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ABSTRACT
Over the last decade great strides have been made in devel-
oping techniques to compute functions privately. In partic-
ular, Differential Privacy gives strong promises about con-
clusions that can be drawn about an individual. In con-
trast, various syntactic methods for providing privacy (crite-
ria such as k-anonymity and l-diversity) have been criticized
for still allowing private information of an individual to be
inferred.

In this paper, we consider the ability of an attacker to
use data meeting privacy definitions to build an accurate
classifier. We demonstrate that even under Differential Pri-
vacy, such classifiers can be used to infer “private” attributes
accurately in realistic data. We compare this to similar
approaches for inference-based attacks on other forms of
anonymized data. We show how the efficacy of all these
attacks can be measured on the same scale, based on the
probability of successfully inferring a private attribute. We
observe that the accuracy of inference of private attributes
for differentially private data and l-diverse data can be quite
similar.

Categories and Subject Descriptors.
H.1[Models and Principles]: Miscellaneous—Privacy

General Terms. Security

Keywords. Differential Privacy, Anonymization

1. INTRODUCTION
The topic of anonymization and privacy has occupied the

computer science research community for over a decade now
(with efforts in statistics going back even further). Initial
efforts focused on trying to modify microdata, via reducing
the precision of data (coarsening values, forming tuples into
groups). These generally tried to achieve syntactic require-
ments: famously, k-anonymization [19], and subsequently
an alphabet soup of further definitions (l-diversity [17], t-
closeness [16], and so on). However, various attacks have
been shown on these models which reduced confidence in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

their suitability for data release. In this setting, a attack
has been defined (de facto) as an analysis of the released
data which allows an observer to guess the value of a partic-
ular attribute of a tuple. The attack is considered successful
when the guess is correct with probability larger than is in-
tended by the anonymizer [21, 9, 14].

In parallel, a more principled approach to privacy has
arisen, in the form of differential privacy [6]. In its simplest
form, differential privacy releases statistics, by computing
the exact value of the statistic, and then adding random
noise. The random noise is chosen so that the influence of
any individual on the statistic is masked by the noise. This
leads to the observation that it is safe to provide one’s per-
sonal data to a mechanism implementing differential privacy,
since the conclusions that can be drawn are (broadly) the
same, irrespective of whether or not one’s data is collected.
Consequently, differential privacy has started to be adopted
as a ‘gold standard’ of privacy, and is becoming widely used.

In this paper, we study an attack on differential privacy, in
the sense described above: we demonstrate that it is possible
to infer information about an individual with non-trivial ac-
curacy. This does not violate any of the (proven) properties
of differential privacy. It leads to the seeming contradiction
that regardless of whether an individual contributes or with-
holds their data to a study (or reports false data), we can
nevertheless use observable information about them to in-
fer their private information. The attack is ultimately quite
simple, and can be executed with minimal computational
effort.

The main message of this paper is that differential privacy
is not a universal salve to privacy concerns. While it is
a more robust definition than prior syntactic requirements,
data published under differential privacy can still allow an
adversary to draw conclusions about an individual. When
measuring an attack by the probability of making a correct
inference about an individual, we observe that over the same
data, this probability can actually be higher for differential
privacy than for syntactic anonymizations.

Outline. In Section 2, we focus on Differential Privacy.
After defining the model we discuss how to build a sim-
ple classifier that can be quite accurate at predicting sensi-
tive information. The experiments in this section quantify
this, and we discuss immediate consequences. Section 3 con-
trasts to similar attacks that have been proposed on other
anonymization methods, and argues that, measured in terms
of probability of successful inference, the efficacy of all these
attacks is quite similar. Finally, Section 4 concludes the
paper with further discussion of privacy in the presence of



inference.

2. DIFFERENTIAL PRIVACY

2.1 The Model
We adopt the canonical model of data from the initial

work on anonymization: the input is a table of tuples T ,
and each tuple t ∈ T corresponds to an individual. There
is one distinguished attribute that is considered ‘sensitive’
(stereotypically, a disease suffered by the individual, or their
salary band, say). This is commonly referred to as the Sen-
sitive Attribute (SA). The remaining attributes are consid-
ered partially identifying: demographic information about
the individual, such as their age, gender, approximate loca-
tion, ethnicity and so on. These are referred to in the lit-
erature as quasi-identifiers (QI). Separately, each attribute
value applies to a large number of individuals in the data,
but taken collectively they are often sufficient to uniquely
identify an individual [11].

For syntactic approaches to anonymization, the objective
is to modify the input data by various operations so that
it achieves a given property. The modifications may be to
coarsen attributes (replace exact birth date by only year of
birth), suppress some attributes entirely, or form tuples into
groups and separate the multiset of sensitive values corre-
sponding to each group. In most prior work, the effect of
the data modification results in groups of tuples. The goal
may be to ensure that each group has at least k members
(k-anonymity [19]); or that each group has at most a 1/l
fraction of tuples with the same sensitive attribute value
(simplified l-diversity [17]); and so on.

The differential privacy approach is different, in that it
does not explicitly publish microdata. Instead, a query is
posed to the data owner. The data owner computes the ex-
act answer of the query, then perturbs the answer by adding
appropriate statistical noise. We focus on the core case
when all queries are simply a collection of count queries:
to count the number of individuals in the data who satisfy
certain predicates. Further, our main construction works
when there is only a single round of querying, i.e., asking
for various counts. That is, there is no adaptive querying in
response to previous results. In the literature, the queries
we pose are known as histogram queries or contingency ta-
bles, and their privacy analysis is well-understood [2]. Note
that we can also interpret this as operating in a publishing
model, when the data owner chooses a collection of statistics
to publish, and applies the differential privacy mechanism to
release them. That is, we can apply the attack to the case
when the data owner chooses to publish contingency tables
for the data under differential privacy.

For a given query q, we must compute its sensitivity sq,
which is the maximum influence that any individual can have
on the answer vector. This influence is measured under the
L1 norm. Given a parameter ε, the data owner computes
the vector of answers and adds iid noise to each entry. This
noise may be drawn from a (continuous) Laplace distribution
with parameter sq/ε, or from a (discrete) symmetric geomet-
ric distribution with parameter α = exp(−ε/sq) [10]. This
guarantees that, for any individual, the probability of any
property holding on the output of the algorithm is within a
multiplicative factor of at most exp(ε) of the probability of
the same property holding on the dataset with that individ-
ual’s data omitted. Less formally, the intent of this definition

is that even with substantial knowledge about other individ-
uals in the data, it is still hard to deduce any property of a
targeted individual.

Dalenius provided an oft-quoted definition of disclosure
resulting from data release: “If the release of the statistic S
makes it possible to determine the (microdata) value more
accurately than without access to S, a disclosure has taken
place...” [5]. Following this definition, we define an attack
on anonymized data as: given a target individual try to dis-
cover their sensitive value. More precisely, given access to
the output of the anonymization process, and some knowl-
edge about a targeted individual such as their easily observ-
able characteristics (age, sex, ethnicity: quasi-identifiers),
an attack infers their associated sensitive value.

This has been formalized in the literature as attribute
(non-)privacy [13]. This definition applies to the earliest
linking attack of Sweeney on de-identified data [20]; the ho-
mogeneity attack on k-anonymous data [17]; the minimality
attack, which conditions on knowledge of the algorithm used
to create the anonymized data [21]; and the deFinetti attack
(discussed in greater detail in Section 3) [14]. All these at-
tacks demonstrate disclosure, in the sense used by Dalenius.
The success of the attack may be characterized by its accu-
racy: the fraction of input tuples for which the attack gives
the correct value. Clearly, this fraction will vary as a func-
tion of the data, and of parameters of the anonymization.

2.2 Accurate Differentially Private Classifiers
In line with previous attacks on privacy [14, 3], we de-

scribe a method to build an accurate classifier which, given
the quasi-identifier of an individual, predicts their sensitive
attribute. For simplicity, we initially assume that all at-
tributes in the data are categorical and of relatively low
cardinality, and later discuss this assumption.

Many classifiers have been proposed in the machine learn-
ing literature, but the simplest is the Naive Bayes (NB) clas-
sifier. We will build an NB classifier, which aims to predict
the SA value given the evidence of QI values of an individ-
ual. On an unanonymized data table T , the classifier is built
by computing the conditional distributions of each attribute
given the target SA value s, i.e., Pr[ti|s] for each of the m
QI values ti. The prediction for the tuple t of QI values is1

ŝ(t) = arg max
s∈SA

Pr[s]

mY
i=1

Pr[ti|s]

Observe that the parameters of this classifier are easy to
learn: given a tuple r, ri is its ith component, and rs is its
sensitive value. Then we use

Pr[ti|s] =
Pr[ti ∩ s]

Pr[s]
≈ |{r ∈ T : ri = ti ∩ rs = s}|

|{r ∈ T : rs = s|}
That is, to build the classifier, we need the counts of values

present in T i, the ith column of table T :

∀s ∈ SA, 1 ≤ i ≤ m, v ∈ T i : |{r ∈ T : ri = v∩ rs = s}| (1)

and ∀s ∈ SA : |{r ∈ T : rs = s}|

from which we can derive the required conditional probabil-
ities.2

1This can be normalized so that assignment over the differ-
ent s values yields a probability distribution.
2More correctly, we can draw the parameters for the classi-
fier from a Dirichlet distribution given the observed counts.



Observe that the sensitivity of this query is actually quite
low: although there are a moderate number of parameters,
the largest L1 difference that any tuple can make to the
answer vector is m + 1. This is because each individual is
counted in at most m joint distributions, plus the marginal
distribution of SA values. This is exactly the approach pro-
posed in work on releasing histograms and contingency ta-
bles [2]. Thus, the attack proceeds by requesting all counts
listed in (1). Some small corrections are required: first, the
noise may cause some counts to become negative. These can
simply be adjusted up to the smallest feasible value, i.e., 0.
Second, due to the noise, there is no guarantee that the sum
of the counts for attribute i with SA value s will be equal to
the marginal count of s. We remedy this by simply defining

Pr[ti|s] :=
1 + max(0, |{r ∈ T : ri = ti ∩ rs = s}|)P

t∈Ti
1 + max(0, |{r ∈ T : ri = t ∩ rs = s}|) .

Here, the addition of 1 is the standard Laplacian correction.
Further, we can use Pr[s] =Pm

i=1

P
t∈Ti

1 + max(0, |{r ∈ T : ri = t ∩ rs = s}|)P
s′∈SA

Pm
i=1

P
t∈Ti

1 + max(0, |{r ∈ T : ri = t ∩ rs = s′}|)

and therefore reduce the sensitivity of the query sq from
m + 1 to m.

This “naive attack” is therefore trying to emulate the cor-
responding classifier built with exact counts. So we do not
expect the attack to predict values better than this noiseless
classifier. Rather, the question is to what extent the noise
introduced by differential privacy degrades the accuracy of
the classifier. Historically, Naive Bayes has been shown to
get tolerable accuracy (when compared to other classifica-
tion methods) with a moderate number of attributes, in the
range m = 3 to 10, say. The sensitivity, also m, is there-
fore quite low: for settings of ε in the range 1.0 to 0.1, the
absolute value of the noise introduced to counts is in the
single to double-digit range. While this is enough to mask
the contribution of any individual, the crucial issue is that
for a large enough dataset (with a large number of individ-
uals, |T |), the effect on the derived conditional probabilities
is still relatively small, and thus the classifier learns approxi-
mately the same correlations. Therefore, even while a single
individual is dominated by the noise, the noise is in turn
dominated by the signal emerging from the whole popula-
tion.

2.3 Experimental Study
A proof-of-concept version of the “naive attack” was im-

plemented in Python. Tests were performed on two data
sets containing demographic data: the ‘Adult’ and ‘Inter-
net’ data sets from the UCI Machine Learning repository
[1]. The adult data set contains multiple attributes from
a census-like survey of adults, while the Internet data set
contains details of a survey on Internet usage in 1997. From
the adult data set, we selected the attributes workclass, level
of education completed, occupation, sex, hours worked per
week, and the binary attribute on whether income exceeds
$50K. We bucketized hours worked per week into [0–25],
[26–40], [41–60] and 60+. After removing tuples with miss-
ing sensitive values, there are a total of 30718 tuples in the
adult data set. For the Internet data set, we selected the
attributes age (treated as categorical but not bucketized),
country, education level, gender, occupation, marital status
and household income. The income attribute is partitioned

into ranges $10-20K, $20-30K, $30-40K, $40-50K, $50-75K,
$75-100K, over $100K, below $10K, and ‘not given’. There
are a total of 10108 tuples in the Internet data set. In nei-
ther case did we remove tuples with missing QI values, since
the classifier is relatively robust to their presence.

Our classifier was implemented to generate conditional
probabilities given counts with geometric noise added as a
function of the parameter ε. We evaluated the accuracy of
the classifier by then providing the quasi-identifiers of each
input tuple in turn, and counting the fraction for which the
correct sensitive attribute was guessed (based on taking the
value deemed most likely by the classifier).

Figure 1 shows the accuracy of the naive attack (fraction
of correct predictions) on the adult data set as ε is varied.
We plot the accuracy when the sensitive attribute is ‘oc-
cupation’ (Figure 1(a)) and when it is ‘marital status’ (the
same attributes are targeted in prior work on attacks [3, 14]).
Note that there are fourteen categories of occupation in the
data, and the baseline method that simply predicts the most
frequent occupation achieves 13% accuracy. There are seven
categories of marital status, and the most common one oc-
curs 45% of the time. The classifier is quite successful at
learning the target attribute: the plot shows the minimum,
maximum and mean accuracy across nine independent itera-
tions (over different draws of the noise on the count queries).
When ε is high, effectively no noise is being added, so the
rightmost points are essentially the result of applying this
classifier on the original data. As ε is decreased, the ac-
curacy reduces gradually, despite more noise being added.
Prior work on differential privacy has mostly used values of
ε in the range ε = 0.1 to 1. Even at ε = 0.01, the attack
achieves a non-trivial accuracy.

The plots in Figure 1 show the accuracy evaluated over
the two parts of the adult data set. On the ‘training data’,
we train the classifier on (noisy) counts, and then evaluate
its accuracy on the same training data. On the ‘test data’,
we evaluate the same classifier on a withheld test data set.
This shows that the classifier is about as accurate on the
withheld data as on the training data.

Figure 2 shows a similar experiment on the Internet usage
data set, for the targets of household income and occupation
(Figures 2(a) and 2(b) respectively). This data is not explic-
itly divided into training and test subsets, so we treat the
full data as ‘training’. Income has nine distinct values, the
most frequent of which occurs 18% of the time; Occupation
has five distinct values, and the most frequent one occurs
23% of the time. There is a similar trend: the noiseless clas-
sifier is quite accurate, and increasing the amount of noise
gradually reduces this accuracy.

Observe that the classifier’s output on each tuple can be
interpreted as a probability distribution over sensitive val-
ues. Thus we can focus on those tuples for which the classi-
fier places more of its weight on a particular outcome. Fig-
ure 3 shows the accuracy (summarizing nine separate, inde-
pendent repetitions) when restricted to only those tuples for
which the classifier’s belief is greater than 0.8. They show
that on these tuples, the classifier is indeed quite accurate.
In the adult data set, there are a few hundred such tuples
on average (around 1% of the data) when the target is oc-
cupation, and over 8000 (25%) for marital status. For the
occupation attribute in the Internet data, there are around
1700 high confidence tuples (17%), and 300 (3%) for income.
In other words, there is an appreciable minority of tuples on
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Figure 1: Naive attack on adult data set
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Figure 2: Naive attack on Internet data set

which the classifier is more confident, and justifiably so: it
achieves 85% accuracy on this subset in some cases.

Note that the classifier is quite lightweight to implement.
The time to load the data, compute the required counts,
add the noise, and apply the classifier to the collection of QI
values was about 1 second on the Internet data (10K tuples)
and 3 seconds on the adult dataset (32K tuples).

2.4 Discussion
The experiments show that this “attack” can be quite ef-

fective: we can learn supposedly private information of an
individual with reasonable accuracy. In other words, even
under differential privacy, disclosure can take place, in the
sense used by Dalenius. Does this contradict the claims
for differential privacy? No, in fact it is quite in line with
the guarantees of differential privacy. Informally, differential
privacy promises that what we can learn from the released
data is broadly the same, whether or not any individual con-
tributes their true information, false information, or with-
holds their information entirely.

This is respected by the attack: rather than directly learn-
ing properties of an individual, it is learning properties of
a population. The model we learn of the whole popula-

tion is largely unaffected by any individual’s data. However,
the potential privacy issue is that this population model is
quite accurate at predicting private information at the indi-
vidual level, given an honest cooperative majority. This is
seen most clearly in the experimental study: the classifier
is about as accurate on the ‘test set’ as on the training set.
The test set contains individuals who never contributed any
information about themselves to building the classifier, yet
because they sufficiently resemble the training set, we can
still predict their private information.

In fact, this consequence is in some ways anticipated by
previous negative results on the possibility of privacy against
sufficiently powerful attackers. Dwork [7] illustrates this
with the example of an attacker who knows that “Terry
Gross is two inches shorter than the average Lithuanian
woman”: the attacker can learn the average height of the
Lithuanian population with high accuracy from a large sur-
vey of Lithuanians, and hence learn the individual height of
Terry Gross. This example is perhaps easy to dismiss, due to
the relative innocuousness of learning anyone’s height, and
the apparent absurdity of somehow knowing the connection
between an individual’s height and that of an East European
nation. Yet, in our setting, if we replace this knowledge by
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Figure 3: Naive attack restricted to high confidence predictions

the assumption that “Terry Gross’ (private) height is corre-
lated with her (observable) age, sex, ethnicity etc., in much
the same way as for the population in this survey”, then the
attack becomes much more plausible. The key differences
are that the knowledge of an obscure fact is replaced with
a reasonable assumption, and that the correlation can be
easily learned from data that meets the differential privacy
requirement.

One may still question whether drawing an inference about
an individual when they never reveal their private data to
anyone is truly an attack in the spirit of the term. We argue
that an attack is in the eye of the beholder: if an attacker
now believes that he knows an individual’s private informa-
tion with high confidence, then he too is indifferent as to
whether the victim contributed to the study that enabled
the inference. This is exactly captured by Dalenius’ notion
of disclosure: this inference would not have been possible
without the release of information. Consider the case of
a multi-year, many-participant, multi-million dollar genetic
study: an attacker would not invest this much effort them-
self, but can build a very accurate classifier from the released
statistics for free. The core issue is that latent properties of
a population, when learned, can compromise the privacy of
an individual. This example has demonstrated that this is
not an academic concern, but can be instantiated easily and

cheaply on typical data.

2.5 Variations

Choice of Attributes. In general, adding more attributes
to a Naive Bayes classifier improves its accuracy. However,
in our setting, each extra attribute increases the sensitivity
of the query required, and thus the noise introduced. There
is therefore a delicate tradeoff: the increase in classifier ac-
curacy from the increased knowledge of correlations, against
the loss in accuracy due to more noise. We leave more de-
tailed discussion of this aspect for future study.

Continuous attributes. Naive Bayes is less effective when
treating continuous attributes (such as height in millimetres)
as categorical: there is too little evidence for any fixed value
to accurately learn the underlying correlation. There are
two natural fixes: the first is to model the distribution as,
e.g., a Gaussian, and to learn the parameters of the distribu-
tion (mean, variance) via appropriate count queries (which
remain low sensitivity). The second is to ‘bucketize’ the at-
tribute based on some natural bucketing scheme to make it
categorical: group height into 10cm intervals, for example.
This places together values that are semantically similar, so
that appropriate correlations can still be determined. The
same approach works when an attribute is categorical but



has very high cardinality: domain-aware bucketing or coars-
ening can ensure that each count is sufficiently large to be
unaffected by the noise. For example, location data at the
street level might be coarsened to the town, state or coun-
try level, depending on the detail of the data. We assume
that the adversary is able to request data according to the
bucketing of their choice.

Other Classifier Choices. We focus on Naive Bayes due
to its simplicity, the relatively small number of parameters
and the minimal modeling skill needed in its use. Moreover,
it is successful in this case because it has a low sensitivity.
Naturally, one can also consider other classifiers. A first step
is to consider higher-degree correlations: we can remove in-
dependence assumptions, e.g., by replacing separate factors
of sex and age-range with the joint distribution of sex and
age-range conditioned on the SA. This further reduces the
sensitivity of the query (and hence the noise), but needs to
be approached with care: just as in traditional Naive Bayes,
partitioning up the space may lead to too few examples in
each category. In our setting, this is further worsened since it
increases the relative amount of noise added to each count:
although the absolute noise on each decreases, the counts
themselves are much reduced, so the effect of the noise is
greater.

More generally, other classifiers can be built (although
these may need multiple rounds of interaction with the data
owner, in contrast to the one round for the NB classifier).
Indeed, there has been much prior work discussing the suit-
ability of differential privacy for accurate learning [18, 12,
8].3 The chief concern is to consider the sensitivity of the
classifier: extending to Bayesian networks does not substan-
tially alter the sensitivity, which depends only on the number
of nodes in the network. Various regression models also have
low sensitivity. On the other hand, building a large number
of random decision trees has high sensitivity, and requires
the data owner to respond interactively to many queries as
the classifier determines where to split each node.

3. COMPARISON TO THE
DEFINETTI ATTACK

The attack described in the previous section is inspired
by the deFinetti attack on syntactically anonymized data,
introduced by Kifer [14]. The goal of the deFinetti attack is
to build a classifier that, given the quasi-identifiers of a tuple
in a group, is able to predict the corresponding sensitive
attribute value. In other words, the approach and goal of the
deFinetti attack on syntactic anonymization matches that
of the above naive attack on differential privacy. Moreover,
the instantiation of the attack was also done based on Naive
Bayes as the classifier, and the same datasets, meaning that
we can compare the methods in more detail.

3.1 The deFinetti Attack
We now briefly summarize our deployment of the deFinetti

attack. As in the previous study [14], we fix the method used
to anonymize data as Anatomy, and the classifier as Naive
Bayes, with the understanding that both of these can be
replaced by other methods.

3In particular, McSherry and Mironov point to the poten-
tial for accurate personalized predictions to compromise the
privacy of an individual [18].

Anatomy is a grouping-based anonymization method [22].
Given a parameter l, it partitions the input data of size n
into groups of size l (and some of size l + 1 when l does not
divide n), such that in each group there is at most one tuple
for any given SA value. The published version of the data
includes the multiset of QIs in each group, and the multi-
set of SAs in each group, but withholds the exact mapping
between them. The intent is therefore that a simplistic ad-
versary should believe that any given QI in the group has
a uniform chance of being associated with any particular
SA in the same group, and thus bounds their belief in any
association by at most 1/l.

Kifer’s observation is that there is sufficient correlation in
the published group data that a more sophisticated adver-
sary can learn a better set of beliefs (in the form of a clas-
sifier). The attack proceeds by guessing an initial random
permutation for each group to map each QI value to one SA
value. This induces a set of conditional distributions over
each quasi-identifier value given a sensitive attribute value,
which describes a Naive Bayes classifier. Indeed, this view
is present in prior work: Brickell and Shmatikov describe
essentially this first step in an earlier paper [3].

The deFinetti attack goes further by using the classi-
fier (built from global information) to assess the relative
likelihood of the current permutation in each group. One
can then sample other possible permutations, and decide to
adopt them in place of the current permutation: determin-
istically so if they are deemed more likely, and randomly so
if they are less likely. The likelihoods are determined by the
current classifier. By iterating this process over many steps,
the expectation is that the process converges to an accurate
classifier.

The classifier can be used in conjunction with information
from the anonymized data to make predictions. As origi-
nally described, given a QI value within a specific group, its
predicted SA value can be that assigned to it based on the
current permutation (or a history of recent assignments).
This is the version described by Kifer [14], which we refer to
as the ‘permutation’ method. Next, we introduce other ways
in which the information computed can be used to predict
an SA value. As described above, the current permutation
also implies a set of conditional distributions (or marginals)
which together yield a Naive Bayes classifier. Given a QI
value within a specific group, we can ignore the other val-
ues in the group, and directly apply this classifier to it, to
obtain a predicted SA value. We call this approach the
‘open’ method, since it is open to pick any available SA
value. Note that the open method should never be appre-
ciably better than the NB classifier built from the original,
noiseless data. A third approach extends the open method
by using some limited knowledge about the group contain-
ing the targeted tuple. Overall, there may be many different
possible SA values, but within the group only l are present.
In this case, we can condition on this knowledge, and allow
the classifier to choose only from those SA values present
in the group. We call this the ‘group’ method. Next, we
experimentally compare these three methods—the original
‘permutation’ method and the new ‘group’ and ‘open’ meth-
ods.

3.2 Experimental Study
The original study of the deFinetti attack presented exper-

iments with relatively small values of l (2,3,4) on the Adult
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data set. Starting from Kifer’s original implementation, we
extended the method to study its accuracy on larger group
sizes, and under the additional prediction methods (group
and open, in addition to permutation). We describe our re-
sults for the same target, the ‘occupation’ attribute of the
Adult data set. We perform 1000 iterations of the learning
process: analyzing the accuracy of the classifier and the L1

norm between subsequent joint distributions confirms that
this is sufficiently many steps for the process to almost con-
verge in most cases. We perform five repetitions of each
experiment, and plot the max, min and average accuracy of
each of the three methods to predict SA values (permuta-
tion, group and open). Note that in many cases, the max,
min and average values are so close that they are barely
distinguishable on the plots.

Figure 4 shows the effects of the attack for different choices
of the parameter l. Note that l = 7 is the upper limit for l-
diversity on this data set, since there is one occupation which
occurs just below 1/7 of the time. Figure 4(a) shows that
our results agree with those reported in [14] for l = 2, 3, 4: in
fact they show the attack to be more effective due to includ-
ing tuples with missing QI values (giving more evidence),
and choosing a slightly different set of QI attributes (giving

a stronger classifier). The observation is that accuracy is
clearly better than the trivial bound of 1/l when the adver-
sary simply applies a uniform prior over all permutations
from QI to SA values in each group, and does not attempt
to learn a better classifier. Nevertheless, the trend is for the
accuracy to decrease as l increases.

The plot shows that the attack requires locating a target
tuple within the published data in order to be truly effec-
tive. That is, without applying a constraint to the sensitive
attribute (i.e., using the ‘open’ approach), the accuracy is
never better than the corresponding classifier trained on the
true counts (see Figure 1(a), for a large ε value). Only when
the attacker can guarantee finding the target tuple uniquely
in the published data can he achieve the higher accuracy
via the group or permutation method. For small groups,
the permutation method (which conditions on other tuples
in the same group) is slightly more accurate, but when the
group grows large enough, the group method (which only
predicts via the target tuple) becomes more accurate.

While the accuracy in all cases far exceeds 1/l, at a group
size of 7, the impact of the attack is less than that of the
naive attack on differential privacy: the accuracy falls below
30%. This implies that the impact of the attack can be re-



duced by increasing group sizes without changing the level of
l-diversity. Our first set of plots showed the accuracy when
the l diverse groups have size exactly l: we call this the tight
groups case. In the larger groups case, we make groups of
size 2l by taking the output of the Anatomy procedure and
merge together pairs of adjacent groups. It follows imme-
diately that the resulting output remains l-diverse, but the
groups are now twice as large. The accuracy on these larger
groups is shown further in Figure 4(b).

Again, the accuracy exceeds 1/l, but by a lower amount,
and it falls below that of the noiseless classifier for l = 5
(group size 10). The permutation method is more clearly
dominated by the group method, but both become close to
the open method for larger groups. Increasing the size of the
groups further decreases the ability of the classifier: when we
merge together three groups (not shown), the permutation
method degrades to about 1/l accuracy.

Similar results are seen on other data sets. Figure 5 shows
the results on the Internet data set with ‘income’ as the SA
value. Again, the open approach is never better than the
noiseless classifier, and degrades as the group size increases.
Being able to identify the target tuple within a group in-
creases the accuracy above 1/l, although this falls as the
group size increases. Merging groups together further re-
duces the power of the attack: Figure 5(b) shows that the
accuracy is the same as that of the noiseless classifier (see
Figure 2(a)) when l reaches 4. In larger groups (merging
three groups into one), the accuracy is below 1/l. As in the
Differential Privacy case, we can focus in on those predic-
tions in which the classifier places the highest confidence.
We omit full details in this presentation, but observe that
there are similar trends: under the ‘group’ definition, on
small groups the attack has an appreciable number of indi-
viduals with high confidence predictions, which are indeed
correct more often than for the rest of the population. As
the group size is increased, the number of high confidence
predictions dwindles, and the average accuracy falls back to
the global level.

3.3 deFinetti and Differential Privacy
Since its introduction, the deFinetti attack has been seen

by some as the “last nail in the coffin” of syntactic privacy
methods, and used to argue that only differentially private
methods should be considered. Certainly, the attack can
be potent when applied to data published with very small
values of the parameter l and small groups. However, prior
work on anonymization has typically used somewhat larger
parameters: l in the range 6-10 at least, and group sizes of
10-100 for higher security. In these situations, the attack
loses its power: its accuracy reduces to 1/l (or worse), the
same as simply guessing a value for each tuple uniformly
from those in the group. Focusing only on privacy, it seems
that the impact of the attack can be mitigated.

Moreover, these experiments show that the deFinetti at-
tack is directly comparable to the above naive attack on
differential privacy. Both model the data in the same way,
target the same goal and attempt to build the same classi-
fier to predict private information. Most of the effort in the
deFinetti attack is expended in building the model of the
population, which is trivial under differential privacy. Actu-
ally applying the classifier is then quite cheap in comparison.

The potential for the deFinetti attack to reveal more comes
from additionally being able to condition on the limited set

of possibilities within a group to eliminate or reduce the
likelihood of possible values for a given tuple. That is,
the ‘open’ method has (roughly) the accuracy from using
properties of the population alone, and the additional power
of group/perm comes from the additional information pre-
sented by the published data. This is impactful for small
group sizes, but the advantage seems to be substantially
diminished for larger group sizes. For certain settings of
parameters, differential privacy can be more susceptible to
attack than the corresponding syntactic anonymization: the
accuracy of the model of the population built in the latter
case is lower than in the former case. Thus neither approach
is immune to attacks that build accurate classifiers.

Of course, syntactic anonymization is subject to other crit-
icisms and attacks. But rejecting all such anonymizations
because the deFinetti attack exists is erroneous: by the same
logic, we should also abandon differential privacy as well.
Rather, we need to consider more nuanced threat models:
against what adversary do we require the anonymized data
to withstand? This should differ depending on whether we
are sharing anonymized data with a colleague in another
department or releasing a data set publicly on the web. De-
pending on the perceived threats, and the consequences of
a successful attack, it may be appropriate to use any one
of deidentification, syntactic privacy, differential privacy, or
withholding release entirely.

4. DISCUSSION
The core issue highlighted here is that coarse properties

of the population taken together combine to build a model
that can be applied to individuals with high accuracy. Ex-
isting anonymization methods tend to ignore this issue, and
prior work has brushed this aside, assuming that such cor-
relations can be ignored, or are known to all data users al-
ready. However, this is not sufficient: in reality, release of
(anonymized) data may reveal hitherto unknown population
parameters which compromise individual privacy. It seems
unlikely that future efforts can satisfactorily resolve this is-
sue, since in some settings, these population statistics may
represent exactly the desired utility of the data collection
and publication. For example, the results of scientific stud-
ies are frequently conveyed to the public in the form of sim-
ple conditional probabilities (“drinking two glasses of wine
each day reduces the chance of heart disease by 50%”, say).
Allowing individuals to learn these relationships, and mod-
ify their behavior accordingly, is seen as a potential benefit
of such studies. Meanwhile, the use of such information by a
healthcare provider to prioritize patients for treatment may
be seen as less desirable for the same individual.

To what extent should the attacks discussed in this paper
chill our enthusiasm for differential privacy, or anonymiza-
tion in general? In part, this depends on how severely we
view the disclosure resulting from the attack. Here, the
choice of terminology becomes an issue. The term “attack”
has been inherited by the privacy world from the area of se-
curity. In security, an “attack” is typically understood to be
a mechanism that compromises a supposedly secure system
and permits access to the system or information within it.
For example, a successful attack on an encrypted message
typically reveals the cleartext content of the message to the
attacker. Critically, our expectation is that a successful in-
stance of an attack on security correctly indicates that it has
indeed succeeded: the revealed message is determined to be



the message that was sent.
For initial attacks on anonymization systems, it was clear

that disclosure had occurred: Sweeney was sure that she
had identified the health records belonging to the Governor
of Massachusetts [20]. Subsequent attacks are more proba-
bilistic in nature: the minimality attack (as introduced in
[21] and analyzed in [4]) and the deFinetti attack [14] give
an elevated belief in the association between a private value
and an individual, but they do not provide certainty. Al-
though we can empirically determine that these attacks are
correct in associating an individual with their true value a
large fraction of the time, they do not help to indicate with
certainty for which individuals this is a true inference, and
for which it is a false positive. The same is true of the naive
attack we describe here: the classifier is often right, but we
are never fully sure when.

For such probabilistic attacks, we must therefore decide
what level of belief we can tolerate. This is naturally a
function of the sensitivity of the information being inferred,
and the way in which it is being used. For example, a black-
mailer threatening to reveal a target’s true sexuality to their
family can perhaps tolerate making a few false accusations
before finding a victim, while a law enforcement organiza-
tion might require a much higher degree of suspicion before
being granted a warrant to investigate further. Note how-
ever, as has been elaborated elsewhere, proceeding with an
incorrect belief about an individual can be just as damag-
ing to them as a correct belief (e.g., leading to denial of
insurance coverage).

Clearly, there are many questions remaining over the use
of data and its privacy-respecting dissemination. Recent
work in parallel to this also identified ways in which the
power of differential privacy has been overstated, and demon-
strated that some common informal claims do not in fact
hold [15]. One clear message from these studies is that it is
not sufficient to naively apply differential privacy to data,
and assume that this is sufficient to address all privacy con-
cerns. Instead, much more careful deliberation about the
consequences of the data release is needed.
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