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Abstract
In this work we introduce a new protocol for vector aggregation in the context of the Shuffle Model, a recent model within
Differential Privacy (DP). It sits between the Centralized Model, which prioritizes the level of accuracy over the secrecy of the
data, and the Local Model, for which an improvement in trust is counteracted by a much higher noise requirement. The
Shuffle Model was developed to provide a good balance between these two models through the addition of a shuffling step,
which unbinds the users from their data whilst maintaining a moderate noise requirement. We provide a single message
protocol for the summation of real vectors in the Shuffle Model, using advanced composition results. Our contribution
provides a mechanism to enable private aggregation and analysis across more sophisticated structures such as matrices and
higher-dimensional tensors, both of which are reliant on the functionality of the vector case.
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1. Introduction
Differential Privacy (DP) [1] is a strong, mathematical
definition of privacy that guarantees ameasurable level of
confidentiality for any data subject in the dataset towhich
it is applied. In this way, useful collective information
can be learned about a population, whilst simultaneously
protecting the personal information of each data subject.
In particular, DP guarantees that the impact on any

particular individual as a result of analysis on a dataset
is the same, whether or not the individual is included in
the dataset. This guarantee is quantified by a parameter
𝜀, which represents good privacy if it is small. However,
finding an algorithm that achieves DP often requires a
trade-off between privacy and accuracy, as a smaller 𝜀
sacrifices accuracy for better privacy, and vice versa. DP
enables data analyses such as the statistical analysis of
the salaries of a population. This allows useful collec-
tive information to be studied, as long as 𝜀 is adjusted
appropriately to satisfy the definition of DP.

In this workwe focus on protocols in the Single-Message
Shuffle Model [2], a one-time data collection model where
each of 𝑛 users is permitted to submit a single message.
We have chosen to apply the Single-Message Shuffle
Model to the problem of vector aggregation, as there are
links to Federated Learning and Secure Aggregation.

BICOD21: British International Conference on Databases, March 28,
2022, London, UK
Envelope-Open mary.p.scott@warwick.ac.uk (M. Scott);
g.cormode@warwick.ac.uk (G. Cormode); cm@warwick.ac.uk
(C. Maple)
Orcid 0000-0003-0799-5840 (M. Scott); 0000-0002-0698-0922
(G. Cormode); 0000-0002-4715-212X (C. Maple)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

There are many practical applications of the Single-
Message Shuffle Model in Federated Learning, where
multiple users collaboratively solve a Machine Learning
problem, the results of which simultaneously improves
the model for the next round [3]. The updates generated
by the users after each round are high-dimensional vec-
tors, so this data type will prove useful in applications
such as training a Deep Neural Network to predict the
next word that a user types [4]. Additionally, aggrega-
tion is closely related to Secure Aggregation, which can
be used to compute the outputs of Machine Learning
problems such as the one above [5].
Our contribution is a protocol in the Single-Message

ShuffleModel for the private summation of vector-valued
messages, extending an existing result from Balle et al. [2]
by permitting the 𝑛 users to each submit a vector of real
numbers instead of a scalar. The resulting estimator is
unbiased and has normalized mean squared error (MSE)
𝑂𝜀,𝛿(𝑑8/3𝑛−5/3), where 𝑑 is the dimension of each vector.

This vector summation protocol above can be extended
to produce a similar protocol for the linearization of ma-
trices. It is important to use matrix reduction to en-
sure that the constituent vectors are linearly indepen-
dent. This problem can be extended further to higher-
dimensional tensors, which are useful for the representa-
tion of multi-dimensional data in Neural Networks.

2. Related Work
The earliest attempts at protecting the privacy of users in
a dataset focused on simple ways of suppressing or gen-
eralising the data. Examples include 𝑘-anonymity [6], 𝑙-
diversity [7] and 𝑡-closeness [8]. However, such attempts
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have been shown to be insufficient, as proved by numer-
ous examples [9].
This harmful leakage of sensitive information can be

easily prevented through the use of DP, as this mathe-
matically guarantees that the chance of a linkage attack
on an individual in the dataset is almost identical to that
on an individual not in the dataset.
Ever since DP was first conceptualized in 2006 by

Dwork et al. [1], the majority of research in the field
has focused on two opposing models. In the Centralized
Model, users submit their sensitive personal informa-
tion directly to a trusted central data collector, who adds
random noise to the raw data to provide DP, before as-
sembling and analyzing the aggregated results.

In the Local Model, DP is guaranteed when each user
applies a local randomizer to add random noise to their
data before it is submitted. The Local Model differs from
the Centralized Model in that the central entity does not
see the users’ raw data at any point, and therefore does
not have to be trusted. However, the level of noise re-
quired per user for the same privacy guarantee is much
higher, which limits the usage of Local Differential Pri-
vacy (LDP) to major companies such as Google [10], Ap-
ple [11] and Microsoft [12].
Neither of these two extensively studied models can

provide a good balance between the trust of the central
entity and the level of noise required to guarantee DP.
Hence, in recent years researchers have tried to create
intermediate models that reap the benefits of both.

In 2017, Bittau et al. [13] introduced the Encode, Shuf-
fle, Analyze (ESA)model, which provides a general frame-
work for the addition of a shuffling step in a private pro-
tocol. After the data from each user is encoded, it is
randomly permuted to unbind each user from their data
before analysis takes place. In 2019, Cheu et al. [14] for-
malized the Shuffle Model as a special case of the ESA
model, which connects this additional shuffling step to
the Local Model. In the Shuffle Model, the local random-
izer applies a randomized mechanism on a per-element
basis, potentially replacing a truthful value with another
randomly selected domain element. The role of these
independent reports is to create what we call a privacy
blanket, which masks the outputs which are reported
truthfully.

Aswell as the result on the private summation of scalar-
valued messages in the Single-Message Shuffle Model
that we will be using [2], Balle et al. have published
two more recent works that solve related problems. The
first paper [15] improved the distributed 𝑛-party summa-
tion protocol from Ishai et al. [16] in the context of the
Single-Message Shuffle Model to require 𝑂(1 + 𝜋/ log 𝑛)
scalar-valued messages, instead of a logarithmic depen-
dency of 𝑂(log 𝑛 + 𝜋), to achieve statistical security 2−𝜋.
The second paper [17] introduced two new protocols for
the private summation of scalar-valued messages in the

Multi-Message Shuffle Model, an extension of the Single-
Message Shuffle Model that permits each of the 𝑛 users
to submit more than one message, using several inde-
pendent shufflers to securely compute the sum. In this
work, Balle et al. contributed a recursive construction
based on the protocol from [2], as well as an alternative
mechanism which implements a discretized distributed
noise addition technique using the result from Ishai et
al. [16].
Also relevant to our research is the work of Ghazi et

al. [18], which explored the related problems of private
frequency estimation and selection in a similar context,
drawing comparisons between the errors achieved in the
Single-Message and Multi-Message Shuffle Models. A
similar team of authors produced a follow-up paper [19]
describing a more efficient protocol for private summa-
tion in the Single-Message Shuffle Model, using the ‘in-
visibility cloak’ technique to facilitate the addition of
zero-sum noise without coordination between the users.

3. Preliminaries
We consider randomized mechanisms [9] ℳ, ℛ under
domains 𝕏, 𝕐, and apply them to input datasets 𝐷⃗, 𝐷⃗′

to generate (vector-valued) messages 𝑥𝑖, 𝑥′𝑖 . We write
[𝑘] = {1, … , 𝑘} and ℕ for the set of natural numbers.

3.1. Models of Differential Privacy
The essence of Differential Privacy (DP) is the require-
ment that the contribution 𝑥𝑖 of a user 𝑖 to a dataset
𝐷⃗ = (𝑥1, … , 𝑥𝑛) does not have much effect on the out-
come of the mechanism applied to that dataset.

In the centralized model of DP, random noise is only in-
troduced after the users’ inputs are gathered by a (trusted)
aggregator. Consider a dataset 𝐷⃗′ that differs from 𝐷⃗
only in the contribution of a single user, denoted 𝐷⃗ ≃ 𝐷⃗′.
Also let 𝜀 ≥ 0 and 𝛿 ∈ (0, 1). We say that a randomized
mechanism ℳ ∶ 𝕏𝑛 → 𝕐 is (𝜀, 𝛿)-differentially private
if ∀𝐷⃗ ≃ 𝐷⃗′, ∀𝐸 ⊆ 𝕐:

Pr[ℳ(𝐷⃗) ∈ 𝐸] ≤ 𝑒𝜀 ⋅ Pr[ℳ(𝐷⃗′) ∈ 𝐸] + 𝛿 [9].

In this definition, we assume that the trusted aggrega-
tor obtains the raw data from all users and introduces
the necessary perturbations.

In the local model of DP, each user 𝑖 independently uses
randomness on their input 𝑥𝑖 ∈ 𝕏 by using a local ran-
domizer ℛ ∶ 𝕏 → 𝕐 to obtain a perturbed resultℛ(𝑥𝑖).
We say that the local randomizer is (𝜀, 𝛿)-differentially
private if ∀𝐷⃗, 𝐷⃗′, ∀𝐸 ⊆ 𝕐:

Pr[ℛ(𝑥𝑖) ∈ 𝐸] ≤ 𝑒𝜀 ⋅ Pr[ℛ(𝑥′𝑖 ) ∈ 𝐸] + 𝛿 [2],

where 𝑥′𝑖 ∈ 𝕏 is some other valid input vector that 𝑖 could
hold. The Local Model guarantees that any observer will
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not have access to the raw data from any of the users.
That is, it removes the requirement for trust. The price
is that this requires a higher level of noise per user to
achieve the same privacy guarantee.

3.2. Single-Message Shuffle Model
The Single-Message Shuffle Model sits in between the
Centralized and Local Models of DP [2]. Let a protocol
𝒫 in the Single-Message Shuffle Model be of the form
𝒫 = (ℛ,𝒜), where ℛ ∶ 𝕏 → 𝕐 is the local randomizer,
and 𝒜 ∶ 𝕐𝑛 → ℤ is the analyzer of 𝒫. Overall, 𝒫 im-
plements a mechanism 𝒫 ∶ 𝕏𝑛 → ℤ as follows. Each
user 𝑖 independently applies the local randomizer to their
message 𝑥𝑖 to obtain a message 𝑦𝑖 = ℛ(𝑥𝑖). Subsequently,
the messages (𝑦1, … , 𝑦𝑛) are randomly permuted by a
trusted shuffler 𝒮 ∶ 𝕐𝑛 → 𝕐𝑛. The random permutation
𝒮(𝑦1, … , 𝑦𝑛) is submitted to an untrusted data collector,
who applies the analyzer 𝒜 to obtain an output for the
mechanism. In summary, the output of 𝒫 (𝑥1, … , 𝑥𝑛) is
given by:

𝒜 ∘ 𝒮 ∘ ℛ𝑛(𝑥) = 𝒜(𝒮 (ℛ(𝑥1), … ,ℛ(𝑥𝑛))).

Note that the data collector observing the shuffled mes-
sages 𝒮(𝑦1, … , 𝑦𝑛) obtains no information about which
user generated each of the messages. Therefore, the pri-
vacy of 𝒫 relies on the indistinguishability between the
shuffles 𝒮 ∘ ℛ𝑛(𝐷⃗) and 𝒮 ∘ ℛ𝑛(𝐷⃗′) for datasets 𝐷⃗ ≃ 𝐷⃗′.
The analyzer can represent the shuffled messages as a
histogram, which counts the number of occurrences of
the possible outputs of 𝕐.

3.3. Measuring Accuracy
In Section 4 we use the mean squared error to compare
the overall output of a private summation protocol in the
Single-Message Shuffle Model with the original dataset.
The MSE is used to measure the average squared differ-
ence in the comparison between a fixed input 𝑓 (𝐷⃗) to
the randomized protocol 𝒫, and its output 𝒫 (𝐷⃗). In this
context, MSE(𝒫 , 𝐷⃗) = E[(𝒫 (𝐷⃗) − 𝑓 (𝐷⃗))2], where the
expectation is taken over the randomness of 𝒫. Note
when E[𝒫 (𝐷⃗)] = 𝑓 (𝐷⃗), MSE is equivalent to variance,
i.e.:

MSE(𝒫 , 𝐷⃗) = E[(𝒫 (𝐷⃗) − E[𝒫 (𝐷⃗)])2] = Var[𝒫 (𝐷⃗)].

4. Vector Sum in the Shuffle Model
In this section we introduce our protocol for vector sum-
mation in the Shuffle Model and tune its parameters to
optimize accuracy.

Algorithm 1: Local Randomizerℛ𝑃𝐻
𝛾 ,𝑘,𝑛

Public Parameters:
𝛾 ∈ [0, 1], domain size 𝑘, and number of
parties 𝑛
Input: 𝑥𝑖 ∈ [𝑘]
Output: 𝑦𝑖 ∈ [𝑘]
Sample 𝑏 ← Ber(𝛾 )
if 𝑏 = 0 then let 𝑦𝑖 ← 𝑥𝑖
else sample 𝑦𝑖 ← Unif([𝑘])
return 𝑦𝑖

4.1. Basic Randomizer
First, we describe a basic local randomizer applied by each
user 𝑖 to an input 𝑥𝑖 ∈ [𝑘]. The output of this protocol is a
(private) histogram of shuffled messages over the domain
[𝑘].
The Local Randomizerℛ𝑃𝐻

𝛾 ,𝑘,𝑛, shown in Algorithm 1,
applies a generalized randomized response mechanism
that returns the true message 𝑥𝑖 with probability 1 −
𝛾 and a uniformly random message with probability 𝛾.
Such a basic randomizer is used by Balle et al. [2] in the
Single-Message ShuffleModel for scalar-valuedmessages,
as well as in several other previous works in the Local
Model [20, 21, 22]. In Section 4.3, we find an appropriate
𝛾 to optimize the proportion of random messages that are
submitted, and therefore guarantee DP.
We now describe how the presence of these random

messages can form a ‘privacy blanket’ to protect against
a difference attack on a particular user. Suppose we apply
Algorithm 1 to the messages from all 𝑛 users. Note that
a subset 𝐵 of approximately 𝛾𝑛 of these users returned a
uniformly random message, while the remaining users
returned their true message. Following Balle et al. [2],
the analyzer can represent the messages sent by users in
𝐵 by a histogram 𝑌1 of uniformly random messages, and
can form a histogram 𝑌2 of truthful messages from users
not in 𝐵. As these subsets are mutually exclusive and
collectively exhaustive, the information represented by
the analyzer is equivalent to the histogram 𝑌 = 𝑌1 ∪ 𝑌2.
Consider two neighbouring datasets, each consisting

of 𝑛 messages from 𝑛 users, that differ only on the in-
put from the 𝑛th user. To simplify the discussion and
subsequent proof, we temporarily omit the action of the
shuffler. By the post-processing property of DP, this can
be reintroduced later on without adversely affecting the
privacy guarantees. To achieve DP we need to find an
appropriate 𝛾 such that when Algorithm 1 is applied, the
change in 𝑌 is appropriately bounded. As the knowledge
of either the set 𝐵 or the messages from the first 𝑛 − 1
users does not affect DP, we can assume that the ana-
lyzer knows both of these details. This lets the analyzer
remove all of the truthful messages associated with the
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first 𝑛 − 1 users from 𝑌.
If the 𝑛th user is in 𝐵, this means their submission is

independent of their input, so we trivially satisfy DP.
Otherwise, the (curious) analyzer knows that the 𝑛th user
has submitted their true message 𝑥𝑛. The analyzer can
remove all of the truthful messages associated with the
first 𝑛−1 users from 𝑌, and obtain 𝑌1∪{𝑥𝑛}. The subsequent
privacy analysis will argue that this does not reveal 𝑥𝑛
if 𝛾 is set so that 𝑌1, the histogram of random messages,
appropriately ‘hides’ 𝑥𝑛.

4.2. Private Summation of Vectors
Here, we extend the protocol from Section 4.1 to ad-
dress the problem of computing the sum of 𝑛 real vec-
tors, each of the form 𝑥𝑖 = (𝑥(1)𝑖 , … , 𝑥(𝑑)𝑖 ) ∈ [0, 1]𝑑, in the
Single-Message Shuffle Model. Specifically, we analyze
the utility of a protocol 𝒫𝑑,𝑘,𝑛,𝑡 = (ℛ𝑑,𝑘,𝑛,𝑡, 𝒜𝑑,𝑘,𝑡) for this
purpose, by using the MSE from Section 3.3 as the accu-
racy measure. In the scalar case, each user applies the
protocol to their entire input [2]. Moving to the vector
case, we allow each user to independently sample a set
of 1 ≤ 𝑡 ≤ 𝑑 coordinates from their vector to report. Our
analysis allows us to optimize the parameter 𝑡.
Hence, the first step of the Local Randomizerℛ𝑑,𝑘,𝑛,𝑡,

presented in Algorithm 2, is to uniformly sample 𝑡 co-
ordinates (𝛼1, … , 𝛼𝑡) ∈ [𝑑] (without replacement) from
each vector 𝑥𝑖. To compute a differentially private ap-
proximation of ∑𝑖 𝑥𝑖, we fix a quantization level 𝑘. Then

we randomly round each 𝑥
(𝛼𝑗)
𝑖 to obtain ̄𝑥

(𝛼𝑗)
𝑖 as either

⌊𝑥
(𝛼𝑗)
𝑖 𝑘⌋ or ⌈𝑥

(𝛼𝑗)
𝑖 𝑘⌉. Next, we apply the randomized re-

sponse mechanism from Algorithm 1 to each ̄𝑥
(𝛼𝑗)
𝑖 , which

sets each output 𝑦
(𝛼𝑗)
𝑖 independently to be equal to ̄𝑥

(𝛼𝑗)
𝑖

with probability 1 − 𝛾, or a random value in {0, 1, … , 𝑘}
with probability 𝛾. Each 𝑦

(𝛼𝑗)
𝑖 will contribute to a his-

togram of the form (𝑦
(𝛼𝑗)
1 , … , 𝑦

(𝛼𝑗)
𝑛 ) as in Section 4.1.

The Analyzer𝒜𝑑,𝑘,𝑡, shown in Algorithm 3, aggregates
the histograms to approximate∑𝑖 𝑥𝑖 by post-processing
the vectors coordinate-wise. More precisely, the analyzer

sets each output 𝑦
(𝛼𝑗)
𝑖 to 𝑦 (𝑙)𝑖 , where the new label 𝑙 is from

its corresponding input 𝑥(𝑙)𝑖 of the original 𝑑-dimensional

vector 𝑥𝑖. For all inputs 𝑥
(𝑙)
𝑖 that were not sampled, we

set 𝑦 (𝑙)𝑖 = 0. Subsequently, the analyzer aggregates the
sets of outputs from all users corresponding to each of
those 𝑙 coordinates in turn, so that a 𝑑-dimensional vector
is formed. Finally, a standard debiasing step is applied to
this vector to remove the scaling and rounding applied to
each submission. DeBias returns an unbiased estimator,
𝑧, which calculates an estimate of the true sum of the
vectors by subtracting the expected uniform noise from
the randomized sum of the vectors.

Algorithm 2: Local Randomizerℛ𝑑,𝑘,𝑛,𝑡

Public Parameters: 𝑘, 𝑡, dimension 𝑑, and
number of parties 𝑛
Input: 𝑥𝑖 = (𝑥(1)𝑖 , … , 𝑥(𝑑)𝑖 ) ∈ [0, 1]𝑑

Output: 𝑦𝑖 = (𝑦 (𝛼1)𝑖 , … , 𝑦 (𝛼𝑡)𝑖 ) ∈ {0, 1, … , 𝑘}𝑡

Sample (𝛼1, … , 𝛼𝑡) ← Unif([𝑑])
Let ̄𝑥

(𝛼𝑗)
𝑖 ← ⌊𝑥

(𝛼𝑗)
𝑖 𝑘⌋ + Ber(𝑥

(𝛼𝑗)
𝑖 𝑘 − ⌊𝑥

(𝛼𝑗)
𝑖 𝑘⌋)

▷ ̄𝑥
(𝛼𝑗)
𝑖 : encoding of 𝑥

(𝛼𝑗)
𝑖 with precision 𝑘

▷ 𝑦
(𝛼𝑗)
𝑖 : apply Algorithm 1 to each ̄𝑥

(𝛼𝑗)
𝑖

return 𝑦𝑖 = (𝑦 (𝛼1)𝑖 , … , 𝑦 (𝛼𝑡)𝑖 )

Algorithm 3: Analyzer 𝒜𝑑,𝑘,𝑡

Public Parameters: 𝑘, 𝑡, and dimension 𝑑
Input: Multiset {𝑦𝑖}𝑖∈[𝑛], with

(𝑦 (𝛼1)𝑖 , … , 𝑦 (𝛼𝑡)𝑖 ) ∈ {0, 1, … , 𝑘}𝑡

Output: 𝑧 = (𝑧(1), … , 𝑧(𝑑)) ∈ [0, 1]𝑑

Let 𝑦 (𝑙)𝑖 ← 𝑦
(𝛼𝑗)
𝑖

▷ 𝑦
(𝛼𝑗)
𝑖 : submission corresponding to 𝑥(𝑙)𝑖

Let ( ̂𝑧(1), … , ̂𝑧(𝑑)) ← ( 1𝑘 ∑𝑖 𝑦
(1)
𝑖 , … , 1𝑘 ∑𝑖 𝑦

(𝑑)
𝑖 )

Let
(𝑧(1), … , 𝑧(𝑑)) ← (DeBias( ̂𝑧(1)), … ,DeBias( ̂𝑧(𝑑)))
▷ DeBias( ̂𝑧(𝑙)) = ( ̂𝑧(𝑙) − 𝛾

2 ⋅ |𝑦 (𝑙)𝑖 |)/(1 − 𝛾)
return 𝑧 = (𝑧(1), … , 𝑧(𝑑))

4.3. Privacy Analysis of Algorithms
In this section, we will find an appropriate 𝛾 that en-
sures that the mechanism described in Algorithms 2 and
3 satisfies (𝜀, 𝛿)-DP for vector-valued messages in the
Single-Message Shuffle Model. To achieve this, we prove
the following theorem, where we initially assume 𝜀 < 1
to simplify our computations. At the end of this section,
we discuss how to cover the additional case 1 ≤ 𝜀 < 6 to
suit our experimental study.

Theorem 4.1. The shuffled mechanismℳ = 𝒮 ∘ℛ𝑑,𝑘,𝑛,𝑡
is (𝜀, 𝛿)-DP for any 𝑑, 𝑘, 𝑛 ∈ ℕ, {𝑡 ∈ ℕ | 𝑡 ∈ [𝑑]}, 𝜀 < 6 and
𝛿 ∈ (0, 1] such that:

𝛾 = {
56𝑑𝑘 log(1/𝛿) log(2𝑡/𝛿)

(𝑛−1)𝜀2 , when 𝜀 < 1
2016𝑑𝑘 log(1/𝛿) log(2𝑡/𝛿)

(𝑛−1)𝜀2 , when 1 ≤ 𝜀 < 6.

Proof. Let 𝐷⃗ = (𝑥1, … , 𝑥𝑛) and 𝐷⃗′ = (𝑥1, … , 𝑥′𝑛) be the
two neighbouring datasets differing only in the input of
the 𝑛th user, as used in Section 4.1. Here each vector-
valued message 𝑥𝑖 is of the form (𝑥(1)𝑖 , … , 𝑥(𝑑)𝑖 ). Recall
from Section 4.1 that we assume that the analyzer can
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see the users in 𝐵 (i.e., the subset of users that returned a
uniformly random message), as well as the inputs from
the first 𝑛 − 1 users.

We now introduce the vector view VViewℳ(𝐷⃗) as the
collection of information that the analyzer is able to see
after the mechanism ℳ is applied to all vector-valued
messages in the dataset 𝐷⃗. VViewℳ(𝐷⃗) is defined as
the tuple (𝑌 , 𝐷⃗∩, 𝑏⃗), where 𝑌 is the multiset containing
the outputs {𝑦1, … , 𝑦𝑛} of the mechanism ℳ(𝐷⃗), 𝐷⃗∩ is
the vector containing the inputs (𝑥1, … , 𝑥𝑛−1) from the
first 𝑛 − 1 users, and 𝑏⃗ contains binary vectors (𝑏⃗1, … , 𝑏⃗𝑛)
which indicate for which coordinates each user reports
truthful information. This vector view can be projected to
𝑡 overlapping scalar views by applying Algorithm 2 only
to the 𝑗th uniformly sampled coordinate 𝛼𝑗 ∈ [𝑑] from

each user, where 𝑗 ∈ [𝑡]. The 𝑗th scalar view View
(𝛼𝑗)
ℳ (𝐷⃗)

of VViewℳ(𝐷⃗) is defined as the tuple (𝑌 (𝛼𝑗), 𝐷⃗
(𝛼𝑗)
∩ , 𝑏⃗(𝛼𝑗)),

where:

𝑌 (𝛼𝑗) = ℳ(𝐷⃗(𝛼𝑗)) = {𝑦
(𝛼𝑗)
1 , … , 𝑦

(𝛼𝑗)
𝑛 },

𝐷⃗
(𝛼𝑗)
∩ = (𝑥

(𝛼𝑗)
1 , … , 𝑥

(𝛼𝑗)
𝑛−1)

and 𝑏⃗(𝛼𝑗) = (𝑏
(𝛼𝑗)
1 , … , 𝑏

(𝛼𝑗)
𝑛 )

are the analogous definitions of 𝑌, 𝐷⃗∩ and 𝑏⃗, but contain-
ing only the information referring to the 𝑗th uniformly
sampled coordinate of each vector-valued message.
The following advanced composition results will be

used in our setting to get a tight upper bound:

Theorem 4.2 (Dwork et al. [9]). For all 𝜀′, 𝛿′, 𝛿 ≥ 0,
the class of (𝜀′, 𝛿′)-differentially private mechanisms satis-
fies (𝜀, 𝑟𝛿′ + 𝛿)-differential privacy under 𝑟-fold adaptive
composition for:

𝜀 = √2𝑟 log(1/𝛿)𝜀′ + 𝑟𝜀′(𝑒𝜀
′
− 1).

Corollary 4.3. Given target privacy parameters 0 < 𝜀 < 1
and 𝛿 > 0, to ensure (𝜀, 𝑟𝛿′+𝛿) cumulative privacy loss over
𝑟mechanisms, it suffices that eachmechanism is (𝜀′, 𝛿′)-DP,
where:

𝜀′ = 𝜀
2√2𝑟 log(1/𝛿)

.

To show that VViewℳ(𝐷⃗) satisfies (𝜀, 𝛿)-DP it suffices to
prove that:

PrṼ∼VViewℳ(𝐷⃗)[
Pr[VViewℳ(𝐷⃗) = Ṽ]

Pr[VViewℳ(𝐷⃗′) = Ṽ]
≥ 𝑒𝜀] ≤ 𝛿. (1)

By considering this vector view as a union of overlap-
ping scalar views, and letting 𝑟 = 𝑡 in Corollary 4.3, it is

sufficient to derive (1) from:

Pr
V𝛼𝑗∼View

(𝛼𝑗)
ℳ (𝐷⃗)

[
Pr[View

(𝛼𝑗)
ℳ (𝐷⃗) = V𝛼𝑗]

Pr[View
(𝛼𝑗)
ℳ (𝐷⃗′) = V𝛼𝑗]

≥ 𝑒𝜀
′
] ≤ 𝛿′,

(2)
where Ṽ = ⋃𝛼𝑗 V𝛼𝑗 , 𝜀

′ = 𝜀
2√2𝑡 log(1/𝛿)

and 𝛿′ = 𝛿
𝑡 .

Lemma 4.4. Condition (2) implies condition (1).

Proof. We can express VViewℳ(𝐷⃗) as the composition

of the 𝑡 scalar views View(𝛼1)
ℳ , … ,View(𝛼𝑡)

ℳ , as:

Pr[VViewℳ(𝐷⃗) = Ṽ]

= Pr[View(𝛼1)
ℳ (𝐷⃗) = V𝛼1 ∧ ⋯ ∧ View(𝛼𝑡)

ℳ (𝐷⃗) = V𝛼𝑡]

= Pr[View(𝛼1)
ℳ (𝐷⃗) = V𝛼1] ⋅ ⋯ ⋅ Pr[View(𝛼𝑡)

ℳ (𝐷⃗) = V𝛼𝑡].

Our desired result is immediate by applying Corol-
lary 4.3, which states that the use of 𝑡 overlapping (𝜀′, 𝛿′)-
DP mechanisms, when taken together, is (𝜀, 𝛿)-DP. This
applies in our setting, since we have assumed that
VViewℳ(𝐷⃗) satisfies the requirements of (𝜀, 𝛿)-DP, and
that each of the 𝑡 overlapping scalar views is formed iden-
tically but for a different uniformly sampled coordinate
of the vector-valued messages.

To complete the proof of Theorem 4.1 for 𝜀 < 1, it
remains to show that for a uniformly sampled coordinate

𝛼𝑗 ∈ [𝑑], View
(𝛼𝑗)
ℳ (𝐷⃗) satisfies (𝜀′, 𝛿′)-DP.

Lemma 4.5. Condition (2) holds.

Proof. See Appendix A.

We now show that the above proof can be adjusted to
cover the additional case 1 ≤ 𝜀 < 6. This will be sufficient
to complete the proof of our main Theorem 4.1.
First, we scale the setting of 𝜀′ by a multiple of 6 in

Corollary 4.3 so that the advanced composition property
holds for all 1 ≤ 𝜀 < 6. We now insert 𝜀′ = 𝜀

12√2𝑟 log(1/𝛿)
into the proof of Theorem 4.1, resulting in a change of
constant from 56 to 2016.

4.4. Accuracy Bounds for Shuffled Vector
Sum

We now formulate an upper bound for the MSE of our
protocol, and then identify the value(s) of 𝑡 that minimize
this upper bound.

First, note that encoding the coordinate 𝑥
(𝛼𝑗)
𝑖 as ̄𝑥

(𝛼𝑗)
𝑖 =

⌊𝑥
(𝛼𝑗)
𝑖 𝑘⌋ + Ber(𝑥

(𝛼𝑗)
𝑖 𝑘 − ⌊𝑥

(𝛼𝑗)
𝑖 𝑘⌋) in Algorithm 2 ensures

that 𝔼[ ̄𝑥
(𝛼𝑗)
𝑖 /𝑘] = 𝔼[𝑥

(𝛼𝑗)
𝑖 ]. This means that our protocol

is unbiased. For any unbiased random variable 𝑋 with

5
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𝑎 < 𝑋 < 𝑏 then Var[𝑋] ≤ (𝑏 − 𝑎)2/4, and so the MSE
per coordinate due to the fixed-point approximation of
the true vector in ℛ𝑑,𝑘,𝑛,𝑡 is at most 1

4𝑘2 . Meanwhile, the

MSE when ℛ𝑑,𝑘,𝑛,𝑡 submits a random vector is at most 1
2

per coordinate.
We now use the unbiasedness of our protocol to obtain

a result for estimating the squared error between the
estimated average vector and the true average vector.
When calculating the MSE, each coordinate location is
used with expectation 𝑛/𝑑. Therefore, we define the
normalized MSE, or M̂SE, as the normalization of the
MSE by a factor of (𝑛/𝑑)2.

Theorem 4.6. For any 𝑑, 𝑛 ∈ ℕ, {𝑡 ∈ ℕ | 𝑡 ∈ [𝑑]}, 𝜀 < 6
and 𝛿 ∈(0, 1], there exists a parameter 𝑘 such that 𝒫𝑑,𝑘,𝑛,𝑡
is (𝜀, 𝛿)-DP and

M̂SE(𝒫𝑑,𝑘,𝑛,𝑡) =

⎧
⎪⎪

⎨
⎪⎪
⎩

2𝑡𝑑8/3(14 log(1/𝛿) log(2𝑡/𝛿))2/3

(1−𝛾)2𝑛5/3𝜀4/3
,

when 𝜀 < 1
8𝑡𝑑8/3(63 log(1/𝛿) log(2𝑡/𝛿))2/3

(1−𝛾)2𝑛5/3𝜀4/3
,

when 1 ≤ 𝜀 < 6,

where M̂SE denotes the squared error between the estimated
average vector and the true average vector.

Proof. We consider the∑𝑑
𝑙=1 DeBias( ̂𝑧(𝑙)) of 𝒫𝑑,𝑘,𝑛,𝑡 com-

pared to the corresponding input ∑𝑡
𝑗=1∑

𝑛
𝑖=1 𝑥

(𝛼𝑗)
𝑖 over

the dataset 𝐷⃗. We use the bounds on the variance of the
randomized response mechanism from Theorem 4.6 to
give us an upper bound for this comparison.

MSE(𝒫𝑑,𝑘,𝑛,𝑡) = sup
𝐷⃗

E[(
𝑑
∑
𝑙=1

DeBias( ̂𝑧(𝑙)) −
𝑡

∑
𝑗=1

𝑛
∑
𝑖=1

𝑥
(𝛼𝑗)
𝑖 )

2

]

= sup
𝐷⃗

E[(
𝑡

∑
𝑗=1

𝑛
∑
𝑖=1

(DeBias(𝑦
(𝛼𝑗)
𝑖 /𝑘) − 𝑥

(𝛼𝑗)
𝑖 ))

2

]

= sup
𝐷⃗

𝑡
∑
𝑗=1

𝑛
∑
𝑖=1

E[(DeBias(𝑦
(𝛼𝑗)
𝑖 /𝑘) − 𝑥

(𝛼𝑗)
𝑖 )

2
]

= sup
𝐷⃗

𝑡
∑
𝑗=1

𝑛
∑
𝑖=1

Var[DeBias(𝑦
(𝛼𝑗)
𝑖 /𝑘)]

= 𝑡𝑛
(1 − 𝛾)2

sup
𝑥 (𝛼1)1

Var[𝑦 (𝛼1)1 /𝑘] ≤ 𝑡𝑛
(1 − 𝛾)2

(
1 − 𝛾
4𝑘2

+
𝛾
2
)

≤ 𝑡𝑛
(1 − 𝛾)2

( 1
4𝑘2

+
𝐴𝜀𝑑𝑘 log(1/𝛿) log(2𝑡/𝛿)

(𝑛 − 1)𝜀2
) ,

where 𝐴𝜀 = 28 when 𝜀 < 1, and 𝐴𝜀 = 1008 when 1 ≤ 𝜀 <
6. In other words, 𝐴𝜀 is equal to half the constant term
in the expression of 𝛾 stated in Theorem 4.1. The choice

𝑘 = (𝑛−1)𝜀2
4𝐴𝜀𝑑 log(1/𝛿) log(2𝑡/𝛿)

minimizes the bracketed sum
above and the bounds in the statement of the theorem
follow.

To obtain the error between the estimated average
vector and the true average vector, we simply take the
square root of the result obtained in Theorem 4.6.

Corollary 4.7. For every statistical query 𝑞 ∶ 𝒳 ↦
[0, 1]𝑑, 𝑑, 𝑛 ∈ ℕ, {𝑡 ∈ ℕ | 𝑡 ∈ [𝑑]}, 𝜀 < 6 and 𝛿 ∈ (0, 1],
there is an (𝜀, 𝛿)-DP 𝑛-party unbiased protocol for estimat-
ing 𝑑

𝑛 ∑𝑖 𝑞(𝑥𝑖) in the Single-Message Shuffle Model with
standard deviation

𝜎̂ (𝒫𝑑,𝑘,𝑛,𝑡) =

⎧
⎪⎪

⎨
⎪⎪
⎩

(2𝑡)1/2𝑑4/3(14 log(1/𝛿) log(2𝑡/𝛿))1/3

(1−𝛾)𝑛5/6𝜀2/3
,

when 𝜀 < 1
(8𝑡)1/2𝑑4/3(63 log(1/𝛿) log(2𝑡/𝛿))1/3

(1−𝛾)𝑛5/6𝜀2/3
,

when 1 ≤ 𝜀 < 6,

where 𝜎̂ denotes the error between the estimated average
vector and the true average vector.

To summarize, we have produced an unbiased pro-
tocol for the computation of the sum of 𝑛 real vectors
in the Single-Message Shuffle Model with normalized
MSE 𝑂𝜀,𝛿(𝑑8/3𝑡𝑛−5/3), using advanced composition re-
sults from Dwork et al. [9]. Minimizing this bound as a
function of 𝑡 leads us to choose 𝑡 = 1, but any choice of 𝑡
that is small and not dependent on 𝑑 produces a bound of
the same order. In our experimental study, we determine
that the best choice of 𝑡 in practice is indeed 𝑡 = 1.

4.5. Improved bounds for t=1
We observe that in the optimal case in which 𝑡 = 1, we
can tighten the bounds further, as we do not need to
invoke the advanced composition results when each user
samples only a single coordinate. This changes the value
of 𝛾 by a factor of 𝑂(log(1/𝛿)), which propagates through
to the expression for the MSE. That is, we can more
simply set 𝜀′ = 𝜀 and 𝛿′ = 𝛿 in the proof of Theorem 4.1.
When 𝜀 < 1, the computation is straightforward, with
𝑐 ≥ 14

𝜀′2 log(2𝑡/𝛿) being chosen as before. However, when

1 ≤ 𝜀 < 6, a tighter 𝑐 ≥ 80
𝜀′2 log(2𝑡/𝛿) must be selected, as

the condition 𝜀′ < 1 no longer holds.
Using 𝜀′ < 6, we have:

(1 − exp (−𝜀′/2)) ≥ (1 − exp (− 2
3√15

)) 𝜀′ ≥ 𝜀′

2√10
.

Thus, we have:

Pr[
N𝜃
N𝜙

≥ 𝑒𝜀
′
] ≤ exp ( − 𝑐

3
(𝜀′/2)2) + exp ( − 𝑐

2
( 𝜀′

2√10
)
2
)

≤ 2 exp (− 80
2𝜀′2

𝜀′2

40
log(2𝑡/𝛿)) ≤ 𝛿/𝑡,

which yields:

𝛾 = {
max{ 14𝑑𝑘 log(2/𝛿)(𝑛−1)𝜀2 , 27𝑑𝑘

(𝑛−1)𝜀 }, when 𝜀 < 1

max{ 80𝑑𝑘 log(2/𝛿)(𝑛−1)𝜀2 , 36𝑑𝑘
11(𝑛−1)𝜀 }, when 1 ≤ 𝜀 < 6.

6
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(a) Experimental error by number of coordinates 𝑡 re-
tained

(b) Experimental error by number of buckets 𝑘 used

Figure 1: Bar charts confirming that the choices 𝑡 = 1 (a) and 𝑘 = 3 (b) minimize the total experimental M̂SE for the ECG
Heartbeat Categorization Dataset.

Note that the above expression for 𝛾 in the case 𝜀 < 1
coincides with the result obtained by Balle et al. in the
scalar case [2]. Putting this expression for 𝛾 in the proof
of Theorem 4.6, with the choice

𝑘 =
⎧

⎨
⎩

min{( 𝑛𝜀2
28𝑑 log(2/𝛿))

1/3
, ( 𝑛𝜀

54𝑑 )
1/3

}, when 𝜀 < 1

min{( 𝑛𝜀2
160𝑑 log(2/𝛿))

1/3
, ( 11𝑛𝜀72𝑑 )

1/3
}, when 1 ≤ 𝜀 < 6,

causes the upper bound on the normalized MSE to reduce
to:

M̂SE =

⎧
⎪⎪

⎨
⎪⎪
⎩

max{ 98
1/3𝑑8/3 log2/3(2/𝛿)
(1−𝛾)2𝑛5/3𝜀4/3

, 18𝑑8/3

(1−𝛾)2𝑛5/3(4𝜀)2/3 },

when 𝜀 < 1

max{ 2𝑑
8/3(20 log(2/𝛿))2/3

(1−𝛾)2𝑛5/3𝜀4/3
, 2(92/3)𝑑8/3

(1−𝛾)2𝑛5/3(11𝜀)2/3 },

when 1 ≤ 𝜀 < 6.

By updating Corollary 4.7 in the same way, we can
conclude that for the optimal choice 𝑡 = 1, the normal-
ized standard deviation of our unbiased protocol can be
further tightened to:

𝜎̂ =

⎧
⎪⎪

⎨
⎪⎪
⎩

max{ 98
1/6𝑑4/3 log1/3(2/𝛿)
(1−𝛾)𝑛5/6𝜀2/3

, 181/2𝑑4/3

(1−𝛾)𝑛5/6(4𝜀)1/3 },

when 𝜀 < 1

max{ 2
1/2𝑑4/3(20 log(2/𝛿))1/3

(1−𝛾)𝑛5/6𝜀2/3
, 21/291/3𝑑4/3

(1−𝛾)𝑛5/6(11𝜀)1/3 },

when 1 ≤ 𝜀 < 6.

5. Experimental Evaluation
In this section we present and compare the bounds gen-
erated by applying Algorithms 2 and 3 to an ECG Heart-
beat Categorization Dataset in Python, available at https:

//www.kaggle.com/shayanfazeli/heartbeat. We analyse
the effect of changing one key parameter at a time, whilst
the others remain the same. Our default settings are
vector dimension 𝑑 = 100, rounding parameter 𝑘 = 3,
number of users 𝑛 = 50000, number of coordinates to
sample 𝑡 = 1, and differential privacy parameters 𝜀 = 0.95
and 𝛿 = 0.5. The ranges of all parameters have been
adjusted to best display the dependencies, whilst simul-
taneously ensuring that the parameter 𝛾 of the random-
ized response mechanism is always within its permitted
range of [0, 1]. The Python code is available at https:
//github.com/mary-python/dft/blob/master/shuffle.

We first confirm that the choice of 𝑡 = 1 is optimal,
as predicted by the results of Section 4.5. Indeed, Fig. 1
(a) shows that the total experimental M̂SE for the ECG
Heartbeat Categorization Dataset is significantly smaller
when 𝑡 = 1, compared to any other small value of 𝑡.

Similarly, Fig. 1 (b) suggests that the total experimental
M̂SE is lowest when 𝑘 = 3, which is sufficiently close to
the choice of 𝑘 selected in the proof of Theorem 4.6, with
all other default parameter values substituted in. Observe
that the absolute value of the observed MSE is below 0.3
in this case, meaning that the vector is reconstructed to a
high degree of accuracy, sufficient for many applications.
Next, we verify the bounds of 𝑑8/3 and 𝑛−5/3 from

Theorem 4.6. Fig. 2 (a) is plotted with a best fit curve
with equation a multiple of 𝑑8/3, exactly as desired. Un-
surprisingly, the MSE increases as 𝑑 goes up according
to this superlinear dependence. Meanwhile, Fig. 2 (b)
fits a curve dependent on 𝑛−7/6, sufficiently close to the
required result. We see the benefit of increasing 𝑛: as 𝑛
increases by a factor of 10 across the plot, the error de-
creases by more than two orders of magnitude. In Fig. 3,
we verify the dependency 𝜀−4/3 in the two ranges 𝜀 < 1
and 1 ≤ 𝜀 < 6. The behavior for 𝜀 < 1 is quite smooth,
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(a) Experimental error by vector dimension 𝑑 (b) Experimental error by number of vectors 𝑛 used

Figure 2: Bar charts with best fit curves confirming the dependencies 𝑑8/3 (a) and 𝑛−5/3 (b) from Theorem 4.6.

(a) Experimental error by value of 𝜀 where 𝜀 < 1 (b) Experimental error by value of 𝜀 where 1 ≤ 𝜀 < 6

Figure 3: Bar charts with best fit curves confirming the dependency 𝜀−4/3 from Theorem 4.6 in the two ranges 𝜀 < 1 (a) and
1 ≤ 𝜀 < 6 (b).

but becomes more variable for larger 𝜀 values.
In conclusion, these experiments confirm that picking

𝑡 = 1 and 𝑘 = 3 serves to minimize the error. The lines
of best fit confirm the dependencies on the other param-
eters from Section 4 for 𝑑, 𝜀 and 𝑛, by implementing and
applying Algorithms 2 and 3 to an ECGHeartbeat Catego-
rization Dataset in Python. The experiments demonstrate
that the MSE observed in practice is sufficiently small to
allow effective reconstruction of average vectors for a
suitably large cohort of users.

6. Conclusion
Our results extend a result from Balle et al. [2] for scalar
sums to provide a protocol 𝒫𝑑,𝑘,𝑛,𝑡 in the Single-Message
ShuffleModel for the private summation of vector-valued
messages (𝑥1, … , 𝑥𝑛) ∈ ([0, 1]𝑑)𝑛. It is not surprising that
the normalized MSE of the resulting estimator has a de-
pendence on 𝑛−5/3, as this was the case for scalars, but the

addition of a new dimension 𝑑 introduces a new depen-
dency for the bound, as well as the possibility of sampling
𝑡 coordinates from each 𝑑-dimensional vector. For this
extension, we formally defined the vector view as the
knowledge of the analyzer upon receiving the random-
ized vectors, and expressed it as a union of overlapping
scalar views. Through the use of advanced composition
results from Dwork et al. [9], we showed that the estima-
tor now has normalized MSE 𝑂𝜀,𝛿(𝑑8/3𝑡𝑛−5/3) which can
be further improved to 𝑂𝜀,𝛿(𝑑8/3𝑛−5/3) by setting 𝑡 = 1.
Our contribution has provided a stepping stone be-

tween the summation of the scalar case discussed by
Balle et al. [2] and the linearization of more sophisticated
structures such as matrices and higher-dimensional ten-
sors, both of which are reliant on the functionality of the
vector case. As mentioned in Section 2, there is poten-
tial for further exploration in the Multi-Message Shuffle
Model to gain additional privacy, echoing the follow-up
paper of Balle et al. [17].

8
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A. Proof of Lemma 4.5
Lemma 4.5. Condition (2) holds.

Proof. The way in which we split the vector view (i.e., to
consider a single uniformly sampled coordinate of each
vector-valued message in turn), means that we can apply
a proof that is analogous to the scalar-valued case [2].
We work through the key steps needed.

Recall from Section 4.1 that the case where the 𝑛th user
submits a uniformly random message independent of
their input satisfies DP trivially. Otherwise, the 𝑛th user
submits their true message, and we assume that analyzer
removes from 𝑌 (𝛼𝑗) any truthful messages associated with

the first 𝑛 − 1 users. Denote 𝑛
(𝛼𝑗)
𝑙 to be the count of 𝑗th

coordinates remaining with a particular value 𝑙 ∈ [𝑘]. If
𝑥
(𝛼𝑗)
𝑛 = 𝜃 and 𝑥

′(𝛼𝑗)
𝑛 = 𝜙, we obtain the relationship

Pr[View
(𝛼𝑗)
ℳ (𝐷⃗) = 𝑉𝛼𝑗]

Pr[View
(𝛼𝑗)
ℳ (𝐷⃗′) = 𝑉𝛼𝑗]

=
𝑛
(𝛼𝑗)
𝜃

𝑛
(𝛼𝑗)
𝜙

.

We observe that the counts 𝑛
(𝛼𝑗)
𝜃 and 𝑛

(𝛼𝑗)
𝜙 follow the bino-

mial distributions N𝜃 ∼ Bin(𝑠, 𝛾𝑘)+1 and N𝜙 ∼ Bin(𝑠, 𝛾𝑘)
respectively, where 𝑠 denotes the number of times that
the coordinate 𝑗 is sampled. In expectation, 𝑠 = (𝑛−1)𝑡/𝑑,
and below we will show that it is close to its expectation:

Pr
V𝛼𝑗∼View

(𝛼𝑗)
ℳ (𝐷⃗)

[
Pr[View

(𝛼𝑗)
ℳ (𝐷⃗) = V𝛼𝑗]

Pr[View
(𝛼𝑗)
ℳ (𝐷⃗′) = V𝛼𝑗]

≥ 𝑒𝜀
′
]

= Pr[
N𝜃
N𝜙

≥ 𝑒𝜀
′
] .

We define 𝑐 ∶= E[N𝜙] =
𝛾
𝑘 ⋅ 𝑠 and split this into the union

of two events, 𝑁𝜃 ≥ 𝑐𝑒𝜀
′/2 and 𝑁𝜙 ≤ 𝑐𝑒−𝜀

′/2. Applying a
Chernoff bound gives:

Pr[
N𝜃
N𝜙

≥ 𝑒𝜀
′
] ≤ exp(− 𝑐

3
(𝑒𝜀

′/2 − 1 − 1
𝑐
)
2
)

+ exp(− 𝑐
2
(1 − 𝑒−𝜀

′/2)
2
) .

We will choose 𝑐 ≥ 14
𝜀′2 log(2𝑡/𝛿) so that we have:

exp (𝜀′/2) − 1 − 1
𝑐
≥ 𝜀′

2
+ 𝜀′2

8
− 𝜀′2

14 log(2𝑡/𝛿)
≥ 𝜀′

2
.

Using 𝜀′ < 1, we have:

(1 − exp (−𝜀′/2)) ≥ (1 − exp (−1/2))𝜀′ ≥ 𝜀′

√7
.

Thus we have:

Pr[
N𝜃
N𝜙

≥ 𝑒𝜀
′
] ≤ exp ( − 𝑐

3
(𝜀′/2)2) + exp ( − 𝑐

2
(𝜀′/√7)2)

≤ 2 exp (− 14
2𝜀′2

𝜀′2

7
log(2𝑡/𝛿)) ≤ 𝛿/𝑡.

We now apply another Chernoff bound to show that
𝑠 ≤ 2E[𝑠], which can be used to give a bound on 𝛾.
The following calculation proves that Pr[𝑠 ≥ 2E(𝑠)] ≤
exp(−E(𝑠)/3), using E(𝑠) = (𝑛 − 1)𝑡/𝑑:

Pr[𝑠 ≥ 2E(𝑠)] ≤ exp ( − 𝑛 − 1
3

𝑡/𝑑) ≤ exp ( − 𝑛
3
) < 𝛿/3𝑡,

for all reasonable values of 𝛿.
Substituting these bounds on 𝑠 and 𝑐 into 𝛾 𝑠/𝑘 = 𝑐

along with 𝜀′ = 𝜀
2√2𝑡 log(1/𝛿)

gives:

𝛾 ≥
112𝑘𝑡 log(1/𝛿) log(2𝑡/𝛿)

𝑠𝜀2
≥

56𝑑𝑘 log(1/𝛿) log(2𝑡/𝛿)
(𝑛 − 1)𝜀2

.
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