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ABSTRACT
Privacy-preserving data publishing is an important problem that has
been the focus of extensive study. The state-of-the-art goal for this
problem is differential privacy, which offers a strong degree of pri-
vacy protection without making restrictive assumptions about the
adversary. Existing techniques using differential privacy, however,
cannot effectively handle the publication of high-dimensional da-
ta. In particular, when the input dataset contains a large number of
attributes, existing methods require injecting a prohibitive amount
of noise compared to the signal in the data, which renders the pub-
lished data next to useless.

To address the deficiency of the existing methods, this paper
presents PRIVBAYES, a differentially private method for releasing
high-dimensional data. Given a dataset D, PRIVBAYES first con-
structs a Bayesian network N , which (i) provides a succinct model
of the correlations among the attributes in D and (ii) allows us to
approximate the distribution of data in D using a set P of low-
dimensional marginals of D. After that, PRIVBAYES injects noise
into each marginal in P to ensure differential privacy, and then us-
es the noisy marginals and the Bayesian network to construct an
approximation of the data distribution in D. Finally, PRIVBAYES

samples tuples from the approximate distribution to construct a
synthetic dataset, and then releases the synthetic data. Intuitively,
PRIVBAYES circumvents the curse of dimensionality, as it injects
noise into the low-dimensional marginals in P instead of the high-
dimensional dataset D. Private construction of Bayesian networks
turns out to be significantly challenging, and we introduce a nov-
el approach that uses a surrogate function for mutual information
to build the model more accurately. We experimentally evaluate
PRIVBAYES on real data, and demonstrate that it significantly out-
performs existing solutions in terms of accuracy.
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1. INTRODUCTION
The problem of privacy-preserving data publishing (PPDP) has

become increasingly important in recent years. Often, we en-
counter situations where a data owner wishes to make available
a data set without revealing private, sensitive information. For ex-
ample, this arises in the case of revealing detailed demographic in-
formation about citizens (census), patients (health data), investors
(financial data), and so on. In each example, there are many po-
tential uses and users for the data: for social analysis, for medi-
cal research, for freedom-of-information and other legal disclosure
reasons. The canonical case in PPDP is when the database can be
modeled as a table, where each row may contain information about
an individual (say, details of their medical status, or employment
information). Then, the aim is to release some manipulated version
of this information so that this can still be used for the intended
purpose, but the privacy of individuals in the database is preserved.

Following many attempts to formally define the requirements of
privacy, the current state-of-the-art solution is to seek the differ-
ential privacy guarantee [16]. Informally, this model requires that
what can be learned from the released data is (approximately) the
same, whether or not any particular individual was included in the
input database. This model offers strong privacy protection, and
does not make any limiting assumptions about the power of the no-
tional adversary: it remains a strong model even in the face of an
adversary with much background knowledge and reasoning power.

Putting differential privacy into practice remains a challenging
problem. Since its proposal, there have been many efforts to devel-
op mechanisms and processes for data release for different kinds of
input database, and for different objectives for the end use. Howev-
er, it seems that all existing techniques encounter difficulties when
trying to release even moderately high-dimensional data – that is,
an input table with half a dozen columns or more. The reasons for
these problems are two-fold:

- Output Scalability: Most algorithms (see, e.g., [37]) either explic-
itly or implicitly represent the database as a vector x of size equal
to the domain size, that is, the product of cardinalities of the at-
tributes. For many natural data sets, the domain size m is orders of
magnitude larger than the data size n [13]. Hence, these algorithms
become inapplicable for any realistic dataset with a moderate-to-
high number of attributes. For example, a million row table with
ten attributes, each of which has 20 possible values, results in a do-
main size (and hence an output size) of m = 2010 ≈ 10T B, which
is very unwieldy and slow to use compared to the input which can
be measured in megabytes.

- Signal-to-noise ratio: When the high dimensional database is rep-
resented as a vector x, the average count in each entry, given by
n/m, is typically very small. Once noise is added to x (or some
transformation of it) to obtain another vector x∗, the noise com-



pletely dominates the original signal, making the published vector
x∗ next to useless. For example, if the table above has size n = 1M,
the average entry count is n/m = 10−7. By contrast, the average
noise injected to achieve, e.g., differential privacy with parameter
ε = 0.1 has expected magnitude around 10. Even if the data is
skewed in the domain space, i.e., there are some entries x[i] with
high counts, such peaks are infrequent and so the vast majority of
published values x∗[i] are useless.

1.1 Related Work
A full survey of methods to realize differential privacy is beyond

the scope of this work. Here, we identify the most related efforts,
and discuss why they cannot fully solve the problems above.

Initial efforts released projections of the data on subsets of di-
mensions, via Fourier decompositions [5]. This reduces the impact
of higher dimensionality, but requires the data owner to determine
(somehow) which set of dimensions are of interest, and for the da-
ta to be mapped into a space where a Fourier decomposition can
be computed. Subsequent work followed this template, for exam-
ple by searching for meaningful “subcubes” of the datacube rep-
resentation to release privately [15]. These can be aggregated to
answer lower-dimensional cube queries, where the signal-to-noise
ratio in each cell is significantly higher than in the original domain.
A major limitation is that the running time is exponential in the
dimensionality of the domain, making it inapplicable for all but s-
mall sets. Accuracy is improved by additional post-processing of
the output to restore “consistency” of the counts mandated by the
structure (e.g. using the fact that counts in a hierarchy should sum
to the count of an ancestor) [5, 15, 21]; however, this improvement
does not overcome the inherent error incurred in high dimensions.

Another approach is to use data reduction techniques to avoid di-
mensionality issues. For example, [13] proposes various sampling
mechanisms to reduce the size of (and time to produce) the out-
put x∗, while approximately preserving the accuracy of subset-sum
queries. However, the accuracy guarantee is with respect to the ac-
curacy of using the entire vector x∗, rather than the original vector
x, which degrades rapidly with data dimensionality. The approach
in [12] tries to keep the domain size of the output small, and the
density of data within the new domain high, by adaptively group-
ing some of the attribute values. In the example above, suppose
that on each of the ten attributes, we grouped the 20 values into two
groups. Thus, we reduce the output size from 2010 to 210 ≈ 1MB.
This coarser grid representation of the data loses precision, and in
this example still leads to small average counts of the order of 1.
Cormode et al. [12] address the latter problem by using spatial de-
compositions to define irregular grids over the domain of x, such
that the count x[i] in each grid cell is sufficiently large. This makes
sense only for range queries, and requires all attributes to have an
ordering.

Other approaches find other ways to recast the input data and re-
lease it, so that the noise from the privacy transformation has less
impact on certain statistics. In particular, Xiao et al. [37] make use
of the wavelet transformation of data. This addresses range queries,
and means that the noise incurred by a range query scales propor-
tionately to the logarithm of its length, rather than to its length di-
rectly. The value of this is confined primarily to low-dimensional
databases where range queries are anticipated. More generally, the
matrix mechanism of Li and Miklau [25, 26] and subsequent relat-
ed approaches [20, 38, 39] take in a query workload (expressed in
terms of a weighted set of inner-product queries), and seek to re-
lease a version of the database that minimizes the noise for these
queries. The cost of this optimization can be high, and critically
assumes the foreknowledge of the query distribution.

The above discussion focuses on methods that produce an output
in a general form that can be used flexibly for a variety of subse-
quent analyses. There is also a large class of results that instead
generate a description of the output of a specific algorithm com-
puted under privacy, for example the result of building a classifier
for the data. Prominent examples include the work of McSherry
and Mironov [30] to mask the preferences of individual raters in
recommendation systems; Rastogi and Nath [34] to release time-
series data based on leading Fourier coefficients; and McSherry and
Mahajan [29] for addressing common queries over network trace
data. Differential privacy has also been applied to other sophisti-
cated data analysis tasks, e.g., coresets for summarizing geometric
data [18], building classifiers in the form of decision trees [19],
and support vector machines [35], and mining the occurrence of
frequent patterns [6, 27].

Some frameworks have been proposed to solve a class of opti-
mization problems. For example, Chaudhuri et al. [8, 9] and Kifer
et al. [22] consider differentially private convex empirical risk min-
imization, which can be applied to a wide range of optimization
problems (e.g., logistic regression and support vector machines).
Zhang et al. [40] propose the PrivGene framework, which is a com-
bination of genetic algorithms and an enhanced version of the ex-
ponential mechanism for differentially private model fitting. Smith
et al. [33, 36] and Mohan et al. [32] respectively present and im-
plement the sample and aggregate framework that can be used for
any analysis task whose results are not affected by the number of
records in the database. While this class of methods obtains gen-
erally good results for the target problem, it requires fixing this
objective at the time of data release, and limits the applicability of
the output for other uses.

1.2 Our Contributions
In this paper, we propose a powerful solution to the problem of

publishing differentially private high-dimensional data. Unlike the
bulk of prior work, which focuses on optimizing the output for
specific workloads (e.g., range queries, cube queries), we aim to
approximate the high-dimensional distribution of the original data
with a data-dependent set of well-chosen low-dimensional distri-
butions, in the belief that, for a sufficiently accurate approxima-
tion, the resulting data will maintain high accuracy for almost any
type of (linear or non-linear) query. Since our approach is query-
independent, many different queries can be evaluated (accurately)
on the same set of released data. Query-independence means that
our approach may be weaker than approaches that target a particu-
lar query set; however, we show empirically that the gap is small or
non-existent in many natural cases. By working in low-dimensional
spaces, we avoid the signal-to-noise problem. Although we com-
pare to the full-dimensional distribution for evaluation purposes,
our approach never needs to compute this explicitly, thus avoiding
the scalability problem.

To achieve this goal, we start from the well-known Bayesian
network model, which is widely studied in the statistical and ma-
chine learning communities [23]. Bayesian networks combine low-
dimensional distributions to approximate the full-dimensional dis-
tribution of a data set, and are a simple but powerful example of a
graphical model. Our algorithm, dubbed PRIVBAYES, consists of
the following steps:

1. (Network learning) We describe how to compute a differentially
private Bayesian network that approximates the full-dimensional
distribution via the Exponential Mechanism (EM). This step re-
quires new theoretical insights, which are described in Section 3.
We improve on this basic approach by defining a new quality func-
tion for use in EM, which results in significantly better networks
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Figure 1: A Bayesian network N1 over five attributes

being found. The definition and computation of this function are
one of our main technical contributions; see Section 4.

2. (Distribution learning) We explain how to compute the neces-
sary differentially private distributions of the data in the subspaces
of the Bayesian network, via the Laplace Mechanism.

3. (Data synthesis) We show how to generate synthetic data from
the differentially private Bayesian network, without explicitly ma-
terializing the global distribution.

In Section 5, we provide an extensive experimental evaluation of
the accuracy of the synthetic datasets generated above, over work-
loads of linear and non-linear queries. In each case, we compare
to prior methods specifically designed to optimize the accuracy for
that type of workload. Our experiments show that PRIVBAYES is
often more accurate than any prior method, even though it is not
optimized for any specific type of query. When PRIVBAYES is less
accurate than some prior method, the accuracy loss is small and, we
believe, an acceptable tradeoff, since PRIVBAYES offers a generic
solution that does not require prior knowledge of the workload and
works well on many different types of queries.

2. PRELIMINARIES
This section reviews two concepts closely related to our work,

namely, differential privacy and Bayesian networks.

2.1 Differential Privacy
Let D be a sensitive dataset to be published. Differential priva-

cy requires that, prior to D’s release, it should be modified using
a randomized algorithm G, such that the output of G does not re-
veal much information about any particular tuple in D. The formal
definition of differential privacy is as follows:

DEFINITION 1 (ε -DIFFERENTIAL PRIVACY [17]). A ran-
domized algorithm G satisfies ε-differential privacy, if for any
two datasets D1 and D2 that differ only in one tuple, and for any
possible output O of G, we have

Pr
[
G(D1) = O

]≤ eε ·Pr
[
G(D2) = O

]
, (1)

where Pr[·] denotes the probability of an event.

In what follows, we say that two datasets are neighboring if they
differ in only one tuple, i.e., the values of one tuple are changed
while the rest are identifical. While there are many approaches to
achieving differential privacy, we rely on the two best known and
most-widely used, namely, the Laplace mechanism [17] and the
exponential mechanism [31].

The Laplace mechanism releases the result of a function F that
takes as input a dataset and outputs a set of numeric values. Given
F , the Laplace mechanism transforms F into a differentially private
algorithm, by adding i.i.d. noise (denoted as η) into each output
value of F . The noise η is sampled from a Laplace distribution
Lap(λ ) with the following pdf: Pr[η = x] = 1

2λ e−|x|/λ . Dwork et
al. [17] prove that the Laplace mechanism ensures ε-differential
privacy if λ ≥ S(F)/ε , where S(F) is the sensitivity of F :

Table 1: The attribute-parent pairs in N1

i Xi Πi

1 age /0
2 education {age}
3 workclass {age}
4 title {age, education, workclass}
5 income {workclass, title}

DEFINITION 2 (SENSITIVITY [17]). Let F be a function that
maps a dataset into a fixed-size vector of real numbers. The sensi-
tivity of F is defined as

S(F) = max
D1,D2

‖F(D1)−F(D2)‖1 , (2)

where ‖·‖1 denotes the L1 norm, and D1 and D2 are any two neigh-
boring datasets.

Intuitively, S(F) measures the maximum possible change in F’s
output when we modify one arbitrary tuple in F’s input.

When F’s output is categorical instead of numeric, the Laplace
mechanism does not apply, but the exponential mechanism [31] can
be used instead. The exponential mechanism releases a differen-
tially private version of F , by sampling from F’s output domain Ω.
The sampling probability for each ω ∈ Ω is determined based on a
user-specified score function fs, which takes as input any dataset D
and any element ω ∈ Ω, and outputs a numeric score fs(D,ω) that
measures the quality of ω: a larger score indicates that ω is a better
output with respect to D. More specifically, given a dataset D, the
exponential mechanism samples ω ∈ Ω with a probability propor-
tional to exp( fs(D,ω)/2Δ), where Δ is a scaling factor that controls
the degree of privacy protection. McSherry and Talwar [31] show
that the exponential mechanism achieves ε-differential privacy if
Δ ≥ S( fs)/ε , where S( fs) is defined as:

S( fs) = max
D1,D2,ω ′

∣
∣ fs(D1,ω ′)− fs(D2,ω ′)

∣
∣ , (3)

for D1 and D2 any two neighboring datasets, and ω ′ any element in
Ω. For convenience, we also refer to S( fs) as the sensitivity of fs,
as it is similar in form to sensitivity as defined above.

Both mechanisms can be applied quite generally; however, to be
effective we seek to ensure that the noise introduced does not out-
weigh the signal in the data, and that it is computationally efficient
to apply the mechanism. This requires a careful design of what
functions to use in the mechanisms.

2.2 Bayesian Network
Let A be the set of attributes on a dataset D, and d be the size

of A. A Bayesian network on A is a way to compactly describe
the (probability) distribution of the attributes in terms of other at-
tributes. Formally, a Bayesian network is a directed acyclic graph
(DAG) that (i) represents each attribute in A as a node, and (ii)
models conditional independence among attributes in A using di-
rected edges. As an example, Figure 1 shows a Bayesian network
over a set A of five attributes, namely, age, education, workclass,
title, and income. For any two attributes X ,Y ∈A, there exist three
possibilities for the relationship between X and Y :

Case 1: Direct dependence. There is an edge between X and
Y , say, from Y to X . This indicates that for any tuple in D, its
distribution on X is determined (in part) by its value on Y . We
define Y as a parent of X , and refer to the set of all parents of X as
its parent set. For example, in Figure 1, the edge from workclass to
income indicates that the income distribution depends on the type
of job (and also on title).



Table 2: Table of notations

Notation Description

D A sensitive dataset to be published
n The number of tuples in D
A The set of attributes in D
d The number of attributes in A
N A Bayesian network over A
Pr[A] The distribution of tuples in D
PrN [A] An approximation of Pr[A] defined by N
dom(X) The domain of random variable X

Case 2: Weak conditional independence. There is a path (but
no edge) between Y and X . Assume without loss of generality that
the path goes from Y to X . Then, X and Y are conditionally inde-
pendent given X’s parent set. For instance, in Figure 1, there is a
two-hop path from age to income, and the parent set of income is
{workclass, title}. This indicates that, given workclass and job title
of an individual, her income and age are conditionally independent.

Case 3: Strong conditional independence. There is no path be-
tween Y and X . Then, X and Y are conditionally independent given
any of X’s and Y ’s parent sets.

Formally, a Bayesian network N over A is defined as a set of d
attribute-parent (AP) pairs, (X1,Π1), . . . ,(Xd ,Πd), such that

1. Each Xi is a unique attribute in A;

2. Each Πi is a subset of the attributes in A\{Xi}. We say that Πi
is the parent set of Xi in N ;

3. For any 1 ≤ i < j ≤ d, we have Xj /∈ Πi , i.e., there is no edge
from Xj to Xi in N . This ensures that the network is acyclic, name-
ly, it is a DAG.

We define the degree of N as the maximum size of any parent set
Πi in N . For example, Table 1 shows the AP pairs in the Bayesian
network N1 in Figure 1; N1’s degree equals 3, since the parent set
of any attribute in N1 has a size at most three.

Let Pr[A] denote the full distribution of tuples in database D. The
d AP pairs in N essentially define a way to approximate Pr[A] with
d conditional distributions Pr[X1 | Π1],Pr[X2 | Π2], . . . ,Pr[Xd | Πd ].
In particular, under the assumption that any Xi and any Xj /∈ Πi are
conditionally independent given Πi, we have

Pr[A] = Pr[X1,X2, . . . ,Xd ]

= Pr[X1] ·Pr[X2 | X1] ·Pr[X3 | X1,X2] . . .Pr[Xd | X1, . . .Xd−1]

=
d

∏
i=1

Pr[Xi | Πi]. (4)

Let PrN [A] = ∏d
i=1 Pr[Xi | Πi] be the above approximation of

Pr[A] defined by N . Intuitively, if N accurately captures the con-
ditional independence among the attributes in A, then PrN [A]
would be a good approximation of Pr[A]. In addition, if the
degree of N is small, then the computation of PrN [A] is rela-
tively simple as it requires only d low-dimensional distributions
Pr[X1 | Π1],Pr[X2 | Π2], . . . ,Pr[Xd | Πd ]. Low-degree Bayesian net-
works are the core of our solution to release high-dimensional data.
Table 2 shows notation that will be frequently used in this paper.

3. SOLUTION OVERVIEW
This section presents an overview of PRIVBAYES, our solution

for releasing a high-dimensional dataset D in an ε-differentially
private manner. PRIVBAYES runs in three phases:

Algorithm 1 NoisyConditionals (D, N , k): returns P∗

1: Initialize P∗ = /0
2: for i = k+1 to d do
3: Materialize the joint distribution Pr[Xi,Πi]
4: Generate differentially private Pr∗[Xi,Πi] by adding Laplace noise

Lap
(

4·(d−k)
n·ε

)

5: Set negative values in Pr∗[Xi,Πi] to 0 and normalize;
6: Derive Pr∗[Xi | Πi] from Pr∗[Xi,Πi]; add it to P∗
7: for i = 1 to k do
8: Derive Pr∗[Xi | Πi] from Pr∗[Xk+1,Πk+1]; add it to P∗
9: return P∗

1. Construct a k-degree Bayesian network N over the attributes in
D, using an (ε/2)-differentially private method. (k is a small value
that can be chosen automatically by PRIVBAYES.)

2. Use an (ε/2)-differentially private algorithm to generate a set of
conditional distributions of D, such that for each AP pair (Xi,Πi)
in N , we have a noisy version of the conditional distribution Pr[Xi |
Πi]. (We denote this noisy distribution as Pr∗[Xi | Πi].)

3. Use the Bayesian network N (constructed in the first phase)
and the d noisy conditional distributions (constructed in the second
phase) to derive an approximate distribution of the tuples in D, and
then sample tuples from the approximate distribution to generate a
synthetic dataset D∗.

In short, PRIVBAYES utilizes a low-degree Bayesian network
N to generate a synthetic dataset D∗ that approximates the high
dimensional input data D. The construction of N is highly non-
trivial, as it requires carefully selecting AP pairs and the value of k
to derive a close approximation of D without violating differential
privacy. By contrast, the second and third phases of PRIVBAYES

are relatively straightforward. In the following, we will clarify
the details of these phases, and prove the privacy guarantee of
PRIVBAYES; the algorithm for PRIVBAYES’s first phase will be
elaborated in Section 4.

Generation of Noisy Conditional Distributions. Suppose that we
are given a k-degree Bayesian network N . To construct the ap-
proximate distribution PrN [A], we need d conditional distribution-
s Pr[Xi | Πi] (i ∈ [1,d]), as shown in Equation (4). Algorithm 1
illustrates how the distributions specified by our algorithm can be
derived in a differentially private manner. In particular, for any
i ∈ [k+ 1,d], the algorithm first materializes the joint distribution
Pr[Xi,Πi] (Line 3), and then injects Laplace noise into Pr[Xi,Πi]
to obtain a noisy distribution Pr∗[Xi,Πi] (Line 4-5). To enforce
the fact that these are probability distributions, all negative num-
bers in Pr∗[Xi,Πi] are set to zero, then all values are normalized
to maintain a total probability mass of 1 (Line 5).1 After that,
based on Pr∗[Xi,Πi], the algorithm derives a noisy version of the
conditional distribution Pr[Xi | Πi], denoted as Pr∗[Xi | Πi] (Line
6). The scale of the Laplace noise added to Pr[Xi,Πi] is set to
4(d − k)/nε , which ensures that the generation of Pr∗[Xi,Πi] satis-
fies (ε/2(d −k))-differential privacy, since Pr[Xi,Πi] has sensitiv-
ity 2/n. Meanwhile, the derivation of Pr∗[Xi | Πi] from Pr∗[Xi,Πi]
does not incur any privacy cost, as it only relies on Pr∗[Xi,Πi] in-
stead of the input data D.

Overall, Lines 2-7 of Algorithm 1 construct (d − k) noisy con-
ditional distributions Pr∗[Xi | Πi] (i ∈ [k + 1,d]), and they satisfy
(ε/2)-differential privacy, since each Pr∗[Xi | Πi] is (ε/2(d −k))-
differentially private. This is due to the composability property of
1More generally, we could apply additional post-processing of dis-
tributions, in the spirit of [5, 15, 21], to reflect the fact that lower
degree distributions should be consistent. For simplicity and brevi-
ty, we omit such optimizations from this presentation.



differential privacy [16]. In particular, composability indicates that
when a set of m algorithms satisfy differential privacy with param-
eters ε1,ε2, . . . ,εm, respectively, the set of algorithms as a whole
satisfies (∑i εi)-differential privacy.

After Pr∗[Xk+1 | Πk+1], . . . ,Pr∗[Xd | Πd ] are constructed, Algo-
rithm 1 proceeds to generate Pr∗[Xi | Πi] (i ∈ [1,k]). This gener-
ation, however, does not require any additional information from
the input data D. Instead, we derive Pr∗[Xi | Πi] (i ∈ [1,k]) direct-
ly from Pr∗[Xk+1,Πk+1], which has been computed in Lines 2-7
of Algorithm 1. Such derivation is feasible, since our algorithm
for constructing the Bayesian network N (to be clarified in Sec-
tion 4) ensures that Xi ∈ Πk+1 and Πi ⊂ Πk+1 for any i ∈ [1,k].
Since each Pr∗[Xi | Πi] (i ∈ [1,k]) is derived from Pr∗[Xk+1,Πk+1]
without inspecting D, the construction of Pr∗[Xi | Πi] does not in-
cur any privacy overhead. Therefore, Algorithm 1 as a whole is
(ε/2)-differentially private. Example 1 illustrates Algorithm 1.

EXAMPLE 1. Suppose that we are given a 2-degree Bayesian
network N over a set of four attributes {A,B,C,D}, with 4 AP
pairs: (A, /0),(B,{A}),(C,{A,B}), and (D,{A,C}). Given N , Al-
gorithm 1 constructs two noisy joint distributions Pr∗[A,B,C] and
Pr∗[A,C,D]. Based on Pr∗[A,C,D], Algorithm 1 derives a noisy
conditional distribution Pr∗[D | A,C]. In addition, the algorith-
m uses Pr∗[A,B,C] to derive three other conditional distributions
Pr∗[A], Pr∗[B | A], and Pr∗[C | A,B]. Given these four conditional
distributions, the input tuple distribution is approximated as

Pr∗N [A,B,C,D] = Pr∗[A] ·Pr∗[B | A] ·Pr∗[C | A,B] ·Pr∗[D | A,C].

Generation of Synthetic Data. Even with the simple closed-form
expression in Equation 4, it is still time and space consuming to di-
rectly sample from Pr∗N [A] by computing the probability for each
element in the domain of A. Fortunately, the Bayesian network N
provides a means to perform sampling efficiently without materi-
alizing Pr∗N [A]. As shown in Equation 4, we can sample each Xi
from the conditional distribution Pr∗[Xi | Πi] independently, with-
out considering any attribute not in Πi ∪ {Xi}. Furthermore, the
properties of N (discussed in Section 2.2) ensure that Xj /∈ Πi for
any j > i. Therefore, if we sample Xi (i ∈ [1,d]) in increasing order
of i, then by the time Xj ( j ∈ [2,d]) is to be sampled, we must have
sampled all attributes in Π j , i.e., we will be able to sample Xj from
Pr∗[Xj | Π j] given the previously sampled attributes. That is to say,
the sampling of Xj does not require the full distribution Pr∗N [A].

With the above sampling approach, we can generate an arbitrary
number of tuples from Pr∗N [A] to construct a synthetic database
D∗. In this paper, we consider the size of D∗ is set to n, i.e., the
same as the number of tuples in the input data D.

Privacy Guarantee. The correctness of PRIVBAYES directly fol-
lows the composability property of differential privacy [16]. In par-
ticular, the first and second phases of PRIVBAYES require direct
access to the input database, and each of them consumes ε/2 pri-
vacy budget. No access to the original database is invoked during
the third (sampling) phase. The results of first two steps, i.e., the
Bayesian network N and the set of noisy conditional distributions,
are sufficient to generate the synthetic database D∗. Therefore, we
have the following theorem.

THEOREM 1. PRIVBAYES satisfies ε-differential privacy.

4. PRIVATE BAYESIAN NETWORKS
This section presents our solution for constructing differentially

private Bayesian networks. We will first introduce a non-private
algorithm for Bayesian network construction (in Section 4.1), and
then explain how the algorithm can be converted into a differential-
ly private solution (in Sections 4.2 and 4.3).

Algorithm 2 GreedyBayes (D, k): returns N
1: Initialize N = /0 and V = /0
2: Randomly select an attribute X1 from A; add (X1, /0) to N ; add X1 to V

3: for i = 2 to d do
4: Initialize Ω = /0
5: For each X ∈A\V and each Π ∈ (V

k

)
, add (X ,Π) to Ω

6: Select a pair (Xi,Πi) from Ω with the maximal mutual information
I(Xi,Πi)

7: Add (Xi,Πi) to N ; add Xi to V
8: return N

4.1 Non-Private Methods
Suppose that we aim to construct a k-degree Bayesian network

N on a dataset D containing a set A of attributes. Ideally, N should
provide an accurate approximation of the tuple distribution in D,
i.e., PrN [A] should be close to Pr[A]. A natural question is un-
der what condition will PrN [A] closely approximate Pr[A]? We
make use of standard notions from information theory to measure
this. The entropy of a random variable X over its domain dom(X)
is denoted by H(X) = −∑x∈dom(X)Pr[X = x] logPr[X = x],2 and
I(·, ·) denotes the mutual information between two variables as:
I(X ,Π) =

∑
x∈dom(X)

∑
π∈dom(Π)

Pr[X = x,Π = π] log
Pr[X = x,Π = π]

Pr[X = x]Pr[Π = π]
, (5)

where Pr[X ,Π] is the joint distribution of X and Π, and Pr[X ] and
Pr[Π] are the marginal distributions of X and Π respectively. The
KL-divergence [14] of PrN [A] from Pr[A] measures the difference
between the two probability distributions, and is defined by:

KL(Pr[A],PrN [A]) =−
d

∑
i=1

I(Xi,Πi)+
d

∑
i=1

H(Xi)−H(A). (6)

We seek a Bayesian network representation so that the KL-
divergence between the original and the approximate distribution
is small. In (6), the term ∑d

i=1 H(Xi)−H(A) is solely decided by
Pr[A], which is fixed once the input database D is given. Hence,
the KL-divergence of PrN [A] from Pr[A] is small (in which case
they closely approximate each other), if and only if ∑d

i=1 I(Xi,Πi)
is maximized. Therefore, the construction of N can be modeled as
an optimization problem, where we aim to choose a parent set Πi
for each attribute Xi in D to maximize ∑d

i=1 I(Xi,Πi).
For the case when k = 1, Chow and Liu show that greedi-

ly picking the next edge based on the maximum mutual infor-
mation is optimal, leading to the celebrated notion of Chow-Liu
trees [11]. However, as shown in [10], this optimization problem
is NP-hard when k > 1. For this reason, heuristic algorithms (e.g.,
hill-climbing, genetic algorithms, and simulated annealing) are of-
ten employed in practice [28]. In the context of differential privacy,
however, a different calculus applies: these methods incur a high
cost in terms of sensitivity and so incur a large amount of noise.
That is, these algorithms make many queries to the data, so that
making them differentially private entails large perturbations which
lead to poor overall accuracy. Therefore, we seek a new method
that will imply less noise, and so give a better overall approxima-
tion when the noise is added. Thus we propose a greedy algorithm
that makes fewer probes to the data, by extending the Chow-Liu
approach to higher degrees, described in Algorithm 2.

In the beginning of the algorithm (Line 1), we initialize the
Bayesian network N to an empty list of AP pairs. Let V be a set

2All logarithms used in this paper are to the base 2.



that contains all attributes whose parent sets have been fixed in the
partial construction of N . As a next step, the algorithm randomly
selects an attribute (denoted as X1) from A, and sets its parent set
Π1 to /0 (Line 2). The rest of the algorithm consists of d −1 itera-
tions (Lines 3-7), in each of which we greedily add into N an AP
pair with a large mutual information. Specifically, the AP pair in
each iteration is selected from a candidate set Ω that contains every
AP pair (X ,Π) satisfying two requirements:

1. |Π| ≤ k, which ensures that N is a k-degree Bayesian network.
This is ensured by choosing Π only from

(V
k

)
, where

(V
k

)
denotes

the set of all subsets of V with size min(k, |V |) (Lines 5-6).

2. N contains no edge from Xi to Xj for any j < i, which guaran-
tees that N is a DAG. We ensure this condition by requiring that
in the beginning of any iteration, V only contains the attributes
whose parent sets have been decided in the previous iterations
(Line 7). In other words, the parent set of Xi can only be a subset
of {X1,X2, . . . ,Xi−1}, as a consequence of which N cannot contain
any edge from Xi to Xj for any j < i.

Once the parent set of each attribute is decided, the algorithm ter-
minates and returns the Bayesian network N (Line 9). The number
of pairs considered in iteration i is (d − i)

(i
k

)
, so summing over all

iterations the cost is bounded by d ∑d
i=1

( i
k

)
= d

(d+1
k+1

)
. This deter-

mines the asymptotic cost of the procedure. Note that when k = 1,
the above algorithm is equivalent to Chow and Liu’s method [11]
for constructing optimal 1-degree Bayesian networks.

4.2 A First-Cut Solution
Observe that in Algorithm 2, there is only one place where we

interact directly with the input dataset D, namely, the greedy selec-
tion of an AP pair (Xi,Πi) in each iteration of the algorithm (Line
6). Therefore, if we are to make Algorithm 2 differentially private,
we only need to replace Line 6 of Algorithm 2 with a procedure
that selects (Xi,Πi) from Ω in a private manner. Such a procedure
can be implemented with the exponential mechanism outlined in
Section 2.1, using the mutual information function I as the score
function. Specifically, we first inspect each AP pair (X ,Π) ∈ Ω,
and calculate the mutual information I(X ,Π) between X and Π;
After that, we sample an AP pair from Ω, such that the sampling
probability of any pair (X ,Π) is proportional to exp(I(X ,Π)/2Δ),
where Δ is a scaling factor.

The value of Δ is set as follows. As mentioned in Section 3,
PRIVBAYES requires that the construction of the Bayesian network
N should satisfy (ε/2)-differential privacy. Accordingly, we set
Δ = 2(d −1)S(I)/ε , where S(I) denotes the sensitivity of the mu-
tual information function I (see Equation 3). This ensures that each
invocation of the exponential mechanism satisfies (ε/2(d − 1))-
differential privacy. Given the composability property of differ-
ential privacy [16] and the fact that we only invoke the exponen-
tial mechanism d − 1 times during the construction of N , it can
be verified that the overall process of constructing N is (ε/2)-
differentially private.

Last, we calculate the sensitivity, S(I).

LEMMA 1.

S(I(X ,Π)) =

⎧
⎨

⎩

1
n logn+ n−1

n log n
n−1 , if X or Π is binary;

2
n log n+1

2 + n−1
n log n+1

n−1 , otherwise,

where n is the number of tuples in D.

This can be shown by considering the maximum change in mu-
tual information based on its definition (5), as the various probabil-
ities are changed by the alteration of one tuple. We omit the full

proof for brevity, but the maximum difference in mutual informa-
tion between binary variables is achieved by this example:

X\Π 0 1
0 0 0
1 0 1

X\Π 0 1
0 1

n 0
1 0 n−1

n

The mutual information of the left distribution is 0, and that of
the right one is 1

n logn+ n−1
n log n

n−1 .

4.3 An Improved Solution
The method in Section 4.2 is simple and intuitive, but may not

achieve the best results: Observe that S(I) > logn/n; this can
be large compared to the range of I. For example, range(I) = 1
for binary distributions. As a consequence, the scaling factor
Δ = 2(d−1)S(I)/ε tends to be large, and so the exponential mech-
anism is still quite likely to sample (from Ω) an AP pair with a
small mutual information. In that case, the Bayesian network N
constructed using the exponential mechanism will offer a weak
approximation of Pr[A], resulting in a low-quality output from
PRIVBAYES. To improve over this solution, we propose to avoid
using I as the score function in the exponential mechanism. Instead,
we define a novel function F that maps each AP pair (X ,Π) ∈ Ω to
a score, such that

1. F’s sensitivity is small (with respect to the range of F).

2. If F(X ,Π) is large, then I(X ,Π) tends to be large.

The rationale is that since S(F) is small with respect to range(F),
the scaling factor Δ= 2(d−1)S(F)/ε will also be small, and hence,
the exponential mechanism has a high probability to select an AP
pair (X ,Π) with a large F(X ,Π). In turn, such an AP pair tends
to have a large mutual information between X and Π, which helps
improve the quality of the Bayesian network N .

In what follows, we will clarify our construction of F . To achieve
property 2 above, we set F to its maximum value (i.e., 0) when I is
greatest. To achieve property 1, we make F(X ,Π) decrease linear-
ly in proportion to the L1 distance from Pr[X ,Π] to a distribution
that maximizes F , since linear functions ensure that the sensitivi-
ty is controlled: the function does not change sharply anywhere in
its domain. We first introduce the concept of maximum joint dis-
tribution, which will be used to define the peaks of F , and then
characterize such distributions:

DEFINITION 3 (MAXIMUM JOINT DISTRIBUTION). Given
an AP pair (X ,Π), a maximum joint distribution Pr�[X ,Π] for X
and Π is one that maximizes the mutual information between X
and Π.

LEMMA 2. Assume that |dom(X)| ≤ |dom(Π)|. A distribution
Pr�[X ,Π] is a maximum joint distribution if and only if

1. Pr�[X = x] = 1/|dom(X)|, for any x ∈ dom(X);

2. For any π ∈ dom(Π), there is at most one x ∈ dom(X) with
Pr�[X = x,Π = π]> 0.

Proofs in this section are deferred to the appendix. We illustrate
Definition 3 and Lemma 2 with an example:

EXAMPLE 2. Consider a binary variable X with dom(X) =
{0,1} and a variable Π with dom(Π) = {a,b,c}. Consider two
joint distributions between X and Π as follows:

X\Π a b c
0 .5 0 0
1 0 .5 0

X\Π a b c
0 0 .2 .3
1 .5 0 0



By Lemma 2, both of the above distributions are maximum joint
distributions, with I(X ,Π) = 1.

Let (X ,Π) be an AP pair, and P�[X ,Π] be the set of all maximum
joint distributions for X and Π. Our score function F (for evaluating
the quality of (X ,Π)) is defined as

F(X ,Π) =−1
2

min
Pr�∈P�

∥
∥
∥Pr[X ,Π]−Pr�[X ,Π]

∥
∥
∥

1
. (7)

If F(X ,Π) is large, then Pr[X ,Π] must have a small L1 distance
to one of the maximum joint distributions in P�[X ,Π], and vice-
versa. In turn, if Pr[X ,Π] is close to a maximum joint distribution in
P�[X ,Π], then intuitively, Pr[X ,Π] is likely to give a large mutual
information between X and Π. In other words, the value of F(X ,Π)
tends to be positively correlated with I(X ,Π). This explains why
F could be a good score function to replace I. In addition, F has a
much smaller sensitivity than I, as shown in the following theorem:

THEOREM 2. S(F) = 1/n.

This follows immediately from considering the L1 distance be-
tween neighboring distributions. Observe that S(F) < S(I)/ logn,
where n is the number of tuples in the input data. Meanwhile, the
ranges of F and I are comparable; for example, range(I) = 1 and
range(F) = 0.5 for binary domains. Therefore, when n is large (as
is often the case), the sensitivity-to-range ratio of F is significantly
smaller than that of I, which makes F a favorable score function
over I for selecting AP pairs in the Bayesian network N .

4.4 Computation of F
While (7) defines the function F , it still remains unclear how we

can calculate F(X ,Π) given Pr[X ,Π]. In this subsection, we use
dynamic programming to solve the problem for the case when all
attributes in Π∪{X} have binary domains; we address the case of
non-binary domains in Section 4.5.

Let (X ,Π) be an AP pair where |Π| = k. Then, the joint dis-
tribution Pr[X ,Π] can be represented by a 2×2k matrix where the
sum of all elements is 1. For example, Table 3(a) illustrates a joint
distribution Pr[X ,Π] with |Π| = 2. To compute F(X ,Π), we need
to identify the minimum L1 distance between Pr[X ,Π] and a maxi-
mum joint distribution Pr�[X ,Π] ∈ P�[X ,Π]. Table 3(b) illustrates
one such maximum joint distribution, whose L1 distance to the dis-
tribution in Table 3(a) equals 0.4. To derive the minimum L1 dis-
tance, a naive approach is to enumerate all maximum joint distribu-
tions in P�[X ,Π]; nevertheless, as P�[X ,Π] may contain an infinite
number of maximum joint distributions, a brute-force enumeration
of P� is infeasible. To address this issue, we will first introduce
an exponential-time algorithm for computing F(X ,Π), which will
serve as the basis of our dynamic programming solution.

The basic idea of our exponential-time algorithm is to (i) par-
tition the distributions in P� into a finite number of equivalence
classes, and then (ii) compute F(X ,Π) by processing each equiva-
lence class individually. By Lemma 2, any maximum joint distri-
bution Pr�[X ,Π] has the following property: for any π ∈ dom(Π),
either Pr�[X = 0,Π = π] = 0 or Pr�[X = 1,Π = π] = 0. In other
words, for each column in the matrix representation of Pr�[X ,Π]
(where a column corresponds to a value in dom(Π)), there should
be at most one non-zero entry. For example, the gray cells in Ta-
ble 3(b) indicate the positions of non-zeros in the given maximum
joint distribution.

For any two distributions in P�, we say that they are equivalent
if (i) their matrix representations have the same number of non-zero
entries, and (ii) the positions of the non-zero entries are the same
in the two matrices. Suppose that we divide the distributions in P�

Table 3: An example of joint distributions

X\Π 00 01 10 11
0 .6 0 0 0
1 .1 .1 .1 .1

X\Π 00 01 10 11
0 .5 0 0 0
1 0 .3 .1 .1

(a) input joint distribution (b) maximum joint distribution

into equivalence classes, each of which contains a maximal subset
of equivalent distributions. Then, totally there are O(32k

) equiva-
lent classes. It turns out that we can easily calculate the minimum
L1 distance from Pr[X ,Π] to each equivalence class.

To explain, consider a particular equivalence class E. Let Z−
be the set of pairs (x,π), such that Pr�[X = x,Π = π] = 0 for any
Pr�[X ,Π] ∈ E. That is, Z− captures the positions of all zero entries
in the matrix representation of Pr�[X = x,Π = π]. Similarly, we
define the sets of non-zero entries in row X = 0 and X = 1 as

Z+
0 = {(0,π) | Pr�[X = 0,Π = π]> 0} ,and

Z+
1 = {(1,π) | Pr�[X = 1,Π = π]> 0} .

For convenience, we also abuse notation and define

Pr[Z−] = ∑(x,π)∈Z− Pr[X = x,Π = π],

Pr[Z+
0 ] = ∑(x,π)∈Z+

0
Pr[X = x,Π = π],

Pr[Z+
1 ] = ∑(x,π)∈Z+

1
Pr[X = x,Π = π].

By Lemma 2, we have Pr�[Z−] = 0, Pr�[Z+
0 ] = 1/2, and

Pr�[Z+
1 ] = 1/2 for any Pr�[X ,Π] ∈ E. Then, for any Pr[X ,Π], it-

s L1 distance to a distribution Pr�[X ,Π] ∈ E is bounded by:
∥∥
∥Pr[X ,Π]−Pr�[X ,Π]

∥∥
∥

1
≥ Pr[Z−]+

∣∣
∣Pr[Z+

0 ]− 1
2

∣∣
∣+

∣∣
∣Pr[Z+

1 ]− 1
2

∣∣
∣.

Let (x)+ denote max(0,x). Given that Pr[Z−]+Pr[Z+
0 ]+Pr[Z+

1 ] =
1, the above inequality can be simplified to
∥
∥
∥Pr[X ,Π]−Pr�[X ,Π]

∥
∥
∥

1
≥ 2 ·

[(
1
2 −Pr[Z+

0 ]
)

+
+
(

1
2 −Pr[Z+

1 ]
)

+

]
.

(8)
Furthermore, there always exists a Pr�[X ,Π] ∈ E that makes the
equality hold. In other words, once the positions of the non-zero
entries in Pr�[X ,Π] are fixed, we can use (8) to derive the minimum
L1 distance from any Pr[X ,Π] to E, with a linear scan of the entries

in the matrix representation of Pr[X ,Π]. By enumerating all O(32k
)

equivalence classes of P�, we can then derive F(X ,Π).
The above procedure for calculating F is impractical when k ≥ 4,

as the exhaustive search over all possible equivalence classes of
P� is prohibitive. To tackle this problem, we propose a dynamic-
programming-based optimization that reduces computation costs
by taking advantage of the fact that the distributions are induced
by n items.

Based on (8), our target is to find a combination of Z+
0 and Z+

1
(which therefore determine Z−) that minimizes

(1
2
−Pr[Z+

0 ]
)

+
+
(1

2
−Pr[Z+

1 ]
)

+
.

We define the probability mass associated with Z+
0 and Z+

1 as K0
and K1 respectively. Initially, K0 = K1 = 0. For each π ∈ dom(Π),
we can either increase K0 by Pr[X = 0,Π = π] (by assigning (0,π)
to Z+

0 ) or increase K1 by Pr[X = 1,Π = π] (by assigning (1,π) to
Z+

1 ). We index π ∈ dom(Π) as π1,π2, . . . ,π2k . We use C(i,a,b) to
indicate if K0 = a/n and K1 = b/n is reachable by using the first i
π’s, i.e., π1,π2, . . . ,πi. It can be verified that (i) C(i,a,b) = true if
i = a = b = 0, (ii) C(i,a,b) = false if i < 0 or a < 0 or b < 0, and



(iii) otherwise,

C(i,a,b) = C(i−1,a−nPr[X = 0,Π = πi],b)

∨ C(i−1,a,b−nPr[X = 1,Π = πi]).

Given an input dataset D with n tuple, each cell in Pr[X ,Π] must be
a multiple of 1/n. Thus, we only consider the case when a and b are
integers in the range [0,n]. Thus, the total number of states C(i,a,b)
is n22k. A direct traversal of all states takes O(n22k) time. To
reduce this time complexity, we introduce the following concept:

DEFINITION 4 (DOMINATED STATE). A state C(i,a1,b1) is
dominated by C(i,a2,b2) if and only if a1 ≤ a2 and b1 ≤ b2.

Note that a dominated state is always inferior to some other s-
tates, and hence, it can be ignored without affecting the correctness
of final result. Consequently, we maintain the set of at most n non-
dominated reachable states for each i ∈ [1,2k]. The function F can
be calculated by

F(X ,Π) =− min
C(2k,a,b)=true

(1
2
− a

n

)

+
+
(1

2
− b

n

)

+
.

As such, the total number of states that need to be traversed is n2k,
and thus the complexity of the algorithm is reduced to O(n2k).
Note that k is small in practice, since we only need to consider
low-degree Bayesian networks.

4.5 Extension to General Domains
The dynamic programming approach in Section 4.4 assumes that

all attributes in the input data D are binary. In this section, we ex-
tend our solution to the case when D contains non-binary attributes.

Following the common practice in the literature [38], our first
solution converts each non-binary attribute in the dataset into a set
of binary attributes. In particular, for each categorical attribute X
whose domain size equals �, we first encode each value in X’s do-
main into a binary representation with log�� bits; after that, we
convert X into log(l)� binary attributes X1,X2, . . . ,Xlog��, such
that Xi corresponds to the i-th bit in the binary representation.
Meanwhile, for each continuous attribute Y , we first discretize the
domain of Y into a fixed number b of equi-width bins (we use
b = 16), and then convert Y into logb� binary attributes, using
a similar approach to the transformation of X . After the transfor-
mation, D can be encoded to form a new database Db in the binary
domain. After that, we apply PRIVBAYES on Db to generate a syn-
thetic dataset D∗

b, then decode it to get D∗ in the original domain.
A second solution tries to preserve the semantics of (discrete)

attributes more directly, via a more complex search. Following
the outline for the binary case, we can model the computation of
F(X ,Π) over non-binary attribute X and parent set Π as an opti-
mization problem. Now the structure of X is more complex, the
approach of dynamic programming does not apply. Instead, we can
find a different combinatorial characterization of maximum distri-
butions, and encode this with a set of (linear) constraints. The
search for the minimum cost maximum distribution is the an op-
timization problem over these constraints, which can be solved by
an integer program. We postpone details of this approach to the full
version of this paper; in our experiments, we show results using the
binary encoding, which is effective enough for our purposes.

4.6 Choice of k and θ -usefulness.
We have discussed how to build a k-degree Bayesian network

under differential privacy, where k is considered as a given input to
the algorithm. However, k is usually unknown in real applications
and should be chosen carefully. The choice of k is non-trivial for

PRIVBAYES. Intuitively, a Bayesian network with a larger k keeps
more information from the full dimensional distribution Pr[A], e.g.,
a (d − 1)-degree Bayesian network approximates Pr[A] perfectly
without having any information loss. On the other hand, the down-
side of using large k is that it forces PRIVBAYES to anonymize a
set of high-dimensional marginal distributions in the second phase,
which are very vulnerable to noise due to their domains of large
size. These noisy distributions are less useful after anonymization
especially when the privacy budget ε is small, leading to a synthet-
ic database full of random perturbation. With very small values of
ε , the best choice may be to pick k = 0, i.e. to model all attributes
as independent. Hence, the choice of k should balance the infor-
mativeness of a Bayesian network and the robustness of marginal
distributions. This balancing act is affected by three parameters:
the total privacy budget ε , the total number of tuples in database
n, and usefulness of each noisy marginal distribution in the second
phase θ . We quantify this in the following definition.

DEFINITION 5 (θ -USEFULNESS). A noisy distribution is θ -
useful if the ratio of average scale of information to average scale
of noise is no less than θ .

LEMMA 3. The noisy distributions in Algorithm 1 are(
n · ε

(d −k) ·2k+3

)
-useful.

PROOF. In Algorithm 1, each marginal distribution is (k+ 1)-
dimensional with a domain size 2k+1. Therefore, the average scale
of information in each cell is 1/2k+1.

For the scale of noise, we have d−k marginal distributions to be
anonymized and each of them consumes privacy budget ε/2(d−k).
The sensitivity of each marginal distribution is 2/n. According to
the Laplace mechanism, the Laplace noise N injected to each cell is
drawn from distribution Lap(4(d −k)/nε) where the average scale
of noise is E(|η|) = 4(d −k)/nε .

The notion of θ -usefulness provides a more intuitive way to
choose k automatically without closely studying the specific in-
stance of the input database. Generally speaking, we believe a 0.5-
useful noisy distribution is not good because the scale of noise is
twice as that of information, while a 5-useful one is more reliable
due to its large information to noise ratio. In practice, we set up a
threshold θ , then choose the largest positive integer k that guaran-
tees θ -usefulness in parameter learning (note, this is independent
of the data, as it depends only on the non-private values ε,θ ,n and
d). If such a k does not exist, k is set to the minimum value, 0. In
the experimental section, we will show that there is a wide range of
θ to choose to train a PRIVBAYES model for good performance.

5. EXPERIMENTS

5.1 Experimental Settings

Datasets. We make use of four real databsets in our experiments:
(i) Adult [4], which includes the information of 45,222 individ-
uals extracted from the 1994 US Census, (ii) NLTCS [2], which
contains records of 21,574 individuals participated in the National
Long Term Care Survey, (iii) TPC-E [3], 40,000 tuples obtained by
joining four tables in the TPC-E benchmark: “Trade”, “Security”,
“Security status” and “Trade type”, and (iv) BR2000 [1], which
consists of 38,000 census records collected from Brazil in year
2000. Each of the four datasets contains both continuous and cate-
gorical attributes. Table 4 illustrates the properties of the datasets.

Tasks. We evaluate the performance of PRIVBAYES on two dif-
ferent tasks. The first task is to build all α-way marginals of a



Table 4: Dataset characteristics.

Dataset Cardinality Dimensionality Domain size

Adult 45,222 15 ≈ 252

NLTCS 21,574 16 ≈ 216

TPC-E 40,000 24 ≈ 277

BR2000 38,000 14 ≈ 232

dataset [5]. For convenience, we use Qα to denote the set of all
α-way marginals. We evaluate Q3 and Q4 on NLTCS, but examine
Q2 and Q3 instead on the remaining three datasets, since each of
those datasets leads to a prohibitively large number of queries in
Q4. We measure the accuracy of each noisy marginal by the total
variation distance [14] between itself and the noise-free marginal
(i.e., half of the L1 distance between the two marginals, when both
of them are treated as probability distributions). We use the average
accuracy over all marginals as the final error metric for Qα .

The second task that we consider is to simultaneously train mul-
tiple SVM classifiers on a dataset, where each classifier predicts
one attribute in the data based on all other attributes. Specifically,
on Adult, we train four classifiers to predict whether an individual
(i) is a female, (ii) holds a post-secondary degree, (iii) makes over
50K a year, and (iv) has never married, respectively. Meanwhile,
on NLTCS, we construct four classifiers to predict whether a per-
son (i) is unable to get outside, (ii) is unable to manage money, (iii)
is unable to bathe, and (iv) is unable to travel, respectively. We
omit the experiments on BR2000 and TCP-E for space reasons.
For each classification task, we use 80% of the tuples in the data
as the training set, and the other 20% as the testing set. We apply
PRIVBAYES on the training data to generate a synthetic dataset,
and then use the synthetic data to construct SVM classifiers. The
quality of each classifier is measured by its misclassification rate
on the testing set, i.e., the fraction of tuples in the testing data that
are incorrectly classified.

For each of the aforementioned tasks, we repeat each experiment
on each method 50 times, and we report the average measurements
in our experimental results.

Baselines. For the task of answering count queries in Qα , we com-
pare PRIVBAYES with three approaches: (i) Laplace [17], which
generates all α-way marginals of a dataset and then injects Laplace
noise directly into each cell of the marginals, (ii) Fourier [5], which
transforms the input data D into the Fourier domain, adds Laplace
noise to a subset of Fourier coefficients and uses the noisy coeffi-
cients to construct α-way marginals, and (iii) Contingency, which
first builds the noisy contingency table, and then projects it onto
attribute subsets to compute marginals. However, Contingency is
only applicable to NLTCS since its computational cost is propor-
tional to the domain size of input data. We also considered several
other existing approaches [15, 20, 24, 25, 39] for answering count
queries under differential privacy, but find them inapplicable due to
our datasets’ large domain size. For fair comparison, we adopt two
consistency techniques to boost the accuracies of baselines: (i) non-
negativity, which rounds all negative counts in a noisy marginal to
0, and (ii) normalization, which linearly rescales the counts in a
noisy marginal to make them sum to n.

For the task of training multiple SVM classifiers, we com-
pare PRIVBAYES against four methods: PrivateERM [9], Priv-
Gene [40], NoPrivacy, and Majority. In particular, PrivateERM
and PrivGene are two state-of-the-art methods for SVM classifi-
cation under differential privacy. NoPrivacy constructs classifiers
directly on the input data without any privacy protection. Major-
ity is a naive classification method under differential privacy that
works as follows. Let Y = {0,1} be the attribute to be classified,

F, k = 1 F, k = 2 F, k = 3
I, k = 1 I, k = 2 I, k = 3
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and n be the number of tuples in the training data. Majority first
counts the number of tuples in the training data with Y = 1, and
then adds Laplace noise (with scale 1/ε) into the count to ensure ε-
differential privacy. If the noisy count is larger than n/2, then Ma-
jority predicts that all tuples in the testing data should have Y = 1;
otherwise, Majority predicts Y = 0 for all tuples. For PRIVBAYES,
PrivGene, and NoPrivacy, we adopt the standard hinge-loss C-
SVM model [7] with C = 1; for PrivateERM, we adopt a slightly
different SVM model with Huber loss [9], as it does not support the
hinge-loss model.

5.2 Effect of Quality Function F
In the first set of experiments, we evaluate the effectiveness of

score function F (in Section 4.2) against the mutual information
function I. Figure 2 illustrates the performance of PRIVBAYES

when combined with F and I, respectively, using Adult and NLTC-
S. The performance of each combination evaluated by the sum of
the mutual information of every AP pair in the Bayesian network
N , i.e., ∑d

i=1 I(Xi,Πi). Observe that F significantly outperforms
I in almost all cases. This is consistent with our analysis in Sec-
tion 5.2 that F helps improve the quality of the Bayesian network
constructed by PRIVBAYES.

For small k values (i.e., k = 0,1,2), the time taken to construct
a Bayesian network with F is less than 1 minute and is negligible.
For larger values of k, the time taken is typically higher (a few
hours in the case of k = 5). Note that this is not a major concern,
since data release is not considered a real-time problem, and the
computation of F for different combinations of attributes can be
easily parallelized.

5.3 Choice of θ
Recall that PRIVBAYES has only one internal parameter: the de-

gree of Bayesian network k. As discussed in Section 4.6, we adop-
t the θ -usefulness criterion to automatically select an appropriate
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Figure 4: α-way marginals on four datasets

value for k, based on the number of tuples in the input data D as
well as the domains of the attributes in D. To evaluate the effect
of θ on PRIVBAYES, we use the Q2 query set on Adult and the Q3
query set on NLTCS, and examine the performance of PRIVBAYES

in answering the queries, with varying θ and ε . Figures 3 illus-
trates the results. Observe that the average variation distance of the
tested query set tends to be higher when θ is very small or very
large. This is consistent with our analysis in Section 4.6 that (i)
small θ leads to very noisy marginal distributions in the second
phase of PRIVBAYES, which makes the synthetic dataset drastical-
ly different from the input data, and (ii) large θ makes it difficult
for PRIVBAYES to construct a high quality Bayesian network in its
first phase, which also leads to inferior synthetic data. Based on
Figure 3, we infer that an appropriate value for θ should be in the
range of [2,16]. For all subsequent experiments, we set θ = 4.

Note that our tuning of θ is only based on the Q2 query set on
Adult and the Q3 query set on NLTCS, without inspecting oth-
er datasets or other tasks on Adult and NLTCS. Therefore, our
choice of θ does not reveal any private information on TPC-E and
BR2000, and it does not unfairly favor PRIVBAYES on the tasks
of SVM classification on Adult and NLTCS.

5.4 α-way Marginals
This section compares PRIVBAYES with the Laplace and Fouri-

er approaches on eight sets of marginals over four datasets, and
Contingency on two sets over NLTCS. Figure 4 shows the average
variation distance of each method for each query set Qα , varying
the privacy budget ε . PRIVBAYES clearly outperforms the other
three methods in all cases. The relative superiority of PRIVBAYES

is more pronounced when (i) ε decreases or (ii) the value of α in-
creases. To explain, observe that when ε is small, PRIVBAYES

chooses to construct a very low-degree Bayesian network (down to
k = 0), due to the θ -usefulness criterion. As a consequence, the
marginal distributions in the second phase of PRIVBAYES will be
more robust against noise injection, which ensures the quality of
the synthetic data will not degrade too significantly. In contrast, the
performance of Laplace and Fourier is highly sensitive to ε , owing
to which they incur considerable errors when ε decreases. Contin-

gency also generates inaccurate marginals with low privacy budget,
with performance improving slowly as ε increases.

Meanwhile, when α increases, the query set Qα corresponds to a
larger set of marginals, in which case the queries Qα have a higher
sensitivity. Therefore, Laplace needs to inject a larger amount of
noise into Qα for privacy protection, leading to higher query errors.
Fourier also suffers from a similar issue. On the other hand, the er-
ror of PRIVBAYES is not sensitive to α , as the Bayesian network
constructed (once) by PRIVBAYES enables it to nicely capture the
correlations among attributes. Consequently, it can closely approx-
imate the marginals pertinent to Qα even when α increases.

5.5 Multiple SVM Classifiers
In the last set of experiments, we evaluate different methods for

SVM classification. As explained in Section 5.1, on each of Adult
and NLTCS, we train four SVM classifiers simultaneously. For
PRIVBAYES, we apply it to generate only one synthetic dataset D∗
from each training set, and then use D∗ to train all four classifiers
required. The other differentially private methods (i.e., PrivateER-
M, PrivGene, and Majority) can only produce one classifier at a
time. Therefore, for each of those method, we evenly divide the
privacy budget ε evenly into four parts, and use ε/4 budget to train
each classifier. To illustrate the performance of PrivateERM when
building a single classifier, we include an additional baseline re-
ferred to as “PrivateERM (Single)”. This baseline is identical to
PrivateERM, expect that it uses a privacy budget of ε (instead of
ε/4) in training each classifier.

Figure 5 shows the misclassification rate of each method as a
function of the overall ε . The error of NoPrivacy remains un-
changed for all ε , since it does not enforce ε-differential privacy—
it represents the best case to aim for. The accuracy of Majority is
insensitive to ε , since (i) it performs classification only by check-
ing whether there exists more than 50% tuples in the training set
with a certain label, and (ii) this check is quite robust against noise
injection when the number of tuples in the training set is large (as
is the case in our experiments).

As for the other methods, PRIVBAYES consistently outperforms
PrivateERM and PrivGene on Adult, except for the case of ε = 1.6.
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Figure 5: Multiple SVM classifiers on two datasets

Meanwhile, on NLTCS, PRIVBAYES and PrivateERM are compa-
rable, and they both outperform PrivGene. Interestingly, in Fig-
ure 5(c), the misclassification rate of PRIVBAYES increases when
ε changes from 0.05 to 0.1. The reason is that we have tuned the
parameter θ for PRIVBAYES based on count queries on Adult and
NLTCS, and hence, our choice of θ (and thus, the choise of k)
does not always guarantee the best performance for PRIVBAYES

on classification tasks. Overall, PRIVBAYES is superior to both
PrivateERM and PrivGene on the this classification task.

On the other hand, PRIVBAYES is outperformed by PrivateERM
(Single)3 in most cases. This is reasonable given that PrivateER-
M is designed solely for SVM classification, whereas PRIVBAYES

does not specifically optimize for SVM classification when it gen-
erates the synthetic data. In general, the fact that PRIVBAYES can
support multiple analytical tasks (without incurring extra privacy
overhead) makes it highly favorable in the common case when the
user does not have a specific task in mind and would like to conduct
exploratory data analysis by experimenting with various tasks.

6. CONCLUDING REMARKS
The model of Bayesian networks has proven a powerful way to

represent correlated data approximately. We have seen that it is
also highly effective as a model to release data while respecting
privacy. We see that data released this way is is very accurate,
and indeed offers better accuracy than customized mechanisms for
particular objectives, such as classification. A crucial part of our
approach is the crafting of a novel quality function F as a surrogate
for mutual information, which dramatically improves the quality of
the released data. This requires some effort in order to compute
efficiently, although since this is part of the release process, we can
afford to spend more time on this. Nevertheless, an open problem
is to study functions which can substitute for mutual information
and which are fast to compute.

3The behavior of PrivateERM (Single) on Adult with ε = 1.6 is an
artifact of the algorithm itself: it computes an internal parameter ε ′p
as a function of ε , which yields a sub-optimal choice when ε = 1.6.

The natural next step is to extend this work to databases over
multiple tables. The approach of building a graphical model and
releasing this privately applies here also. However, care is needed:
in the examples we consider, each individual affects a single row of
the initial database table. As we consider more complex schemas,
the impact of an individual (and hence the scale of noise needed
for privacy) may grow very large, and a more careful analysis is
needed to ensure that noise does not outweigh the signal.
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APPENDIX
PROOF OF Lemma 2. The maximum mutual information be-

tween variables X and Π is

max I(X ,Π) = min{maxH(X),maxH(Π)}
=min{log |dom(X)| , log |dom(Π)|}= log |dom(X)| ,

given that |dom(X)| ≤ |dom(Π)|. Therefore, the maximum joint
distribution for X and Π should be a joint distribution for X and Π
with mutual information log |dom(X)|.

Suppose that Pr�(X ,Π) is a joint distribution satisfying the two
properties in Lemma 2. Given basic results in information theory,
the two properties are equivalent to

1. H(X) = log |dom(X)|;
2. H(X | Π) = 0.

Thus, the mutual information of Pr�(X ,Π) is

I(X ,Π) = H(X)−H(X | Π) = log |dom(X)| .
By definition, Pr�(X ,Π) is a maximum joint distribution.

On the other hand, suppose that Pr�(X ,Π) is a maximum join-
t distribution with mutual information log |dom(X)|. The mutual
information can be expressed as:

I(X ,Π) = log |dom(X)|= H(X)−H(X | Π),

where H(X)≤ log |dom(X)| and H(X | Π)≥ 0 always hold. Thus,
we conclude that I is maximized in the (achievable) case that

1. H(X) = log |dom(X)|, which is achieved only by the uniform
distribution over dom(X);

2. H(X | Π) = 0, which implies that there is an x for each π such
that Pr[X = x | Π = π] = 1.

The above two conditions are equivalent to the properties in the
statement of Lemma 2.

PROOF OF Theorem 2. Let FD(X ,Π) be the F function for
variable X and Π given input database D, i.e,

FD(X ,Π) =−1
2

min
Pr�∈P�

‖PrD[X ,Π]−Pr�[X ,Π]‖1.

Notice that P�[X ,Π] is independent of the input database D. Now
consider a pair of neighboring databases D1 and D2. We have

‖PrD1 [X ,Π]−PrD2 [X ,Π]‖1 = 2/n. (9)

Assume that Pr ∈ P�[X ,Π] is the closest maximum joint distri-
bution to PrD1 [X ,Π]. We have

FD1(X ,Π) =−1/2 · ‖PrD1 [X ,Π]−Pr‖1.

Combined with Equation 9, the L1 distance between PrD2 [X ,Π] and
Pr can be upper bounded using the triangle inequality:

‖PrD2 [X ,Π]−Pr‖1

≤ ‖PrD1 [X ,Π]−Pr‖1 +‖PrD1 [X ,Π]−PrD2 [X ,Π]‖1

=−2 ·FD1(X ,Π)+2/n.

On the other hand, recall that Pr is a maximum joint distribution
in P�[X ,Π]. Therefore,

FD2(X ,Π) =−1
2

min
Pr�∈P�

‖PrD2 [X ,Π]−Pr�[X ,Π]‖1

≥−1
2
‖PrD2 [X ,Π]−Pr‖1

≥−1
2

(
−2 ·FD1(X ,Π)+

2
n

)
= FD1(X ,Π)− 1

n
.

Thus, FD1(X ,Π)−FD2(X ,Π)≤ 1/n.


