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1 Introduction

In this chapter, we focus on a set of problems chiefly inspired by the problem
of estimating the size of the (equi-)join between two relational data streams.
This problem is at the heart of a wide variety of other problems, both in
databases/data streams and beyond. Given two relations, R and S, and an
attribute a common to both relations, the equi-join between the two rela-
tions, R 1 S, consists of one tuple for each r ∈ R and s ∈ S pair such that
r.a = s.a. Estimating the join size between pairs of relations is a key compo-
nent in designing an efficient execution plan for a complex SQL query that
may contain arbitrary combinations of selection, projection, and join tasks; as
such, it forms a critical part of database query optimization [15]. The results
can also be employed to provide fast approximate answers to user queries,
to allow, for instance, interactive exploration of massive data sets [12]. The
ideas discussed in this chapter are directly applicable in a streaming context,
and, additionally, within traditional database management systems where: (1)
relational tables are dynamic, and queries must be tracked over the stream
of updates generated by tuple insertions and deletions; or, (2) relations are
truly massive, and single-pass algorithms are the only viable option for ef-
ficient query processing. Knowing the join size is also a important problem
at the heart of a variety of other problems, such as building histogram and
wavelet representations of data, and can be applied to problems such as find-
ing frequent items and quantiles, and modeling spatial and high-dimensional
data.

Many problems over streams of data can be modeled as problems over
(implicit) vectors which are defined incrementally a continuous stream of data
updates. For example, given a stream of communications between pairs of
people (such as records of telephone calls between a caller and callee), we can
capture information about the stream in a vector, indexed by the (number of
the) calling party, and recording, say, the number of calls made by that caller.
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Each new call causes us to update one entry in this vector (i.e., incrementing
the corresponding counter). Queries about specific calling patterns can often
be rendered into queries over this vector representation: For instance, to find
the number of distinct callers active on the network, we must count the number
of non-zero entries in the vector. Similarly, problems such as computing the
number of calls made by a particular number (or, range of numbers), the
number of callers who have made more than 50 calls, the median number
of calls made and so on, can all be posed as function computations over this
vector. In an even more dynamic setting, such streaming vectors could be used
to track the number of active TCP connections in a large Internet Service
Provide (ISP) network (say, per source IP address); thus, a TCP-connection
open (close) message would have to increment (respectively, decrement) the
appropriate counter in the vector.

Translating the join-size problem into the vector setting, we observe that
each relation can essentially be represented by a frequency-distribution vector,
whose ith component counts the number of occurences of join-attribute value
i in the relation. (Without loss of generality, we assume the join attributes
to range over an integer domain [U ] = {1, . . . , U}, for some large U .3) The
join size |R 1 S between two streaming relations R and S corresponds to
computing the inner-product of their frequency-distribution vectors, that is,
the sum of the product of the counts of i in R and S over all i ∈ [U ]. A special
case of this query is the self-join size |R 1 R|: the size of the join between
a relation R and itself. This is the sum of the squares of the entries in the
corresponding frequency-distribution vector, or, equivalently, the square of its
Euclidean (i.e., L2) norm.

The challenge for designing effective and scalable streaming solutions for
such problems is that it is not practical to materialize this vector represen-
tation; both the size of the input data stream and the size of the “universe”
from which items in the stream are drawn can grow to be very large indeed.
Thus, naive solutions that employ O(U) space or time over the update stream
are not feasible. Instead, we adopt a paradigm of based on approximate, ran-
domized estimation algorithms that can produce answers to such queries with
provable guarantees on the accuracy of the approximation while using only
small space and time per streaming update.

Beyond join-size approximations, efficiently estimating such vector inner-
products and norms has a wide variety of applications in streaming compu-
tation problems, including approximating range-query aggregates, quantiles,
and heavy-hitter elements, and building approximate histograms and wavelet
representations. We briefly touch upon some of these applications later in
this chapter, while later chapters also provide more detailed treatments of
specific applications of the techniques. Our discussion in this chapter focuses

3 While our development here assumes a known upper bound on the attribute
universe size U , this is not required: U can be learned adaptively over the stream
using standard tricks (see, e.g., [13]).
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on efficient, sketch-based streaming algorithms for join-size and self-join-size
estimation problems, based on two influential papers by Alon, Matias, and
Szegedy [3], and Alon, Gibbons, Matias, and Szegedy [2]. The remainder of
the chapter is structured as follows.

2 Preliminaries and Problem Formulation

Let x be a (large) vector being defined incrementally by a stream of data
updates. We adopt the most general (so-called, “turnstile” [20]) model of
streaming data, where each update in the stream is a pair (i, c), where i ∈ [U ]
is the index of the entry being updated and c is a positive or negative number
denoting the magnitude of the update; in other words, the (i, c) update sets
x[i] = x[i] + c. Allowing c values to be either positive or negative implies that
x vector entries can decrease as well as increase. Thus, this model allows us
to easily represent the “departure” of items (e.g., closed TCP connections) as
well as their arrival.

Definition 1 (Join Size). The (equi-)join size of two streaming relations
with frequency-distribution vectors x and y (over universe [U ]) is exactly the

inner product of x and y, defined as x · y =
∑U
i=1 x[i]y[i].

(We use the terms “join size” and “inner product” interchangeably in the
remainder of this chapter.) The special case of self-join size (i.e., inner-product
of a vector with itself) is closely related to the notion of frequency moments
of a data distribution, which can be defined using the same streaming model
and concepts. More specifically, let x denote the frequency-distribution vector
for a stream R of items (from domain [U ]); that is, x[i] denotes the number
of occurrences of item i in the R stream. Then, the pth frequency moment of
stream R is given by Fp(x) =

∑U
i=1 x[i]p.

Observe that F1 is simply the length of the stream R (i.e., the total num-
ber of observed items), and can be easily computed with a single counter.
F0 is the number of distinct items in the R stream (the size of the set of
items that appear), and is the focus of other chapters in this volume. F2, the
second frequency moment, is also known as the repeat rate of the sequence,
or as “Gini’s index of homogeneity” — it forms the basis of a variety of data
analysis tasks, and can be used to compute the surprise index [14] and the
self-correlation of the stream.

We extend the definition of frequency moments to the arrival vector model.
Now, Fp(x) =

∑U
i=1 x[i]p; thus, Fp(x) = ‖x‖pp, where ‖ · ‖p denotes the Lp

vector norm (see also the chapter of Cormode and Indyk later in this volume).
In particular, F2(x) is the self-join size of a relation whose characteristic vector
is x, and

√
F2(x) is the L2, or Euclidean, norm of the vector x.

We give the definition of other relevant functions:

Definition 2. The vector distance between two vectors x and y, both of di-
mensionality U is given by ‖x− y‖2 =

√
F2(x− y).
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Definition 3. An (ε, δ)-relative approximation of a value X returns an an-
swer x such that, with probability at least 1− δ,

(1− ε)X ≤ x ≤ (1 + ε)X

Definition 4 (k-wise independent hash functions.). A family of hash
functions H mapping items from X onto a set Y is said to be k-wise indepen-
dent if, over random choices of h ∈ H, we have

Pr[h(x1) = h(x2) = . . . = h(xk)] =
1

|Y |k

In other words, for up to k items, we can treat the results of the hash
function as independent random events, and reason about them correspond-
ingly. Here, we will make use of families of 2-wise (pairwise) independent
hash functions, and 4-wise independent hash functions. Such hash functions
are easy to implement: the family H2 = {ax + b mod P mod |Y |}, where
P is a prime and a and b are picked uniformly at random from 0 . . . P − 1 is
pairwise independent onto {0 . . . |Y | − 1} [5, 19]. More generally, the family

Hk = {
k−1∑
i=0

cix
i mod P mod |Y |}

is k-wise independent for cis picked uniformly from {0 . . . |Y |−1} [23]. Various
efficient implementations of such functions have been given, especially for the
case of k = 2 and k = 4 [21, 22].

3 AMS Sketches

In their 1996 paper, Alon, Matias and Szegedy gave an algorithm to give
an (ε, δ)-approximation of the self-join size. The algorithm computes a data
structure, where each entry in the data structure is computed through an
identical procedure but with a different 4-wise independent hash function
for each entry. Each entry can be used to find an estimate of the self-join
size that is correct in expectation, but can be far from the correct value.
Carefully combining all estimates gives a result that is an (ε, δ)-approximation
as required. The resulting data structure is often called an AMS (or,“tug-of-
war”) sketch, since the data structure concisely summarizes, or ‘sketches’ a
much larger amount of information.

To build one element of the sketch, the algorithm takes a 4-wise hash
function h : [1 . . . U ]→ {−1,+1} and computes Z =

∑U
i=1 h(i)x[i]. Note that

this is easy to maintain under the turnstile streaming model: initialize Z = 0,
and for every update in the stream (i, c) set Z = Z + c ∗ h(i). This algorithm
is given in pseudo-code as Update in Figure 1.



Join Sizes, Frequency Moments, and Applications 5

Update(i, c, z)
Input: item i, count c, sketch z

1: for j = 1 to w do
2: for k = 1 to d do
3: z[j][k]+ = hj,k(i) ∗ c

EstimateF2(z)
Input: sketch z

1: Return EstimateJS(z, z)

EstimateJS(x, y)
Input: sketch x, sketch y
Output: estimate of x · y
1: for j = 1 to w do
2: avg[j] = 0;
3: for k = 1 to d do
4: avg[j]+ = x[j][k] ∗ y[j][k]/w;
5: Return(median(avg))

Fig. 1. AMS Algorithm for estimating join and self-join size

3.1 Second Frequency Moment Estimation

To estimate the self-join size, we compute Z2.

Lemma 1. E(Z2) = F2(x)

Proof.

E(Z2) = E((

U∑
i=1

h(i)x[i])2)

= E(

U∑
i=1

h(i)2x[i]2) + E
∑

1≤i<j≤U

2h(i)h(j)x[i]x[j])

=

U∑
i=1

x[i]2 + 0 = F2(x)

The proof relies critically on the properties of h: h(i)2 = 1 for all i, but since
h is 4-wise independent then the outcomes h(i) = h(j) and h(i) = −h(j) are
equally likely (for j 6= i) and so in expectation h(i)h(j) is zero.

Lemma 2. Var(Z2) ≤ 2F2(x)2

Proof.
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Var(Z2) = E(Z4)− E(Z2)2

= E((

U∑
i=1

h(i)x[i])4 − (

U∑
i=1

x[i]2)2

= E((

U∑
i=1

h(i)4x[i]4 +
∑

1≤i<j≤U

6h(i)2h(j)2x[i]2x[j]2

+
∑

i,i6=j 6=k

12h(i)2h(j)h(k)x[i]2x[j]x[k] +
∑

1≤i 6=j≤U

4h3(i)h(j)x[i]3x[j]

+
∑

1≤i<j<k<l≤U

12h(i)h(j)h(k)h(l)x[i]x[j]x[k]x[l])

−(

U∑
i=1

x[i]4 +
∑

1≤i<j≤U

2x[i]2x[j]2)

=

U∑
i=1

x[i]4 +
∑

1≤i<j≤U

6x[i]2x[j]2 − (

U∑
i=1

x[i]4 +
∑

1≤i<j≤U

2x[i]2x[j]2)

= 4
∑

1≤i<j≤U

x[i]2x[j]2) ≤ 2F 2
2

This shows that each estimate is correct in expectation and has bounded
variance. Again, in expectation many of the cross-terms (eg. h(i)h(j)h(k)h(l))
are zero, by the 4-wise independence of the hash function h. In order to give
tight guarantees about the accuracy of this procedure, we make use of a few
statistical results about the average and median of random variables.

Fact 1 (Variance Reduction) Let Xi be independent and identically dis-
tributed random variables. Then

Var(
w∑
i=1

Xi

w
) =

1

w
Var(X1)

In other words, taking the average of w copies of an estimator reduces the
variance by a factor of w.

Fact 2 (The Chebyshev inequality) Given a random variable X,

Pr[|X − E(X)| ≥ k] ≤ Var(X)

k2

Fact 3 (Application of Chernoff Bounds) Let R be a range of values
R = [Rmin . . . Rmax], and let Yi be d = 4 log 1/δ independent and identically
distributed random variable such that Pr[Yi 6∈ R] ≤ 1

8 . Then

Pr[(mediandi=1 Yi) 6∈ R] ≤ δ
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That is, if there is constant probability that each Yi falls within the desired
range R, then taking the median of O(log 1/δ) copies of Yi reduces the failure
probability to δ.

For details of these facts, see a standard text such as [19]. For the final
fact, observe that we can define an indicator variable for each Yi that is 0 if
Yi falls within the range R and is 1 otherwise. The expectation of the sum of
these indicator variables is 1

2 log 1/δ. However, if the median of the Yis is not
within range, then at least half the Yis must have fallen outside the range;
hence the sum of the indicator variables must be at least 2 log 1/δ. Applying
Chernoff bounds gives the derived result.

We can now apply these facts to show the accuracy of the estimation
procedure for F2:

Theorem 1. An (ε, δ)-approximation of F2, the self-join size, can be com-
puted in space O( 1

ε2 log 1/δ) machine words in the streaming model. Each up-
date takes time O( 1

ε2 log 1/δ).

Proof. Applying the Chebyshev inequality to the average of w = 16
ε2 copies of

the estimate Z generates a new estimate Y such that

Pr[|Y − F2| ≤ εF2] ≤ Var(Y )

ε2F 2
2

=
Var(Z)

cε2F 2
2

=
2F 2

2

(16/ε2)ε2F 2
2

=
1

8

Hence, applying the Chernoff bound result from Fact 3 to the median of
4 log 1/δ copies of the average Y gives the probability of the results being
outside the range of εF2 from F2 as δ. The space required is that to maintain
O( 1

ε2 log 1/δ) copies of the original estimate. Each of these requires a counter
and a 4-wise independent hash function, both of which can be represented
with a constant number of machine words under the standard RAM model.

In summary, this shows that an (ε, δ)-approximation of F2 can be com-
puted using space that is essentially independent of the size of the stream or
the dimensionality of the vector. The complete algorithm is given in Figure 1.

3.2 Vector Difference Estimation

The results for self-join size estimation can be applied to the problem of
measuring the distance between two vectors. The result follows almost as an
immediate corollary of the previous theorem, combined with the structure of
the sketch. Observe that the difference between x and y as given in Defini-
tion 2 can be thought of as the self-join size of a single vector whose ith entry
is x[i]−y[i]. The sketch of this vector is given by

∑
i h(i)(x[i]−y[i]). This can

be rewritten as
∑
i h(i)x[i]−

∑
i h(i)y[i]. In other words, the sketch of the dif-

ference is the difference of the sketches. Thus, by subtracting the sketches and
then applying the estimation procedure we can get an (ε, δ) approximation of
the difference between the vectors.
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This relies on the linearity of the sketching operation: any linear trans-
formation (scaling, addition, subtraction etc.) to the original vector can be
applied on the sketch and the result is the sketch of the modified vector.
This was used implicitly to show that the sketch can be updated dynamically
under streaming updates. Such linearity properties have also been used in a
variety of techniques for streaming data based on sketches. See the discussion
in Section 4 for some examples.

3.3 Join Size Estimation

Lemma 3. Let Zx be an entry of a sketch computed for the vector x, and let
Zy be an entry of a sketch computer for y using the same hash function. The
estimate is correct in expectation, i.e. E(Zx ∗ Zy) = x · y.

Proof.

E(Zx ∗ Zy) = E(
U∑
i=1

h(i)2x[i]y[i] +
∑

1≤i 6=j≤U

h(i)h(j)x[i]y[j])

=

U∑
i=1

x[i]y[i] + 0 = x · y

Lemma 4. Var(Zx ∗ Zy) ≤ F2(x)F2(y)

Proof.

Var(Zx ∗ Zy) = E(Z2
xZ

2
y)− E(ZxZy)2

= E

 U∑
i=1

h(i)4x[i]2y[i]2 +
∑

1≤i 6=j≤U

h(i)2h(j)2x[i]2y[j]2

+
∑

1≤i<j≤U

4h(i)2h(j)2x[i]y[i]x[j]y[j]

− (x · y)2

=

U∑
i=1

(x[i]y[i])2 +
∑

1≤i6=j≤U

(x[i]y[j])2 +
∑

1≤i<j≤U

4x[i]y[i]x[j]y[j]

−(
∑

1≤i≤U

(x[i]y[i])2 +
∑

1≤i<j≤U

(2x[i]y[i]x[j]y[j]))

≤
∑

1≤i<j

(x[i]y[j])2 + 2
∑

1≤i<j≤U

(2x[i]y[i]x[j]y[j])

≤
U∑
i=1

x[i]2
U∑
j=1

y[j]2 + (

U∑
i=1

x[i]y[i])2

≤ 2

U∑
i=1

x[i]2
U∑
j=1

y[j]2 = 2F2(x)F2(y)
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Applying the Chebyshev Inequality to the average of w = 16
ε2 copies of this

estimate, and then taking the median of d = 4 log 1/δ such averages, as in the
proof of Theorem 1 allows us to state the following theorem:

Theorem 2. Using space O( 1
ε2 log 1/δ) space we can output an estimate of

x · y so that
Pr[|(x · y)− est| ≤ ε

√
F2(x)F2(y)] ≥ 1− δ

Note that for the special case of when x = y, then the above Theorem 2
reduces to Theorem 1. However, this is not an (ε, δ)-approximation since in
general

√
F2(x)F2(y) > (x · y). In order to get such an approximation, we

need to increase w by a factor of (x ·y)2/(F2(x)F2(y)). This may be possible
if we have a priori bounds on these quantities, but since we are trying to
approximate x·y, we cannot know this quantity exactly in advance. In general,
we cannot hope for much stronger results due to the following negative result:

Theorem 3. Guaranteeing an (ε, δ) approximation of (x · y) requires Ω(U)
space in the worst case.

Proof. We reduce from the problem of testing whether two sets have any
element in common, and use the communication complexity of this problem
to argue a space bound for the streaming problem.

Consider two arbitrary sets X and Y , both of which are subsets of [1 . . . U ].
There are two people who wish to collaborate to compute a function of X
and Y : X is held by one party and Y by the other. A well-known result
from communication complexity states that determining whether there exists
i such that i ∈ X ∧ i ∈ Y requires communication between the two parties
that is linear in U , even under a probabilistic model [18]. This is known as
the disjointness problem, since the answer is either that the sets are disjoint
(i.e. X ∩ Y = ∅) or not disjoint.

First, we show that if we can approximate join size, then we can answer
disjointness queries. Let x[i] = 1 ⇐⇒ i ∈ X, and zero otherwise; similarly,
let y[j] = 1 ⇐⇒ j ∈ Y , otherwise y[j] = 0. Now observe that (X ∩ Y =
∅) ⇐⇒ (x · y = 0). Hence, computing the join size exactly means that we
can answer disjointness queries. More strongly, any approximation of x · y
also allows us to answer disjointness queries, since to approximate x · y = 0
we must output ‘0’, and if x · y 6= 0, then no approximation can correctly
output ‘0’. Thus any algorithm that approximates x · y must use Ω(U) bits
of communication if x is held by one party and y by the other.

Now, we show how this bound applies to the streaming context. Suppose all
of x arrives in the stream first, and then y arrives in the stream next. Consider
the state (memory contents) held by any streaming algorithm to approximate
x · y after x has been seen. Imagine sending all the state to another copy
of the algorithm which then receives the stream y. If the algorithm correctly
approximates x · y, then the size of the data communicated must be Ω(U)
bits. Hence, the space used by the algorithm must be at least Ω(U) bits.
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Nevertheless, the results obtained by this estimation procedure in practice
often give very good estimates of the join size between relations. In particular,
it tends to significantly outperform solutions based on sampling, which do not
give the guarantee of being correct in expectation.

4 Applications and Extensions

The generality of the join size aggregate and the simplicity and flexibility of
the sketching technique, means that the sketching method has been used as
the basis of a wide variety of other streaming algorithms. Rather than attempt
to give a comprehensive survey of such techniques, we outline a few examples
to illustrate the ways that this data structure has been applied and modified.

4.1 Point Estimation, Range Queries and Wavelets

The problem of point estimation is, given a vector x specified as a data stream,
to accept queries which specify a particular entry, i, and to return an estimate
of x[i]. Clearly, one cannot give exact answers, or guarantee very fine accu-
racy since to do so would allow one to recover the whole vector in the worst
case. However, they can be well approximated as a corollary of the previous
theorem.

Corollary 1. Point queries can be answered using the same sketch structure
in space O( 1

ε2 log 1/δ) with error less than ε
√
F2(x) with probability at least

1− δ.

Proof. Observe that a point query can be specified as a join size query, x · Ii,
where Ii[i] = 1, and Ii[j] = 0 for j 6= i. Applying Theorem 2, we find that
we can answer point-estimation queries with error at most ε

√
F2(x) with

probability at least 1− δ.

This is quite a strong guarantee, since typically we make require accuracy
in terms of εF1(x), and for any x,

√
F2(x) ≤ F1(x). Point Estimation is at

the heart of many algorithms for finding “heavy hitters”: items in the data
stream which occur very frequently. (This is explored further in a chapter by
Charikar later in this volume.)

In a similar way, one can answer arbitrary range queries of the form
R(i, j) =

∑j
k=i x[k] by reducing this to an inner product with a vector Iji ,

where Iji [k] = 1 ⇐⇒ i ≤ k ≤ j and zero elsewhere. However, the error in-
creases linearly with |j−i+1|, making the accuracy too weak for large ranges.
A standard approach is then to decompose any arbitrary range into at most
O(logU) dyadic ranges, each of which has length a power of two, and begins
at a multiple of its own length. Each dyadic range query can be treated as a
point query, and hence arbitrary range queries can be answered to the same
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accuracy as point queries, with a blow-up in space polynomial in logU (see,
for example, [13]).

Computing approximate (Haar) wavelet co-efficients and approximate hos-
togram summaries [9] can also make use of point, range and related queries,
and hence techniques to approximate the wavelet coefficients of a signal pre-
sented in a streaming fashion make extensive use of sketch data structures.
(More details of the methods used and the results obtained are given in a
chapter by Muthukrishnan and Strauss later in this volume.)

4.2 Faster Implementations Using Hashing

One potential disadvantage of the sketching scheme is the time cost to process
each update. For w = O( 1

ε2 ) and d = O(log 1/δ) copies of the estimate, we
must update wd entries in the sketch for every update. For small values of ε
this can be a large overhead, and means that such an approach does not easily
scale to very high speed data stream environment without special purpose
hardware. However, a simple hashing trick has been applied to increase the
speed significantly [6, 8, 7, 22]. Instead of keeping w copies of the estimate
and taking the average of their estimates, the key idea is to use a second
hash function f which maps each item i onto [1 . . . w], and only updating the
estimate f(i). To produce an estimate of the join or self-join size, the sum
of the estimates is used instead of the average. Mathematically this gives the
same expectation and variance as the original method, but requires only O(d)
estimates to be modified for each update instead of O(wd). This means that
the cost is essentially independent of the accuracy parameter ε, and depends
only on log 1/δ, which is typically quite small in practice.

4.3 Multidimensional and Spatial Data

We have so far phrased the discussion in terms of join sizes and large vec-
tors. However, one canb model other structures with sketches. By appropriate
linearization, one can make a sketch of a large matrix of values, and similar
higher dimensional structures. Such modeling is necessary in order to estimate
the size of multi-way joins (see the chapter of Dobra et al. in this volume).

More generally, one can also apply the sketching technique to summarize
spatial data. Now, the input consists of (a stream of) objects in low dimen-
sional space (say, two or three dimensions). The notion of a spatial join is to
count the number of object pairs that fall within a certain (specified as part
of the query) distance of each other. Other natural queries are to ask for the
approximate number of points falling within a given range, eg, a rectangular
or cuboid region.

Sketch data structures have been applied to these problems [10]. The key
technique is to build sketches from the query specifications in such a way
that the approximate join size between the query sketch and data sketch is
an unbiased estimator for the answer to the query. For example, suppose the
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input consists of a set of one-dimensional ranges [a . . . b]. To answer the query
of how many intervals contain a given point c, we can simple pose the point
query Ic. To count how many ranges overlap with a query range, we can
compute the sum of how many of the ranges contain each end point of the
query range, and how many of the end points of the ranges are contained
within the query range. Assuming that the query end points do not coincide
with points of the input4, this query returns exactly twice the number of
intersections, and so can be approximated correctly in expectation.

In order to bound the error from using sketches, and ensure that updates
are fast to process, ranges are not represented directly, but using the “dyadic
range decomposition” described in Section 4.1. This approach can be gener-
alized from one dimensional data to points and rectangles in the plane and
in three dimensional space, etc. This shows some nice features of the sketch-
ing approach: it is sufficiently general that it can be applied to a variety of
different streaming scenarios. Using techniques such as the dyadic range de-
composition, these ideas can be implemented effiicently and with bounded
error per update.

4.4 Further Extensions and Applications

We outline some of the many other applications in data streams that sketch-
based techniques have found:

• Vector L1 Difference. For some applications, rather than the L2 dis-
tance between two vectors,

√
F2(x− y), it is necessary to compute the L1

difference,
∑U
i=1 |x[i]−y[i]|. This can be reduced to F2 by representing the

vectors in unary notation, since L1(x− y) = F2(x− y) if x and y are bi-
nary (zero/one) vectors. However, in order to compute this transformation
efficiently, new methods are needed to quickly compute the sum of 4-wise
hash functions, rather than explicitly creating the unary representation of
large vector entries [11].

• Triangle Counting in Graphs. Many data streams represent graphs,
presented as streams of edges, and the streaming challenge is to compute
properties of the induced graphs. The number of triangles, also known as
the clustering coefficient, occurs in a variety of applications, but seems
challenging to compute when the edges forming each triangle can be ar-
bitrarily interleaved in the stream. However, by a careful transformation,
the number of triangles can be expressed as a function of appropriately
defined frequency moments F0, F1 and F2 [4]. New techniques are required
to efficiently update the sketches as each edge requires a large number of
updates to be applied, but these updates can be described concisely as a
range of values.

4 This assumption can be removed with some careful manipulation: see [10]
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• Change Detection. In many large scale monitoring applications, the
fundamental question is whether the current observations are in line with
predicted behavior, or whether they appear to be at odds with what was
expected. Such applications are generally known as “change detection”. A
general approach was suggested in [17]: build sketches of recent data, and
then apply various standard modelling techniques to combine these into
a sketch of the predicted behavior. The new data can then be observed,
and tested against the prediction: either in terms of individual item counts
or by comparing the whole stream. This approach relies crucially on the
linearity properties of the sketch transformation, so the predicted sketch
can be obtained by applying the prediction model to the historical sketches.
Thus, the whole method can be carried out in small space and at high
speeds in the streaming model.

• Quantiles under insertions and deletions. The problem of tracking
quantiles over a stream of input items drawn from [1 . . . U ] is, given φ,
return an item whose rank is (approximately) φN . Various techniques have
been proposed for this problem when the stream consists of insertions of
items only. However, when the input stream may also contain deletions
of items that have previously appeared, these techniques do not apply.
Observe that the quantiles query can be restated as a range query: if we
can estimate how many items fall in the range [1 . . . R], then we can binary
search for the value of R whose range contains φN points. This range query
can be answered using the techniques of Section 4.1. The reduction to
dyadic ranges makes updates and queries reasonably fast, and the error is
bounded by ε logU

√
F2(x). Because deletions can be processed as negative

updates to sketches, it is easy to see that deletion operations are handled
correctly. Full details of this approach to finding quantiles using sketches
are in [13, 7].

• Tracking Queries over Distributed Streams. Large-scale stream pro-
cessing applications rely on continuous, event-driven monitoring, and are
often inherently distributed, with several remote monitor sites observing
their local, high-speed data streams and exchanging information through
a communication network. This distribution of the data naturally implies
critical communication constraints that typically prohibit continuously
centralizing all the streaming updates, due to volume and speed of the
streams that can easily overwhelm the underlying network. Monitoring
queries over such distributed streams raises a host of new challenges. A
property of AMS sketches that makes them particularly interesting in this
setting is that, due to their linear nature, they are naturally composable
through simple vector addition. In other words, given two “parallel” AMS
sketches (built using the same 4-wise hash functions) over two different
streams, the sketch of the combined stream (i.e., the union of the two
streams) is simply the component-wise summation of their sketches. More
details on the distributed streaming model and results can be found in a
chapter by Garofalakis later in this volume.
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5 Concluding Remarks

The original paper describing the sketching technique discussed here was pub-
lished in 1996 [3], and showed the F2 application. A subsequent paper in
1999 [2] extended the results to join and self-join size. The original “AMS”
paper considers a broad range of problems based on the frequency moments,
and has come to be viewed as one of the foundational works on data streams,
even though this term is not explicitly used by the authors. In addition to the
results on F2, the authors also give space efficient algorithms for all frequency
moments Fk, k ∈ N , and lower bounds for the problems showing that, for
k ≥ 6, space polynomial in n is required. This led to a sequence of papers
in the theoretical computer science computer science which has focussed on
improving the upper and lower bounds for the frequency moments problem
for k ≥ 3, culmininating in recent results showing essentially tight upper and
lower bounds for these problems.

The result can also be thought of in terms of embedding vectors into
lower dimensional spaces. The Johnson-Lindenstrauss lemma [16] proved that
their exists embeddings of vectors in Euclidean space into a Euclidean space
of (smaller) dimension O( 1

ε2 log 1
δ ) which preserves distances up to a (1 ±

ε) factor. We can view the sketch technique here as an explicit embedding
into a Euclidean-like space (the operations of averaging and median finding
mean that we cannot treat the sketches as vectors in Euclidean space), which
is computable in a data stream setting with small space and limited (four-
wise) randomness. The results of Achlioptas [1] show that, if we assume full
randomness, then we can also operate in Euclidean space.

Lastly, several efficient implementations of sketch data structures have
been made and published on the Internet (e.g. http://www.cs.rutgers.edu/

~muthu/massdall-code-index.html). These can be freely modified and used
as the basis of more complex data stream algorithms.
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