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ABSTRACT
Many data analysis tasks rely on the abstraction of a graph to rep-
resent relations between entities, with attributes on the nodes and
edges. Since the relationships encoded are often sensitive, we seek
effective ways to release representative graphs which nevertheless
protect the privacy of the data subjects. Prior work on this topic has
focused primarily on the graph structure in isolation, and has not
provided ways to handle richer graphs with correlated attributes.

We introduce an approach to release such graphs under the strong
guarantee of differential privacy. We adapt existing graph mod-
els, and introduce a new one, and show how to augment them with
meaningful privacy. This provides a complete workflow, where the
input is a sensitive graph, and the output is a realistic synthetic
graph. Our experimental study demonstrates that our process pro-
duces useful, accurate attributed graphs.

1. INTRODUCTION
Social network analysis (SNA) is an important tool with diverse

applications, from marketing to counter-terrorism to the prediction
of disease outbreaks. Recent years have seen massive growth in on-
line social networking, which has created unique opportunities for
SNA at unprecedented scales. Although the vast stores of social
data hold great potential for research, they also present significant
concerns for privacy. Social networks encode complex relation-
ships among individuals (e.g., friendships, aquaintances, sexual re-
lationships, disease transmission), which may be sensitive. More-
over, the nodes (e.g., users) in real-world social networks may be
associated with various sensitive attributes, such as age, location or
sexual preference. In order for the full benefit of SNA to be real-
ized, effective privacy-preserving analysis techniques for this type
of data are critical.

Much prior research on privacy for SNA has focused on graph
anonymization techniques (e.g., [17, 38, 39]). Unfortunately, such
approaches are now known to be vulnerable to deanonymization
attacks (e.g., [1, 24]). Consequently, recent efforts have sought
to provide the more rigorous guarantees of differential privacy for
graph analysis. Two directions have emerged: (1) methods for pri-
vately computing specific statistics over sensitive graphs, such as
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degree distribution [11], subgraph counting [13, 2], clustering co-
efficient [35], and frequent subgraph mining [33]; and (2) private
graph release, which typically involves (privately) fitting a gener-
ative graph model to input graphs in order to sample a synthetic
graph, which can be used in analyses as a proxy for a real input
graph (e.g., [23, 30, 34, 4, 36, 18, 29]). We follow this latter ap-
proach. Specifically, we address the important challenge of pri-
vately modeling social graphs in which the vertices have sensitive
attributes that are correlated with the structure of the graph. Our
goal is to generate synthetic graphs that mimic an input graph in
terms of these important characteristics and that can be published
without compromising the privacy of the individuals and relation-
ships described in the input graph.

Three important motivations for producing a synthetic graph are
highlighted by Hay [9]: (1) first, some analyses require running
complex algorithms or simulations over actual network data, rather
than via statistics. Using synthetic graphs in place of the true in-
put allows an analyst to protect privacy without needing to analyze
the privacy properties of each algorithmic approach; (2) synthetic
graphs facilitate “exploratory, open-ended, and iterative” analyses,
which can be very difficult to accommodate directly on an input
graph with limited privacy budget under differential privacy; and
(3) it eliminates the need to share the details of proprietary analy-
ses with the data owner.

Existing work on differentially private graph learning and syn-
thesis (cited above) has focused on modeling network structure
alone, without taking into account vertex attributes and their cor-
relations with graph structure. However, real-world graphs have
vertex attributes and do exhibit such correlations. For example, in
social graphs, user nodes often have many attributes such as age,
gender, sexual preference, etc. and are well known to exhibit ho-
mophily, or the tendency for nodes with similar attributes to form
connections [20]. Existing differentially private graph models do
not capture such properties. However, there are many relevant anal-
yses that rely on the presence of these correlations. In the field of
relational machine learning, such correlations are exploited to pre-
dict missing or future attribute values; information diffusion in so-
cial networks has been shown to be influenced by both the graph
structure as well as the attributes of the nodes.

In this work, we develop a differentially private framework for
synthesizing attributed social graphs to mimic the structure and at-
tribute correlations observed in an input graph. Our solution pre-
vents disclosure of individual relationships (edges) and node at-
tribute values associated with the individuals in the input graph.
This is the first differentially private approach that targets both
structural properties and attribute correlations.

To this end, we adapt the recent Attributed Graph Model (AGM)
of Pfeiffer et al. [27] to add strong differential privacy guarantees



while preserving the utility of the synthesized graphs. AGM mod-
els a social network using three sets of parameters that describe (1)
the distribution of attributes over the nodes, (2) the correlations be-
tween node attributes and edges, and (3) the modeling parameters
for an underlying generative structural model. We show how to
effectively compute each of these model parameters under differ-
ential privacy. While satisfying differential privacy for the attribute
distribution is relatively straightforward, the other two sets of pa-
rameters present a significant challenge. Modeling the attribute
correlations involves computing the fraction of edges that exist be-
tween nodes with every possible attribute configuration. Changing
the attribute values associated with a single node can change many
of these values, depending on the degree of the node. This trans-
lates to a high global sensitivity and standard techniques, such as
the Laplace mechanism, will destroy utility. We propose a novel
application of the the notion of edge truncation to avoid this prob-
lem, and show that it is superior to the more standard approaches
of smooth sensitivity and sample-and-aggregate.

To capture the structural properties of the input graph, AGM in-
corporates an underlying generative structural model. Although
several prior works have focused on extending existing structural
models to satisfy differential privacy, none of these models suffi-
ciently capture properties of typical networks, which are character-
ized by heavy tailed degree sequences and large amounts of clus-
tering. Moreover, methods that do attempt to capture this struc-
ture appear less amenable to differential privacy. In response, we
propose a new structural model, called TriCycLe, that captures the
degree distribution and clustering coefficients of a social network,
and is parameterized by statistics for which good differentially pri-
vate estimators can be found. Specifically, TriCycLe extends the
simple Chung-Lu random graph model with a triangle construction
phase, in which existing edges in the Chung-Lu graph are itera-
tively rewired to create approximately the same number of triangles
observed in the input graph. The model parameters are the trian-
gle count and degree sequence of the input graph, both of which
can be accurately estimated under differential privacy. We integrate
this new model into AGM and outline the end-to-end workflow for
generating differentially private synthetic graphs.

We evaluate the efficacy of the proposed framework on four real-
world social network datasets and demonstrate that it is able to pro-
duce synthetic graphs that accurately mimic the structure and at-
tribute correlations of an input graph, while also ensuring a strong
level of privacy.

Outline. In the next section, we describe our problem and setting
in more detail and introduce notation; we also provide an overview
of AGM, the attributed graph model that we adapt to satisfy differ-
ential privacy. In Section 3 we present our approach for computing
differentially private estimates of the three sets of modeling param-
eters used by AGM. In Section 4 we put the pieces together and
outline the end-to-end workflow for synthesizing differentially pri-
vate attributed graphs. Section 5 presents our experimental study
on four real-world datasets. Related work and conclusions are in
Sections 6 and 7 respectively.

2. PRELIMINARIES

2.1 Setting and Notation
We represent a social network (social graph) as an attributed

simple graph (i.e., undirected, unweighted edges with no multi-
ple or self-edges) denoted by the triple G = (N,E,X). We use the
terms network and graph interchangeably in the rest of the paper.
N = {v1, . . . ,vn} is a set of vertices (nodes), where each node typ-

Table 1: Summary of notation

N Set of nodes, {vi}
n Number of nodes, i.e., |N|
Γ(vi) Set of nodes incident to node vi
di Degree of node vi
dmax Maximum degree among nodes in a graph

E Set of edges, {ei j}
ei j An (undirected) edge between vi and v j
Ei j Binary random variable, Ei j = 1 if ei j ∈ E
m Number of edges, i.e., |E|
X Set of attribute vectors, {xi}
xi Attribute vector associated with node vi
xi j The jth attribute in xi ∈ X
w Number of attributes

Yw Set of elements representing possible node attribute configurations
fw Function that maps an xi to an element of Yw
Y F

w Set of elements representing possible edge attribute configurations
Fw Function that maps an ei j to an element of Y F

w

ΘX Set of attribute parameters used by AGM
ΘF Set of attribute correlation parameters used by AGM
M Underlying structural model used by AGM
ΘM Set of structural model parameters

k Truncation parameter
ε Privacy parameter
n∆ Number of triangles in a graph
S Unordered degree sequence of a graph

ically represents a person or user. We assume that the number of
nodes, n, is publicly known. E = {e1, . . . ,em} is a set of edges,
where we write ei j to refer to an undirected edge between nodes vi
and v j (i.e., ei j ≡ e ji and ei j ∈E iff e ji ∈E). We write Γ(vi) to mean
the set of vi’s neighbors, i.e., Γ(vi) = {v j ∈ N|ei j ∈ E}, and we use
di = |Γ(vi)| to denote the degree of vi. X = {x1, . . . ,xn} is a set of
w-dimensional attribute vectors, where the vector xi = 〈xi1, . . . ,xiw〉
contains the attributes associated with node vi. In what follows, we
assume that attributes are binary, i.e, xi ∈ {0,1}w; however, the
ideas easily extend to attributes with larger domains.

Table 1 summarizes the notation introduced above, as well as
other notation frequently used throughout this paper. We some-
times augment the notation with a superscript to explicitly connect
the notation with a specific graph, e.g., N(G1) refers to the set of
nodes of graph G1 and d(G1)

i to the degree of node vi ∈ N(G1).

2.2 Attributed Graph Model (AGM)
In this work, we extend the recent Attributed Graph Model (AGM)

of Pfeiffer et al. [27] to enable generation of synthetic graphs with
formal differential privacy guarantees. AGM is capable of captur-
ing both the structure and attribute correlations of a given input
graph and efficiently sampling graphs from the learned model.

To simplify notation in the rest of the paper, we first define two
functions to map a node attribute vector or an undirected edge to
a unique integer. We use fw(xi) to denote the function that maps
maps a w-dimensional attribute vector xi bijectively to an element
of the set Yw. We write Fw(xi,x j) to mean the function that maps a
pair of attribute vectors xi,x j associated with an edge to an element
of Y F

w , ignoring the direction of the edge.
AGM models graphs using parameters ΘX ,ΘM , and ΘF :

1. A set of attribute parameters ΘX is used for modeling the
distribution of attributes on the vertices, i.e., Pr[X |ΘX ]. ΘX

is computed from graph G as: ΘX (y) =
∑vi∈N [ fw(xi)=y]

n , ∀y∈Yw ,
where [·] = 1 if the statement within the brackets evaluates to



true, and 0 otherwise. In other words, ΘX (y) is the fraction
of total nodes whose attribute vectors are encoded as y.

2. A set of edge parameters ΘM models the distribution of edges,
Pr[E|ΘM ]. This uses an appropriate underlying generative
structural model, M, parameterized by ΘM . In general, M
can be any generative model in which a graph can be gener-
ated by repeatedly sampling edges from the conditional dis-
tribution Pr[Ei j|ΘM ,M], where Ei j ∈ {0,1} denotes a binary
random variable such that Ei j = 1 means ei j ∈ E. Note that
graphs generated by M are independent of X (i.e., the node
attribute vectors).

3. ΘF is the set of parameters for modeling the correlations be-
tween attributes and edges, Pr[Fw(xi,x j)|Ei j = 1,ΘM ,ΘF ].

We can construct ΘF from G as: ΘF (y) =
∑ei j∈E [Fw(xi,x j)=y]

m ,
∀y∈Y F

w
. In other words, ΘF (y) is the fraction of all edges that

connect two nodes whose associated pair of node attribute
vectors is encoded as y.

Given the three sets of parameters, the procedure to generate a
synthetic graph is relatively straightforward. We create a fresh set
of nodes N′ of the desired size, and sample a new set of attribute
vectors X ′ for the nodes in N′ independently from Pr[X |ΘX ]. Next,
we sample a graph G′ based on Pr[Ei j = 1|Fw(x′i,x

′
j),ΘM ,ΘF ]. It is

not convenient to sample from this distribution directly, so instead
the approach of accept/reject sampling can be used. Essentially, the
randomly produced attribute correlations observed in the generated
graph are used to derive acceptance probabilities, which are in turn
used to generate a new output graph [26].

2.3 Differential Privacy
The tools of differential privacy [7, 8] are by now well-known,

so we give only a short summary of the main concepts. It provides
a statistical notion of privacy, based on the concept of neighboring
data sets, which differ in at most one element. We write D∼ D′to
indicate that datasets D and D′ are neighbors.

A randomized algorithm (mechanism) M is said to be differen-
tially private (DP) if the probability distribution M(D) on any data
set D is approximately the same as M(D′), up to a factor of eε , for
every D ∼ D′. In other words, the algorithm’s behavior should be
(mostly) insensitive to the presence or absence of any one tuple in
the input. Here, ε > 0 is a publicly known privacy parameter that
controls the strength of the differential privacy guarantee: a larger
ε yields weaker privacy, while a smaller ε leads to stronger privacy.

For real valued functions, i.e., f : D → Rd , the most common
way to satisfy differential privacy is to inject carefully chosen ran-
dom noise into the output. The magnitude of the noise is adjusted
according to the global sensitivity of the function, defined as ∆ f =
maxD∼D′ ‖ f (D)− f (D′)‖1 (‖·‖1 is the L1 norm). This measures
the maximum extent to which any one tuple in the input can af-
fect the output. A function f can be made ε-differentially private
by adding random noise drawn from the Laplace distribution with
mean zero and scale λ =

∆ f
ε

, denoted Lap(λ ), to its output.
Global sensitivity can be too blunt a tool when a few rare in-

puts can push up its value. Smooth sensitivity adapts the notion of
sensitivity to the given data [25]. For β > 0, the β -smooth sensi-
tivity of a function f at D is S f ,β = maxD′∈D

(
LS f (D′) · eβd(D,D′)

)
where d(D,D′) is the distance between D and D′, i.e., the number
of additions or deletions needed to turn D into D′. Adding noise
from Lap

(
2S f ,β (D)

ε

)
satisfies the slightly weaker model of (ε,δ )-

differential privacy, where β = ε/2ln(1/δ ) [25]. Smooth sensi-
tivity has proven useful for certain tasks, such as the median and

minimum spanning tree [25] and various graph analysis tasks [35].
But it is non-trivial to compute for arbitrary functions, in general;
moreover, it can also be computationally hard to compute for some
functions (e.g., [18]).

Properties of Differential Privacy. When multiple differentially
private outputs are combined, there are simple rules for reasoning
about the privacy level that results. The most basic is sequential
composition [21]. If we run k mechanisms M1, . . . ,Mk on an in-
put D in sequence and each independently satisfies εi-differential
privacy, then the full output is ε ′-differentially private, where ε ′ =
∑

k
i=1 εi. That is, the privacy loss accumulates linearly. More strongly,

if the mechanisms are applied to a set of disjoint inputs, the re-
sulting sequence of computations is (maxi εi)-differentially private.
Lastly, any post-processing of the output of a DP algorithm does
not impact the privacy guarantee [15]. Using these composition
theorems, one can easily construct complex differentially private
algorithms from individual differentially private components.

2.4 Differential Privacy for Attributed Graphs
Differential privacy was originally defined in the context of tabu-

lar data, where each row corresponds to an individual, so neighbor-
ing datasets differ in the presence of one individual [7, 8]. Translat-
ing differential privacy to the graph analysis domain requires defin-
ing what it means for two graphs to be neighboring. Most prior
work in this area considers two graphs to be neighboring if they
differ in the presence of a single edge; that is, given a graph G,
the neighboring graph G′ is formed by adding (or deleting) any
one edge to (from) G. This edge-differential privacy [11] defini-
tion protects individual relationships from disclosure—an adver-
sary will not be able to determine with high probability whether an
edge exists between any pair of nodes (in the input graph).

Unlike most prior work (apart from [2]), we concentrate on graphs
that have one or more attributes associated with each node. Edge-
differential privacy is only concerned with edges; however, node
attributes are typically highly sensitive as well, and should be pro-
tected. Thus, we adopt a notion for neighboring graphs from [2].

DEFINITION 1 (EDGE-ADJACENT ATTRIBUTED GRAPHS).
Two attributed graphs G,G′ are said to be edge-adjacent (or neigh-
boring) if they differ in the presence of a single edge or in the at-
tribute vector associated with a single node.

A core challenge is that the sensitivities of many graph-structural
analyses are proportional to the number of nodes, n, since the im-
pact of a node often depends on its degree, which is bounded by
n− 1. For example, in the subgraph counting task the goal is to
count the number of subgraphs of a distinct shape (e.g., triangles)
contained in a graph; in the worst case, it is possible to have a graph
where the addition of a single edge could complete n−2 triangles.

3. COMPUTING MODEL PARAMETERS
In this section, we extend AGM to enforce differential privacy

for the synthesized graphs. To do so, we develop procedures for
learning differentially private approximations for each of the three
model parameters, based on the sensitive input graph. Having ap-
proximated the model parameters in a differentially private way,
we can then use them with the sampling algorithm (Section 2.2) to
obtain a synthetic graph that closely approximates the input graph
without loss of privacy. For clarity of exposition, formal descrip-
tions of algorithms and their proofs are postponed to Appendix C.



3.1 Attribute-Edge Correlations
Recall that the attribute correlation parameters ΘF describe the

correlations observed between edges and node attributes in the in-
put graph. Such correlations are a key characteristic of social graphs,
which are well-known to exhibit phenomena such as homophily
(the tendency for similar individuals to associate with one another).
To compute ΘF , we first find the connection probabilities ΘF (y j)=
∑ei j∈E [Fw(xi,x j)=y j ]

m , for each y j ∈ Y F
w . Since we are assuming undi-

rected graphs with w binary node attributes, we need to compute
y =

(2w+1
2
)

connection probabilities.
We can view the problem as computing a set of counting queries

QF = {q1, . . . ,qy} that count the edges between nodes with a par-
ticular attribute configuration yi, i.e., qi = ∑e jk∈E [Fw(x j,xk) = yi].
Probabilities can be derived from private counts by normalizing.
However, while adding or removing a single edge only increases
or decreases one count by at most one, changing the attributes of
a single node can have a significant impact on many counts (de-
pending on the degree of the node). In the language of differential
privacy, this entails a large global sensitivity. In fact, a naïve at-
tempt to satisfy differential privacy through a direct application of
the Laplace mechanism (Section 2.3), e.g. by computing QF and
adding independent Laplace noise to each qi will completely de-
stroy the utility of the value. To understand why, consider an input
graph containing a degree n− 1 hub node; changing the attributes
of this hub node will cause some subset of the counts to decrease by
a total of n−1 and another subset to increase by the same amount,
which means the global sensitivity is 2n−2. Therefore, achieving
differential privacy with good utility in this setting will require ei-
ther finding a way to exploit the fact that such worst case nodes
are extremely rare in real-world networks, or somehow limiting the
worst-case impact of a single node by way of a transformation ap-
plied to the input graph.

We introduce a new approach to this problem, based on the idea
of edge truncation. This generates a private approximation of the
set of connection counts QF (i.e., noisy counts). These are then
divided by their sum to get an approximation of the probability dis-
tribution ΘF . In Appendix B, we describe two alternate approaches
based on the DP techniques of smooth sensitivity and sample-and-
aggregate, and show that edge truncation is preferable in practice.

Edge Truncation. Our approach enforces low global sensitivity
by truncating high-degree nodes. The general idea of projecting an
input graph of arbitrary degree onto the set of k-bounded graphs—
that is, the set of graphs with degree at most k—was recently pro-
posed in recent work [14, 2]. Specifically, [2] proposed a general
edge truncation operation for transforming graphs in the edge adja-
cency model, which we extended to our task of computing QF .

DEFINITION 2 (EDGE TRUNCATION [2]). Given a graph G
and a truncation parameter k > 0, the truncation algorithm µ(G,k)
starts by fixing a canonical ordering over all of the edges in E.
Then, iterating through each edge ei j ∈ E in order, an edge is
deleted if and only if di > k or d j > k.

The notion of restricted sensitivity in [2] restricts the global sen-
sitivity to consider just the set Hk of graphs with degree at most
k. An important subtlety is that transformations applied to the in-
put graph, such as µ from Definition 2, may amplify the restricted
sensitivity of a function that is executed on the resulting truncated
graph. For a function f with restricted sensitivity RS f (Hk), it is
shown in [2] that the algorithm that applies this truncation opera-
tion to G and then runs f on the truncated graph, i.e., A f (G,k) =
f (µ(G,k)), has a global sensitivity of 3 ·RS f (Hk). The factor of 3

arises as adding or removing a single edge, prior to truncation, re-
sults in a difference of up to three edges in the truncated graph [2].

Our result improves over the general results in [2]. We show that
for the special case of QF the truncation operation is “for free”,
resulting in the global sensitivity being equal to the restricted sen-
sitivity, which is 2k. The intuition is that, although the truncation
routine can amplify the effects of an edge addition/deletion in the
input graph, the global sensitivity is still dominated by the impact
of changing an attribute vector, which is not affected by truncation.

PROPOSITION 1. Let µ be the edge truncation algorithm of
Definition 2 and let k > 1. The global sensitivity GS(Aµ,QF (G,k))
of algorithm Aµ,QF (G,k) = fQF (µ(G,k)), which truncates graph G
then computes QF over the resulting k-bounded graph, is 2k.

PROOF. By Definition 1, neighboring graphs differ in the pres-
ence of a single edge or in the attributes associated with one node.
Let vi,v j be two nodes in input graph G such that di = d j = k
and no edge exists between vi and v j. Let G′ be the neighboring
graph formed by adding edge ei j to G. Let O = e0,e1, . . . ,em be
the canonical ordering of the edges in G and let O′ = O+ ei j be
the ordering for G′. Finally, assume that e0 = ers and e1 = euv
such that s 6= u, v 6= r, ds ≤ k, dv ≤ k and that fw(xs) 6= fw(xv) (i.e.,
their attribute values are different). Observe that the graph resulting
from truncating G, µ(G,k), contains edges e0,e1 since the nodes at
both end points have degree ≤ k, by our assumption. On the other
hand, truncating G′ results in both e0 and e1 being deleted, since at
the time they are processed, both vr and vu have degree k+1 in G′.
Moreover, by the time edge ei j is considered, both u and v will have
degree ≤ k, so ei j will not be deleted. Also observe that all other
edges that are deleted from G are also deleted from G′ and vice
versa. Consequently, two of the connection counts will decrease by
a total of two, while one count will increase by one. Therefore the
outputs of µ(G,k) and µ(G′,k) differ in exactly three edges.

Now consider the case in which G and G′ are size n graphs and
are identical except that the attribute vector associated with one
node, say vi, is changed from xi to x′i, such that fw(xi) 6= fw(x′i),
in G′. Assume that di ≥ k. First observe that the difference in the
attribute vectors has no impact on the edges that are deleted by µ ,
since µ only looks at the degrees, and after truncation, vi will have
degree k in both graphs. Since the attribute vector associated with
vi is changed in G′, the k edges incident to vi in µ(G′,k) will now
contribute to a different subset of the counts than the edges incident
to u in µ(G,k); that is, one subset of the counts will increase by k
and another disjoint subset will decrease by k, for a total difference
of 2k. Finally, since 2k > 3 (for k > 1), the impact of changing the
attributes of a single node dominates that of adding/removing an
edge and we have GS(Aµ,QF ) = 2k.

We provide pseudocode for this procedure (Alg. 4), and prove
its privacy properties (Thm. 7) in Appendix C. Compared to us-
ing smooth sensitivity (Appendix B), we expect this approach to
perform better when k is close to the true maximum degree, since
smooth sensitivity with the Laplace mechanism requires using ε/2,
whereas we can use the full ε with this approach. However, directly
using the true maximum degree to set k does not satisfy differential
privacy. Moreover, social networks tend to have a power law degree
distribution, and the average degree is significantly smaller than the
maximum degree. Therefore, setting k� dmax, so that a few very
high degree nodes are truncated while most nodes are untouched
may give better performance due to the reduced sensitivity.

The best choice for k depends on ε and on the characteristics of
the input graph; however, tuning k for the given input would con-
sume privacy budget. Instead, we find that using the data-independent
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Figure 1: MAE of truncation approach when using the best trun-
cation parameter k (dashed lines) vs. k = n

1
3 (solid lines).

heuristic k = n
1
3 works well in practice (a similar heuristic is given

in [2]). A preliminary experiment to measure the Mean Absolute
Error (MAE) between the input ΘF and the noisy output over four
datasets (described in Appendix A) is shown in Fig. 1. Since real-
world social networks tend to have power-law degree distributions—
meaning that only a small fraction of the nodes have very high
degrees—this choice of k significantly lowers the sensitivity with-
out deleting too many edges. For sufficiently large graphs (e.g.,
Pokec), the difference in error rates between the best k and the
heuristically chosen k is negligible. Note that since n is assumed
to be public in this work, setting k as a function of n does not affect
the privacy guarantee of Thm. 7.

3.2 Node Attribute Distribution
The distribution of attributes on the nodes is modeled by ΘX . Re-

call that Yw is the set representing the 2w possible attribute config-
urations that nodes can take, on a dataset with w binary attributes.

We compute ΘX as: ΘX (yi) =
∑vi∈N [ fw(xi)=yi]

n , for yi ∈ Yw.
We can view the task of privately computing ΘX as answer-

ing a set of y = 2w counting queries QX = {q1, . . . ,qy} (where
qi = ∑v j∈N [ fw(x j) = yi]) under differential privacy. Here, we are
counting disjoint sets of nodes, which has low global sensitivity.
Observe that changing the attributes of a single node may, in the
worst case, reduce at most one count qi ∈ QX by one and increase
another count q j by one, which means the global sensitivity is just
2. We are only counting nodes, so adding/removing edges has no
impact on the counts. Therefore, we can obtain a private approxi-
mation of ΘX , denoted by Θ̃X , by computing counts on G, adding
noise from Lap(0,2/ε), and finally dividing the noisy counts by
their sum. As with ΘF , we clamp the noisy counts to the range
(0,n) before dividing by the sum. For completeness, pseudocode
of this procedure (Alg. 5) and a proof of its privacy properties
(Thm. 8) are provided in Appendix C.2.

3.3 Structural Model: TriCycLe
AGM requires an underlying generative graph model, M, to cap-

ture the structural properties of the input graph. M is responsible
for proposing new edges, which AGM then accepts or rejects to
achieve the desired attribute correlations as it constructs a synthetic
graph. An attractive feature of AGM is that it supports the use of
any generative structural model in which a graph can be generated
by repeatedly sampling edges. Therefore, our objective in this sec-
tion is to (a) identify an appropriate structural model, and (b) to
devise a way to compute its required model parameters, ΘM , effi-
ciently and accurately under differential privacy. For our purposes,
the selected model should (1) capture structural features of social

networks, including heavy-tailed degree distribution and high clus-
tering; (2) be reasonably scalable (i.e., able to handle hundreds of
thousands of nodes and millions of edges); and (3) be amenable to
computation under differential privacy.

Recent work has extended popular structural models to support
differential privacy, including exponential random graph models
(ERGMs) [18] and the Kronecker graph model (KGM) [23]; how-
ever neither of these models meets our needs. ERGMs can repro-
duce the degree distribution and clustering coefficients of an input
graph, but they do not scale well beyond a few thousand nodes.
Conversely, KGMs are more scalable but fail to capture the high
clustering characteristic of real-world social networks [32, 26].

From the broader graph analysis literature, two candidate models
stand out: the Block Two-Phase Erdős-Rényi (BTER) model [31,
16], and the Transitive Chung-Lu (TCL) model [26]. Both allow
efficient generation of synthetic graphs that mimic the degree dis-
tribution as well as the distribution of clustering coefficients in an
input graph. The models both take as input the target degree se-
quence, and a measure of clustering. At a high level, BTER mod-
els a graph as a collection of dense Erdős-Rényi (ER) subgraphs
that are sparsely interconnected to form the global graph structure
and aims to reproduce the degree-wise clustering coefficients, i.e.,
CD = {ci}, where ci is the ratio of the number of triangles involv-
ing nodes of degree i over the number of length-two paths centered
at nodes of degree i. To do so, it requires CD, along with the de-
gree sequence S, to be measured from the input graph and supplied
as input to the algorithm. TCL, on the other hand, aims to repro-
duce the distribution of local clustering coefficients observed in the
input graph. It extends the well-known Chung-Lu (CL) random
graph model [6] by adding a transitive closure paramater, ρ , which
controls the probability with which new edges create triangles (by
connecting a node to a random two-hop neighbor), versus connect-
ing two random nodes across the graph. The ρ parameter is a single
value learned from the input graph via expectation-maximization.

From the privacy perspective, the degree sequence can be esti-
mated from an input graph with reasonably high accuracy under
differential privacy [11]. However, the clustering parameters used
by these models are problematic. Under BTER, a single edge may
be part of many triangles, and hence many coefficients can be af-
fected. Moreover, adding or removing an edge ei j will change the
degrees of nodes vi and v j, which could cause a significant change
in four different ci’s (i.e., those of the old degrees di,d j and the
new degrees di± 1,d j± 1). This translates into a high global sen-
sitivity, and it is unclear whether it is possible to circumvent this
issue. Under TCL, the main difficulty comes from the fact that the
ρ parameter is tuned through multiple iterations of an expectation
maximization algorithm. The tools do not currently exist to bound
the impact of such a change on the final value of ρ .

Proposed Approach. Motivated by the difficulty of incorporating
differential privacy guarantees into existing generative social net-
work models, we design a new model around a statistic for which
accurate differentially private estimators are already known, namely
the triangle count. Our model, which we call TriCycLe, is inspired
by TCL. Rather than learning a transitive closure parameter, TriCy-
cLe first estimates the number of triangles in the input graph and
then rewires edges in a Chung-Lu seed graph until the desired num-
ber of triangles are present. In addition to being more amenable to
differential privacy, we have found that TriCycLe often attains a
better fit to the local clustering coefficient distribution than TCL.

In what follows, we give a brief overview of TCL and the CL
model that it extends. We then describe how TriCycLe modifies
TCL to replace the transitive closure parameter with the triangle
count, and how that statistic is used to introduce the expected amounts



of clustering into the output graph. The details of how the re-
quired model parameters—the degree distribution and number of
triangles—can be estimated privately and efficiently are presented
in Appendix C.3. Section 4 then explains how TriCycLe can be
integrated into AGM as the underlying structural model.

A Review of CL and TCL. In the CL model, a graph is generated
by (1) assigning a desired degree to every node based on the degree
sequence of the input graph, and (2) sampling edges with a prob-
ability proportional to the desired degrees of the endpoint nodes;
specifically, an edge ei j is sampled with probability did j

2m . A graph
matching a given degree sequence is generated in O(m) steps by
repeatedly sampling node pairs vi,v j independently from the distri-
bution π , where π(i) = di

2m , and then adding edge ei j to the sample
graph. [28] gives an efficient implementation of the above idea,
called Fast Chung-Lu (FCL). In FCL, nodes are sampled from π in
constant time by constructing a vector of length 2m in which the ID
of a node vi is repeated di times, and then drawing nodes uniformly
from this vector. Although CL therefore matches the desired de-
gree distribution, it does not attempt to reproduce the amount of
clustering in the input graph.

TCL extends CL to incorporate transitive edge formation, i.e.,
when a node connects to a friend of a friend. A transitive closure
probability, ρ , controls the probability by which an edge is added
between a randomly selected node and a two-hop neighbor (i.e., a
friend of a friend), rather than to another randomly selected node, as
in the CL model. Given a degree sequence S and ρ (learned from
the input graph), TCL generates a synthetic graph in two phases.
First, a seed graph of m edges is created using the CL procedure.
Then TCL refines the seed graph by introducing triangles while
preserving the expected degree sequence. Node vi is first sampled
from the π distribution; then with probability ρ , vk is selected uni-
formly from vi’s neighbors and an edge is added between vi and a
uniformly selected neighbor of vk, v j (if it doesn’t already exist),
which results in at least one new triangle. With probability 1−ρ ,
the endpoint v j is sampled from π instead. After each new edge
addition, the oldest edge in the graph is deleted to ensure that the
expected degree sequence is maintained. The process of replacing
edges continues until all old (seed) edges have been replaced.

TriCycLe Random Graph Model. Similarly to TCL, TriCycLe is
based on the intuition that clustering in social graphs is attributable
to triangles that form when a user is linked to a two-hop neighbor
(i.e., a friend-of-a-friend). Therefore, TriCycLe attempts to repro-
duce the total number of triangles seen in the input graph by con-
necting nodes in this way. Like TCL, TriCycLe starts with a CL
seed graph and iteratively replaces edges to create triangles. How-
ever, rather than using a transitive closure probability, we count the
number of triangles in the input graph and then add transitive edges
until the number of triangles in the resulting graph matches that of
the input graph. The number of triangles in a graph can be accu-
rately estimated under differential privacy using a recent technique
[37] (Appendix C.3). Like TCL, for each transitive edge we add,
we remove a seed edge to maintain the expected degree distribu-
tion; however, since the deleted edge may itself be part of one or
more existing triangles, we reject proposed replacements that de-
crease the net triangle count. This check ensures that the algorithm
terminates with the desired number of triangles.

Algorithm 1 gives the procedure for generating a graph with
TriCycLe. The inputs to the algorithm are the degree sequence
S = {di|vi ∈ G} and the desired number of triangles n∆. For now,
we assume that these two quantities have been directly measured
from the input graph G (i.e., non-privately); in Appendix C.3, we
explain how they can be accurately and efficiently estimated with

Algorithm 1 TriCycLe Graph Generation

Input: N,ΘM = {S,n∆}
Output: ET

1: Compute π distribution from N and degree sequence S
2: ET ← CL(S,π)
3: τ ← COUNTTRIANGLES(ET )
4: while τ < n∆ do
5: vi← SAMPLE(π)
6: γi← Γ(ET ,vi)\{vi}
7: vk ← SAMPLEUNIFORM(γi)
8: γk ← Γ(vk)
9: v j ← SAMPLEUNIFORM(γk)

10: if ei j /∈ ET then
11: eqr ← OLDESTEDGE(ET ) . Get oldest edge to replace
12: CNqr← |Γ(vq)∩Γ(vr)| . Count common neighbors of vq & vr
13: ET ← ET \eqr
14: CNi j ← |γi ∩Γ(v j)| . Would proposed edge decrease τ?
15: if CNi j ≥CNqr then
16: ET ← ET ∪ ei j . Update triangle count
17: τ ← τ +CNi j−CNqr
18: else
19: ET ← ET ∪ eqr . Undo edge removal, making eqr the

youngest edge in ET

20: return ET

differential privacy. In line 2, a seed graph is sampled from the CL
model1, yielding edge set ET . Recall that in CL, m = 1

2 ∑di∈S di
edges are sampled from the π distribution that is created from S.
In the main loop (line 4), we add transitive edges one at a time
until ET contains the desired number of triangles. A new edge is
proposed by sampling a node vi from the π distribution (i.e., with
probability proportional to node degree) and then selecting a ran-
dom “friend of a friend”, v j. Assuming the proposed edge ei j does
not already exist in ET , we select the oldest edge eqr (line 11) to
be deleted in order to maintain the expected degree distribution. In
lines 12–14 we calculate the number of triangles that would be cre-
ated (destroyed) by adding (deleting) edge ei j (eqr). Note that we
delete eqr in line 13 before computing CNi j, since its presence may
affect the number of triangles created by connecting vi and v j. As
long as the proposed edge addition/deletion does not decrease the
number of triangles (line 15), we proceed with adding ei j in line 16
and updating the triangle count in line 17. Otherwise, we undo the
deletion of eqr in line 19 before proceeding to the next iteration.
Note that whenever the deletion of eqr is reverted, its timestamp
is reset so that it becomes the youngest edge in ET ; this is an im-
portant detail, since without it, the algorithm could get stuck, as
there may not (at that moment) be any other edges in the graph that
participate in more triangles than eqr.

Extension to Handle Orphaned Nodes. A practical issue with
the CL model, as well as TCL and TriCycLe, is that graphs gener-
ated by these models often contain many disconnected or orphaned
nodes2, compared to the input graph. Some fraction of nodes will
not be assigned any edges, or will be connected only to nodes that
are themselves disconnected from the rest of the graph. For large
social graphs with many low-degree nodes, these models can gen-
erate many orphaned nodes. For example, on the large Pokec social
network dataset (Appendix A), over 100K of its 720K nodes (many
degree-one and degree-two nodes) are orphaned in the output.

We propose an extension to TriCycle to address this issue (it

1We use the FCL variant with bias correction (cFCL) in [26].
2A node is orphaned if it is not part of the main connected com-
ponent of the graph. In this work, we assume the input graph is
connected, and so the output graph should be too.



(a) Last.fm (b) Petster (c) Epinions (d) Pokec

Figure 2: Comparison of structural models in terms of their ability to reproduce the degree distribution

(a) Last.fm (b) Petster (c) Epinions (d) Pokec

Figure 3: Comparison of structural models in terms of their ability to reproduce the distribution of local clustering coefficients.

Algorithm 2 PostProcessGraph

Input: N,E,π,S
Output: E ′

1: m← 1
2 ∑vi∈N Svi

2: E ′← E
3: m′← |E ′|
4: while graph G← (N,E ′) is disconnected do
5: Select an orphaned node vi

6: if d(G)
i > 0 then

7: m′← m′−d(G)
i

8: Delete edges incident to vi

9: for j← 1 . . .Svi do
10: repeat
11: vk ← SAMPLE(π)

12: until d(G)
k < Svk

13: E ′← E ′ ∪ eik
14: if m′ = m then
15: Delete a random edge from E ′
16: else
17: m′← m′+1
18: return E ′

could also be applied to CL and TCL). We observe that (1) most
nodes that end up orphaned are those with a degree of one in the
input graph, and (2) since degree-one nodes cannot be part of any
triangle, there is no reason to pick such nodes in line 5 of Algo-
rithm 1. Let N1 denote the set of degree-one nodes in the input
graph. We make the following changes to Algorithm 1: (1) exclude
degree-one nodes from the π distribution computed on line 1; (2)
when generating the CL graph in line 2, generate m− |N1| edges,
rather than m edges; (3) wire up the degree-one nodes, and any
other orphaned nodes, in a separate post-processing step, given by
Algorithm 2. Note that we apply post-processing to both the CL

graph generated in line 2 (of Algorithm 1), and to the final output
graph, before it is returned in line 20.

Post-processing takes as input nodes N and edges E, along with
π and the degree sequence of the original input graph, which corre-
sponds to the desired degrees for the nodes3. The main loop (lines
4–17) processes each orphaned node vi by deleting any existing
incident edges (which could only be connected to other orphaned
nodes), then connecting vi to the main connected component by
adding edges to nodes in the main component (for which their de-
sired degree has not yet been met) until vi’s desired degree is met.
Upon adding a new edge, if we have more than the desired num-
ber of edges overall, we delete a randomly selected edge (line 15).
Note that deleting existing edges (line 15) may result in additional
orphaned nodes, therefore, we repeat this process as long as the
graph is still disconnected. This process may destroy some trian-
gles, but we found the impact to be minor in practice.

Empirical Evaluation. We validated the (non-private) graph mod-
els by generating synthetic versions of four real-world social graphs
(see Appendix A) and comparing structural characteristics of the
synthesized graphs to those of the original graphs. Figs. 2 (a)–(d)
plot the degree distributions for the four datasets (on log-log scale),
while Figs. 3 (a)–(d) plot the local clustering coefficient distribu-
tions. The y-axes give the complementary cumulative degree dis-
tribution (CCDF), i.e., the fraction of nodes with a greater degree
or clustering coefficient than the x-value.

Figures 3(a)–(d) show that, as expected, the clustering coefficient
distributions from TCL and TriCycLe were much closer to that
of the input than for FCL (which does not model clustering). On
the two largest graphs, the clustering coefficients for FCL were all
very close to zero. Compared to TCL, TriCycLe more closely ap-
poximated clustering coefficients of Last.fm and Epinions graphs,
while its performance was comparable to that of TCL on the Pet-

3Degree-one nodes are included in S, but excluded from π .
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Figure 4: Fig. 4a gives an overview of our DP of AGM. Fig. 4b depicts the sampling step (corresponding to the right-most block in 4a).

ster graph. For Pokec, TriCycLe seems to over-estimate the clus-
tering coefficients. All three models approximate the degree dis-
tributions reasonably well (Figs. 2(a)–(d)), though on two datasets,
TriCycLe generated slightly more high degree nodes. The bias is a
consequence of requiring edge replacements to increase the trian-
gle count; removing edges from high degree nodes tends to remove
more triangles, so fewer such edges are removed. There seems to
be an inherent tension between the fidelity of the degree distribu-
tion and that of the clustering characteristics. Nevertheless, TriCy-
cLe captures both properties sufficiently well for the purposes of
this work, which focuses on the privacy aspect; therefore, we defer
further analysis and improvement of TriCycLe to future work.

4. AGM-DP: PUTTING IT ALL TOGETHER
In the previous section we described how we model attributes

on nodes and the graph structure, and learn the model parameters
under DP. In this section, we put the pieces together and outline the
end-to-end workflow for synthesizing differentially private graphs
that mimic the attribute correlations and structural properties of a
given social network. For concreteness, the presented algorithm
uses TriCycLe as the structural model; however, other generative
structural models (with DP) can be used in its stead.

The original AGM algorithm generates a synthetic graph based
on G by repeatedly sampling edges from an underlying structural
model M. Each sampled edge is either acceped or rejected to the
output graph based on the acceptance probabilities A. This process
ends when the desired number of edges (i.e., m(G)) are generated.
However, TriCycLe (Section 3.3) does not fit this pattern directly,
as it continues to refine an initial seed graph by replacing edges
to create new triangles until the desired number of triangles exists
in the output graph. To accommodate models such as TriCycLe,
we move the accept/reject step into the sampling algorithm for the
structural model—that is, we still compute acceptance probabili-
ties as in the original AGM algorithm (with the alterations required
to satisfy differential privacy), but we then pass the probabilities
A into M’s specific sampling algorithm when generating the final
output graph.4 Since TriCycLe only replaces edges until the de-
sired number of triangles exist, there may be many edges that are
not replaced and thus are not subjected to the acceptance probabil-

4Specifically, we change the condition in the if statement on
line 10 of Algorithm 1 to “ei j /∈ ET ∧ SampleUniform(0,1) ≤
A(Fw(x̃i, x̃ j))”, where x̃i and x̃ j are the attribute vectors generated
for nodes vi and v j in Algorithm 5.

Algorithm 3 AGM-DP-TriCycLe

Input: G = (N,E,X),w,ε,k
Output: An ε-DP graph G̃ = (Ñ, Ẽ, X̃)

1: Ñ← N
2: εX ,εF ,εM ← SPLITBUDGET(ε) . Split privacy budget ε among the

parameters to be learned
3: Θ̃X ← LEARNATTRIBUTESDP(εX ,X ,w) . Learn DP approximations

for each parameter from input graph G
4: Θ̃M ← FITTRICYCLEDP(εM ,E)
5: Θ̃F ← LEARNCORRELATIONSDP(εF ,G,k)
6: Sample new attribute vectors X̃ using Θ̃X

7: Ẽ← TRICYCLE(Ñ,Θ̃M)
8: A← /0
9: for Iterations do

10: Compute Θ′F from the graph G̃ = {Ñ, Ẽ, X̃}
11: for yi ∈ YF do
12: R(yi)← Θ̃F (yi)

Θ′F (yi)

13: if Aold 6= /0 then
14: R(yi)← R(yi)×Aold(yi)

15: for yi ∈ YF do
16: A(yi)← R(yi)

SUP(R) . Compute the acceptance probabilities

17: Ẽ← TRICYCLE(Ñ,Θ̃M , X̃ ,A) . Sample a new edge set using
acceptance probabilities

18: Aold ← A
19: return G̃ = (Ñ, Ẽ, X̃)

ities. Therefore, we also pass the acceptance probabilities into the
CL seed graph generator on line 2 of Algorithm 1.

Our end-to-end differentially private workflow, AGM-DP, is given
in Algorithm 3 and illustrated in Fig. 4. It takes input graph G with
w attributes, a global privacy budget ε , and a truncation parameter
k. We split the privacy budget ε evenly in our empirical analysis
(Section 5), i.e, εX = εF = 1

4 ε , εM = εS + ε∆ = 1
4 ε + 1

4 ε , which
seems to work well in practice; though other strategies could also
be used. In lines 3–5, we learn the three sets of modeling parame-
ters from the input graph using their respective differentially private
learning procedures. Note that after line 5 we never look back at
the raw input graph. Next we assign attribute vectors to nodes by
sampling randomly from Θ̃X . Temporary edge set E ′ is sampled
independently of the node attributes. The loop beginning at line 9
computes edge acceptance probabilities by measuring the attribute
correlations between Θ′F in the current graph and Θ̃F derived from
G Finally, new edges are sampled using the modified structural



model discussed above (line 17). The process is iterated until the
acceptance probabilities A converge (for simple models like FCL,
only one iteration is required). In our experimental study, we found
that A tended to converge after just a few iterations. The output
graph G̃ approximates a joint sampling of the structural model and
the attribute correlations, and satisfies differential privacy.

THEOREM 2. Algorithm 3 satisfies ε-differential privacy.

PROOF. The privacy budget ε is split into three parts, εX ,εF ,εM ,
which are used in the learning procedures for the three sets of model
parameters (lines 3–5). The fact that the learning procedures sat-
isfy differential privacy with privacy parameters εF , εX , and εM , re-
spectively, follows from Thm. 8, Thm. 7, and Thm. 9, respectively.
After line 5, the algorithm never looks back at the raw input data
again. Thus, by sequential composition and post-processing invari-
ance, we have that the algorithm as a whole satisfies ε-DP.

The time costs of our approach are discussed in Appendix C.4.

5. EMPIRICAL ANALYSIS
We present an experimental study of our DP adaptation of AGM

on the four real-world social network datasets described in Ap-
pendix A. Our goal is to demonstrate that the synthetic graphs pro-
duced by AGM-DP reasonably preserve attribute correlations and
structural properties of an input graph under privacy. We instan-
tiate AGM-DP with the differentially private version of TriCycLe
(referred to as AGMDP-TriCL henceforth), as well as a DP ver-
sion of the simple FCL model (AGMDP-FCL henceforth) as the
underlying structural models. For the latter, we modified the bias-
corrected FCL algorithm (cFCL) described in [26] to take a noisy
degree sequence as input, generated using the constrained inference
approach of [11], just as was done for TriCycLe (Appendix C.3).

We experimented with four different privacy budgets, ε ∈ {0.2,
0.3, ln(2), ln(3)}; for the larger Pokec dataset, we used ε ∈ {0.01,
0.05, 0.1, 0.2}5. For AGM-DPTriCL, we divided the overall pri-
vacy budget ε evenly among the four model parameters: attribute
distribution ΘX , attribute correlations ΘF , degree sequence S and
number of triangles n∆. For AGMDP-FCL does not use n∆, so we
allocated half of the budget to S and split the other half evenly
between ΘF and ΘX . The truncation parameter, k, used in com-
puting the private attribute correlations, was set to n

1
3 for all ex-

periments. For both AGMDP-TriCL and AGMDP-FCL, on each
setting of ε , we report average results over 1,000 synthetic graphs
(100 for Epinions and Pokec). For comparison, we also report the
results of AGM instantiated with the non-private versions of FCL
and TriCycLe, denoted AGM-FCL and AGM-TriCL, respectively.

5.1 Statistics Evaluated
We compare synthetic and original graphs via several statistics.

Clustering Coefficients. We consider two measures of clustering.
The global clustering coefficient (also called transitivity) of a graph
G is defined as C(G) = 3×n∆

nW
where n∆ is the number of triangles

in G and nW is the number of wedges (i.e., length two paths) in
G. Another measure is the average of the local clustering coeffi-
cients. The local clustering coefficient of a node vi ∈ N is given
by Ci =

2|{e jk∈E|v j ,vk∈Γ(vi)}|
|Γ(vi)|×(|Γ(vi)|−1) , and the average of the local clustering

coefficients is denoted C = 1
n ∑vi∈N Ci. The reason for using both

these measures is that the former tends to emphasize the low-degree
nodes while the latter emphasizes high-degree nodes. We report the
5The large size of this dataset makes it much more robust to in-
jected noise, so we use smaller (stronger) values for ε .

mean relative error (MRE) of C and C between the synthetic graphs
and the original graphs (denoted C and C in the tables).

Degree Distribution. To evaluate how well a synthetic graph cap-
tures the degree distribution of the input graph, we use the Kolmogorov-
Smirnov (KS) statistic, which quantifies the maximum distance be-
tween the two degree distributions. Let FS and FS̃ denote the cu-
mulative distribution functions estimated from the sorted degree
sequences of the original and synthetic graphs, respectively. Then
KS(S, S̃) = maxd |FS(d)−FS̃(d)|. Since the KS statistic is known
to be less sensitive to differences in the tails of the distributions, we
also report the Hellinger distance between the two degree distribu-
tions (denoted DS ,DS̃ ), defined as

HS = 1√
2

√
∑d

(√
DS(d)−

√
DS̃(d)

)2
.

The smaller the values of both statistics, the closer (more similar)
the degree distributions of the synthetic and original graphs.

Edge Count and Triangle Count. We report the mean relative
error (MRE) for the number of edges (denoted simply as m in the
tables) and the number of triangles (denoted as n∆ in the tables) in
the synthetic graphs relative to the original input graphs.

Attribute Correlations. To quantify the error in the attribute cor-
relations in the synthetic graph, relative to the original graph, we
report the MRE (denoted as simply ΘF in the tables), as well as the
Hellinger distance, defined as

HΘF = 1√
2

√
∑yi∈Y F

w

(√
ΘF (yi)−

√
Θ̃F (yi)

)2
,

where ΘF and Θ̃F are the discrete probability distributions for the
original and synthetic graphs, respectively. HΘF lies in the range
[0,1], with a value near 0 meaning that the correlations in the syn-
thetic graph closely approximate those in the input graph.

5.2 Results
Tables 2–5 summarize the experimental results on the four datasets.

For each setting of the overall privacy budget (ε) we report the
average error rates for the graphs synthesized by both AGMDP-
TriCL and AGMDP-FCL. Recall that a smaller ε translates to a
stronger privacy guarantee; so the level of privacy (and, in gen-
eral, the amount of error) increases as we move down the tables.
To make the impact of the privacy mechanism clear, we include,
at the top of each table, the error rates for the non-private version
of AGM instantiated with FCL and TriCycLe (denoted AGM-FCL
and AGM-TriCL, respectively).

Clustering. Recall that the FCL structural model includes no mech-
anism for capturing and reproducing clustering in the input graph,
so the error rates for the triangle count (n∆), average clustering
coefficient (C) and the global clustering coefficient (C) are larger
for FCL-based models than for the TriCycLe-based models, as ex-
pected. For that reason, the error rates for AGMDP-FCL on those
three statistics serve as a good reference point for interpreting the
corresponding results of AGMDP-TriCL. For instance, looking at
the results on the Last.fm and Epinions datasets (Tables 2 and 4,
respectively) we see that even with a reasonably strong privacy
budget of ε = 0.2, AGMDP-TriCL could reproduce the cluster-
ing observed in the input graph significantly better than AGMDP-
FCL. For the large Pokec dataset, the error rates remained signifi-
cantly below those of AGMDP-FCL, even with the extreme setting
of ε = 0.01, typically the smallest ε seen in the DP literature. In



Table 2: Results for AGMDP-FCL and AGMDP-TriCL structural models on the Last.fm dataset for different privacy settings, ε .

Last.fm Model ΘF HΘF KSS HS n∆ C C m

non-private AGM-FCL 0.00 0.01 0.05 0.15 0.59 0.75 0.61 0.0000
AGM-TriCL 0.00 0.02 0.08 0.16 0.05 0.04 0.24 0.0001

ε = ln 3 AGMDP-FCL 0.02 0.14 0.06 0.16 0.59 0.75 0.60 0.0076
AGMDP-TriCL 0.02 0.14 0.09 0.17 0.05 0.07 0.23 0.0147

ε = ln 2 AGMDP-FCL 0.03 0.18 0.07 0.17 0.56 0.74 0.58 0.0120
AGMDP-TriCL 0.03 0.18 0.10 0.18 0.06 0.10 0.23 0.0222

ε = 0.3 AGMDP-FCL 0.05 0.27 0.09 0.19 0.42 0.68 0.48 0.0248
AGMDP-TriCL 0.05 0.28 0.12 0.21 0.18 0.30 0.24 0.0499

ε = 0.2 AGMDP-FCL 0.06 0.32 0.11 0.20 0.39 0.65 0.43 0.0374
AGMDP-TriCL 0.06 0.33 0.16 0.24 0.35 0.38 0.27 0.0769

Table 3: Results for AGMDP-FCL and AGMDP-TriCL on the Petster dataset for different privacy settings, ε .

Petster Model ΘF HΘF KSS HS n∆ C C m

non-private AGM-FCL 0.00 0.02 0.04 0.17 0.13 0.51 0.15 0.0001
AGM-TriCL 0.00 0.01 0.05 0.17 0.00 0.35 0.07 0.0000

ε = ln 3 AGMDP-FCL 0.03 0.16 0.05 0.17 0.18 0.51 0.19 0.0075
AGMDP-TriCL 0.03 0.16 0.06 0.18 0.09 0.26 0.08 0.0136

ε = ln 2 AGMDP-FCL 0.03 0.20 0.06 0.18 0.16 0.49 0.17 0.0117
AGMDP-TriCL 0.04 0.20 0.07 0.19 0.13 0.29 0.10 0.0221

ε = 0.3 AGMDP-FCL 0.05 0.29 0.08 0.20 0.21 0.44 0.18 0.0268
AGMDP-TriCL 0.06 0.30 0.12 0.22 0.39 0.32 0.24 0.0486

ε = 0.2 AGMDP-FCL 0.07 0.35 0.10 0.21 0.32 0.41 0.24 0.0388
AGMDP-TriCL 0.07 0.36 0.14 0.24 0.72 0.32 0.40 0.0766

fact, the error rates for those statistics are nearly unchanged (com-
pared to the non-private counterpart) until ε was set≤ 0.05. This is
because the amount of noise added to preserve privacy is indepen-
dent of the size of the input graph, so larger graphs achieve a more
favorable signal-to-noise ratio for the model parameters. On the
other hand, we see that on the smaller Petster dataset, the cluster-
ing produced by AGMDP-TriCL was no better than that produced
by AGMDP-FCL, when ε < ln(2) (≈ 0.69).

Attribute-Edge Correlations. A baseline for attribute-edge cor-
relations is to set all correlation probabilities to be equal6, inde-
pendent of the data. This yields an average Hellinger distance of
0.37, 0.45, 0.55 and 0.5 and an MAE of 0.09, 0.11, 0.13 and 0.12
on Last.fm, Petster, Epinions and Pokec, respectively. Comparing
against HΘF and ΘF in the tables, we see that the error rates for the
synthetic graphs generated by AGMDP-FCL and AGMDP-TriCL
were significantly lower than the baseline error rates on all datasets,
even under the strongest privacy settings tested. The difference was
most dramatic on the larger datasets (Epinions and Pokec).

Degree Statistics. The error in degree statistics (HS and KSS )
grows more slowly for AGMDP-FCL than for AGMDP-TriCL (as
ε decreases). This is because we allocated half of the privacy bud-
get for computing the noisy degree sequence with AGMDP-FCL,
while for AGMDP-TriCL we allocated only a quarter (the other
quarter is used to estimate triangle counts, not needed by FCL).
Thus, the degree sequence has more noise in AGMDP-TriCL for
the same ε . To calibrate the error-rates, we note that the baseline
model that assigns edges to nodes uniformly at random achieves
6So for w = 2 attributes, we set each of the ten probabilities to 0.1.

KS error 0.51, 0.51, 0.61 and 0.43 and a Hellinger distance of 0.64,
0.63, 0.64 and 0.56 on Last.fm, Petster, Epinions and Pokec, re-
spectively. The KS statistic was substantially below that of the
baseline for both AGMDP-FCL and AGMDP-TriCL at ε = 0.2: the
KS was≤ 0.16 on Last.fm and Petster (Tables 2 and 3), and≤ 0.09
on Epinions and Pokec (Tables 4 and 5). Similarly, the Hellinger
distance for both models was less than half that of the baseline on
all datasets: on Last.fm and Petster, we had HS ≤ 0.24, and on
Epinions and Pokec we had HS ≤ 0.12. The number of edges in
the synthetic graphs (m) is close to the input for small privacy bud-
gets (ε = 0.2 for Last.fm, Petster and Epinions, and ε = 0.01 for
Pokec) with the MRE below 0.08 on the small Last.fm and Petster
datasets, below 0.04 on Epinions and below 0.085 on Pokec.

5.3 Discussion
Our experiments demonstrate that it is possible to generate syn-

thetic attributed social graphs with reasonably high fidelity, without
sacrificing privacy. An important takeaway from the results is that,
while the proposed framework performs well even on very small
graphs, its power really becomes evident when applied on moderate
to large input graphs. In particular, we saw that on the reasonably
large Pokec social network, we generated very accurate synthetic
graphs even under the strongest privacy regime for DP used in the
literature (i.e., ε = 0.01).

We focused our empirical analysis on graphs with w = 2 node at-
tributes, however our framework is not limited to two-dimensional
attribute vectors. Although the sensitivity of the approach is not
affected by the number of attributes, we can expect the error rates
to increase as w increases, since the number of counts that must be



Table 4: Results for AGMDP-FCL and AGMDP-TriCL on the Epinions dataset for different privacy settings, ε .

Epinions Model ΘF HΘF KSS HS n∆ C C m

non-private AGM-FCL 0.01 0.03 0.06 0.08 0.82 0.92 0.83 0.0008
AGM-TriCL 0.00 0.01 0.04 0.08 0.27 0.06 0.53 0.0008

ε = ln 3 AGMDP-FCL 0.01 0.06 0.06 0.08 0.83 0.92 0.84 0.0019
AGMDP-TriCL 0.01 0.06 0.04 0.08 0.28 0.10 0.53 0.0057

ε = ln 2 AGMDP-FCL 0.01 0.08 0.05 0.08 0.82 0.92 0.84 0.0042
AGMDP-TriCL 0.01 0.09 0.04 0.09 0.28 0.11 0.52 0.0084

ε = 0.3 AGMDP-FCL 0.01 0.12 0.06 0.10 0.81 0.92 0.83 0.0128
AGMDP-TriCL 0.02 0.14 0.07 0.11 0.23 0.14 0.48 0.0218

ε = 0.2 AGMDP-FCL 0.02 0.13 0.08 0.11 0.78 0.91 0.80 0.0157
AGMDP-TriCL 0.02 0.17 0.09 0.12 0.20 0.19 0.46 0.0345

Table 5: Results for AGMDP-FCL AGMDP-TriCL on the Pokec dataset for different privacy settings, ε .

Pokec Model ΘF HΘF KSS HS n∆ C C m

non-private AGM-FCL 0.00 0.01 0.04 0.05 1.00 1.00 1.00 0.0000
AGM-TriCL 0.00 0.02 0.03 0.04 0.24 0.37 0.30 0.0000

ε = 0.2 AGMDP-FCL 0.00 0.02 0.05 0.05 1.00 1.00 1.00 0.0020
AGMDP-TriCL 0.00 0.03 0.03 0.05 0.24 0.39 0.30 0.0052

ε = 0.1 AGMDP-FCL 0.00 0.03 0.05 0.06 1.00 1.00 1.00 0.0057
AGMDP-TriCL 0.00 0.04 0.05 0.07 0.24 0.37 0.30 0.0101

ε = 0.05 AGMDP-FCL 0.00 0.06 0.05 0.07 1.00 1.00 1.00 0.0108
AGMDP-TriCL 0.01 0.09 0.07 0.10 0.25 0.35 0.33 0.0189

ε = 0.01 AGMDP-FCL 0.02 0.14 0.11 0.15 1.00 1.00 1.00 0.0510
AGMDP-TriCL 0.03 0.20 0.15 0.19 0.46 0.37 0.50 0.0833

computed for ΘX and ΘF increase exponentially with w, leading to
smaller counts and hence a higher noise-to-signal ratio. Likewise,
we expect error rates to decrease when using w = 1.

6. RELATED WORK
Prior studies have shown that simple graph anonymization tech-

niques are vulnerable to a number of attacks that can allow an at-
tacker to reidentify individuals and determine the presence of spe-
cific edges [1, 10, 24]. Initial attempts to address these types of
attacks (e.g., [17, 38, 39]) made strong assumptions about the at-
tacker’s background knowledge and lacked formal privacy guaran-
tees. More recently, focus has shifted to extending the strong for-
mal privacy guarantees of differential privacy to graph data. This
work has generally pursued one of two directions: methods for pri-
vately computing specific statistics, and private graph release.

Private Graph Statistics. Hay et al. [11] considered releasing
the degree distribution of a graph under edge-differential privacy
using a constrained inference technique. The idea is to impose an
ordering constraint on the pre-noise degree sequence, add Laplace
noise to the sorted sequence then post-process the noisy sequence
to restore the order constraint.

Subgraph counting queries ask how many “edge-induced iso-
morphic copies” of a query graph Q (e.g., triangle), are present
in G. Although subgraph counting has high global sensitivity in
general, Karwa et al. extend smooth sensitivity for specific queries
such as triangles and k-stars. Wang et al. outlined a general, divide
and conquer approach using smooth sensitivity for graph analysis
tasks that have low local sensitivity, such as clustering coefficient

[35]. Zhang et al. [37] defined the Ladder framework for produc-
ing accurate DP estimates of subgraph counting queries, including
triangles and k-stars. The Ladder framework combines the concept
of “local sensitivity at distance t” [25] with the exponential mecha-
nism [22]. Shen and Yu [33] consider finding frequently occurring
subgraphs under differential privacy.

Private Graph Release. Mir and Wright [23] focused on generat-
ing representative synthetic graphs via the Kronecker graph model.
Their approach estimates the (single) model parameter from the in-
put graph under edge-differential privacy. Sala et al.’s Pygmalion
model uses the dK-series of the input graph, which records the dis-
tribution of the pairs of degrees observed on edges [30]. The pro-
posed approach is based on local sensitivity, and so does not pro-
vide differential privacy. Subsequent work combined the dk-series
model that constructs a synthetic graph via smooth sensitivity [34].

Xiao et al. encode the structure of a graph via private edge-
counting queries, under the hierarchical random graph (HRG) model,
and claim better results than the dK-series approach [36]. Chen
et al. [4] use the exponential mechanism to sample an adjacency
matrix after clustering the input graph. Proserpio et al. [29] sug-
gest non-uniformly down-weighting the edges of a graph in or-
der to reduce high global sensitivity due to the possibility of very
high degree nodes. They demonstrate the approach, combined with
MCMC-based sampling, to generate private synthetic graphs. Our
work differs from all these prior works, in particular as we aim to
(privately) model both structure and attribute correlations.

Node Differential Privacy. The prior work discussed above adopts
edge-differential privacy. In the more challenging model of node-



differential privacy, neighboring graphs differ in a single node and
all of its incident edges. While smooth sensitivity has been useful
for taming high global sensitivity under edge-differential privacy,
it appears less effective for node differential privacy. This is be-
cause in node-differential privacy, even the local sensitivity of basic
statistics can be very high. For example, the number of edges in a
graph can increase by n (the number of nodes) if we add a new node
connected to all others, so even the local sensitivity of edge count-
ing is n. To disallow such cases, Chen and Zhou propose a recursive
mechanism based on the notion of local empirical sensitivity, which
considers only the effects of deleting of an existing node from the
input graph [5]. Kasiviswanathan et al. [14] and Blocki et al. [2] in-
dependently proposed the idea of using low-sensitivity transforms
to project an input graph onto the set of degree-bounded graphs.
By bounding the maximum degree of the input graph, the sensitiv-
ity becomes bounded and can be significantly reduced. When the
degree bound, D, is set so that most of the nodes in the graph have
degree ≤ D, very little error is introduced by the projection oper-
ation; however, choosing an appropriate bound can be difficult in
practice.

7. CONCLUSIONS AND FUTURE WORK
This work proposed a differentially private adaptation of the At-

tributed Graph Model (AGM) of [27]. Our framework is capa-
ble of modeling and synthesizing attributed social networks that
mimic the structural properties and attribute correlations of an input
network, without disclosing individual relationships and attributes.
We explored three different approaches for accurately modeling the
attribute correlations under differential privacy, identifying edge
truncation to be the most effective choice. We introduced a new
structural model capable of reproducing the important structural
properties of social networks, including the degree distribution and
the distribution of local clustering coefficients, and showed that the
parameters required by the model can be accurately estimated un-
der differential privacy. Finally, we presented an end-to-end work-
flow for generating private, synthetic social graphs with our frame-
work and demonstrated its efficacy through experiments on four
real-world social network datasets.

We believe this work lays a good foundation for providing dif-
ferential privacy guarantees for attributed graph analysis; however,
there remain many avenues for future work. We limited our focus
to achieving edge differential privacy for undirected social graphs
with a relatively small number of binary node attributes. We con-
clude by briefly discussing what would be needed to remove each
of these restrictions.

Other Graph Types. We chose to focus on attributed social net-
works in this work for concreteness; however the proposed frame-
work could be extended to support other types of attributed graphs
by plugging in an appropriate underlying structural model for M.
As long as the structural model satisfies differential privacy, the
framework as a whole will still satisfy differential privacy.

Non-Binary Attributes. Our framework can support non-binary
categorical or continuous attributes by simply converting each at-
tribute to a series of binary attributes, one per category or range7.
Although increasing the number of attributes, w, has no impact
on the sensitivity of our approach, it does increase the number of
counts that need to be computed for ΘX and ΘF ; thus we can ex-
pect the accuracy of the generated graphs to degrade as w increases,
due to a higher noise-to-signal ratio for the counts. In general, the

7For example, marital status could be represented by the following
three binary attributes: isMarried, isDivorced, isSingleOrWidowed.

larger the graph, the more attributes that could be supported ac-
curately, since the amount of noise is also independent of the size
of the graph. It may also be of interest to support edge attributes
(e.g., trust or friendship strength), which would need an additional
correlation model.

Directed Edges. Modeling attribute-edge correlations under di-
rected edges increases the number of counts computed for ΘF from(2w+1

2
)

to 4w. However, the sensitivity does not change. The struc-
tural model also needs to capture directionality. This is more chal-
lenging, since the current approaches (TriCycle and FCL) make use
of the degree sequence. Switching to using the in-degree and out-
degree sequence is not compatible with the constrained inference
of [11], so this helpful post-processing step would be lost.

Node Differential Privacy. In this work we focused on satisfying
edge-differential privacy, in which neighboring graphs differ in a
single edge or the attributes of a single node. A stronger notion of
adjacency which has been studied in a few recent works is node-
differential privacy, in which neighboring graphs differ in a single
node and all of its adjacent edges (and/or the attributes associated
with one node). This is a more difficult definition to satisfy, as it
translates to a much higher sensitivity for many tasks. A promis-
ing approach for computing ΘF under node-privacy is to use the
same edge truncation approach but then to add noise according to
its smooth sensitivity in the node-adjacency model. In a prelimi-
nary experiment we found that using this approach, the Hellinger
distance between the original and noisy correlation probabilities
was still better than the baseline when ε ≥ ln(2) on Last.fm, when
ε ≥ 0.3 on Petster, when ε ≥ 0.2 on Epinions, and when ε ≥ 0.05
on Pokec; δ was fixed at 0.01 for the experiment. The problem of
developing a node-private approach for fitting a suitable structural
model remains a challenging open problem.
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APPENDIX
A. DATASETS

We make use of four real-world social network datasets:

Last.fm8 is a social music platform where users listen to and rate
music, as well as share their favorite music with friends. This pub-
licly available dataset [3] contains undirected friendship edges be-
tween user nodes, as well as a set of “listened to” relations indi-
cating which artists a user has listened to. Although the dataset
does not contain node attributes, we created two attributes by se-
lecting the two most popular artists and creating listenedToArtistX
attributes, with a value of 1 if a user had listened to artist X at least
once.

The Epinions dataset [19] was crawled from Epinions.com, a web-
site where users review and rate products. The dataset contains di-
rected edges between users that represent positive trust statements,
e.g., that user A trusts the reviews/ratings produced by user B. We
converted the directed edges to undirected edges by keeping only
the mutual trust relationships, i.e., we keep edge ei j only if both ei j
and e ji were present. Similarly to the Last.fm dataset, we created
binary node attributes by selecting the two most frequently-rated
products in the dataset and creating attributes with a value of 1 if a
user had rated the product.

Petster is a website where users create web pages for their pets and
form friendships links with other pet owners9. The dataset10 is a
crawl of the undirected friendship network of pet hamster owners
and includes node attributes such as the hamster’s name, sex, age,
etc. We used two binary attributes: sex and is-living, where is-

8http://www.last.fm
9www.petster.com.

10http://konect.uni-koblenz.de/networks/
petster-friendships-hamster

Table 6: Dataset properties. The columns are number of nodes n,
number of edges m, maximum degree dmax, average degree davg,
number of triangles n∆, and average local clustering coefficient C.

Dataset n m dmax davg n∆ C

Last.fm 1,843 12,668 119 6.9 19,651 0.183
Petster 1,788 12,476 272 7.0 16,741 0.143

Epinions 26,427 104,075 625 3.9 231,645 0.138
Pokec 592,627 3,725,424 1,274 6.3 2,492,216 0.104



living was set to 0 if the value of the age attribute was “gone to
hamster heaven”, or 1 otherwise.

Pokec is a popular Slovakian online social network. This dataset
is publicly available as part of the Stanford Large Network Dataset
Collection11 and contains directed friendship edges and node at-
tributes such as gender, age, hobbies, etc. As with the Epinions
dataset, we converted the edges to undirected by keeping mutual
friendships. We used two attributes: sex and age. We converted
age into a binary attribute by assigning a value of 1 for ages ≤ 30
and 0 for ages greater than 30. We ignored nodes with missing
values for gender or age.

For all datasets, we considered only the main connected compo-
nent (after converting to undirected edges, where applicable). Ta-
ble 6 summarizes the four (pre-processed) datasets, with respect to
various statistics.

B. ATTRIBUTE-EDGE CORRELATIONS
In this Appendix, we consider other approaches to generate the

needed attribute edge correlation distribution ΘF , and compare them
to our proposed Edge Truncation method. The first generates con-
nection counts which can be normalized to generate ΘF , while the
second directly produces a probability distribution.

B.1 Direct Approach with Smooth Sensitivity.
In real-world social graphs, most nodes share edges with only

a small fraction of the other nodes in the graph. Smooth sensitiv-
ity, proposed by Nissim et al. [25], offers a general approach for
getting around a high global sensitivity due to unlikely inputs. We
add noise according to a smooth upper bound on the local sensi-
tivity, which is based on the actual input rather than an improbable
worst-case input. However, there is no automatic procedure for
determining the smooth sensitivity of a computation, so we must
derive it manually for our specific task. We begin by observing that
the local sensitivity fQF (that is, the function that computes the set
QF ) is twice the maximum node degree.

LEMMA 3. The local sensitivity of fQF is LSQF (G) = 2dmax,
where dmax = maxvi∈N(G) dvi .

PROOF. The greatest impact to QF comes from changing the at-
tribute vector associated with the highest degree node, which would
have the effect of reducing some subset of the counts by an amount
equal to dmax, and increase another subset of the counts by the same
amount. The impact of adding or removing an edge is just an in-
creasing or decrease of one to a single count, which is negligible
by comparison.

Adding noise directly calibrated to the local sensitivity does not
satisfy differential privacy, because the magnitude of the noise may
itself leak information about the underlying data. Rather, smooth
sensitivity can be expressed in terms of the local sensitivity at dis-
tance t from the input graph (Section 2.3).

PROPOSITION 4. The β -smooth sensitivity of fQF is

S∗QF ,β
(G) = max

t≥0
e−tβ LSt

QF
(G)

= max
t≥0

e−tβ max
G′:d(G,G′)≤t

LSQF (G
′)

= max
t≥0

e−tβ min(2dmax +2t,2n−2)

11http://snap.stanford.edu/data/

where, d(G,G′) is fewest number of edges that would need to be
added/removed or the fewest number of nodes whose attributes
would need to be changed to transform G into G′.

For typical graphs and typical settings of ε , δ ≈ 0, this function is
maximized when t = 0, yielding twice the maximum degree. Set-
ting the derivative of the right hand side to zero and solving, we
arrive at the following corollaries.

COROLLARY 5. For a graph G with maximum degree dmax,

S∗QF ,β
(G) =

{
2dmax if 1

β
≤ 2dmax

2e(βdmax−1)

β
otherwise

COROLLARY 6. For a graph G with maximum degree dmax,
β = ε

2ln(2/δ )
, and fixed ε , we have S∗QF ,β

(G) = 2dmax, for any

δ ≥ 2e−(εdmax)/2.

For many real-world social networks, we can expect the maxi-
mum degree to be a small fraction of the total number of nodes,
and thus using smooth sensitivity should work reasonably well.

B.2 SA-Based Approach.
In the context of traditional databases, the sample and aggregate

framework (SA) was originally proposed by Nissim et al. [25] as a
general procedure for satisfying differential privacy in situations
where determining the global (or smooth) sensitivity of a func-
tion is difficult or inefficient. The idea is as follows: to compute
a differentially private estimate of a function f on dataset D, where
n = |D|, first partition D into t = n/k smaller datasets of k records
each (for some k), denoted D1, . . . ,Dt . Then, compute f on each
of the t smaller datasets, yielding the set Z = {z1, . . . ,zt}, where
zi = f (Di). Finally, f (D) is estimated by applying an aggregation
function Agg (e.g., mean) to the set Z and adding noise according
to the global (or smooth) sensitivity of Agg. For example, if the
range of f is [0,1] and A is the mean function, then we could add
noise with sensitivity 1/t to the output of Agg(Z).

We extend this idea to the graph analysis domain to get around
the high global sensitivity of ΘF , as follows. For a given input
graph G with n nodes, we first randomly partition the nodes into
t = n/k disjoint groups of k nodes each. Let g1, . . . ,gm be the set
of induced subgraphs, such that gi is the subgraph induced by the
nodes in group i. Note that (a) partitioning the nodes randomly
does not impact the sensitivity, and (b) by working with the induced
subgraphs, we ensure that a change to one node in the input graph G
will only impact a single subgraph. Thus, we can apply a function f
to each subgraph, aggregate the individual answers and add noise.

To compute ΘF , we find the
(2w+1

2
)

connection probabilities (not
the counts) for each subgraph, average the corresponding probabil-
ities across all subgraphs and add Laplace noise to each average.
This approach has a global sensitivity of 2

t , as illustrated by the
following: let G,G′ be a pair of neighboring graphs, where vi is
the node whose attributes were changed to get G′ from G. Observe
that, in the worst case, vi is a member of a subgraph in which all of
the internal edges are incident to vi; if vi’s attribute values are dif-
ferent in G and G′, then the L1 difference of the corresponding sets
of probabilities from G and G′ will be 2. Since we are averaging
over t subgraphs, the total impact on the set of average probabilities
is 2

t . Finally, after adding noise to the probabilities, we must divide
them by their sum to ensure that they add up to one.

This approach introduces two types of error into the resulting
probabilities: estimation error, due to averaging over outputs from
the subgraphs, and perturbation error due to the Laplace noise.



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.1 0.2 0.3 0.5 1

M
ea
n
 A
b
so
lu
te
 E
rr
o
r

Epsilon

EdgeTruncation Smooth

S&A Laplace (baseline)

(a) Last.fm dataset
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(b) Petster dataset
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(c) Epinions dataset
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(d) Pokec dataset

Figure 5: Comparison of mean absolute error for different approaches for computing Θ̃F on four different datasets, under different privacy
regimes. Note that privacy becomes weaker as we move rightward along the x-axis. The parameters for each approach were tuned empirically.

The accuracy will thus depend on balancing the two sources of er-
ror by selecting an appropriate size k for the subgraphs. A larger k
gives fewer but bigger subgraphs, which reduces estimation error at
the cost of increasing the perturbation error; conversely, a smaller
k gives a greater number of small subgraphs, which reduces pertur-
bation error at the cost of more estimation error.

B.3 Comparison of Approaches.
Figures 5(a)–5(d) compare the mean absolute errors12 (MAE) of

the three proposed approaches for different privacy settings, ε , on
four datasets (Last.fm, Petster, Epinions and Pokec, described in
Appendix A) with w = 2 attributes. The error-rates are taken over
10,000 trials (1,000 for the larger Epinions and Pokec datasets). In
the plots, Smooth denotes the smooth sensitivity-based approach,
EdgeTrunc is the edge truncation approach, and S&A is the sam-
ple and aggregate-based approach. The truncation parameter for
EdgeTrunc and the group-size parameter for S&A were tuned em-
pirically to minimize the MAE. Note that such tuning should be
counted against the privacy budget for a real release; here, we dis-
count this to see the relative performance. For the smooth sensitiv-
ity approach, we used negligible δ = 10−6.

As a baseline, we included results for the naïve approach (dashed
line) in which noise from Lap

( 2n−2
ε

)
is simply added to each con-

nection count and then normalized by the sum to get ΘF . A useful
approach should have an MAE well below this line. The main take-
aways from these results are that (1) all of the approaches work rea-
sonably well at the weakest privacy setting tested (ε = 1), but edge
truncation appears to be the best choice across all datasets and pri-
vacy settings tested; (2) in general, the larger the input graph, the
lower the error. On the large Pokec dataset (m = 3,725,424) all of
the approaches perform well, even with the strongest privacy set-
ting tested. For EdgeTrunc, the MAE comes very close to zero,
even for ε = 0.1. Given the superior performance of EdgeTrunc,
we chose to limit our focus to that approach for privately comput-
ing ΘF in the remainder of this work.

C. DP ALGORITHMS
For completeness, we summarize the procedure for computing a

differentially private version of ΘF , denoted Θ̃F , with edge trunca-
tion, as described in Section 3.1. The pseudocode is in Algorithm
4 and we prove its privacy guarantee in Theorem 7.

C.1 Computing Correlations Privately

THEOREM 7. Algorithm 4 satisfies ε-differential privacy.
12That is, the mean error between privately computed probabilities
and true probabilities computed directly from the input graph.

Algorithm 4 LearnCorrelationsDP
Input: ε,G,k,w
Output: Θ̃F
1: G′← µ(G,k) . Truncate G using the truncation operator µ from

Def. 2
2: QF ← fQF (G

′) . Compute the set of counts on truncated graph G′

3: for yi ∈ Y F
w do

4: Q̃F (yi)←min
(
n,max

(
0,QF (yi)+LAP(0, 2k

ε
)
))

. Add Laplace
noise to each count and clamp range

5: qsum←maxyi Q̃(yi)

6: for yi ∈ Y F
w do

7: Θ̃F (yi)← Q̃F (yi)
qsum

8: return Θ̃F

PROOF. The global sensitivity of truncating G to get k-bounded
graph G′ followed by computing QF on G′ (lines 1–2) was shown
to be 2k by Proposition 1. In line 4, we add independent noise
from Lap

(
2k
ε

)
, which gives ε-differential privacy (Laplace mech-

anism). The remainder of the algorithm, including clamping the
noisy counts to the range (0,n), operates only on the noisy counts,
and therefore has no impact on the privacy guarantee. Thus, Algo-
rithm 4 satisfies ε-differential privacy.

C.2 Private Release of Attribute Distribution
Algorithm 5 outlines the procedure for computing the attribute

distribution, Θ̃X that was described in Section 3.2. The formal
statement of its privacy guarantee is then proved with Theorem 8.

THEOREM 8. Algorithm 5 satisfies ε-differential privacy.

PROOF. Let G = (N,E,X) be an arbitrary input graph and let
G′ = (N,E,X ′) be the neighboring graph created by changing the
attributes of one node, say vi ∈ N, from xi to x′i, where fw(xi) = yi
and fw(x′i) = y j where yi,y j ∈ Yw,yi 6= y j. Then we have that q′i =
qi−1 and q′j = q j +1, and q′k = qk,∀kk 6= i,k 6= j. Thus, the global

Algorithm 5 LearnAttributesDP
Input: ε,X ,w
Output: Θ̃X
1: QX ← fQX (X) . Compute the set of counts from X
2: for yi ∈ Yw do . Add Laplace noise to each count and clamp
3: Q̃X (yi)←min

(
n,max

(
0,QX (yi)+LAP(0, 2

ε
)
))

4: qsum← ∑yi Q̃X (yi)

5: for yi ∈ Yw do
6: Θ̃X (yi)← Q̃X (yi)

qsum
. Normalize

7: return Θ̃X



sensitivity of fQX (X) (line 1) is 2. In line 3, we add independent
Laplace noise with mean zero and scale equal to 2

ε
, which gives

ε-differential privacy. (Laplace mechanism). The remainder of the
algorithm, including clamping the noisy counts to the range (0,n),
operates on the noisy counts, and so does not impact privacy.

C.3 Privately Fitting TriCycLe
The two inputs required by the algorithm are the degree sequence

S and the number of triangles n∆, measured from the input graph
G. Here we discuss how to compute differentially private estimates
of these statistics using existing techniques, resulting in a DP graph
generation process.

C.3.1 Degree Sequence
The degree sequence of input graph G is the multiset S = {di|vi ∈

N}. A straightforward way to satisfy DP for S is to apply the
Laplace mechanism, adding independent noise from Lap(2/ε) to
each di ∈ S; the global sensitivity is two because adding or re-
moving an edge of G changes the degrees of exactly two nodes by
one. However, this approach introduces a lot of noise, especially
in low degree nodes, which are abundant in real social graphs. In-
stead, we can improve the estimate by observing that the mapping
between a specific node and its degree is unimportant for how Tri-
CycLe uses the degree sequence—we only need the sequence of
degrees, the order is unimportant. [11] proposes an approach for
accurately estimating the degree sequence of a graph based on con-
strained inference—recall that ε-differential privacy is invariant un-
der post-processing, so this step does not affect the guarantee. The
high-level idea is to sort the degree sequence prior to adding noise
and then to post-process the noisy sequence to enforce the ordering
condition, thereby canceling out much of the noise.

The algorithm in [11] starts by computing the actual degrees for
each node, forming degree sequence S. It then sorts S in non-
decreasing order and adds independent noise drawn from Lap(2/ε)
to each degree, yielding noisy degree sequence S̃; the addition of
noise may cause the ordering constraint to be violated. A con-
strained inference procedure is applied to S̃ to find the S that is
“closest” to S̃ (i.e., the minimum L2 distance) that also satisfies
the ordering constraint. A dynamic programming solution given in
[11] performs the constrained inference operation in linear time.

C.3.2 Triangle Count
TriCycLe also needs the number of triangles in the input graph.

The challenge here, from the privacy perspective, is that the global
sensitivity of triangle counting is prohibitively high, since in the
worst case there could be a single edge that is shared by every tri-
angle in the graph—for a graph with n nodes, adding or removing a
single edge could change the triangle count by up to n−2. Conse-
quently, direct application of the Laplace mechanism yields a very
inaccurate count. Fortunately, real-world graphs typically do not
contain such pathological structures, and tend to have local sensi-
tivities that are much lower. Triangle counting has been extensively
studied in the context of differential privacy (e.g., [25, 37, 13, 5]).
The most effective approaches take advantage of the above obser-
vation in some way to reduce the amount of noise required to satisfy
differential privacy.

The state-of-the-art approach for differentially private triangle
counting is based on the Ladder framework [37], which effectively
combines the concept of “local sensitivity at distance t”, from the
smooth sensitivity framework [25], with the exponential mecha-
nism [22]. In the context of triangle counting, it has been shown to
provide better accuracy and has the added benefit that it provides
pure differential privacy, rather than the weaker notion of (ε,δ )-

Algorithm 6 FitTriCycLeDP

Input: ε,E,n
Output: Θ̃M = {S̄, ñ∆}
1: εS ← ε

2
2: ε∆← ε

2 . Split the privacy budget (evenly) between the degree
sequence and triangle count

3: S← 〈d1, . . . ,dn〉
4: S← SORTASCENDING(S)
5: S̃← S+LAP( 2

εS
)n . Add independent Laplace noise to each

coordinate of degree sequence S
6: Apply constrained inference (Algorithm 1 from [11]) to S̃ to get S̄
7: for d̄i ∈ S̄ do
8: Round d̄i to the nearest integer in {0, . . . ,n−1}
9: ñ∆← NOISESAMPLE( fn∆

,E,ε∆) . Get a differentially private
estimate of the triangle count using Algorithm 1 from [37]

10: return Θ̃M = {S̄, ñ∆}

differential privacy provided by the smooth sensitivity framework.
The local sensitivity of a function f at distance t (from the input
graph) is denoted LSt

f (G), and quantifies the maximum local sen-
sitivity among all graphs that can be formed from G by adding or
deleting up to t edges. The resulting mechanism allows us to sam-
ple an approximate value for the triangle count, such that better
approximations are exponentially more likely to be sampled.

C.3.3 Algorithm for Fitting TriCycLe-DP.
Algorithm 6 summarizes the procedure for fitting the parameters

used by TriCycLe from an input graph G, while Thm. 9 shows that
the algorithm satisfies ε-differential privacy.

THEOREM 9. Algorithm 6 satisfies ε-differential privacy.
PROOF. Let G=(N,E,X) be an arbitrary input graph and, with-

out loss of generality, suppose we form a neighboring graph G′ by
adding an arbitrary edge ei j, such that the degrees of the two in-
cident nodes in G are d,d′ respectively. Let S and S ′ denote the
degree sequence vectors for G and G′ sorted in non-descending or-
der, respectively. Thus, relative to S, two values in S ′ are different:
the right-most d has changed to d + 1 and the right-most d′ has
become d′+ 1. Thus, the L1 difference |S ′−S| = 2, which gives
a global sensitivity of 2. In line 5 we add Laplace noise to each
coordinate of the sorted degree sequence vector. Since the global
sensitivity is 2 and we add Laplace noise with a scale of 2

εS
, giv-

ing εS -differential privacy for the degree sequence. Performing the
constrained inference procedure on the noisy degree sequence (line
6) has no effect on the privacy guarantee, since it does not look at
the original degree sequence; likewise for the subsequent rounding
of the post-processed degrees. Line 9 computes an ε∆-differentially
private estimate of the number of triangles in G using the Ladder
framework of [37]. By sequential composition, these two computa-
tions together satisfy ε-differential privacy, where ε = εS+ε∆.

C.4 Running Time Analysis
Relative to the non-private version of AGM, the privacy mech-

anisms in AGM-DP add relatively little computational overhead.
The truncation operation in LearnCorrelationsDP runs in O(m) and
sampling noise from the Laplace distribution takes constant time.
The underlying structural model dominates the running time of our
framework. Quantitatively, we note that on the largest graph in our
experiments (Pokec), generating a synthetic graph with AGM-DP-
TriCycLe took about 85 minutes on a Core i7 desktop with 12GB
of RAM. Apart from sampling the edges, computing the private tri-
angle count was the most expensive operation (≈ 12 minutes using
the Ladder framework of [37]). Our prototype was implemented in
Python and was not optimized for speed; implementation in a faster
language, such as C++, would likely result in significant speedups.


