) bits of precision, which is feasible
for most reasonable values of M and δ .

Such fingerprints have been used in streaming for a variety of purposes.
For example, Yi et al. [294] employ fingerprints within a system to verify
outsourced computations over streams.

5.2.3 Comparing Sketching with Sampling

These simple examples seem straightforward, but they serve to highlight the
difference between the models of data access assumed by the sketching pro-
cess. We have already seen that a small sample of the data can only estimate
the average value in a data set, whereas this “sketch” can find it exactly. But
this is due in part to a fundamental difference in assumptions about how the
data is observed: the sample “sees” only those items which were selected to
be in the sample whereas the sketch “sees” the entire input, but is restricted
to retain only a small summary of it. Therefore, to build a sketch, we must
either be able to perform a single linear scan of the input data (in no particular
order), or to “snoop” on the entire stream of transactions which collectively
build up the input. Note that many sketches were originally designed for com-
putations in situations where the input is never collected together in one place
(as in the financial data example), but exists only implicitly as defined by the
stream of transactions.

Another way to understand the difference in power between the models of
sampling and streaming is to observe that it is possible to design algorithms
to draw a sample from a stream (see Section 2.7.4), but that there are queries
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that can be approximated well by sketches that are provably impossible to
compute from a sample. In particular, we will see a number of sketches to
approximate the number of distinct items in a relation (Section 5.4), whereas
no sampling scheme can give such a guarantee (Section 2.6.2). Similarly,
we saw that fingerprinting can accurately determine whether two relations
are identical, whereas unless every entry of two relations is sampled, it is
possible that the two differ in the unsampled locations. Since the streaming
model can simulate sampling, but sampling cannot simulate streaming, the
streaming model is strictly more powerful in the context of taking a single
pass through the data.

5.2.4 Properties of Sketches

Having seen these simple examples, we now formalize the main properties of
a sketching algorithm.

• Queries Supported. Each sketch is defined to support a certain set
of queries. Unlike samples, we cannot simply execute the query on
the sketch. Instead, we need to perform a (possibly query specific)
procedure on the sketch to obtain the (approximate) answer to a
particular query.

• Sketch Size. In the above examples, the sketch is constant size.
However, in the examples below, the sketch has one or more pa-
rameters which determine the size of the sketch. A common case
is where parameters ε and δ are chosen by the user to determine
the accuracy (approximation error) and probability of exceeding
the accuracy bounds, respectively.

• Update Speed. When the sketch transform is very dense (i.e. the
implicit matrix which multiplies the input has very few zero en-
tries), each update affects all entries in the sketch, and so takes
time linear in the sketch size. But typically the sketch transform
can be made very sparse, and consequently the time per update
may be much less than updating every entry in the sketch.

• Query Time. As noted, each sketch algorithm has its own pro-
cedure for using the sketch to approximately answer queries. The
time to do this also varies from sketch to sketch: in some cases it
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Fig. 5.2 Bloom Filter with k = 3, m = 12

is linear (or even superlinear) in the size of the sketch, whereas in
other cases it can be much less.

• Sketch Initialization. By requiring the sketch to be a linear trans-
formation of the input, sketch initialization is typically trivial: the
sketch is initialized to the all-zeros vector, since the empty input
is (implicitly) also a zero vector. However, if the sketch transform
is defined in terms of hash functions, it may be necessary to ini-
tialize these hash functions by drawing them from an appropriate
family.

5.2.5 Sketching Sets with Bloom Filters

As a more complex example, we briefly discuss the popular Bloom Filter as
an example of a sketch. A Bloom filter, named for its inventor [24], is a com-
pact way to represent a subset S of a domain U . It consists of a binary string
B of length m < M initialized to all zeros, and k hash functions h1 . . .hk, which
each independently map elements of U to {1,2, . . .m}. For each element i in
the set S, the sketch sets B[h j(i)] = 1 for all 1≤ j ≤ k. This is shown in Fig-
ure 5.2: an item i is mapped by k = 3 hash functions to a filter of size m = 12,
and these entries are set to 1. Hence each update takes O(k) time to process.

After processing the input, it is possible to test whether any given i is
present in the set: if there is some j for which B[h j(i)] = 0, then the item
is not present, otherwise it is concluded that i is in S. From this description,
it can be seen that the data structure guarantees no false negatives, but may
report false positives.

Analysis of the Bloom Filter. The false positive rate can be analyzed as a
function of |S| = n, m and k: given bounds on n and m, optimal values of k
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can be set. We follow the outline of Broder and Mitzenmacher [26] to derive
the relationship between these values. For the analysis, the hash functions are
assumed to be fully random. That is, the location that an item is mapped to
by any hash function is viewed as being uniformly random over the range of
possibilities, and fully independent of the other hash functions. Consequently,
the probability that any entry of B is zero after n distinct items have been seen
is given by

p′ =
(
1− 1

m

)kn

since each of the kn applications of a hash function has a (1− 1
m) probability

of leaving the entry zero.
A false positive occurs when some item not in S hashes to locations in B

which are all set to 1 by other items. This happens with probability (1−ρ)k,
where ρ denotes the fraction of bits in B that are set to 0. In expectation, ρ is
equal to p′, and it can be shown that ρ is very close to p′ with high probability.
Given fixed values of m and n, it is possible to optimize k, the number of hash
functions. Small values of k keep the number of 1s lower, but make it easier
to have a collision; larger values of k increase the density of 1s. The false
positive rate is approximated well by

f = (1− e−kn/m)k = exp(k ln(1− ekn/m))

for all practical purposes. The smallest value of f as a function of k is given by
minimizing the exponent. This in turn can be written as −m

n ln(p) ln(1− p),
for p = e−kn/m, and so by symmetry, the smallest value occurs for p = 1

2 .
Rearranging gives k = (m/n) ln2.

This has the effect of setting the occupancy of the filter to be 0.5, that is,
half the bits are expected to be 0, and half 1. This causes the false positive
rate to be f = (1/2)k = (0.6185)m/n. To make this probability at most a small
constant, it is necessary to make m > n. Indeed, setting m = cn gives the false
positive probability at 0.6185c: choosing c = 9.6, for example, makes this
probability less than 1%.

Bloom Filter viewed as a sketch. In this form, we consider the Bloom
filter to be a sketch, but it does not meet our stricter conditions for being
considered as a linear sketch. In particular, the data structure is not a linear
transform of the input: setting a bit to 1 is not a linear operation. We can
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modify the data structure to make it linear, at the expense of increasing the
space required. Instead of a bitmap, the Bloom filter is now represented by
an array of counters. When adding an item, we increase the corresponding
counters by 1, i.e. B[h j(i)]← B[h j(i)]+1. Now the transform is linear, and so
it can process arbitrary streams of update transactions (including removals of
items). The number of entries needed in the array remains the same, but now
the entries are counters rather than bits.

One limitation when trying to use the Bloom Filter to describe truly large
data sets is that the space needed is proportional to n, the number of items
in the set S being represented. Within many approximate query processing
scenarios, this much space may not be practical, so instead we look for more
compact sketches. These smaller space sketches will naturally be less power-
ful than the Bloom filter: when using a datastructure that is sublinear in size
(i.e. o(n)) we should not expect to be accurately answer all set-membership
queries, even allowing for false positives and false negatives.

5.3 Frequency Based Sketches

In this Section, we present a selection of sketches which solve a variety of
problems related to estimating functions of the frequencies, f (i). Our presen-
tation deliberately does not follow the chronological development of these
sketches. Instead, we provide the historical context later in the section. We
first define each sketch and the basic properties. In later sections, we study
them in greater detail for approximate query answering.

5.3.1 Count-Min Sketch

The Count-Min sketch is so-called because of the two main operations used:
counting of groups of items, and taking the minimum of various counts to
produce an estimate [70]. It is most easily understood as keeping a compact
array C of d×w counters, arranged as d rows of length w. For each row a
hash function h j maps the input domain U = {1,2, . . . ,M} uniformly onto
the range {1,2, . . . ,w}. The sketch C is then formed as

C[ j,k] = ∑
1≤i≤M:h j(i)=k

f (i)



5.3. Frequency Based Sketches 199

+c

+c

+c

hd

+c1

i

h

Fig. 5.3 Count-Min sketch data structure with w = 9 and d = 4

That is, the kth entry in the jth row is the sum of frequencies of all items
i which are mapped by the jth hash function to value k. This leads to an
efficient update algorithm: for each update to item i, for each 1≤ j≤ d, h j(i)
is computed, and the update is added to entry C[ j,h j(i)] in the sketch array.
Processing each update therefore takes time O(d), since each hash function
evaluation takes constant time. Figure 5.3 shows this process: an item i is
mapped to one entry in each row j by the hash function h j, and the update of
c is added to each entry.

The sketch can be used to estimate a variety of functions of the frequency
vector. The primary function is to recover an estimate of f (i), for any i. Ob-
serve that for it to be worth keeping a sketch in place of simply storing f
exactly, it must be that wd is much smaller than M, and so the sketch will
necessarily only approximate any f (i). The estimation can be understood as
follows: in the first row, it is the case that C[1,h1(i)] includes the current value
of f (i). However, since w�M, there will be many collisions under the hash
function h1, so that C[1,h1(i)] also contains the sum of all f (i′) for i′ that
collides with i under h1. Still, if the sum of such f (i′)s is not too large, then
this will not be so far from f (i).

In the strict case, all these f (i′)s are non-negative, and so C[1,h1(i)] will
be an overestimate for f (i). The same is true for all the other rows: for each j,
C[ j,h j(i)] gives an overestimate of f (i), based on a different set of colliding
items. Now, if the hash functions are chosen at random, the items will be dis-
tributed uniformly over the row. So the expected amount of “noise” colliding
with i in any given row is just ∑1≤i′≤M,i′ 6=i f (i′)/w, a 1/w fraction of the total
count. Moreover, by the Markov inequality [233, 230], there is at least a 50%
chance that the noise is less than twice this much. Here, the probabilities arise
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due to the random choice of the hash functions. If each row’s estimate of f (i)
is an overestimate, then the smallest of these will be the closest to f (i). By
the independence of the hash functions, it is now very unlikely that this es-
timate has error more than 2∑1≤i′≤M f (i′)/w: this only happens if every row
estimate is “bad”, which happens with probability at most 2−d .

Rewriting this, if we pick w = 2/ε and d = log1/δ , then our estimate of
f (i) has error at most εN with probability at least 1−δ . Here, we write N =
∑1≤i′≤M f (i′) as the sum of all frequencies—equivalently, the number of rows
in the defining relation if we are tracking the cardinality of attribute values.
The estimate is simply f̂ (i) = mind

j=1C[ j,h j(i)]. Producing the estimate is
quite similar to the update procedure: the sketch is probed in one entry in
each row (as in Figure 5.3). So the query time is the same as the update time,
O(d).

5.3.1.1 Perspectives on the Count-Min sketch

At its core, the Count-Min sketch is quite simple: just arrange the input items
into groups, and compute the net frequency of the group. As such, we can
think of it as a histogram with a twist: first, randomly permute the domain,
then create an equi-width histogram with w buckets on this new domain. This
is repeated for d random permutations. Query answering to estimate a single
f (i) is to find all the histogram buckets the item i is present in, and take the
smallest of these. Viewed from another angle, the sketch can also be viewed
as a small space, counting version of a Bloom filter [26, 57].

In this presentation, we omit detailed discussion of some of the technical
issues surrounding the summary. For example, for the analysis, the hash func-
tions are required to be drawn from a family of pairwise independent func-
tions. However this turns out to be quite a weak condition: such functions are
very simple to construct, and can be evaluated very quickly indeed [39, 280].
The estimator described is technically biased, in the statistical sense: it never
underestimates but may overestimate, and so is not correct in expectation.
However, it is straightforward to modify the estimator to be unbiased, by
subtracting an appropriate quantity from the estimate. Heuristically, we can
estimate the count of some “dummy” items such as f (M + 1) whose “true
count” should be zero to estimate the error in the estimation [193]. We dis-
cuss the variant estimators in more detail in 5.3.5.3.
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Lastly, the same sketch can also be used when the stream is general, and
so can contain some items with negative frequencies. In this case, the sketch
can be built in the same way, but now it is not correct to take the smallest
row estimate as the overall estimate: this could be far from the true value if,
for example, all the f (i) values are negative. Instead, one can take the me-
dian of the row estimates, and apply the following general “Chernoff bounds
argument”.

Chernoff Bounds Argument. Suppose there are multiple independent
copies of an estimator, each of which is a “good” estimate of a desired
quantity with at least a constant probability (although it’s not possible to tell
whether or not an estimate is good just by looking at it). The goal is to com-
bine these to make an estimate which is “good” with high probability. A stan-
dard technique is to take the median of enough estimates to reduce the error.
Although it is not possible to determine which estimates are good or bad,
sorting the estimates by value will place all the “good” estimates together in
the middle, with “bad” estimates above and below (too low or too high). Then
the only way that the median estimate can be bad is if more than half of the
estimates are bad, which is unlikely. In fact, the probability of returning a bad
estimate is now exponentially small in the number of estimates.

The proof makes use of a Chernoff bound. Assume that each estimate
is good with probability at least 7/8. The outcome of each estimate is an
independent random event, so in expectation only 1/8 of the estimates are
bad. So the final result is only bad if the number of bad events exceeds it
expectation by a factor of 4. Set the number of estimates to be 4ln1/δ for
some desired small probability δ . The Chernoff bound (slightly simplified)
in this situation states that if X is the sum of independent Poisson trials, then
for 0 < ρ ≤ 4,

Pr[X > (1+ρ)E[X ]] < exp(−E[X ]ρ2/4).

See [233] for a derivation of this bound. Since each estimate is indeed an
independent Poisson trial, then this setting is modeled with ρ = 3 and E[X ] =
1
2 ln1/δ . Hence,

Pr[X > 2log1/δ ] < exp(−9/8ln1/δ ) < δ
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Fig. 5.4 Count Sketch data structure with w = 9 and d = 4

This implies that the taken the median of O(log1/δ ) estimates reduces the
probability of finding a bad final estimate to δ .

5.3.2 Count Sketch

The Count-Sketch [45] is similar to the Count-Min sketch, in that it can pro-
vide an estimate for the value of any individual frequency. The main differ-
ence is the nature of the accuracy guarantee provided for the estimate. Indeed,
we can present the Count Sketch by using exactly the same sketch building
procedure as the Count-Min sketch, so that the only difference is in the esti-
mation procedure.

Now, given the Count-Min sketch data structure built on the stream, the
row estimate of f (i) for row j is computed based on two buckets: h j(i), the
bucket which contains f (i), and also

h′j(i) =

{
h j(i)−1 if h j(i) mod 2 = 0

h j(i)+1 if h j(i) mod 2 = 1

which is an adjacent bucket 2. So if h j(i) = 3 then h′j(i) = 4, while if
h j(i) = 6 then h′j(i) = 5. The row estimate is then C[ j,h j(i)]−C[ j,h′j(i)].
Here, we assume that w, the length of each row in the sketch, is even.

The intuition for this estimate comes from considering all the “noise”
items which collide with i: the distribution of such items in the h j(i)th entry
of row j should look about the same as the distribution in the h′j(i)th entry,
and so in expectation, these will cancel out, leaving only f (i). More strongly,

2Equivalently, this can also be written as [h′j(i) = h j(i)+(h j(i) mod 2)− (h j(i)+1 mod 2)
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one can formally prove that this estimator is unbiased. Of course, the estima-
tor still has variance, and so does not guarantee the correct answer. But this
variance can be analyzed, and written in terms of the sum of squares of the
items, F2 = ∑

M
i=1 f (i)2. It can be shown that the variance of the estimator is

bounded by O(F2/w). As a result, there is constant probability that each row
estimate is within

√
F2/w of f (i). Now by taking the median of the d row

estimates, the probability of the final estimate being outside these bounds
shrinks to 2−O(d). Rewriting, if the parameters are picked as d = O(log1/δ )
and w = O(1/ε2), the sketch guarantees to find an estimate of f (i) so that the
error is at most ε

√
F2 with probability at least 1−δ .

In fact, this sketch can be compacted further. Observe that whenever a row
estimate is produced, it is found as either C[ j,2k−1]−C[ j,2k] or C[ j,2k]−
C[ j,2k−1] for some (integer) k. So rather than maintaining C[ j,2k−1] and
C[ j,2k] separately, it suffices to keep this difference in a single counter. This
can be seen by maintaining separate hash functions g j which maps all items
in U = {1,2, . . . ,M} uniformly onto {−1,+1}. Now the sketch is defined
via

C[ j,k] = ∑
1≤i≤M:h j(i)=k

g j(i) f (i).

This meets the requirements for a linear sketch, since it is a linear function of
the f vector. It can also be computed in time O(d): for each update to item i,
for each 1 ≤ j ≤ d, h j(i) is computed, and the update multiplied by g j(i) is
added to entry C[ j,h j(i)] in the sketch array. The row estimate for f (i) is now
g j(i) ∗C[ j,h j(i)]. It can be seen that this version of the sketch is essentially
equivalent to the version described above, and indeed all the properties of the
sketch are the same, except that w can be half as small as before to obtain the
same accuracy bounds. This is the version that was originally proposed in the
2002 paper [45]. An example is shown in Figure 5.4: an update is mapped
into one entry in each row by the relevant hash function, and multiplied by
a second hash function g. The figure serves to emphasize the similarities be-
tween the Count Sketch and Count-Min sketch: the main difference arises in
the use of the g j functions.
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5.3.2.1 Refining Count-Sketch and Count-Min Sketch guarantees

We have seen that the Count-Sketch and Count-Min sketch both allow f (i) to
be approximated via somewhat similar data structures. They differ in provid-
ing distinct space/accuracy trade-offs: the Count sketch gives ε

√
F2 error with

O(1/ε2) space, whereas the Count-Min sketch gives εN error with O(1/ε)
space. In general, these bounds cannot be compared: there exist some fre-
quency vectors where (given the same overall space budget) one guarantee
is preferable, and others where the other dominates. Indeed, various experi-
mental studies have shown that over real data it is not always clear which is
preferable [65].

However, a common observation from empirical studies is that these
sketches give better performance than their worst case guarantees would
suggest. This can be explained in part by a more rigorous analysis. Most
frequency distributions seen in practice are skewed: there are a few items
with high frequencies, while most have low frequencies. This phenomenon is
known by several names, such as Pareto, Zipfian, and long tailed distributions.
For both Count Sketch and Count-Min sketch, a skewed distribution helps es-
timation: when estimating a frequency f (i), it is somewhat unlikely that any
of the few high frequency items will collide with i under h j —certainly it is
very unlikely that any will collide with i in a majority of rows. So it is possi-
ble to separate out some number k of the most frequent items, and separately
analyze the probability that i collides with them. The probability that these
items affect the estimation of f (i) can then be bounded by δ . This leaves
only a “tail” of lower frequency items, which still collide with i with uniform
probability, but the net effect of this is lower since there is less “mass” in the
tail. Formally, let fi denote the ith largest frequency in f , and let

F res(k)
1 =

M

∑
i=k+1

fi and F res(k)
2 =

M

∑
i=k+1

f 2
i

denote the sum and the sum of squares of all but the k largest frequencies. As
a result, we can bound the error in the sketch estimates in terms of F res(k)

1 /w

and
√

F res(k)
2 /w for the Count-Min and Count sketch respectively, where k =

O(w) [45, 71].
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5.3.3 The AMS Sketch

The AMS sketch was first presented in the work of Alon, Matias and
Szegedy [7]. It was proposed to solve a different problem, to estimate the
value of F2 of the frequency vector, the sum of the squares of the frequen-
cies. Although this is straightforward if each frequency is presented in turn, it
becomes more complex when the frequencies are presented implicitly, such
as when the frequency of an item is the number of times it occurs within a
long, unordered, stream of items. Estimating F2 may seem like a somewhat
obscure goal in the context of approximate query processing. However, it has
a surprising number of applications. Most directly, F2 equates to the self-join
size of the relation whose frequency distribution on the join attribute is f (for
an equi-join). The AMS sketch turns out to be highly flexible, and is at the
heart of estimation techniques for a variety of other problems which are all
of direct relevance to AQP.

5.3.3.1 AMS Sketch for Estimating F2

We again revert to the sketch data structure of the Count-Min sketch as the
basis of the AMS sketch, to emphasize the relatedness of all these sketch
techniques. Now each row is used in its entirety to make a row estimate of F2

as
w/2

∑
k=1

(C[ j,2k−1]−C[ j,2k])2.

Expanding out this expression in terms of f (i)s, it is clear that the resulting
expression includes ∑

M
i=1 f (i)2 = F2. However, there are also a lot of cross

terms of the form ±2 f (i) f (i′) for i 6= i′ such that either h j(i) = h j(i′) or
|h j(i)−h j(i′)|= 1. That is, we have errors due to cross terms of frequencies
of items placed in the same location or adjacent locations by h j. Perhaps
surprisingly, the expected contribution of these cross terms is zero. There are
three cases to consider for each i and i′ pair: (a) they are placed in the same
entry of the sketch, in which case they contribute 2 f (i) f (i′) to the estimate;
(b) one is placed in the 2kth entry and the other in the 2k− 1th, in which
case they contribute −2 f (i) f (i′) to the estimate; or (c) they are not placed in
adjacent entries and so contribute 0 to the estimate. Due to the uniformity of
h j, cases (a) and (b) are equally likely, so in expectation (over the choice of
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h j) the expected contribution to the error is zero.
Of course, in any given instance there are some i, i′ pairs which contribute

to the error in the estimate. However, this can be bounded by studying the
variance of the estimator. This is largely an exercise in algebra and apply-
ing some inequalities (see [281, 7] for some details). The result is that the
variance of the row estimator can be bounded in terms of O(F2

2 /w). Conse-
quently, using the Chebyshev inequality [233], the error is at most F2/

√
w

with constant probability. Taking the median of the d rows reduces the prob-
ability of giving a bad estimate to 2−O(d), by the Chernoff bounds argument
outlined above.

As in the Count-Sketch case, this sketch can be “compacted” by observ-
ing that it is possible to directly maintain C[ j,2k− 1]−C[ j,2k] in a single
entry, by introducing a second hash function g j which maps U uniformly
onto {−1,+1}. Technically, a slightly stronger guarantee is needed on g j:
because the analysis studies the variance of the row estimator, which is based
on the expectation of the square of the estimate, the analysis involves looking
at products of the frequencies of four items and their corresponding g j val-
ues. To bound this requires g j to appear independent when considering sets
of four items together: this adds the requirement that g j be four-wise indepen-
dent. This condition is slightly more stringent than the pairwise independence
needed of h j.

Practical Considerations for Hashing. Although the terminology of pair-
wise and four-wise independent hash functions may be unfamiliar, they
should not be thought of as exotic or expensive. A family of pairwise in-
dependent hash functions is given by the functions h(x) = ax+b mod p for
constants a and b chosen uniformly between 0 and p−1, where p is a prime.
Over the random choice of a and b, the probability that two items collide
under the hash function is 1/p. Similarly, a family of four-wise independent
hash functions is given by h(x) = ax3 +bx2 +cx+d mod p for a,b,c,d cho-
sen uniformly from [p] with p prime. As such, these hash functions can be
computed very quickly, faster even than more familiar (cryptographic) hash
functions such as MD5 or SHA-1. For scenarios which require very high
throughput, Thorup has studied how to make very efficient implementations
of such hash functions, based on optimizations for particular values of p, and
partial precomputations [280, 281].
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Consequently, this sketch can be very fast to compute: each update re-
quires only d entries in the sketch to be visited, and a constant amount of
hashing work done to apply the update to each visited entry. The depth d
is set as O(log1/δ ), and in practice this is of the order of 10-30, although
empirically d can be set as low as 3 or 4 without any obvious problem [65].

AMS sketch with Averaging versus Hashing. In fact, the original descrip-
tion of the AMS sketch gave an algorithm the was considerably slower: the
original AMS sketch was essentially equivalent to the sketch we have de-
scribed with w = 1 and d = O(ε−2 log1/δ ). Then the mean of O(ε−2) en-
tries of the sketch was taken, to reduce the variance, and the final estimator
found as the median of O(log1/δ ) such independent estimates. We refer to
this as the “averaging version” of the AMS sketch. This estimator has the
same space cost as the version we present here, which was the main objective
of [7]. The faster version, based on the “hashing trick” is sometimes referred
to as “fast AMS” to distinguish it from the original sketch, since each update
is dramatically faster.

Historical Notes. Historically, the AMS Sketch [7] was the first to be pro-
posed as such in the literature, in 1996. The “Random Subset Sums” tech-
nique can be shown to be equivalent to the AMS sketch for estimating single
frequencies [130]. The Count-Sketch idea was presented first in 2002. Cru-
cially, this seems to be the first work where it was shown that hashing items
to w buckets could be used instead of taking the mean of w repetitions of a
single estimator, and that this obtains the same accuracy. Drawing on this, the
Count-Min sketch was the first to obtain a guarantee in O(1/ε) space, albeit
for an F1 instead of F2 guarantee [70]. Applying the “hashing trick” to the
AMS sketch make it very fast to update seems to have been discovered in
parallel by several people. Thorup and Zhang were among the first to publish
this idea [281], and an extension to inner-products appeared in [63].

5.3.4 Approximate Query Processing with Frequency Based Sketches

Now that we have seen the definitions and basic properties of the Count-Min
Sketch, Count-Sketch and AMS Sketch, we go on to see how they can be
applied to approximate the results of various aggregation queries.
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5.3.4.1 Point Queries and Heavy Hitters

Via Count-Min and Count Sketch, we have two mechanisms to approximate
the frequency of any given item i. One has accuracy proportional to εN, the
other proportional to ε

√
F2. To apply either of these, we need to have in mind

some particular item i which is of interest. A more common situation arises
when we have no detailed a priori knowledge of the frequency distribution,
and we wish to find which are the most significant items. Typically, those
most significant items are those which have high frequencies – the so-called
“heavy hitters”. More formally, we define the set of heavy hitters as those
items whose frequency exceeds a φ fraction of the total frequency, for some
chosen 0 < φ < 1.

The naive way to discover the heavy hitters within a relation is to exhaus-
tively query each possible i in turn. The accuracy guarantees indicate that the
sketch should correctly recover those items with f (i) > εN or f (i) > ε

√
F2.

But this procedure can be costly, or impractical, when the domain size M is
large—consider searching a space indexed by a 32 or 64 bit integer. The num-
ber of queries is so high that there may be false positives unless d is chosen
to be sufficiently large to ensure that the overall false positive probability is
driven low enough.

In the cash-register streaming model, where the frequencies only increase,
a simple solution is to combine update with search. Note that an item can
only become a heavy hitter in this model following an arrival of that item.
So the current set of heavy hitters can be tracked in a data structure separate
to the sketch, such as a heap or list sorted by the estimated frequency [45].
When the frequency of an item increases, at the same time the sketch can
be queried to obtain the current estimated frequency. If the item exceeds the
current threshold for being a heavy hitter, it can be added to the data structure.
At any time, the current set of (approximate) heavy hitters can be found by
probing this data structure.

We can compare this to results from sampling: standard sampling results
argue that to find the heavy hitters with εN accuracy, a sample of size O(1/ε2)
items is needed. So the benefits of the Count-Min sketch are clear: the space
required is quadratically smaller to give the same guarantee (O(1/ε) com-
pared to O(1/ε2)). However, the benefits become more clear in the turnstile
case when, if there is significant numbers of deletions in the data, causing the
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Fig. 5.5 Searching for heavy hitters via binary-tree search

set of Heavy Hitters to change considerably over time. In such cases it is not
possible to draw a large sample from the input stream.

Heavy Hitters over Strict Distributions. When the data arrives in the turn-
stile model, decreases in the frequency of one item can cause another item to
become a heavy-hitter implicitly—because its frequency now exceeds the (re-
duced) threshold. So the method of keeping track of the current heavy hitters
as in the cash-register case will no longer work.

It can be more effective to keep a more complex sketch, based on multiple
instances of the original sketch over different views of the data, to allow more
efficient retrieval of the heavy hitters. The “divide and conquer” or “hierar-
chical search” technique conceptually places a fixed tree structure, such as
a binary tree structure, over the domain. Each internal node is considered to
correspond to the set of items covered by leaves in the induced subtree. Each
internal node is treated as a new item, whose frequency is equal to the sum of
the frequencies of the items associated with that node. In addition to a sketch
of the leaf data, a sketch of each level of the tree (the frequency distribution
of each collection of nodes at the same distance from the root) is kept.

Over frequency data in the strict model, it is the case that each ancestor of
a heavy hitter leaf must be at least as frequent, and so must appear as a heavy
hitter also. This implies a simple divide-and-conquer approach to finding the
heavy hitter items: starting at the root, the appropriate sketch is used to es-
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timate the frequencies of all children of each current “candidate” node. All
nodes whose estimated frequency makes them heavy hitters are added to the
list of candidates, and the search continues down the tree. Eventually, the leaf
level will be reached, and the heavy hitters should be discovered. Figure 5.5
illustrates the process: given a frequency distribution at the leaf level, a bi-
nary tree is imposed, where the frequency of the internal nodes is the sum of
the leaf frequencies in the subtree. Nodes which are heavy (in this example,
whose frequency exceeds 6) are shaded. All unshaded nodes can be ignored
in the search for the heavy hitters.

Using a tree structure with a constant fan-out at each node, there are
O(logM) levels to traverse. Defining a heavy hitter as an item whose count
exceeds φN for some fraction φ , there are at most 1/φ possible (true) heavy
hitters at each level. So the amount of work to discover the heavy hitters at the
leaves is bounded by O(logM/φ) queries, assuming not too many false pos-
itives along the way. This analysis works directly for the Count-Min sketch.
However, it does not quite work for finding the heavy hitters based on Count-
Sketch and an F2 threshold, since the F2 of higher levels can be much higher
than at the leaf level.

Nevertheless, it seems to be an effective procedure in practice. A detailed
comparison of different methods for finding heavy hitters is performed in
[65]. There, it is observed that there is no clear “best” sketch for this prob-
lem: both approaches have similar accuracy, given the same space. As such,
it seems that the Count-Min approach might be slightly preferred, due to its
faster update time: the Count-Min sketch processed about 2 million updates
per second in speed trials, compared to 1 million updates per second for the
Count Sketch. This is primarily since Count-Min requires only one hash func-
tion evaluation per row, to the Count Sketch’s two 3.

Heavy Hitters over General Distributions. For general distributions
which include negative frequencies, this procedure is not guaranteed to work:
consider two items, one with a large positive frequency and the other with
a large negative frequency of similar magnitude. If these fall under the same
node in the tree, their frequencies effectively cancel each other, and the search

3To address this, it would be possible to use a single hash function, where the last bit determines g j and
the preceding bits determine h j
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procedure may mistakenly fail to discover them. General distributions can
arise for a variety of reasons, for example in searching for items which have
significantly different frequencies in two different relations, so it is of interest
to overcome this problem. Henzinger posed this question in the context of
identifying which terms were experiencing significant change in their popu-
larity within an Internet search engine [166]. Consequently, this problem is
sometimes also referred to as the “heavy changers” problem.

In this context, various “group testing” sketches have been proposed.
They can be thought of as turning the above idea inside out: instead of us-
ing sketches inside a hierarchical search structure, the group testing places
the hierarchical search structure inside the sketch. That is, it builds a sketch
as usual, but for each entry in the sketch keeps O(logM) additional informa-
tion based, for instance, on the binary expansion of the item identifiers. The
idea is that the width of the sketch, w, is chosen so that in expectation at most
one of the heavy hitters will land in each entry, and the sum of (absolute)
frequencies from all other items in the same entry is small in comparison to
the frequency of the heavy hitter. Then, the additional information is in the
form of a series of “tests” designed to allow the identity of the heavy hitter
item to be recovered. For example, one test may keep the sum of frequencies
of all items (within the given entry) whose item identifier is odd, and another
keeps the sum of all those whose identifier is even. By comparing these two
sums it is possible to determine whether the heavy hitter item identifier is
odd or even, or if more than one heavy hitter is present, based on whether one
or both counts are heavy. By repeating this with a test for each bit position
(so O(logM) in total), it is possible to recover enough information about the
item to correctly identify it. The net result is that it is possible to identify
heavy hitters over general streams with respect to N or F2 [69]. Other work in
this area has considered trading off more space and greater search times for
higher throughput [269]. Recent work has experimented with the hierarchi-
cal approach for finding heavy hitters over general distributions, and shown
that on realistic data, it is still possible to recover most heavy hitters in this
way [31].
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5.3.4.2 Join Size Estimation

Given two frequency distributions over the same domain, f and f ′, their inner
product is defined as

f · f ′ =
M

∑
i=1

f (i)∗ f ′(i)

This has a natural interpretation, as the size of the equi-join between relations
where f denotes the frequency distribution of the join attribute in the first,
and f ′ denote the corresponding distribution in the second. In SQL, this is

SELECT COUNT(*) FROM D, D’

WHERE D.id = D’.id

The inner product also has a number of other fundamental interpretations
that we shall discuss below. For example, it also can be used when each record
has an additional “measure” value, and the query is to compute the sum of
products of measure values of joining tuples (e.g. finding the total amount
of sales given by number of sales of each item multiplied by price of each
item). It is also possible to encode the sum of those f (i)s where i meets a
certain predicate as an inner product where f ′(i) = 1 if and only if i meets the
predicate, and 0 otherwise. This is discussed in more detail below.

Using the AMS Sketch to estimate inner products. Given AMS sketches
of f and f ′, C and C′ respectively, that have been constructed with the same
parameters (that is, the same choices of w,d,h j and g j), the estimate of the
inner product is given by

w

∑
k=1

C[ j,k]∗C′[ j,k].

That is, the row estimate is the inner product of the rows.
The bounds on the error follow for similar reasons to the F2 case (indeed,

the F2 case can be thought of as a special case where f = f ′). Expanding
out the sum shows that the estimate gives f · f ′, with additional cross-terms
due to collisions of items under h j. The expectation of these cross terms in
f (i) f ′(i′) is zero over the choice of the hash functions, as the function g j

is equally likely to add as to subtract any given term. The variance of the
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row estimate is bounded via the expectation of the square of the estimate,
which depends on O(F2( f )F2( f ′)/w). Thus each row estimate is accurate
with constant probability, which is amplified by taking the median of d row
estimates.

Comparing this guarantee to that for F2 estimation, we note that the error
is bounded in terms of the product

√
F2( f )F2( f ′). In general,

√
F2( f )F2( f ′)

can be much larger than f · f ′, such as when each of f and f ′ is large but f · f ′
can still be small or even zero. However, this is unavoidable: lower bounds
show that no sketch (more strongly, no small data structure) can guarantee to
estimate f · f ′ with error proportional to f · f ′ unless the space used is at least
M [211].

In fact, we can see this inner product estimation as a generalization of the
previous methods. Set f ′(i) = 1 and f ′(i′) = 0 for all i′ 6= i. Then f · f ′ = f (i),
so computing the estimate of f · f ′ should approximate the single frequency
f (i) with error proportional to

√
F2( f )F2( f ′)/w =

√
F2( f )/w. In retrospect

this is not surprising: when we consider building the sketch of the constructed
frequency distribution f ′ and making the estimate, the resulting procedure is
identical to the procedure of estimating f (i) via the Count-Sketch approach.
Using the AMS sketch to estimate inner-products was first proposed in [6];
the “fast” version was described in [63].

Using the Count-Min sketch to estimate inner products. The Count-Min
sketch can be used in a similar way to estimate f · f ′. In fact, the row estimate
is formed the same way as the AMS estimate, as the inner product of sketch
rows:

w

∑
k=1

C[ j,k]∗C′[ j,k].

Expanding this sum based on the definition of the sketch results in exactly
f · f ′, along with additional error terms of the form f (i) f ′(i′) from items i
and i′ which happen to be hashed to the same entry by h j. The expectation
of these terms is not too large, which is proved by a similar argument to
that used to analyze the error in making point estimates of f (i). We expect
about a 1/w fraction of all such terms to occur over the whole summation. So
with constant probability, the total error in a row estimate is NN′/w (where
N = ∑

M
i=1 f (i) and N′ = ∑

M
i=1 f ′(i)). Repeating and taking the minimum of d
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estimates makes the probability of a large error exponentially small in d.
Applying this result to f = f ′ shows that Count-Min sketch can estimate

f · f = F2 with error N2/w. In general, this will be much larger than the cor-
responding AMS estimate with the same w, unless the distribution is skewed.
For sufficiently skewed distribution, a more careful analysis (separating out
the k largest frequencies) gives tighter bounds for the accuracy of F2 estima-
tion [71]. Setting f ′ to pick out a single frequency f (i) has the same bounds
as the point-estimation case. This is to be expected, since the resulting proce-
dure is identical to the point estimation protocol.

Comparing AMS and Count-Min sketches for join size estimation. The
analysis shows the worst case performance of the two sketch methods can be
bounded in terms of N or F2. To get a better understanding of their true per-
formance, Dobra and Rusu performed a detailed study of sketch algorithms
[89]. They gave a careful statistical analysis of the properties of sketches, and
considered a variety of different methods to extract estimates from sketches.
From their empirical evaluation of many sketch variations for the purpose of
join-size estimation across a variety of data sets, they arrive at the following
conclusions:

• The errors from the hashing and averaging variations of the AMS
sketches are comparable for low-skew (near-uniform) data, but are
dramatically lower for the hashing version (the main version pre-
sented in this chapter) when the skew is high.

• The Count-Min sketch does not perform well when the data has
low-skew, due to the impact of collisions with many items on the
estimation. But it has the best overall performance when the data
is skewed, since the errors in the estimation are relatively much
lower.

• The sketches can be implemented to be very efficient: each up-
date to the sketch in their experiments took between 50 and 400
nanoseconds, translating to a processing rate of millions of up-
dates per second.

As a result, the general message seems to be that the (fast) AMS version of
the sketches are to be preferred for this kind of estimation, since they exhibit
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Fig. 5.6 Using dyadic ranges to answer a range query

fast updates and accurate estimations across the broadest range of data types.

5.3.4.3 Range Queries and Quantiles

Another common type of query is a range-count , e.g.

SELECT COUNT(*) FROM D

WHERE D.val >= l AND D.val <= h

for a range l . . .h. Note that these are the exactly the same as the range-count
and range-sum queries considered over histogram representations (defined in
Section 3.1.1).

A direct solution to this query is to pose an appropriate inner-product
query. Given a range, it is possible to construct a frequency distribution f ′

so that f ′(i) = 1 if l ≤ i ≤ h, and 0 otherwise. Then f · f ′ gives the desired
range-count. However, when applying the AMS approach to this, the error
scales proportional to

√
F2( f )F2( f ′). So here the error grows proportional

to the square root of the length of the range. Using the Count-Min sketch
approach, the error is proportional to N(h− l + 1), i.e. it grows proportional
to the length of the range, clearly a problem for even moderately sized ranges.
Indeed, this is the same error behavior that would result from estimating each
frequency in the range in turn, and summing the estimates.
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Range Queries via Dyadic Ranges. The hierarchical approach, outlined
in Section 5.3.4.1, can be applied here. A standard technique which appears
in many places within streaming algorithms is to represent any range canon-
ically as a logarithmic number of so-called dyadic ranges. A dyadic range
is a range whose length power of two, and which begins at a multiple of its
own length (the same concept is used in the Haar Wavelet Transform, see
Section 4.2.1). That is, it can be written as [ j2a + 1 . . .( j + 1)2a]. Examples
of dyadic ranges include [1 . . .8], [13 . . .16], [5 . . .6] and [27 . . .27]. Any arbi-
trary range can be canonically partitioned into dyadic ranges with a simple
procedure: greedily find the longest possible dyadic range from the start of
the range, and repeat on what remains. So for example, the range [18 . . .38]
can be broken into the dyadic ranges

[18 . . .18], [19 . . .20], [21 . . .24], [25 . . .32], [33 . . .36], [37 . . .38]

Note that there are at most two dyadic ranges of any given length in the
canonical decomposition.

Therefore, a range query can be broken up into O(logM) pieces, and each
of these can be posed to an appropriate sketch over the hierarchy of dyadic
ranges. A simple example is shown in Figure 5.6. To estimate the range sum
of [2 . . .8], it is decomposed into the ranges [2 . . .2], [3 . . .4], [5 . . .8], and the
sum of the corresponding nodes in the binary tree is found as the estimate.
So the range sum is correctly found as 32 (here, we use exact values). When
using the Count-Min sketch to approximate counts, the result is immediate:
the accuracy of the answer is proportional to (N logM)/w: a clear advantage
over the previous accuracy of N(h− l)/w. For large enough ranges, this is an
exponential improvement in the error.

In the AMS/Count-sketch case, the benefit is less precise: each dyadic
range is estimated with error proportional to the square root of the sum of
the frequencies in the range. For large ranges, this error can be quite large.
However, there are relatively few really large dyadic ranges, so a natural so-
lution is to maintain the sums of frequencies in these ranges exactly [70, 89].
With this modification, it has been shown that the empirical behavior of this
technique is quite accurate [89].

Quantiles via Range Queries. The quantiles of a frequency distribution
on an ordered domain divide the total “mass” of the distribution into equal
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parts. More formally, the φ quantile q of a distribution is that point such that
∑

q
i=1 f (i) = φN. The most commonly used quantile is the median, which cor-

responds to the φ = 0.5 point. Other quantiles describe the shape of the distri-
bution, and the likelihood that items will be seen in the “tails” of the distribu-
tion. They are also commonly used within database systems for approximate
query answering, and within simple equidepth histograms Section 3.1.1).

There has been great interest in finding the quantiles of distributions de-
fined by streams – see the work of Greenwald and Khanna, and references
therein [132]. Gilbert et al. were the first to use sketches to track the quan-
tiles of streams in the turnstile model [130]. Their solution is to observe that
finding a quantile is the dual problem to a range query: we are searching for
a point q so that the range query on [1 . . .q] gives φN. Since the result of this
range query is monotone in q, we can perform a binary search for q. Each
queried range can be answered using the above techniques for approximately
answering range queries via sketches, and in total O(logM) queries will be
needed to find a q which is (approximately) the φ -quantile.

Note here that the error guarantee means that we will guarantee to find a
“near” quantile. That is, the q which is found is not necessarily an item which
was present in the input—recall, in Section 5.2.5 we observed that whenever
we store a data structure that is smaller than the size of the input, there is not
room to recall which items were or were not present in the original data. In-
stead, we guarantee that the range query [1 . . .q] is approximately φN, where
the quality of the approximation will depend on the size of the sketch used.
Typically, the accuracy is proportional to εN, so when ε � φ , the returned
point will close to the desired quantile. It also means that extreme quantiles
(like the 0.001 or the 0.999 quantile) will not be found very accurately. The
most extreme quantiles are the maximum and minimum values in the data
set, and we have already noted that such values are not well suited for linear
sketches to find.

5.3.4.4 Sketches for Measuring Differences

A difference query is used to measure the difference between two frequency
distributions. The Euclidean difference treats the frequency distributions as
vectors, and measures the Euclidean distance between them. That is, given
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two frequency distributions, it computes

√
F2( f − f ′) =

√
M

∑
i=1

( f (i)− f ′(i))2

Note that this is quite similar in form to an F2 calculation, except that this is
being applied to the difference of two frequency distributions. However, we
can think of this as applying to an implicit frequency distribution, where the
frequency of i is given by ( f (i)− f ′(i)). This can be negative, if f ′(i) > f (i).
Here, the flexibility of sketches which can process general streams comes to
the fore: it does not matter that there are negative frequencies. Further, it is
not necessary to directly generate the difference distribution. Instead, given a
sketch of f as C and a sketch of f ′ as C′, it is possible to generate the sketch
of ( f − f ′) as the array subtraction (C−C′). This is correct, due to the linear-
ity properties of sketches. Therefore, from the two sketches an approximation
of
√

F2( f − f ′) can be immediately computed. The accuracy of this approx-
imation varies with

√
F2( f − f ′)/

√
w. This is a powerful guarantee: even if

F2( f − f ′) is very small compared to F2( f ) and F2( f ′), the sketch approach
will give a very accurate approximation of the difference.

More generally, arbitrary arithmetic over sketches is possible: the F2 of
sums and differences of frequency distributions can be found by perform-
ing the corresponding operations on the sketch representations. Given a large
collection of frequency distributions, the Euclidean distance between any pair
can be approximated using only the sketches, allowing them to be clustered
or otherwise compared. The mathematically inclined can view this as an effi-
cient realization of the Johnson-Lindenstrauss Lemma [195].

5.3.5 Advanced Uses of Sketches

In this section we discuss how the sketches already seen can be applied to
higher dimensional data, more complex types of join size estimation, and
alternate estimation techniques.

5.3.5.1 Higher Dimensional Data

Sketches can naturally summarize higher dimensional data. Given a multidi-
mensional frequency distribution such as f (i1, i2, i3), it is straightforward for
most of the sketches to summarize this: we just hash on the index (i1, i2, i3)
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Fig. 5.7 Dyadic decomposition of a 4 by 4 rectangle

where needed. This lets us compute, for example, point queries, join size
queries and distinct counts over the distributions. But these queries are not
really fundamentally different for multi-dimensional data compared to single
dimensional data. Indeed, all these results can be seen by considering apply-
ing some linearization to injectively map the multidimensional indices to a
single dimension, and solving the one-dimensional problem on the resulting
data.

Things are more challenging when we move to range queries. Now the
query is specified by a product of ranges in each dimension, which speci-
fies a hyper-rectangle. With care, the dyadic range decomposition technique
can be lifted to multiple dimensions. In a single dimension, we argued that
any range could be decomposed into O(logM) dyadic ranges. Analogously,
any ` dimensional range over {1, . . . ,M}` can be decomposed into O(log` M)
dyadic hyper-rectangles: rectangles formed as the product of dyadic ranges.
Figure 5.7 shows the decompositions of a small two dimensional rectangle of
dimensions 4 by 4. Each of the nine subfigures shows a different combination
of dyadic ranges on the x and y axes.
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Applying this approach, we quickly run into a “curse of dimensionality”
problem: there are log` M different types of hyper-rectangle to keep track of,
so the space required (along with the time to process each update and each
query) increases by at least this factor. So for range queries using Count-Min
sketches, for example, the space cost to offer εN accuracy grows in proportion
to (logM)2`/ε .4 For ` more than 2 or 3, this cost can be sufficiently large to be
impractical. Meanwhile, a sample of O(1/ε2) items from the distribution is
enough to estimate the selectivity of the range with accuracy ε , and hence the
size of the range sum with accuracy εN, irrespective of the dimensionality.
Therefore, if it is possible to maintain a sample, this will often be preferable
for higher dimensional data.

Alternatively, we can make independence assumptions, as discussed in
the histogram case (Section 3.5.2): if we believe that there are no correlations
between the dimensions, we can keep a sketch of each dimension indepen-
dently, and estimate the selectivity over the range as the product of the esti-
mated selectivities. However, this does not seem representative of real data,
where we expect to see many correlated dimensions. A compromise is to de-
compose the dimensions into pairs which are believed to be most correlated,
and sketch the pairwise distribution of such pairs. Then the product of selec-
tivities on each correlated pair can estimate the overall selectivity, and hence
the range sum.

The work of Thaper et al. [278] uses multidimensional sketches to derive
approximate histogram representations. Given a proposed bucketing (set of
hyper-rectangles and weights), it computes the error by measuring the dif-
ference between a sketch of the data and a sketch of the histogram. The al-
gorithm can then search over bucketings to find the best (according to the
approximations from sketching). Various methods are applied to speed up the
search. Considering rectangles in a particular order means that sketches can
be computed incrementally; [278] also suggests the heuristic of only consid-
ering buckets that are dyadic hyper rectangles. Empirical study shows that the
method finds reasonable histograms, but the time cost of the search increases
dramatically as the domain size increases, even on two-dimensional data.

4This exponent is 2`, because we need to store (logM/)` sketches, and each sketch needs to be created
with parameter w proportional to (logM)`/ε so that the overall accuracy of the range query is εN.



5.3. Frequency Based Sketches 221

5.3.5.2 More complex join size estimation

Multi-way join size estimation. Dobra et al. propose a technique to extend
the join-size estimation results to multiple join conditions [88]. The method
applies to joins of r relations, where the join condition is of the form

WHERE R1.A1 = R2.A1 AND R2.A2 = R3.A2 AND ...

The main idea is to take the averaging-based version of the AMS sketch
(where all items are placed into every sketch entry). A sketch is built for each
relation, where each update is multiplied by r independent hash functions that
map onto {−1,+1}. Each hash function corresponds to a join condition, and
has the property that if a pair of tuples join under that condition then they
both hash to the same value (this is a generalization of the technique used in
the sketches for approximating the size of a single join). Otherwise, there is
no correlation between their hash values. A single estimate is computed by
taking the product of the same entry in each sketch. Putting this all together,
it follows that sets of r tuples which match on all the join conditions get their
frequencies multiplied by 1, whereas all other sets of tuples contribute zero in
expectation. Provided the join graph is acyclic, the variance of the estimation
grows as 2a

∏
r
j=1 F2(R j), where a is the number of join attributes, and F2(R j)

denotes the F2 (self-join size) of relation R j. This gives good results for small
numbers of joins.

A disadvantage of the technique is that is uses the slower averaging ver-
sion of the AMS sketch: each update affects each entry of each sketch. To
apply this using the hashing trick, we need to ensure that every pair of match-
ing tuples get hashed into the same entry. This seems difficult for general join
conditions, but is achievable in a multi-way join over the same attribute, i.e.
a condition of the form

WHERE R1.A = R2.A AND R2.A = R3.A AND R3.A = R4.A

Now the sketch is formed by hashing each tuple into a sketch based on
its A value, and multiplying by up to two other hash functions that map to
{−1,+1} to detect when the tuple from R j has joining neighbors from R j−1

and R j+1.
Note that such sketches are valuable for estimating join sizes with addi-

tional selection conditions on the join attribute: we have a join between R1
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and R2 on A, and R3 encodes an additional predicate on A which can be spec-
ified at query time. This in turn captures a variety of other settings: estimating
the inner product between a pair of ranges, for example.

Non-equi joins. Most uses of sketches have focused on equi-joins and their
direct variations. There has been surprisingly little study of using sketch-like
techniques for non-equi joins. Certain natural variations can be transformed
into equi-joins with some care. For example, a join condition of the form

WHERE R1.A <= R2.B

can be incorporated by modifying the data which is sketched. Here, the fre-
quency distribution of R1 is sketched as usual, but for R2, we set f (i) to count
the total number of rows where attribute B is greater than or equal to i. The
inner product of the two frequency distributions is now equal to the size of
join. This approach has the disadvantage that it is slow to process the input
data: each update to R2 requires significant effort to propagate the change to
the sketch. An alternate approach may be to use dyadic ranges to speed up the
updates: the join can be broken into joins of attribute values whose difference
is a power of two.

There has been more effort in using sketches for spatial joins. This refers
to cases where the data is considered to represent points in a d dimensional
space. A variety of queries exist here, such as (a) the spatial join of two sets
of (hyper) rectangles, where two (hyper)rectangles are considered to join if
they overlap; and (b) the distance join of two sets of points, where two points
join if they are within distance r of each other. Das et al. [76] use sketches
to answer these kinds of queries. They assume a discretized domain, where
the underlying d dimensional frequency distribution encodes the number of
points (if any) at each coordinate location. In one dimension, it is possible
to count how many intervals from one set intersect intervals from the second
set. The key insight is to view an interval intersection as the endpoint of one
interval being present within the other interval (and vice-versa). This can then
be captured using an equi-join between the endpoint distribution of one set
of intervals and the range of points covered by intervals from the other set.
Therefore, sketches can be applied to approximate the size of the spatial join.
A little care is needed to avoid double counting, and to handle some boundary
cases, such as when two intervals share a common endpoint.
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This one dimensional case extends to higher dimensions in a fairly natural
way. The main challenge is handling the growth in the number of boundary
cases to consider. This can be reduced by either assuming that each coordinate
of a (hyper)rectangle is unique, or by forcing this to be the case by tripling the
range of each coordinate to encode whether an object starts, ends, or contin-
ues through that coordinate value. This approach directly allows spatial joins
to be solved. Distance joins of point sets can be addressed by observing that
replacing each point in one of the sets with an appropriate object of radius r
and then computing the spatial join yields the desired result.

5.3.5.3 Alternate Estimation Methods and Sketches.

There has been much research into getting the best possible accuracy from
sketches, based on variations on how they are updated and how the estimates
are extracted from the sketch data structure.

Domain Partitioning. Dobra et al. propose reducing the variance of sketch
estimators for join size by partitioning the domain into p pieces, and keeping
(averaging) AMS sketches over each partition [88]. The resulting variance
of the estimator is the sum of the products of the self-join sizes of the parti-
tioned relations, which can be smaller than the product of the self-join sizes
of the full relations divided by p. With a priori knowledge of the frequency
distributions, optimal partitions can be chosen. However, it seems that gains
of equal or greater accuracy arise from using the fast AMS sketch (based
on the hashing trick) [89]. The hashing approach can be seen as a random
sketch partitioning, where the partition is defined implicitly by a hash func-
tion. Since no prior knowledge of the frequency distribution is needed here,
it seems generally preferable.

Skimmed Sketches. The skimmed sketch technique [103] observes that
much of the error in join size estimation using sketches arises from col-
lisions with high frequencies. Instead, Ganguly et al. propose “skimming”
off the high frequency items from each relation by extracting the (approx-
imate) heavy hitters, so each relation is broken into a “low” and a “high”
relation. The join can now be broken into four pieces, each of which can be
estimated from either the estimated heavy hitters, or from sketches after the
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contributions of the sketches have been subtracted off. These four pieces can
be thought of as (a) high-high (product of frequencies of items which are
heavy hitters in both relations) (b) low-low (inner product estimation from
the skimmed sketches) and (c) high-low and low-high (product of heavy hit-
ter items with corresponding items from the other sketch). This is shown to
be an improvement over the original scheme based on averaging multiple es-
timates together (Section 5.3.3.1). However, it is unclear whether there is a
significant gain over the hashing version of AMS sketches where the hashing
randomly separates the heavy hitters with high probability.

Conservative Update. The conservative update method can be applied on
Count-Min sketches (and also on Bloom Filters with counters) when the data
is presented in the cash-register model. It tries to minimize overestimation by
increasing the counters by the smallest amount possible given the information
available. However, in doing so it breaks the property that the summary is a
linear transform of the input. Consider an update to item i in a Count-Min
sketch. The update function maps i to a set of entries in the sketch. The current
estimate f̂ (i) is given by the least of these: this has to increase by at least the
amount of the update u to maintain the accuracy guarantee. But if other entries
are larger than f̂ (i)+ u, then they do not need to be increased to ensure that
the estimate is correct. So the conservative update rule is to set

C[ j,h j(i)]←max( f̂ (i)+u,C[ j,h j(i)])

for each row j. The same technique can be applied to Bloom Filters that use
counters [57], and was first proposed by Estan and Varghese [94].

Least Squares Estimation. The approach of taking the minimum value as
the estimate from Count-Min sketch is appealing for its simplicity. But it is
also open to criticism: it does not take full account of all the information
available to the estimator. Lee et al. studied using a least-squares method to
recover estimated frequencies of a subset of items from a Count-Min sketch
[214]. That is, using the fact that the sketch is a linear transform of the input,
write the sketch as a multiplication between a version of the sketch matrix
and a vector of the frequencies of the items of interest. To avoid generating
too large a problem to solve, all items that are not of interest are modeled as a
small number of extra variables which add “noise” to the sketch entries. This
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linear system can be solved by applying the matrix (pseudo)inverse of the
sketch matrix, and the result minimizes the difference between the sketch of
the reconstructed data and the sketch of the original data. This should be no
worse than the simple min-estimator, and could be much better. Experiments
in [214] indicate that this approach is reduces error, but as more items are
recovered, the time cost to solve the equations grows rapidly.

Several other methods have been considered for squeezing more accuracy
out of simple sketch data structures. Lu et al use Message Passing, which
also tries to find a distribution of counts which is consistent with the val-
ues recorded in the sketch of the observed data [218]. Jin et al empirically
measure the accuracy of an instance of a Count-Min sketch [193]. They esti-
mate the frequency of some items which are known to have zero count, say
M +1,M +2 . . . etc. The average of these estimates is used as τ , the expected
error, and all estimated counts are reduced by τ . Likewise, Deng and Rafiei
propose changing the row estimate of f (i) to the value of the entry containing
i, less the average value of the other entries in the same row, and analyze the
variance of the resulting estimate [83]. A similar notion was used by Tho-
rup and Zhang within their “new” estimator for F2, which is shown to give
guaranteed accuracy [281].

Skipping and Sampling. Over truly massive data, and extremely high up-
date speeds, even the “fast” sketches Count Min, Count Sketch and (fast)
AMS can fail to scale. A natural idea is that if there is so much data, it surely
can’t be necessary to observe it all to capture the main shape of the frequency
distribution. Instead, we can “skip over” some fraction of the input. Bhat-
tacharyya et al. [20] study the idea of skipping over items for heavy hitter
and self-join size queries. To determine when to sketch and when to skip,
they keep track of the volume of data that has been skipped, and only skip
when the net effect of the skipped data (whatever the value happens to be) on
the estimation cannot be too large.

Rusu and Dobra [266] study sketching over a Bernoulli sample of the
data. They analyze the accuracy, and show how much of the variance arises
from the sketching, how much from the sampling, and how much from the
interaction of the two. As the sampling rate decreases, the sampling has a pro-
portionately greater impact on the overall accuracy. Their experimental study
shows that while sampling does decrease the overall accuracy, estimates of
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join and self-join size can still be quite good when only sketching a tenth or
a hundredth of the input data. Note that none of these methods will extend
to distinct value queries: as discussed in Section 2.6.2, it is known that no
sampling method can guarantee to give good results for all possible inputs.
Hence, applying sketching on top of sampling can be no better than the un-
derlying sampling method.

Hardware Implementations. In addition to the various software imple-
mentations discussed so far [89, 65], there has been work on building hard-
ware implementations of sketch methods to further increase their scalability.
These can take advantage of the fact that, due to linearity, sketches can be
easily parallelized, and even within a single update, there is significant par-
allelism across the d repetitions. Several teams have studied effective paral-
lel implementations of the Count-Min sketch. Lai and Byrd [212] describe
a performance on a SIMD architecture which can achieve high throughput
with low energy usage. Thomas et al. [279] implement the Count-Min sketch
on the Cell processor (multi-core) architecture, and analyze choices in the
scheduling and load-balancing issues that arise.

Lower Bounds. All of the variations try different methods to improve the
accuracy or speed of the sketching, with varied results. It is natural to ask,
can any procedure asymptotically improve the accuracy, for a given amount
of space? In general, the answer is no: for many of the queries studied, there
are lower bounds proved which show that the space used by the sketches
are essentially optimal in their dependence on ε or M. However, typically
these lower bounds are proved by considering various “worst case” frequency
distributions. Often the frequency distributions seen in reality are far from
worst-case, and often can be well modeled by standard statistical distribu-
tions (such as Zipfian or Pareto distributions). Here, it is possible to see better
space/accuracy trade-offs. Several prior works have analyzed sketches under
distributional assumptions and quantified these trade-offs [45, 71].

5.4 Sketches for Distinct Value Queries

Problems relating to estimating the number of distinct items present in a se-
quence have been heavily studied in the last two decades. The central problem
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is equivalent to finding the cardinality of an attribute in a relation. The simple
SQL fragment

SELECT COUNT (DISTINCT A)

FROM R

is sufficiently difficult to approximate in small space that dozens if not hun-
dreds of research papers have tackled the problems and variations. More gen-
erally, we are interested in approximating the results of set valued queries:
queries which perform a variety of set operations (intersection, union, differ-
ence) and then ask for the cardinality of the resulting set. We will see that
the key to answering such queries is to first answer the simpler COUNT DIS-
TINCT queries.

5.4.1 Linear Space Solutions

We first present solutions which use space linear in the size of the attribute
cardinality. For cash-register streams, a natural solution is to use a compact
set representation such as a Bloom filter. For each item in the stream, the pro-
cedure then tests whether it is already present in the Bloom filter. If the item is
not present in the filter, then it is inserted into the filter, and the current count
of distinct items is increased. By the one-sided error nature of the Bloom
filter, the resulting count never overestimates the true count, but may under-
estimate due to collisions. To ensure a small constant rate of under-counting,
it is necessary to set the size of the Bloom filter to be proportional to the
cardinality being estimated. Due to the compactness of the Bloom filter bit
vector, this requires less space than storing the full representation of the set,
but only by constant factors.

The linear counting method due to Whang et al. [289] takes a related
approach. The method can be understood as keeping a Bloom filter with a
single hash function (k = 1). The number of distinct items is estimated based
on the fraction of bits in the filter which remain as 0. If this fraction is z, then
the number of distinct items is estimated as m ln1/z (where m is the number
of bits in the filter). Again, for this to yield an accurate estimation, the m is
required to be proportional to (an upper bound on) the number of distinct
items. Based on some numerical analysis, this constant of proportionality is
shown to be relatively low: to get low error, it is sufficient to have m be a
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factor of (roughly) 10 times smaller than the true cardinality of the relation.
Both linear counting and Bloom filters can be modified to allow deletions,

by using the trick of replacing bits with counters: each deletion removes the
effect of a prior insertion, and the estimators are modified accordingly. How-
ever, this extension potentially blows up the space further, since single bits
are replaced with, say, 32 bit integers.

Both these approaches have the limitation that some a priori knowledge
of the cardinality being estimated is needed. That is, to use them practically,
it is necessary to know how large to make their filters. If the filter size is
underestimated, then the filter will saturate (be almost entirely full of 1s), and
the estimation will be useless. On the other hand, if the filter is mostly empty
then the estimate will be very accurate, but the unused space will be wasted.
Subsequent methods do not require any prior knowledge of the cardinality,
and adjust to widely varying cardinalities.

5.4.2 Flajolet-Martin Sketches

The Flajolet-Martin sketch is probably the earliest, and perhaps the best
known method for approximating the distinct count in small space [98]. It
is also based on a bitmap B, but items are mapped non-uniformly to entries.
The size of the bitmap is chosen to be logarithmic in the largest possible
cardinality being estimated, so a much weaker upper bound is needed, and
typically 32 or 64 bits will suffice for one instance of the bitmap. A hash
function h is associated with the bitmap, so that half the items are mapped to
1, a quarter to 2, and so on. That is,

Pr[h(i) = j] = 2− j

where the probability is taken over the random choice of the hash function.
Such a hash function is easy to generate from a function that maps uniformly
onto a range: given a uniform hash function h′, we set h(i) to be the number
of trailing zeros in the binary representation of h′(i) plus one. So if h′(i) = 3,
we set h(i) = 1, while if h′(i) = 24, we set h(i) = 4.

The sketch is updated in the same way as a Bloom filter: each update is
hashed by h, and we set B[h(i)] to 1. A simple example is shown in Figure 5.8:
an item i is hashed to location 4. There is already a 1 in this location, so
the sketch does not change. After seeing n distinct items, the low entries in
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01 0 1 01 1 0

i

Fig. 5.8 FM Sketch Data Structure

the bitmap are expected to be set to 1, but it is unlikely that any very high
entries will be set to one. More precisely, the expected number of items which
are hashed to jth entry is (approximately) n/2 j. Locations which expect to
receive more than 1 item are very likely to be set to 1, while locations which
expect to receive a number of items that is less than 1 are more likely to
remain as 0. The transition occurs around where n/2 j = 1, i.e. around the
log2 n’th entry. So it is unlikely that entries above logn are set, while most
entries below logn should be set to 1. Around logn it is expected that there
will be a mixture of zeros and ones. A variety of different estimators are
possible, such as the position of the leftmost zero in the array, or the position
of the rightmost one (indexing the array from the first entry as the leftmost).

Flajolet and Martin advocated using the position of the leftmost zero [98].
Intuitively this is more robust, since it represents the compound event that all
n items were not hashed there, whereas a single item can affect the position of
the rightmost one. To build an estimator, they take k repetitions of the process
with different hash functions, and find the mean position of the leftmost zero
across these repetitions as r. The estimated value is given by n̂ = 1.2928 ·2r:
here, 1.2928 is a scaling constant derived from the analysis assuming that
the hash functions are perfectly random. The variance of this estimator grows
with 1/

√
k, so by taking O(1/ε2 log1/δ ) repetitions, the resulting estimation

n̂ is within εn of the true value n with probability at least 1−δ .
Alon et al. analyze the effect of using the two raised to the power of the

position of the rightmost one as the estimator, when using hash functions
with only pairwise independence [7]. Under this restricted setting, they show
that the probability of overestimating by a factor of c > 2 or underestimating
by a factor of c′ < 1/2 is at most 1/c + 1/c′. In other words, the method
gives a constant factor approximation with constant probability using only
logarithmic space. In fact, the space needed is only O(log logn), since we



230 Sketches

only need to record the index of the rightmost one, rather than the full bitmap.
Durand and Flajolet refer to this method as “log-log counting”, and analyze it
further assuming fully independent hash functions. They provide an unbiased
estimator based on an appropriate scaling constant [93]. Taking k repetitions
has approximately twice the variance of k instances of the original Flajolet-
Martin estimator, but each repetition requires much less space to store.

The downside of these approaches as described is that they are slow to
process: O(k) hash functions have to be evaluated for each update. Recogniz-
ing this, Flajolet and Martin proposed using “stochastic averaging”, where
now the items are first hashed to one of k FM sketches, which is then updated
in the usual way. Here, each update requires only a constant amount of hash-
ing, and so is much faster to update. The stochastic averaging can be viewed
as an analogue of the “hashing trick” in Section 5.3. It is can also be seen as a
generalization of the linear hashing described in Section 5.4.1: an FM sketch
is kept in each entry of a Bloom filter instead of just a single bit.

5.4.2.1 Linear version of FM Sketch

The methods based on the Flajolet Martin sketch and its variants assume a
cash-register model of the stream. But over transaction streams in the turnstile
model, it is necessary to also process deletions of items. The natural solution
is to replace the bits in the sketch with counters which are incremented for
each inserted item that touches the entry, and decremented for each deleted
item [98]. At any instant, we can extract a corresponding bitmap by setting
each non-zero counter to 1, which is exactly the bitmap that would have been
obtained by processing just those items which have non-zero counts. It there-
fore follows immediately that this linear sketch correctly processes deletions.

In the general case, there may be items with negative frequencies. It is less
obvious how to interpret a COUNT DISTINCT query over such frequency
distributions. However, these distributions can arise implicitly: it has been
argued that it is useful to compute the number of items in two different distri-
butions which have different frequencies. By subtracting the two frequency
distributions as f − f ′, the number of items with different frequencies corre-
sponds to the number of items in f − f ′ that have non-zero frequency. This
measure has been dubbed “the Hamming norm” or L0, as a limiting case of
Lp

p norms [61]. Approximating this quantity requires a different solution: the
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sum of frequencies of all items which hash to the same entry may be zero,
even though not all of the frequencies are zero. Instead of a counter then,
we can use a fingerprint of the items mapping to the entry (Section 5.2.2):
with high probability, this will identify whether or not the frequency vector
of items mapping to an entry is the zero vector.

5.4.3 Distinct Sampling

The idea of distinct sampling (also known as adaptive sampling) is to com-
bine the decreasing probabilities from FM sketches with a sampling tech-
nique. Flajolet [97] attributes the invention of the technique to Wegman in
the mid 1980s. A similar technique was subsequently proposed by Gibbons
and Tirthapura [123], which was shown to require only limited independence
hash functions. Extensions to other application domains were subsequently
presented in [122].

The method is quite simple: the algorithm maintains a set of at most
k items from the input (and possibly some additional information, such as
their multiplicity). During the execution of the algorithm, a integer variable l
records the current “level” of the sampling. Each item in the input is hashed
using a function h which obeys

Pr[h(i) = j] = 2− j

i.e. the same conditions as the FM sampling variants. The item is included in
the sample if the hash value is at least the current level, so that h(i)≥ l (hence
we may say that the level of some item is l, or talk about the items that are at
some particular level). Initially, l = 1 and so all distinct items are sampled.

When the sample is full (i.e., it contains more than k distinct items), the
level is increased by one. The sample is then pruned: all items in the sample
whose hash value is less than the current value of l are rejected. Note that
when l increases by one, the effective sampling rate halves, and so we expect
the sample to decrease in size to approximately k/2. At any moment, the
current number of distinct items in the whole sequence so far can be estimated
as s2l , where s denotes the current number of items in the sample. In the
extreme case when k = 1, we can see this as being similar to a single instance
of log-log counting method. However, because typically k > 1, the accuracy
should be better since it is less sensitive to a single item with a very high hash
level.
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Level 1:

Level 2:

Level 4:

3, 6, 7, 8, 10, 14, 18, 19, 20

Level 3:

3,  8, 10, 14, 20

3, 10, 14

14

Fig. 5.9 Distinct Sampling with k = 3

Figure 5.9 shows a small example of distinct sampling for k = 3. Level
1 indicates the full set of distinct items that are present in the data, but this
exceeds the capacity of the sample. At level 2, five of the nine items in the
original input hash to a level greater than one. There are exactly three items
that hash to level 3 or above, so the algorithm would currently be running at
level l = 3. However, as soon as a new item arrives with h(i)≥ 3, the capacity
of the sample would be exceeded, and the algorithm would advance to l = 4.
Based on the information in the figure, items “3” and “10” would be dropped
when this happens.

Analysis shows that the process for estimating F0 has similar variance be-
havior to the preceding methods. Assuming perfect hash functions, the vari-
ance grows with 1/

√
k [97]. With weaker assumptions on the strength of the

hash functions, Gibbons and Tirthapura prove a similar results: that setting
k = O(1/ε2) is sufficient to estimate the true cardinality with relative error
ε with constant probability. Taking O(log1/δ ) parallel repetitions with dif-
ferent hash functions, and taking the median estimate in the usual way will
reduce the failure probability to δ . The proof requires showing that the pro-
cess stops at the right level, and that the number of items seen at the final
level is close to the expected number.

5.4.3.1 Distinct Sampling With Deletions.

Extending these ideas to handle deletions in the stream is less straightfor-
ward than for the FM sketch methods. It is certainly possible to apply dele-
tions to the distinct sampling sketch: assuming that cardinality information is
kept about the items that are currently being sampled, when the cardinality
of a sampled item goes to zero, it is considered to have been deleted from
the sample. This procedure is clearly correct, in that the resulting approxima-
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Fig. 5.10 Two-level hash sketch for distinct sampling with deletions

tions correctly reflect the current support set of the underlying data. However,
in extreme cases, when many items are deleted, the number of items in the
sample may become very small or even zero. In these cases, the accuracy
of the approximations becomes very poor: essentially, the current sampling
rate is too low for the current data size. Ideally, the algorithm should revert
to a lower level with a smaller value l. But this is not possible without a res-
can of the data, since simply changing the current value of l will not recover
information items that were previously rejected from the sample.

Ganguly et al. proposed the “two-level hash” sketch to guarantee recover-
ing a distinct sample in the presence of many deletions, by merging several of
the ideas we have seen already in other sketches [102]. Each item is hashed
by a function h with the same probability distribution as for FM sketches. A
second hash function g maps uniformly onto the range [k]. The sketch tracks
information about every combination of g and h values: there are k logn of
these entries. For each such entry C[h(i),g(i)], there are two vectors of logM
counters: corresponding to each of the logM bit positions in the binary ex-
pansion of the item identifiers. The jth counter in the first vector counts the
number of updates that map to the entry C[h(i),g(i)] and have a 1 in the jth
position of the binary representation of i. The second vector does the same
for 0s in the jth position. Since this is a linear sketch, it can be updated over
streams with deletions.

To recover a sample of items from the data structure, the vector of coun-
ters in each entry is analyzed. If there is only one item i with non-zero fre-
quency that has been mapped to a particular C[a,b] entry of the sketch, then
the two vectors of counters allow it to be recovered: the non-zero counts in
the two vectors encode exactly the binary encoding of i. If, on the other hand,
more than one item is mapped to C[a,b] then there will be some index j so
that both vectors record a non-zero count, and so that entry is abandoned. This
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method is conceptually similar to the method described in Section 5.3.4.1 for
recovering heavy hitters over strict streams. Several variations on this idea
for drawing a sample from the set of distinct items have also been proposed
[99, 72].

To extract a distinct sample from this distinct structure, each entry C[a,b]
of the sketch is examined, with the aim of recovering a single item that was
mapped there. For small values of a, many items are mapped to that row, so
few items will be recovered. But for a sufficiently large value of a, many items
will be recovered from the row. For a given value of a, all recovered items can
be returned as the sample from the sketch. Observe that a here plays a similar
role to that of the level l in the distinct sampling method. Based on a, and the
number of items recovered, the number of distinct items can be estimated. A
partial example is shown in Figure 5.10: the figure shows the two vectors for
one entry in the sketch. These vectors encode that there is a unique item that
has been hashed to that entry, with multiplicity 9. It has binary representation
10010, i.e. it corresponds to the item with identifier “18”.

Ganguly subsequently reduced the space required by observing that, for
strict distributions, the items can be recovered from the entries more effi-
ciently [101]. Now each entry C[a,b] maintains just three counters:

T [a,b] = ∑
1≤i≤M, h(i)=a, g(i)=b

f (i)

U [a,b] = ∑
1≤i≤M, h(i)=a, g(i)=b

i · f (i)

V [a,b] = ∑
1≤i≤M, h(i)=a, g(i)=b

i2 · f (i)

Clearly, if T [a,b] = 0, then there are no items with non-zero counts mapped
to C[a,b]. If there is only one unique item mapped to C[a,b], then U2[a,b] =
T [a,b]V [a,b] = i2 f 2(i). The converse is also true: if U2[a,b] = T [a,b]V [a,b],
then only one distinct item is mapped to C[a,b]. Further, that item is
U [a,b]/T [a,b] and it has frequency T [a,b]. For the example in Figure 5.10,
the statistics computed are T = 9,U = 162 and V = 2916. From these, we
can check that TV = U2 = 26244, and that the item encoded is “18” with
frequency 9.
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(a) After 5 distinct items have been observed

(b) After 9 distinct items have been observed

Fig. 5.11 Illustration of the k Minimum Values procedure

5.4.4 k Minimum Values

The k minimum values technique for cash-register streams was proposed by
Bar-Yossef et al. [17]. The technique is quite simple to state: a hash function
maps items to the range {1 . . .M3} (so there are unlikely to be any hash col-
lisions), and the algorithm tracks the k smallest distinct hash values of items
seen in the stream. Let hk denote the kth smallest hash value. The number of
distinct items is estimated as k(M3/hk). Figure 5.11 illustrates the process,
for k = 3. Figure 5.11(a) shows five distinct items mapped by the hash func-
tion onto the range {1 . . .M3} (shown schematically as a number line). Of
these, information about the k = 3 items which have the smallest hash values
is stored, identified with a shaded background. As new items arrive, the k = 3
smallest changes: Figure 5.11(b) shows that two new items have entered the
k smallest, and only information about the current k smallest values is stored.

The intuition for the KMV estimator is straightforward: the smallest hash
value is expected to be around M3/n, but the estimate based on this has high
variance. Taking n random values in the range 1 to M3, we expect about k
of them to be less than (k/n)M3. So if the hash values are close to uniform
random values, then the result of the estimator should be close to n, the num-
ber of distinct items. In our example, the k = 3 smallest hash value in Figure
5.11(b) is approximately 1/4 of the way along the range, leading us to esti-
mate that n is (roughly) 12 (in the figure, n = 9).

This can be made precise: the probability that the estimate is far from
n corresponds to having too many or two few hash values falling in the ex-
pected range, and the probability of this event can be made small for k large
enough. This is proved for pairwise independent hash functions in [17]. Mak-
ing stronger assumptions about the hash functions, Beyer et al. [19] show
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that an unbiased estimator for n is (k− 1)(M3/hk), and that this has vari-
ance proportional to n2/k. This is gives the same asymptotic guarantees as
the previous analysis, but tightens the constant factors involved considerably.
Applying this unbiased estimator to Figure 5.11(b), the estimate of n is now
8.

As with distinct sampling, it is possible to process deletions: simply track
the cardinality of each item selected as one of the k smallest, and remove
any with zero remaining occurrences. It has the same problems: too many
deletions reduce the effective k value, and in extreme cases cause the sample
to become empty. Methods based on sampling via linear sketches, as in the
two-level hash approach, seem to be the only method to deal with inputs
which exhibit such pronounced variation in their support set.

Comparing KMV and Distinct Sampling. The KMV technique can be
connected to distinct sampling: both progressively sample the data with de-
creasing probabilities. KMV smoothly decreases the sampling probability so
that the sample always has size k, whereas distinct sampling forces the sam-
pling rate to always be a power of two. With care, we can set up a precise
correspondence. By appropriate choice of the hash functions, it is possible to
arrange that the distinct sample is always a subset of the items sampled by
KMV, further indicating the conceptual similarities of the methods.

The concept of hashing items and tracking information about the small-
est hash values has appeared many times and has been given many differ-
ent names. The idea of min-wise hashing (also known as min-wise indepen-
dent permutations) is quite similar [25]. There, focus has been on designing
compact families of hash functions which have the desired properties with-
out needing to make strong independence assumptions. Estimators based on
min-wise hashing typically keep k independent hash functions and take the
item with least hash value in each repetition. They therefore take more time
to process each update compared to tracking the k minimum values from a
single hash function. Cohen and Kaplan’s work on bottom-k sketches general-
izes KMV ideas to cases when items have weights which are combined with
the hash values to determine which items should be retained in the sketch
[56]. Beyer et al. [19] have also identified connections between estimators
for KMV and for priority sampling (which does not consider duplicate elim-
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ination) [92].

5.4.5 Approximate Query Processing on Set Valued Queries

As remarked above, the data structures which provide us with estimates for
count distinct queries can also be extended to a variety of other “distinct”
queries.

5.4.5.1 Union and Sum Queries

The FM sketch variants are mainly limited to estimating the simple count-
distinct queries initially discussed. However, they (in common with all the
methods discussed for count distinct estimation) naturally allow the size of
unions to be approximated with the same accuracy. That is, given some arbi-
trary collection of sets, each of which is sketched using the same hash func-
tion(s), it is possible to accurately approximate the cardinality of the union of
certain sets. For FM sketches, it suffices to simply build a new FM sketch
where each entry is the bitwise-or of all the corresponding entries in the
sketches of the sets in the union, and apply the estimation procedure to this
new sketch. This follows because the resulting sketch is exactly that which
would have been obtained had the union of the sets been sketched directly.

Similar results apply for KMV and distinct sampling methods: in those
cases, the procedure just takes the items sampled in the union of the sketches
as the input to a new sketch (with the same hash function), and extracts the
estimate from the resulting sketch. The correctness of the resulting sketch
follows immediately by observing that no other items from the input could
be present in the sketch of the union.

It is also possible to use these sketches to approximate various kinds of
“distinct sum” queries. Here, the stream may contain multiple values of f (i),
and the aim is to compute the sum of the max of each value for a given i. This
can be accomplished by replacing each f (i) in the stream with new items
(i,1),(i,2), . . .(i, f (i)). The number of distinct items in the new stream gives
exactly the distinct sum. However, when the f (i)s can be very large, it is quite
time consuming to generate and sketch so many new items. Instead, various
methods have been suggested to more rapidly compute the results, either via
simulating the effect of adding f (i) items quickly [60], or by designing “range
efficient” algorithms for count distinct [250].
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5.4.5.2 Distinct Prefix queries

FM sketches and Distinct samples also allow a limited kind of COUNT DIS-
TINCT with selection queries to be answered accurately over cash-register
streams. We refer to these as Distinct Prefix queries: the query is to approxi-
mate the number of distinct items seen whose identifier is less than a certain
value. For FM sketches, instead of keeping a single bit in the jth sketch entry,
the sketch instead records the smallest identifier of any item that has been
hashed to B[ j]. Then, given a query value q, the estimation procedure extracts
a bitmap from the sketch, by setting the jth bit to 1 if B[ j] < q, and 0 oth-
erwise. The result is exactly the FM sketch that would have been obtained if
only those items less than q had been inserted.

Likewise, for distinct sampling, rather than advancing the level whenever
the sample becomes full, the sketch instead keeps samples for all levels l. At
each level l, it retains the k smallest identifiers which hash to that level or
above. Then, given the query q, the estimate is formed by finding the first
level l where there are some items greater than q, and estimating the answer
as r2l , where r is the number of items at level l that are less than q. Again,
it is possible to argue that we recover exactly the information that would
have been seen had only the items less than q arrived. Figure 5.9 shows what
would happen when applying this for a sample of size 3: the items in the
shaded region at each level would be retained.

These variations are quite natural, and were originally proposed to address
estimating the number of distinct items seen within a recent time window
[78, 124], which can be interpreted exactly as a Distinct Prefix Query. Note
that the results here are quite strong: the approximate answers are within
relative error of the true answer, since it is possible to argue that there is
enough information to build the synopsis of the selected data.

5.4.5.3 Predicates on Items

The Distinct Prefix can be thought of as applying a predicate to items and ask-
ing for the number of distinct items satisfying the predicate. More generally,
we might want to know how many distinct items pass any given predicate at
query time. Since KMV and Distinct Sampling both provide a sample of the
distinct items, it is natural to apply the predicate to the sample, and build an
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estimate: take the fraction of items in the sample which pass the predicate,
ρ̂ , and multiply this by the estimate of the total number of distinct items n̂. It
can be argued that this a good estimator for the true answer [122].

However, the error in this estimator is proportional not to the true an-
swer, but rather to the accuracy with which n̂ is estimated. This should not be
surprising: the same behavior follows for approximating the selectivity of a
predicate via sampling without the DISTINCT keyword (see Section 2.4.3).
For example, if a predicate is highly selective, then it is unlikely that many
items passing the predicate happened to be placed in the sample, and so we do
not have a good handle on the exact selectivity. More precisely, if the sample
size is k, then the variance of the estimator of ρ , the true fraction of items,
behaves like ρ/k. So to get a selectivity estimate which is within relative er-
ror of ε , the size of the samples k needs to be O(ε−2ρ−1). This technique
for estimating the selectivity of predicates has been applied in a variety of
situations: Frahling et al. use it to estimate quantities over geometric streams
such as the weight of the minimum spanning tree [99].

5.4.5.4 Set Operations

Many queries are based on estimating the cardinality of the results of per-
forming operations on a collection of sets. We have already seen that set
unions can be easily answered by sketch data structures for count distinct.
We now show how methods which draw a sample, such as KMV and dis-
tinct sampling, can use the samples from different sets to approximate more
complex set-based queries.

Consider first estimating the size of the intersection between two sets.
Given sketches that draw k samples uniformly over each relation RA and RB,
then these can be combined to find a sample from the union. However, it is
not correct to just take the union of the samples: this would not be a uniform
sample if one relation were much larger than the other. Instead, the correct
thing to do is to take the samples corresponding to the k distinct smallest
hash values. This is a uniform sample over the union RA∪RB.

We can now view estimating the intersection size as a special case of es-
timating the selectivity of a predicate: the predicate selects those items which
are present in both RA and RB. Although there is not enough information to
evaluate this predicate over arbitrary sets, there is enough to evaluate it over
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the sample that has been built: just count how many items in the union sample
are present in the samples of both relations. The fraction of matching items,
ρ is an unbiased estimator for the true fraction, i.e.

E[ρ] =
|RA∩RB|
|RA∪RB|

.

So multiplying the estimate for |RA∪RB|, the size of the union, gives a good
estimator for the intersection size.

The accuracy of this estimator for intersection depends primarily on the
size of the union. This is because, if the intersection is very small, it is
unlikely that the procedure would sample items from the intersection un-
less the samples of both relations are large. It is more likely that it would
sample many items from the union of the relations outside the intersec-
tion. The variance of the selectivity estimation can be shown to scale with
|RA∩RB|/(|RA∪RB|

√
k).

The same concept extends to arbitrary set expressions over relations
RA,RB,RC . . .. Again, the estimation procedure takes items with the k small-
est hash values from the union of all the sketches of the relations, and then
evaluates the selectivity of the set expression on this sample as ρ . This can
also be viewed as a more complex predicate which can be evaluated exactly
on the sampled items. With this view, the variance of the estimator can be
analyzed in a similar way to before. This technique is implicit in the work
of Ganguly et al. [102], and is generalized and made explicit in the work of
Beyer et al. [19].

The same idea works for estimating the cardinality of multiset operations
such as multiset difference. Here, it is necessary to include the counts of items
in the samples. Operations on the samples are applied in the natural way:
union operations take the sum of counts of sampled items, while multiset
differences make appropriate subtractions of counts. The fraction of matching
items in the samples is found by counting those that have non-zero counts
after applying the appropriate computations on the sample [19].

Certain set operations can also be evaluated using Flajolet-Martin sketch
variants. This follows by using certain identities. For example, for sets A and
B,

|A∩B|= |A|+ |B|− |A∪B|.
Therefore, since Flajolet-Martin sketches can be combined to approximate
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the size of the union of sets, the estimates can also yield approximations of
the intersection size. However, here the (absolute) error here is proportional
to |A∪B|/

√
k, which is greater than the error of the estimators derived based

on KMV and distinct sampling.

5.4.5.5 Comparison between sketches for Distinct Value Estimation

Analytically, all the estimators proposed for distinct value estimation have
broadly the same performance: as a function of a size parameter k, their vari-
ance is proportional to 1/

√
k. Consequently, they can all provide ε relative

error using space O(1/ε2 log1/δ ). The exact space required is a function of
the exact constants in the variance (which are understood very well for most
methods), and on exactly what information needs to be retained by the sketch
(bitmaps, hash values, or sampled items).

Still, to fully understand which methods are preferable for particular
tasks, empirical evaluation is necessary. A recent study by Metwally et al.
performed a thorough comparison of algorithms for the core problem of dis-
tinct count estimation [227]. They gave each method the same amount of
space for a sketch, and compared the accuracy and time cost on a networking
dataset. Their experiments shows that methods using bitmaps could be the
most accurate—perhaps unsurprising, since it is possible to squeeze in more
information into bitmaps, compared to retaining item identifiers. Indeed, the
provocative conclusion of their study is that one of the earliest, methods, Lin-
ear Counting (Section 5.4.1), is preferable to the more complex methods that
have come since. This is due in part to its speed and accuracy on the data in
question, for which approximate cardinalities are known in advance. How-
ever, in the wider context of Approximate Query Processing, it could be ar-
gued that the extra flexibility that arises from having a sample of (hashed)
items to answer broader classes of queries is more desirable.

Distinct sampling and KMV methods show an order of magnitude worse
accuracy than bitmap based methods in the experiments in [227]: this is per-
haps to be expected, since the (hashed) item identifiers are also at least tens
of bits in size. The processing times reported for all methods are comparable,
thought: approximately a million updates per second.

However, the conclusion is not the same for queries more complex than
simple distinct counting. Beyer et al. performed experiments comparing the
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KMV approach to a version of log-log counting for set operation estimation
[19]. They allocated space equivalent to k = 8192 for the KMV estimator.
Across a variety of queries, the KMV approach obtained accuracy of around
2-3% average relative error, whereas the log-log method incurred around two
to three time as much error in the same space. Beyer et al. also observe that
the choice of hash functions can empirically affect the quality of estimators,
which may explain their differing behavior seen across experimental studies.

5.4.6 Lower Bounds

Ultimately, all the methods for count-distinct estimation take Õ(1/ε2) space
to give ε relative accuracy (where Õ notation hides logarithmic dependency
on other factors like m). In fact, this dependency has been shown to be
tight, in that no method can have a lower dependency on ε . Indyk and
Woodruff demonstrated this by analyzing the complexity of an abstract prob-
lem called “Gap-Hamming” [176]. They showed that approximating Count-
Distinct with sufficient accuracy can solve Gap-Hamming, and that Gap-
Hamming has a high complexity, implying the lower bound. Subsequently,
Jayram et al. considerably simplified the hardness proof for Gap-Hamming
[188].

5.5 Other topics in sketching

In this section, we briefly survey some perspectives on sketch-based methods
for Approximate Query Processing.

5.5.1 Sketches for Building other summaries

One demonstration of the flexibility of sketch-based methods is the fact that
there has been considerable work on using sketches to build different types
of summary. In fact, for all the other major summaries in approximate query
processing—samples, histograms, and wavelets—there are methods to ex-
tract such a summary from sketch information. This can be useful when users
are familiar with the semantics of such summaries, or have well-established
methods for visualizing and processing such summaries.
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Sketches for Sampling. The methods discussed in Sections 5.4.3 and 5.4.4
produce samples from the set of distinct items in a relation in a sketch-like
manner. Further, the two-level hash structure described in Section 5.4.3.1
gives a linear sketch structure to achieve this. However, there are fewer re-
sults for using sketches to sample from the raw frequency distribution, e.g.
to include item i in the sample with probability f (i)/N. Only recently have
their been schemes to implement so-called Lp sampling, which aim to draw i
with probability f (i)/∑i | f (i)|p [232, 197]. These methods guarantee always
drawing a sample of size O(k) over turnstile streams, but the sampling prob-
abilities only approximate the desired distribution within a (1± ε) factor.

Sketches for Histograms. Gilbert et al. [128] used sketches to build his-
togram representations of data. The sketch needed is similar to other sketch
constructions, but augmented to allow range sums to be computed rapidly.
This is needed when trying to compute the impact of picking a particular
bucket to be part of the histogram. Based on a dynamic-programming method
for constructing the histogram, the final result guarantees an approximation
to the optimal histogram under a given error metric (L1 or L2 error). Thaper
et al. used sketches to find histograms of multi-dimensional data, based on a
greedy search [278].

Sketches for Wavelets. There has been much interest in building sketches
to recover wavelet representations. Gilbert et al. [129] introduce the problem.
They observe that the problem can be solved exactly when the data is pre-
sented in the timeseries model (i.e. sorted and aggregated), since there are
only O(logN) coefficients that “straddle” any index in the data, which can
be tracked to find the largest coefficients. They also show that, in the cash-
register model, any wavelet coefficient can be found via appropriate range
sum computations, and proposed using sketches to estimate the largest coef-
ficients. It was subsequently suggested that it may be more efficient to com-
pute the wavelet transform “on the fly”: since the HWT is a linear transform,
it is possible to build a sketch of the coefficients, without materializing the
coefficient vector explicitly [64]. The problem is then reduced to finding the
heavy hitters under the F2 measure, i.e. to find all items whose frequency ex-
ceeds φF2 for some fraction φ . This is solved by a variant of the AMS sketch
with multiple levels of hashing and grouping. More details on this technique
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are provided in Section 4.6.1.

5.5.2 Other Sketch Methods

The ideas within sketches have been used to build sketches for different
queries. Many common ideas are present: use of limited-independence hash
functions, hierarchical decompositions of ranges and so on. Some additional
ideas are also commonly used: picking random values from appropriate dis-
tributions, combining multiple sketch methods together, and use of pseudo-
random number generators to minimize the space needed. We briefly survey
some of these, and see how they are connected to the methods we have dis-
cussed already.

5.5.2.1 Sketches for Lp norms and Entropy.

The F2 estimation problem is a special case of a more general class of func-
tions over sketches, the Lp norms. For a general distribution of frequencies,
the Lp norm is defined as

Lp =

(
M

∑
i=1
| f (i)|p

)1/p

The AMS sketch therefore accurately approximates the L2 norm. Within the
streaming community, there is considerable interest in being able to provide
accurate approximations of other Lp norms. As p < 1 approaches 0, the norm
approaches the “Hamming norm”, i.e. the number of non-zero entries in the
vector. Computations based on such norms (e.g. clustering) vary whether the
emphasis is on the magnitude or the number of differences between vectors.
Estimating Lp norms for p = 1±δ for small values of δ has also been instru-
mental in some methods for estimating entropy [162].

A general technique for 0 < p ≤ 2 is based on sketches that use stable
distributions. Each entry in the sketch is formed as the inner product of the
frequency distribution with a vector of entries each drawn randomly from a
stable distribution. A stable distribution is a statistical distribution that has
a stability parameter α . They have the property that sums of multiples of
stable distributions are also distributed as a stable distribution—this can be
viewed as a generalization of the central limit theorem, and indeed the normal
distribution is stable with parameter α = 2 [299].
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By fixing the stability parameter of all distributions to be α = p, the re-
sulting sketch entry is distributed as a stable distribution scaled by Lp. Taking
the median of all the sketch entries was shown by Indyk to be an accurate
approximation of Lp [175]. To make this a small space approximation, the
entries of the sketch matrix are not stored. Instead, they are generated on de-
mand using a pseudo-random number generator so that the entry is the same
every time it is accessed. Such sketches have been used in a variety of set-
tings, such as for approximately clustering large data under Lp distance [66].

There has also been a lot of work on approximating Lp for p > 2. Here,
strong lower bounds indicate that the size of the sketch needed is at least
Ω(M1−2/p) [292]. Various solutions have been proposed which achieve this
space cost (up to logarithmic factors) [177, 21]. The HSS (for Hierarchical
Sampling from Sketches) is based on randomly selecting subsets of items
via hash functions, and then extracting the heavy hitters from these subsets
of items using Count Sketches. The information about the approximate fre-
quencies of the recovered items is then combined to form an estimate of the
overall Lp norm of the full frequency distribution. Owing to the lower bounds,
the resulting data structure can be very large.

The ideas within the HSS sketch have also been applied to approximate
the empirical entropy of the frequency distribution. That is, to estimate

H =
M

∑
i=1

f (i)
N

log(
N

f (i)
)

However, tighter error bounds result from using methods based on sampling
and tracking information about the sampled elements [40], or by via interpo-
lating estimates from sketches for Lp norms [162, 8].

5.5.2.2 Combinations of Sketches

We have previously discussed several examples of combining different types
of sketches: take, for example, the use of fingerprints within Flajolet-Martin
sketches to track count-distinct over general frequency distributions (Section
5.4.2.1). For linear sketches in particular, it is often possible to combine mul-
tiple sketches via nesting to answer more complex queries.

A particular example arises when we wish to make sketches “duplicate
resilient”. The “distinct heavy hitters” problem arises when the input consists
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of a sequence of tuples (i, j), and the frequency of i in the multiset input D is
now defined as d(i) = |{ j : (i, j)∈D}|, the number of distinct js that i occurs
with. This models a variety of problems, particularly ones which occur in
networking settings [282]. One solution combines the Count-Min Sketch with
Flajolet-Martin sketches: instead of keeping a counter of the items mapped
there, each entry of the Count-Min sketch can keep the Flajolet-Martin sketch
summary of the items [59]. This sketch allows the estimation of d(i) for a
given i by applying the Count-Min estimation procedure to the estimates from
each Flajolet-Martin sketch in the data structure. A careful analysis is needed
to study the space-accuracy tradeoff of the resulting “CM-FM sketch”.

Several other combinations of sketches have been studied. In general, it
is not possible to form arbitrary combinations of sketches: instead, a more
cautious approach is needed, with the new estimators requiring new analysis
on a case-by-case basis.

5.5.2.3 Deterministic Sketches

Most of the sketches we have seen so far involve randomization. Apart from
trivial sketches (for sum, count, average etc.), the accuracy guarantees hold
only with some probability over the random choice of hash functions. It is
natural to ask whether the more complex queries truly require randomiza-
tion to approximate. It turns out that this is not always the case: there exist
sketches for certain queries which do not require randomness. However, they
require substantially more space and time to create than their randomized
equivalents, so they may be primarily of academic interest.

The CR-Precis data structure as analyzed by Ganguly and Majumder
[105] (first suggested by Gasieniec and Muthukrishnan [236]) is similar to
the Count-Min sketch, but determines which items to count together in each
entry based on residues modulo prime numbers. The accuracy guarantees for
point queries are shown based on the Chinese Remainder theorem, hence the
CR in the name. The sketch keeps d = O(1/ε logM) rows, but the rows are
of different lengths. The jth row corresponds to the jth prime number that
is greater than k (k is a parameter of the data structure), p j. The `th entry in
the jth row contains the sum of all frequencies of items whose identifier is `
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mod p j. That is, the entries of the sketch C are given by

C[ j, `] = ∑
1≤i≤M, i mod p j=`

f (i).

Due to the choice of parameters of the sketch, no pair of items i and i′ can
collide in every row (by the Chinese Remainder theorem). In fact, any pair
can collide in at most logk M rows. Point queries can be answered as in the
Count-Min case, by extracting the count of every entry where i is placed, and
taking the minimum of these. Using the bound on collisions, the error in the
estimate is at most N(logk M)/d. Choosing d to be large enough makes this
error as small as desired. To guarantee εN error, the total space needed grows
proportional to 1/ε2 — in comparison to the 1/ε growth of the (randomized)
Count-Min sketch. Given this deterministic bound for point queries, deter-
ministic results for heavy hitters, range-queries and quantiles all follow using
the same reductions as in Section 5.3.4. However, for other queries, no deter-
ministic sketch is possible: it is known that randomness is required to estimate
the number of distinct items and to estimate F2 in small space [7, 167].
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Conclusions and Future Research Directions

In this final chapter, we conclude our survey by looking more broadly across
synopses for massive data. We draw comparisons across the four classes of
synopses surveyed, and summarize the strengths and weaknesses of existing
approaches. We also discuss the role of approximate query processing via
synopses in existing and future systems. Lastly, we look to the future and dis-
cuss the prospects for broader adoption of AQP ideas, as well as new research
directions.

6.1 Comparison Across Different Methods

So far, we have primarily considered each type of synopsis in isolation. We
now recap the methods, and identify their strengths and weaknesses for dif-
ferent aspects of AQP problems.

Sampling Pros and Cons. The chief strength of sampling-based approxi-
mation methods is that they are very flexible with regard to the queries that
can be answered: they offer the generic solution of simply evaluating the
query over sampled data, instead of over the full original data. Sampling also
adapts very naturally to higher dimensional data (since the sample itself is es-

248



6.1. Comparison Across Different Methods 249

sentially “dimension agnostic”). This flexibility makes sample synopses ideal
for general-purpose querying, when the set of queries is not fully known in
advance. The accuracy of a sampling-based estimate of a query answer will
be highly dependent on the query being evaluated, but such estimates usu-
ally come with query-specific error bounds, thereby permitting assessment
of the accuracy. This powerful feature of sampling—as well as the ability to
improve estimation accuracy on the fly by simply increasing the number of
samples—ties in well with the notion of online aggregation, where the error
bounds narrow in real time as more and more samples are obtained. Note that
samples are the only one of the synopses discussed here that can easily be
incrementally adjusted to improve estimation accuracy.

Sampling is well-suited for detecting “broad patterns” within the data,
that is, features that are likely to be present in any subset of the data. It is
much less suited to problems when the object of interest is a rare event (a
“needle in a haystack”). Sampling does poorly on applications such as fraud
or anomaly detection, where the unusual activity is unlikely to be included in
any sample. For the same underlying reasons, sampling gives lower accuracy
when the data is highly variable. It can do badly at estimating distinct counts,
because values with a small number of duplicates are easily missed when
sampling.

Sampling becomes more complex when the data is subject to many in-
sertions and deletions, requiring more complex incremental sample mainte-
nance techniques to ensure that the stored data remains a uniform sample of
the underlying data. Lastly, a more pragmatic weakness of sampling is that
interpreting the guarantees from sampling can require a degree of statisti-
cal knowledge and experience. It may therefore be inappropriate to present
the raw guarantees from a sampling estimate to a statistically unsophisticated
user.

Histograms Pros and Cons. A main advantage of histograms is that they
are relatively simple to interpret, which makes it easier for system builders to
construct and interrogate histograms. In particular, the simplicity of dividing
up domains into ranges and keeping basic statistics like counts has led to the
relative popularity of histograms within query optimizers and within pack-
ages for business intelligence, data analysis, and data visualization. The large
amount of research dedicated to histograms has shown how they can be used
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for a variety of estimation purposes—although further work is needed to iden-
tify the full range of applicability. For various classes of queries, such as point
and range queries, the theory supporting these queries has been quite well-
developed, so that there are strong notions of optimality. Advanced types of
histogram are also sufficiently powerful to very accurately capture the struc-
ture of a data-value frequency distribution.

As with most summary structures other than samples, histograms do not
adapt well to higher dimensional data. In theory, to give good error bounds
their size must scale exponentially with the number of dimensions. This prob-
lem occurs in practice not only for simple bucket constructions, which track
buckets that are the cross-product of one-dimensional divisions, but also for
more complex hierarchical constructions.

Also, as with synopses other than samples, there has been much more
work devoted to quantifying the average or maximum error over a broad class
of queries than in providing error estimates that are specific to the query posed
by the user. Providing such feedback is crucial when making decisions based
on approximate answers to queries.

Building accurate histograms requires deciding which bucket boundaries
to adopt, and computing statistics about each bucket. Naively, this requires at
least two passes over the data. This approach does not adapt well when the
data is dynamic and shifting. Techniques based on sketches can help in this
case, but the overhead is quite high: the space for the sketches to construct
the histograms is much larger than the size of the histograms themselves. It
is often unclear in such scenarios whether direct use of the sketch would be
simpler and more efficient.

Lastly, many histogram techniques have several parameters which have
to be set a priori, such as the number of buckets, statistics to keep within each
bucket, and other parameters that determine when to split or merge buckets.
Setting these parameters can be off-putting, and wrong choices can lead to
summaries with poor performance.

Wavelets Pros and Cons. Wavelets share with histograms the notion of
storing simple statistics (primarily counts) of collections of items from the
input domain. Whereas histograms excel at capturing the local structure of
contiguous data values, wavelets are particularly well suited to capturing non-
local structures.
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The linearity of the basic Haar transform makes them more amenable than
histograms to maintenance under dynamic data, although it is still non-trivial
to maintain wavelet coefficients under arbitrary update patterns.

As with histograms, extending wavelets to higher dimensions brings sev-
eral challenges. There are multiple definitions of how to construct a multi-
dimensional wavelet, and in practice it seems that a large number of coeffi-
cients must be retained to guarantee accurate reconstruction of the data dis-
tribution. Also, as with histograms, techniques for providing query-specific
error estimates are not well developed.

Sketches Pros and Cons. Sketches were first proposed in the context of
high speed streams of data, and consequently the most refined implementa-
tions of sketches are very efficient to process updates to the data. The al-
gorithms themselves are of necessity quite simple, to enable high throughput
implementations; the complexity is mostly mathematical in nature, and lies in
the analysis of estimation accuracy. Sketching algorithms rely on hash func-
tions with certain mathematical properties to give their guarantees, but these
hash functions are relatively simple and fast in practice, with reference im-
plementations widely available.

The main limitation of sketching techniques—especially in contrast to the
general-purpose sampling paradigm—is that each sketch tends to be focused
on answering a single type of query. A reasonable range of query types can
be answered via sketching, but the techniques do not seem to extend well
to more complex queries which combine multiple sub-queries. Ongoing re-
search aims to broaden the set of queries that can be answered by sketching,
but general purpose techniques that are closed for a large class seem out of
reach. An additional drawback is that sketches have a number of parameters
that affect their accuracy and probability of failure, and these parameters may
be unintuitive in some cases.

6.2 Approximate Query Processing in Systems

Several research prototype systems have placed synopses front and center,
and have typically focused on sampling-based methods. These include Aqua
(for Approximate QUery Answering system), developed at Bell Labs in the
1990s [3, 2]; CONTROL (Continuous Output and Navigation Technology
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with Refinement On-Line), a project at UC Berkeley in the 1990s focusing
on the use of sampling to provide a user with online, continually-refining an-
swers to queries of various types [11, 260, 169]; and DBO (DataBase Online),
which aimed to achieve performance similar to traditional DBMS systems
while refining an approximate answer with probabilistic error bounds.

With respect to real-world systems, acceptance of synopses has been slow
at best, but there have been a few successes. The notion of approximate query
processing (AQP) would doubtless have been anathema to the developers of
the earliest commercial database systems in the 1960’s and 70’s. The initial
focus of such systems was transaction processing, and approximations to a
customer’s bank balance or a store’s inventory level are unacceptable. Sev-
eral key developments and trends since that time, however, have made ap-
proximate query processing an essential component of under-the-hood query
processing technology, and are paving the way for wider acceptance of ap-
proximate answering of user queries.

Perhaps the earliest use of approximation technology in database manage-
ment systems (DBMSs) resulted from the development of relational DBMSs,
starting in the mid 1970’s. The cost-based query optimizers in these systems
needed to quickly evaluate the size of various intermediate query results, in
order to cost competing query plans. These result sizes, called “cardinali-
ties,” could be viewed as the answers to a set of SQL COUNT queries. Im-
portantly, cardinalities need to be determined only to a degree of accuracy
sufficient for query-plan comparison. As a result, quick approximation tech-
niques based on histograms, sampling, and distinct-count sketching rapidly
found their way into query optimizers, and remain an important application
of synopses. Initial estimation schemes were rather crude, and usually as-
sumed that the frequency distribution was uniform, so that any two distinct
values had the same frequency. However, over time, systems began to em-
ploy histograms and distinct-count sketches to approximate the distribution
of values within an attribute of a relation more precisely, leading to better
cost estimates in the presence of highly non-uniform attribute-value distribu-
tions. More recently, optimizers have begun to use sampling to reduce the I/O
and CPU costs of computing optimizer statistics. Current systems supplement
these techniques with summaries that are very specific to the queries being
computed, such as actual measurements of the sizes of partial query results;
these latter techniques are most effective when the data does not change too
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rapidly. See [149] for a recent discussion of statistics and query optimizers.
With respect to approximate answers for user queries, sampling has

clearly made the greatest inroads into commercial systems. Indeed, the lat-
est version of the SQL standard, which has been implemented in virtually
all current commercial relational database systems, allows specification of
sampling queries. For example, the query

SELECT SUM SALES / 0.02

FROM transactions AS t TABLESAMPLE BERNOULLI(2)

WHERE t.product = ‘widget‘

GROUP BY t.city;

estimates the total sales of widgets in each city represented in the
transactions table by means of a 2% Bernoulli sample of the rows of the
table.

With the development of data mining technology in the early 1990’s, en-
terprises became increasingly aware that their large stores of operational data
were an untapped source of valuable information for strategic planning and
decision support. The emphasis in this setting was often discovery of interest-
ing patterns in large amounts of data, a problem ideally suited to AQP tech-
niques. Sampling-based methods were commonly used for this purpose. For
example, a large retailer might generate a column of pseudo-random num-
bers, sort the data on this column, and then run a query of interest on the
first 1% of the rows of the sorted table to get a quick, rough estimate of the
exact query answer obtained by processing all of the records. Similarly, as
large scientific datasets were increasingly stored on DBMSs, the need for
quick pattern discovery further motivated interest in approximate query pro-
cessing, especially sampling. Though flexible and fast, sampling procedures
could not always handle certain types of queries well, such as COUNT DIS-
TINCT queries and highly selective join queries. For this reason, much re-
search was devoted to alternative schemes that take a complete pass through
the data, but have small memory requirements.

One objection to bringing synopses fully into commercial data manage-
ment systems is that this would require a major re-architecting of the existing
system. However, this is no barrier for new systems designed to handle new
data scenarios. One particular example that has arisen since the start of the
21st century is in Data Stream Management Systems (DSMS). These systems
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are designed to handle data which arrives online as a stream, such as network
data or financial transactions. Such data can arrive in large quantities and at
high speed, which motivates the adoption of approximate methods to answer
complex aggregate queries, in addition to exact methods for simpler or highly
selective queries.

Systems such as Gigascope (a network diagnosis and debugging tool used
at AT&T [74]) and StreamInsight (from Microsoft [228]) allow User Defined
Aggregate Functions (UDAFs) and User Defined Operators (UDOPs) to be
called by queries. UDAFs and UDOPs are specified in the form of source
code, which is then compiled into queries. In this context, there has been
much effort to build libraries of implementations of synopses, such as sketch
and sampling methods [67]. These systems demonstrate that there is a con-
crete need for approximate query processing in situations when exact query
processing is not scalable, and approximate answers are acceptable.

6.3 Challenges and Future Directions for Synopses

Given that, outside of sampling, historical applications of synopses have been
either behind the scenes or in niche/prototype systems, it is reasonable to ask
what are the prospects for broader usage of the synopses described in this sur-
vey. Can we expect to see greater use of approximate answers in information
management, or will they remain a minority interest to the majority goal of
providing exact answers? We conclude by examining some of the obstacles to
adoption of synopses for AQP. These obstacles can also be viewed as a spur
to innovation, both in educating information-system designers and users, and
in overcoming the limitations of current AQP technology.

6.3.1 Understanding Approximation

A key challenge is how to present results to the end user. Users pose a query
knowing that there exists an exact answer; they may struggle to understand
an answer which may be presented as a confidence interval. Somehow, the
transition from an “exact” answer (over data which almost certainly contains
minor errors and omissions) to an “approximate” one introduces more uncer-
tainty than the typical user is currently able to accept. Part of the challenge
here is in education and presentation: how to educate users to accept uncer-
tainty in their query results, and how to present these uncertainties as palat-
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ably and intuitively as possible. The stochastic-simulation community has re-
cently discussed issues related to presentation of uncertain results [290]. The
idea is to describe uncertainty at a level that matches a user’s sophistication,
without being misleading at any point; such research may also be helpful in
the AQP setting. Similarly, research in human-computer interaction and col-
laborative data analysis could be useful in communicating uncertainty in a
visual manner, as well as making users more comfortable with approximate
query answers.

In some sense, users are already comfortable with approximations; they
just fail to completely realize this. For example, opinion polls are widely used,
though there is always a statistical margin of error (usually described either
with mentioning this error at all or using rough language such as “correct to
within an accuracy of ± three percentage points.”) Weather forecasts are in
their nature approximate, and driving directions, which apparently promise
the shortest route, more commonly compute merely a “shortish” route, to
make the computation more scalable. Search engines that say “there are about
10 millions answers” are approximating wildly. In all of these cases, people
can live with the uncertainty; the challenge is to make them aware of what
they are already doing.

Besides merely making people comfortable with uncertain answers, it is
further necessary to educate users as to the potential benefits of using syn-
opses. A key point to communicate is that in many common circumstances,
an approximate answer can be highly accurate. For a query that touches a
reasonably large number of tuples—say, 100,000 rows or more—a sample of
1,000 tuples will be highly accurate while representing a 1% fraction of the
data. Explaining to users that they can have an accurate answer in 1% of the
time using the same hardware should be an easy argument to make. For ex-
ample, Figure 6.1 gives an example that has been effective in explaining the
potential effectiveness of AQP; the figure has been adapted from an article on
database sampling written for business users of DB2 [146]. Visual compari-
son of the two pie charts (and their corresponding computation times) shows
how the approximate result still manages to effectively convey the “big pic-
ture” at a fraction of the computational cost.
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Fig. 6.1 Exact and approximate answer to sum-of-sales query, grouped by year

6.3.2 Parallelism

The alternative to approximation is to continue building bigger systems. Pop-
ular architecture paradigms are trending towards increased parallelism and
distributed processing (as per the MapReduce/Hadoop model) which still
fixes exact solutions as the default goal. Still, it has long been observed that
data volumes are growing at faster rates than computing power [291], and this
trend continues. This suggests that approximation is increasingly a necessary
tool to adopt in order to facilitate interactive querying. There has been some
initial work on combining approximate processing techniques with MapRe-
duce architectures [58, 249], and this seems to be a promising direction for
future research.

Moreover, as mentioned in the introduction, the advent of Cloud comput-
ing and green computing will likely result in users become more sensitive to
the dollar and energy costs of executing a given query. (Given the rising cost
of energy, these latter costs might often serve as a proxy for dollar costs.) In
this setting, synopses provide an increasingly important tool for letting a user
obtain useful results at a lower cost. Thus an ongoing technical challenge is
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to extend synopsis techniques to work in a parallel and distributed setting;
some work along these lines has already been described, and new methods
are being actively developed; see, for example, Cormode et al. [73].

6.3.3 Incorporation into Commercial Systems

Objections to using synopses include the fact that full integration into existing
data management systems may require significant re-architecting, possibly
negating the investment of many hundreds if not thousands of person-years
of effort to build the current systems. In recent years, however, there has been
a revolution in DBMS architecture, driven by cloud computing [1], multicore
processors [262], and scientific data applications [277]. There is a unique
opportunity, therefore, to build AQP techniques into such systems from the
outset. This comprehensive integration could focus not only on delivery of
approximate answers to end users, but also incorporation of synopses into
the processing engine. Hence, though it may be difficult to build new AQP
techniques into existing commercial query optimizers, such synopses might
be useful for new query optimization tasks such as load balancing in MapRe-
duce systems. As discussed previously, newer applications such as network
monitoring, sensor systems—i.e., settings in which stringent CPU and mem-
ory constraints are prevalent—are relatively accepting to the use of synopses.
Finally, another path for incorporating AQP techniques into emerging sys-
tems is through the development of analytical libraries, such as in the ongoing
MADlib project [221].

6.3.4 Uncertain Data

This article has focused on approximate answers to queries that are executed
over exact, deterministic data and hence have an exact answer (though per-
haps unknown and expensive to compute). In recent years, however, there
has been a surge of activity related to query processing over uncertain
data [75, 77]. This uptick in interest corresponds to an increasing awareness
that most data is not, in fact, exact—uncertainty arises in numerous ways, in-
cluding information extraction from text, data integration, noisy sensor read-
ings, and deliberate anonymization to preserve privacy. These developments
have two important implications for AQP.

First, acknowledging that one’s data is uncertain leads naturally to a gen-
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eral willingness to accept an quick approximate query answers. I.e., it does
not make much sense to spend enormous effort computing an exact answer
if the data itself does not justify such high precision. There has been increas-
ing, fruitful interaction between the tradition stochastic analysis, stochastic
optimization, and statistics communities on one hand, and the database com-
munity on the other. This convergence has been accelerated by the embrace
of advanced statistical methods by the search community. As a consequence,
it is plausible that the general database user community will feel increasingly
comfortable with non-exact data processing and AQP in particular.

Second, a new technical challenge arises. What should synopses look like
in the context of a probabilistic database? What is the interplay between data
uncertainty and query approximation? There has been almost no research on
this topic to date.

6.3.5 Other Technical Challenges

As can be seen from our survey, many technical challenges remain. Perhaps
the chief of these, at least for the non-sampling based synopses, is to accu-
rately represent high dimensional distributions. A promising future direction
is to describe the broad dependencies via high-level statistical models, such
as Bayesian and Markov networks, and then describe low-dimensional corre-
lations via the synopses we have described.

Another challenge is to extend synopses to other kinds of data. For exam-
ple, researchers have been exploring concise graph-based synopses for XML
data [216, 253, 254]. This work has also inspired a purely graph-based ap-
proach to approximating relational data [274].

Besides improving on the synopses themselves, an important challenge
is to find higher-level methods of working with synopses. The goal here is
to allow complex query plans to be translated to operate entirely in the AQP
domain rather than on the exact data.

A related problem is to gain a better theoretical understanding of the ap-
plicability, accuracy, and performance of synopses. For example, can one
prove that a given class of synopses is complete and consistent (in some ap-
propriate sense) for a given class of queries? Can the information-theoretic
perspective in [205] be extended to other synopses and query classes? It is
also possible that approximation theory in its full force [53] might provide
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additional theoretical insights.
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[158] T. Hagerup and C. Rüb. A guided tour of chernoff bounds. Inf. Process. Lett.,
33(6):305–308, 1990.

[159] P. Hall and C. Heyde. Martingale Limit Theory and Its Application. Academic Press,
1980.

[160] M. Hansen. Some history and reminiscences on survey sampling. In Statistical Science,
volume 2, pages 180–190, 1987.

[161] B. Harb. Algorithms for Linear and Nonlinear Approximation of Large Data. PhD
thesis, University of Pennsylvania, 2007.

[162] N. J. A. Harvey, J. Nelson, and K. Onak. Sketching and streaming entropy via approx-
imation theory. In FOCS, 2008.

[163] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2001.

[164] Z. He, B. S. Lee, and X. S. Wang. Proactive and reactive multi-dimensional histogram
maintenance for selectivity estimation. Journal of Systems and Software, 81(3):414–
430, 2008.

[165] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In SIGMOD Confer-
ence, pages 171–182, 1997.

[166] M. Henzinger. Algorithmic challenges in search engines. Internet Mathematics,
1(1):115–126, 2003.



References 269

[167] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. Technical
Report SRC 1998-011, DEC Systems Research Centre, 1998.

[168] J. Hershberger, N. Shrivastava, S. Suri, and C. D. Tóth. Adaptive spatial partitioning
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