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ABSTRACT
Skew is prevalent in data streams, and should be taken into account
by algorithms that analyze the data. The problem of finding “biased
quantiles”— that is, approximate quantiles which must be more ac-
curate for more extreme values — is a framework for summarizing
such skewed data on data streams. We present the first deterministic
algorithms for answering biased quantiles queries accurately with
small—sublinear in the input size— space and time bounds in one
pass. The space bound is near-optimal, and the amortized update
cost is close to constant, making it practical for handling high speed
network data streams. We not only demonstrate theoretical proper-
ties of the algorithm, but also show it uses less space than existing
methods in many practical settings, and is fast to maintain.

Keywords
Data Stream Algorithms, Biased Quantiles

General Terms
Algorithms, Performance

Categories and Subject Descriptors
E.1 [Data]: Data Structures; F.2 [Theory]: Analysis of Algorithms

1. INTRODUCTION
Many queries over large data sets require non-uniform responses.

Consider published lists of wealth distributions: one typically sees
details of the median income, the 75th percentile, 90th, 95th and
99th percentiles, and a list of the 500 top earners. While thedetail
around the center of the distribution is quite sparse, at oneend of
the distribution we see increasingly fine gradations in the accuracy
of the response, ultimately down to the level of individuals. Simi-
lar variations in the level of accuracy required are seen in analyzing
massive data streams: for example, in monitoring performance in
packet networks, the distribution of round trip times is used to an-
alyze the quality of service. Again, it is important to know broad
information about the center of the distribution (median, quartiles),
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and increasingly precise information about the tail of the distribu-
tion, since this is most indicative of unusual or anomalous behavior
in the network. A particular challenge is how to maintain such dis-
tributional information in a data streaming scenario, where massive
amounts of data are seen at very high speeds: the requirementis to
summarize this huge volume of data into small space to be ableto
accurately capture the key features of the distribution, within al-
lowable approximation bounds.

This problem of capturing the distribution was formalized as the
biased quantilesproblem [3]. Much of the prior work studied the
problem of summarizing the distribution withuniform accuracy:
this means reporting the median with the same accuracy as the99th
percentile [7, 4]. For the applications we have outlined, such guar-
antees are insufficient since, for the more extreme values, the un-
certainty can be too large: with a1% accuracy, all values above the
99th percentile are indistinguishable. The(fully) biased accuracy
guaranteedemands that the accuracy scales with the place in the
distribution that is queried: for example, the accuracy with which
the 90th percentile is given should be five times more accurate than
the median, and the 99th percentile should be ten times more accu-
rate than the 90th percentile.

There are many variations of this problem that we address in this
paper. An essentially equivalent problem is to report therank of a
given item: the rank is the item’s position in the sorted input. Quan-
tile queries can be used to answer rank queries, and vice-versa. The
(partially) biasedaccuracy guarantee gives a cut-off for the tight-
est accuracy that is required: this can be leveraged to reduce further
the resources needed by the summary. Thetargetedquantiles prob-
lem is when the quantiles that are required are given in advance.
Focusing on answering just these queries allows the resources to
be reduced further still. Throughout, our focus is on what are the
fundamental costs required to support these queries, in terms of

(a) what is thespacerequired to summarize the whole distribution
and allow these queries to be answered with the requisite accuracy?

(b) what is thetime per updaterequired to maintain this summary
as new data arrives in the stream?

In order to handle the large data streams prevalent in networks
and other monitoring scenarios, it is vital to keep these as small as
possible, depending either sublinearly or not at all on the size of the
data stream.

Our Contributions. In this paper, our contributions are as follows:
• We present the first deterministic algorithms for biased quan-
tiles, rank queries and targeted quantile queries that haveguaran-
teed space bounds that are strictly sublinear in the size of the data
stream,N , and the universe from which the items are drawn,U .
In particular, we present a deterministic algorithm that takes only
spaceO( log U

ǫ
log(ǫN)) to provide anǫ approximation on the bi-



ased quantiles of different kinds. In contrast, previouslyknown de-
terministic algorithms usedΩ(N) space and previously known ran-
domized algorithms needΩ( 1

ǫ2
log(ǫN)) worst case space which

is greater than ours for even moderateǫ. The space requirements of
our algorithms are close to optimal: they are withinO(log U) fac-
tors of the lower bounds. Our algorithms are also fast, with amor-
tized time per update that is close to constant, and independent of
the size of the data stream.

• We present an experimental study showing that not only do we
have very strong guarantees on accuracy, time cost and spacere-
quired, but that our algorithms are also competitive in comparison
with existing methods, with consistently higher throughput and less
space than prior algorithms for these problems in most practical
settings.

1.1 Problem Definitions
The input consists of a stream of items in the range{1 . . . U} =

[U ], and the input stream can be thought of as defining a multiset
of items from[U ]. At any point, the number of points observed
thus far is denoted byN . The rank of an itemx from the do-
main is the number of items from the input which are less thanx.
We denote this byrank(x). A basic problem is to findrank(x)
givenx ∈ [U ]. Trivially, rank(x) can be computed by storing the
whole input in sorted order. However, our focus is on situations
when the size of the input,N , is so large that we cannot afford
this much space to store and sort the input, and so we must use
smaller–sublinear—space (consequently, we need to allow approx-
imate answers to rank and quantile queries). Several different styles
of approximation guarantee are possible:

DEFINITION 1. (a) A uniform rank queryis, givenx to return
an approximation̂r(x) of rank(x) such that (for an accuracy pa-
rameterǫ, supplied in advance)

rank(x) − ǫN ≤ r̂(x) ≤ rank(x) + ǫN

(b) A fully biased rank queryis, givenx to return an approximation
r̂(x) of rank(x) such that

(1 − ǫ) rank(x) ≤ r̂(x) ≤ (1 + ǫ) rank(x)

(c) Let t(x, N) = max(ǫ rank(x), ǫminN) for parametersǫ and
ǫmin. A (partially) biased rank queryis, givenx to return an ap-
proximationr̂(x) of rank(x) such that

rank(x) − t(x,N) ≤ r̂(x) ≤ rank(x) + t(x,N)

Note that in all cases, the value being approximated is the same
and what differs is the nature of the approximation guarantee re-
quired. The use of bias in accuracy allows us to give sharper results
for the tails of the distribution, which typically are skewed, and are
of more interest in data stream applications.1 Forǫ = ǫmin = 0, the
notions converge, but for non-zero approximation guarantees, the
fully biased rank query has stricter requirements than the uniform
rank query. The biased rank query is a compromise between the
fully biased and uniform versions. In general, we requirerelative
error in response to our queries, which is given by theǫ rank(x)
component. However, giving such guarantees can lead to highcost,
and there is a certain minimum accuracy beyond which it is notim-
portant to give finer accuracy. This is theǫminN component of the
guarantee (a special case is then whenǫmin ≤ 1/N , i.e. when the
ǫ rank(x) term always dominates, in which case we have the fully
biased case). From these primitives, we can define related quantile
queries.
1We focus on the case when the finer accuracy is needed on items with
low rank, referred to as the low-biased case in [3]. Results for the high-
biased case follow by reversing the ordering relation, but for simplicity of
presentation we focus only on the low-biased case.

DEFINITION 2 (UNIFORM QUANTILES PROBLEM). Auniform
quantile queryis, givenφ, to returnx so that

rank(x) − ǫN ≤ φN ≤ rank(x + 1) + ǫN

For example, finding the median corresponds to querying for the
φ = 1

2
quantile. Observe that, given a solution to answering uni-

form rank queries, we can answer uniform quantile queries by(bi-
nary) searching forx that satisfies the above inequalities. These
two problems have been extensively studied on streams of values,
and solutions are known with space guarantees in terms ofǫ: the
space required is bounded byO( 1

ǫ
log ǫN) [4], andO( log U

ǫ
) [9].

DEFINITION 3 (BIASED QUANTILES PROBLEM).
Let t(x, N) = max(ǫ rank(x), ǫminN). A biased quantile query
is, givenφ, to returnx so that

rank(x) − t(x,N) ≤ φN ≤ rank(x + 1) + t(x + 1, N)

This problem was introduced explicitly in [3] (but inherentin
prior work such as [5]), where algorithms with good space usage in
practice were demonstrated. As with the uniform case, givena data
structure for the biased rank query problem, we can answer biased
quantile queries by searching for an item whose rank satisfies the
query. Lastly, thetargeted quantilesproblem is defined as follows:

DEFINITION 4 (TARGETEDQUANTILES PROBLEM [3]). The
parameter is a set of tuplesT = {(φj , ǫj)}. Following a stream of
input values, the goal is to return a set of|T | valuesvj such that

rank(vj) − ǫjN ≤ φjN ≤ rank(vj + 1) + ǫjN

The targeted quantiles problem was defined in [3]; it can also
be thought of as a generalization of the “extreme values” quantile
finding problem in [7].

2. RELATED WORK
In recent years there has been significant interest in the area of

data streams, where the space available for processing is consider-
ably smaller than the input, which is presented in a “one-pass” fash-
ion [1, 8]. For the problem of tracking quantiles in data streams, the
most relevant work is the “GK algorithm” due to Greenwald and
Khanna [4]. It is a deterministic algorithm which allows uniform
quantile queries to be answered with error at mostǫN , using space
O( log ǫN

ǫ
). This improved a series of previous results of determin-

istic and randomized algorithms (see, eg. [7]). Running time for
this algorithm is not analyzed in the paper, but since it maintains
a list of items in sorted order, and inserts a new item into this list
for every update, the algorithm can be implemented with amortized
time costO(log( 1

ǫ
)+log log ǫN). Another algorithm for the prob-

lem was given in [9], whose space cost isO( log U

ǫ
), whereU is the

number of distinct values possible; this is not directly comparable
with the GK algorithm but also uses small space in practice. The
amortized time cost isO(log 1

ǫ
+ log log U).

The problem of biased quantiles was formally introduced in [3].
An algorithm for biased quantiles based on GK was given, and
shown to be effective on real data. However, for carefully crafted
input data, the space used by the algorithm can grow linearlywith
the input size [10]. In contrast, we show a new algorithm here
whose space cost grows at most logarithmically with the sizeof the
input, and which often uses less space in practice than the previous
algorithm. Although not called biased quantiles as such, Gupta and
Zane [5] studied this problem in the context of counting inversions
in streams. They gave a randomized algorithm whose space cost
is O( 1

ǫ3
log2 ǫN). For small values ofǫ, this cost rapidly becomes

too high in practice. Mankuet al. [7] gave randomized algorithms
for a single targeted quantile in spaceO(φ

ǫ
log 1

δ
).



Most recently Zhanget al [10] gave a randomized algorithm for
the biased case based on sampling at different rates, with space cost
O( 1

ǫ2
log 1

δ
log(ǫ2N)). Here,δ is the probability that each query

fails to meet its error bounds. A modified version of the algorithm
has average space cost which isΩ( 1

ǫ
log2 ǫN), but worst case cost

as before. The running time per update of the first algorithm is
O(log(ǫN) log(ǫ log( 1

δ
))), and the second isΩ( 1

ǫ2
).

3. OUR ALGORITHMS
In this section we show that the biased rank and biased quantile

problems can be solved with space strictly sublinear (in fact, log-
arithmic) in N andU . The algorithm uses a similar approach to
that of [9], in that it places a binary tree structure over thedomain
and maintains counts associated with certain nodes in the tree. But
maintaining this structure, the invariants that apply, andproof of
correctness require significantly new approaches and insights.

Throughout, we make use of standard dictionary data structures [2]
that support the following operations: (a) insert an item; (b) delete
an item; (c) test for the presence of an item; and (d) list all items.
We will measure the number of per item operations. In our exper-
iments we will use a hash table to implement this dictionary data
structure in constant (expected) time per item.

We impose a binary tree of heightlog U over the domain[1 . . . U ]
in the obvious manner. For any nodev in the tree, letlf(v) denote
the leftmost leaf item in the subtree ofv. Let par(v) denote the
(unique) parent node ofv, let left(v) denote the left child ofv, and
right(v) the right child ofv.2 Lastly, defineanc(v) as the set of
nodes that are ancestors ofv in the tree.

A bq-summaryis a subset of nodes of this tree, with associated
counts, corresponding to a count of items appearing in the range
covered by the node. We represent the bq-summary as a set of
nodesbq, and for each nodev ∈ bq we also store a countcv for
that node. This count represents items from the input that were
drawn from the leaves of the subtree of the nodev. If nodev is not
stored in the bq-summary, we usecv = 0 whencv is queried.

3.1 Accuracy Guarantees
We first describe our algorithm for the fully biased version of the

problem. We will prove space bounds for this version, then give the
results for biased rank queries whenǫmin is used. Firstly, we define
two functions over the tree, which we denoteL (for Left-count) and
A (for Ancestor-count).

DEFINITION 5. We define two functions:L(v), a function over
tree nodes, andA(x), a function over universe items:

L(v) =
X

lf(w)<lf(v)

cw and A(x) =
X

w∈anc(x)

cw

By maintaining certain properties on the counts, we will ensure
that the uncertainty in our query answers is bounded, and at the
same time the space required is also bounded. We can now definea
set of formal correctness criteria for the bq-summary to give guar-
antees for finding biased quantiles. We use a parameterα < 1, that
we will set later based on the analysis. To guarantee queriescan be
answered correctly, we maintain two invariants at all times:

∀x ∈ [U ] : L(x) − A(x) ≤ rank(x) ≤ L(x) (1)

∀v ∈ bq : v 6= lf(v) ⇒ cv ≤ αL(v) (2)

Given such a data structure, we can answer biased rank queries.
Given a particular valuex, its rank is at least the sum of all counts
2All of these functions can be computed in constant time undera reasonable
machine model and appropriate representations of nodesv.
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Figure 1: One dimensional data structure run on the input
{1, 2, 2, 2, 3, 4, 5, 6, 6, 6, 10, 12, 14, 14, 15, 16} with α = 1

2
.

of nodes that are strictly to the left of the leaf in the tree corre-
sponding tox. Its rank is at most this quantity plus the nodes that
are ancestors of the leaf. We bound the first of these quantities by
L(x) − A(x), and the second byL(x). Therefore, the uncertainty
in the answer to the query is bounded by the sum of counts of all
ancestors the queried value (A(x)).

LEMMA 1. Any bq-summary that obeys(1)and(2) withα log(U)
≤ ǫ ≤ 1

2
allows fully biased rank queries onx to be answered with

r̂(x) so that|r̂(x) − rank(x)| ≤ ǫ rank(x).

PROOF. We compute and output̂r = L(x)− 1
2
A(x). Applying

invariant (1), we know that
− 1

2
A(x) ≤ (r̂(x) − rank(x)) ≤ 1

2
A(x).

So the only uncertainty comes from those nodes that are ances-
tors of thex in the tree. For eachw ∈ anc(x), lf(w) ≤ lf(x) and
so L(w) ≤ L(x). Thus, using (2) to obtain a bound onA(x) in
terms ofrank(x) andA(x), and rearranging to eliminateA(x):

|r̂(x) − rank(x)| ≤ 1
2
A(x) ≤ 1

2

P

w∈anc(x) αL(w)

≤ 1
2

P

w∈anc(x) αL(x)

≤ log(U)α
2
(rank(x) + A(x))

≤ log(U) α
2(1−α log(U))

rank(x)

≤ α log(U) rank(x) ≤ ǫ rank(x)

The last step makes use of the fact thatα ≤ ǫ
log U

andǫ ≤ 1
2
.

LEMMA 2. Any bq-summary that obeys(1)and(2) withα log(U)
≤ ǫ ≤ 1

2
allows fully biased quantile queries onφ to be answered

with x so that(1 − ǫ) rank(x) ≤ φN ≤ (1 + ǫ) rank(x + 1).

PROOF. We perform a binary search over[U ] for the greatest
x such thatr̂(x) ≤ φN . Applying the above Lemma, we have
that (1 − ǫ) rank(x) ≤ r̂(x) ≤ φN . Sincer̂(x + 1) > φN ,
we also have (using the same Lemma again)φN < r̂(x + 1) ≤
(1+ǫ) rank(x+1). Combining these gives the required result.

3.2 Space Bounds
We have shown that if the bq-summary satisfies conditions (1)

and (2) then it can answer rank and quantile queries accurately. We
now describe how we will maintain our data structure to give these
guarantees, while ensuring that the space used is tightly bounded.
Our approach is common to previous data streaming algorithms
for a variety of problems: we process new updatesx by running a
procedure INSERT(x); periodically (after a set number of arrivals)
we will run a COMPRESSroutine which compacts the data structure
and removes redundant information, to ensure that the spacebound
always holds; when a query tox is posed, we run RANK QUERY(x)
to return the approximate rank ofx within the stated bounds. To
make these routines efficient, we will ensure that our data structure
has some additional properties.



Data Structure. Our data structure will be split into two pieces,
which we refer to asbq-leavesandbq-tree. The bq-leaves, denoted
bql, are a set of leaf nodes from the original tree, and associated
counts, while the bq-tree,bqt, is a set of nodes (internal or leaf)
from the original tree. These partitionbq: bq = bqt ∪ bql and
bqt∩bql = ∅. We will maintain the additional following properties:

(v ∈ bqt) ∧ (max
u∈bql

u < lf(par(v))) ⇒ cpar(v) ≥ αL(par(v))

(3)

1

α
log(αN) ≥ |bql| ≥ min(N,

1

α
) (4)

max
u∈bql

u < min
v∈bqt

lf(v) (5)

X

v∈bq

cv = N (6)

Condition (3) ensures that most internal nodes inbqt are “full”:
condition (2) limits the count of any node to at mostαL(v), while
this condition demands the count be at least this much, and both are
satisfied at equality3. This condition ensures that the space needed
to storebqt is compact, while condition (4) bounds the size ofbql;
these two conditions may lapse as the data structure is updated, so
periodically we will restore them. Condition (5) says that all the
leaves stored inbql occur to the left of all the tree nodes stored in
bqt. These conditions will also enable us to update the data struc-
ture rapidly. Lastly, condition (6) is a check on the correctness of
the manipulation of counts (in fact, it is a consequence of (1)).

Example. Figure 1 gives an example configuration of a bq-summary
that obeys the required conditions withα = 1

2
. The tree placed

over the universe[1 . . . 16] is shown, with nodes inbq are marked
with a black dot. Their count,cv is also shown. These are divided
into two parts:bql, which consists of leaves only, andbqt, which
can consist of any nodes. The dividing line betweenbql andbqt is
marked in grey: we insist that for every node inbqt, its parent is
also inbqt unless the parent node falls on this dividing line (this fol-
lows from condition (3) above). The Figure is arranged so that all
nodes with the samelf() value fall in the same vertical line; these
nodes also have the sameL values. The bq-summary represents the
input{1, 2, 2, 2, 3, 4, 5, 6, 6, 6, 10, 12, 14, 14, 15, 16} with α = 1

2
.

We can use it to find the rank of the item6: L(6) = 1+3+2+3+
1 = 10 andA(6) = 1 + 3 = 4, so we know that6 ≤ rank(6) ≤
10, and we estimatêr(6) = 8. (In fact,rank(6) = 7.)

THEOREM 1. Any bq-summary which satisfies(3), (4) and (5)
with α ≤ 1

2 log U
uses spaceO( log(αN)

α
).

PROOF. We will consider the set of nodesV such thatv ∈ bqt
and cv ≥ αL(v). By bounding the number of such nodes, we
can bound the total number of nodes in the summary. LetW be
the set of nodes such thatw ∈ bqt andcw < αL(w). By con-
dition (3), eachw ∈ W must have a parent satisfying the prop-
erty cpar(w) ≥ αL(par(w)), or else it satisfieslf(par(w)) <
maxu∈bql u < lf(w). There can be at mostlog U nodesw that sat-
isfy this latter property, and so|W | ≤ 2|V |+log U . We divide the
nodesv ∈ V into a sequence ofequivalence classesbased on the
L value computed forv. That is, group together all nodesu, v ∈ V
for whichL(u) = L(v). Observe that all nodes in the same group
must also share the samelf() value: supposeu andv are in the
same group butlf(u) < lf(v). Thenlf(u) < lf(v) and, by Defi-
nition 5,L(u) < L(v), sinceL(v) is bigger by at leastcu. These
3Note that this means some counts will be fractional. We latershow that
restricting to integer counts does not affect the asymptotic space bounds.

are illustrated in Figure 1: all nodes inbqt in the same equivalence
class are shown in the same shaded vertical strips. Suppose there
are a total ofq equivalence classes. We will sort theseq classes
by theL value shared by all nodes in the class. LetEi denote the
set of nodes in theith equivalence class, and letLi denote theL
value for that class, soL1 < L2 . . . < Lq . SinceEi partitionsV ,
|V | =

Pq

i=1 |Ei|. Observe that|Ei| ≤ log U , that is, there can be
at mostlog U nodes inbqt in each equivalence class, at most one
node from each level of the binary tree structure; this is because of
the preceding observation, that all nodes in the classi must share
the samelf(w) value,lfi — there can be at mostlog U nodes shar-
ing the samelf() value. Eachbqt nodev in classi must satisfy
cv ≥ αLi, by applying condition (3). Thus for any equivalence
classEi, we have

P

v∈Ei
cv ≥ α|Ei|Li. Also, using condition (3)

Li+1 =
X

lf(w)<lfi+1

cw =
X

lf(w)<lfi

cw +
X

v∈Ei

cv = Li +
X

v∈Ei

cv

≥ Li + α|Ei|Li = (1 + α|Ei|)Li

Expanding the above expression, we have for anyj < i

Li+1 ≥ (1 + α|Ei|)(1 + α|Ei−1|) . . . (1 + α|Ej |)Lj .

If |bql| < 1
α

, then by condition (4)|bql| = N , and so|bqt| = 0.
So if |bqt| > 0, we also haveL1 ≥ 1/α, by combining (4) and
(5): since all ofbql precedesbqt, and there are at least1/α leaves
in bql, we have that theL value of every node inbqt must be at
least1/α. Consider the “artificial” item,U +1. Using (1), we have
rank(U + 1) = N ≤ L(U + 1). Place a ‘fake’ equivalence class
q + 1 to the right of all items. We can writeLq+1 = L(U + 1) ≥
rank(U+1) = N , since all items must be to the left of this notional
extra equivalence class. Substituting into the above expression:

N ≥ LE+1 ≥ L1(1 + α|E1|)(1 + α|E2|) . . . (1 + α|Eq|)

ln αN ≥

q
X

i=1

ln(1 + α|Ei|) ≥

q
X

i=1

3α

4
|Ei|

Here we use the fact thatln(1 + x) ≥ 3
4
x for x ≤ 1

2
, and also that

α|Ei| ≤ 1/2, since we setα ≤ 1
2 log U

and|Ei| ≤ log U .

So|bq| = |bql| + |bqt| = |bql| + |V | + |W |

≤
log αN

α
+ log U + 3|V | = O(

log αN

α
) + 3

q
X

i=1

|Ei|

≤ O(
log αN

α
) +

4

α
(log αN) = O(

1

α
log(αN))

Settingα = ǫ/ log U , this is within anO(log U) factor of the
Ω( 1

ǫ
log(ǫN)) lower bound for this problem proved in [3].

3.3 Insert Procedure
We next describe how to maintain the data structure in the pres-

ence of arrivals of updates. The INSERT(x) procedure takes a new
itemx and includes it inbq. We first determine whether to include
x in bql or bqt: if x ≤ maxu∈bql or |bqt| = 0, then we insertx
into bql: if x is already present inbql then we incrementcx; else
we insertx into bql and setcx = 1. If we don’t putx in bql, we
will insert x into bqt: we will find the closest ancestor ofx in bqt,
v, and update the count ofv, if this does not violate condition (2)
— if it would, then we insert the descendant ofv that is an ancestor
of x into bqt and set its count to 1. This routine is illustrated in
pseudo-code in Figure 2.



INSERT(x)
Input: new itemx

1: N := N + 1;
2: if (x < maxleaf) or (|bqt| = 0) then
3: if x ∈ bql then
4: cx := cx + 1;
5: else
6: bql := bql ∪ {x}; cx = 1;
7: else
8: w := binary search right(lca(maxleaf, x)) to x

for least w 6∈ bqt;
9: if (par(w) = lca(maxleaf, x)) then
10: bqt := bqt ∪ {w}; cw := 1; L(w) := |bql|;
11: else
12: if (cpar(w) + 1 ≤ αL(par(w))) then
13: cpar(w) := cpar(w) + 1;
14: else
15: bqt := bqt ∪ {w}; cw := 1; L(w) := L(par(w));

Figure 2: INSERTalgorithm for maintaining bq-summary.

LEMMA 3. INSERT(x) maintains conditions(1), (2), (5), and
(6).

PROOF. When we insertx into bql, this is seen easily: for all
y ≤ x, rank(y), L(y) andA(y) are unchanged; for ally > x,
A(y) is unchanged, butL(y) and rank(y) both increase by 1.
Hence, if (1) was true before the insertion, it remains true after-
ward. For (2),L(v) either stays the same or increases for allv ∈ bq,
while cv stays the same. The only exception iscx, which increases,
but sincex = lf(x), this condition does not apply. We only insert
x into bql if x ≤ maxu∈bql u or |bqt| = 0, so (5) is maintained.
We either add one to an existingcv , or create acv = 1, so both
P

v∈bq
cv andN increase by 1, ensuring condition (6).

For insertingx into bqt, similarlyL(y) is either unchanged or in-
creases by 1 for ally. Letv be the node inbqt that is affected by the
insertion (i.e. eitherv was already inbqt andcv was incremented,
or elsev was inserted intobqt). We ensure that (2) is not violated
by the changes to(v, cv), and no othercvs are touched, so it must
remain true. Fory < lf(v), thenL(y), rank(y) andA(y) are un-
changed; fory ≥ x thenrank(y) andL(y) both increase by 1, and
A(y) either stays the same or increases by 1; lastly, ify ≥ lf(v)
andy < x thenv ∈ anc(y) so rank(y) stays the same,L(y) in-
creases by 1, butA(y) also increases by 1. Hence, in all cases (1)
is preserved. By design of the INSERT routine, (5) is preserved,
since we ensure thatmaxu∈bql u < lf(v). As in the leaf case, ei-
ther an existingcv is incremented or a newcv = 1 is created, so
condition (6) is preserved.

LEMMA 4. INSERT(x) can be carried out in timeO(log log U).

PROOF. Insertingx into bql takes constant time: we just have
to decide whether to insert intobql, and then updatebql with the
information aboutx. Insertingx into bqt can be accomplished ini-
tially using timelog U , by linearly searching along the path from
the root tox for a place to insertx; however, using the additional
properties we insist of our data structure this can be reduced to a
binary search in less time.

Let z = maxu∈bql u, the largest leaf stored inbql. We consider
the case whenx > z. Write lca(z, x) for the least common ances-
tor of z andx. Observe thatlf(lca(z, x)) ≤ z, so by condition (5)
lca(z, x) cannot be inbqt, and nor can any of its ancestors. Note
that lca(z,−) can be computed efficiently in timeO(log log U)
with some preprocessing: there arelog U possible answers to this
lca query, corresponding to the nodes on the path fromz to the

COMPRESSTREE(v,dbt, L)
Input: Start nodev, current debtdbt, L(v) valueL

1: L(v) := L; c′ := cv;
2: if (lf(v) = v) then
3: cv := c′ − dbt;
4: else
5: cv := min(αL, weight(v) − dbt);
6: if (cv ≥ αL) then
7: dbt := dbt + cv − c′;
8: wl := weight(left(v));
9: COMPRESSTREE(left(v), min(dbt, wl), L);
10: COMPRESSTREE(right(r), max(dbt−wl, 0), L+wl+c′);
11: else
12: remove all descendants of v from bqt
13: if (cv = 0) then
14: remove v from bqt

Figure 3: COMPRESSTREERoutine

root. By finding this set and thelf() value of each node in the set,
we can findlca(z, x) by binary searching into this set of leaves,
at a cost ofO(log log U). Sincex > z thenz must be in the left
subtree oflca(z, x) and x must be in the right subtree, by defi-
nition of lca. Consequently,lf(right(lca(z, x))) > z, and so by
repeatedly applying (3), if any descendantw of right(lca(z, x)) is
in bqt, then every node betweenw and right(lca(z, x)) must be
in bqt. Thus, to find the closest ancestor ofx in bqt, we can per-
form a binary search on the path betweenright(lca(z, x)) to find
the (unique) nodew such thatw 6∈ bqt but par(w) in bqt, and
try to increment the count ofcpar(w) or if this would violate con-
dition (2), we insertw into bqt and setcw = 1.4 Two boundary
conditions are easily handled: ifx ∈ bqt, then we incrementcx;
and if right(lca(z, x)) 6∈ bqt, then we insert it intobqt and set
its count to 1. This binary search is over a path of length at most
log U , and so can be completed in timeO(log log U).

3.4 Compress Procedure
The COMPRESSprocedure takes the data structure, and ensures

that conditions (1)–(6) hold, ensuring that the data structure re-
mains accurate for answering queries, but additionally thespace
used is tightly bounded. The procedure has several steps, which we
outline and then explain in detail: first, we reduce the size of bql to
its smallest permitted size, and insert the leaves that are removed
from bql into bqt. We then recomputeL values for all nodes inbqt
to reflect the insertions that have happened, and then we compress
each subtree withinbqt by reallocating the weights.

Resizingbql is straightforward: we aim to ensure that|bql| =
min(N, 1

α
). If this is already satisfied, then we need to take no

action. If |bql| > 1
α

, then we find the1
α

-largest leafu (in universe
order), and remove all leavesv from bql for which v > u. Let z
denote the previous largest leaf inbql; nowu fulfills this role. Note
that condition (3) may now be violated, sinceu < z, and so some
nodes inbqt may now have parents that should be present with non-
zero count. To fix this up, we insert all nodes needed to ensurethat
every node inbqt also has its parent present unless this parent is
an ancestor ofu. These nodes are introduced tobqt with cv set to
4Note that we do not computeL(v) exactly here, since it would be too
expensive. Instead, for each node we store an old value ofL(v). Since
L(v) only increases with time, there is no accuracy problem with using
an outdatedL(v) value. We may choose to insert a child ofv when we
could have increased the count ofv, but this does not affect our (worst
case) space bounds. Periodically, when we run a COMPRESSoperation we
will recalculate theL(v) values.



0. In a subsequent step, we will ensure that these “dummy” nodes
are allocated non-zero count and are treated identically toall other
nodes inbqt. All these dummy nodes are nodes on the path fromz
to the root, so there are at mostlog U such nodes needed. We then
take all leavesv > u that were inbql, and run INSERT(v) on each
of them, to put them intobqt.

We now define an operation COMPRESSTREE(v,dbt, L), which
takes a nodev ∈ bqt, and manipulates the counts stored in the sub-
tree defined byv so as to restore condition (3). This is illustrated
in Figure 3. It makes use of the weight of a nodev, which is de-
fined byweight(v) = cv +

P

w:v∈anc(w) cw . We can precompute
weight(v) for all v ∈ bqt with a recursive algorithm that takes time
O(|bqt|). The COMPRESSTREE procedure runs recursively over
the tree, and restores condition (3), by ensuring that everynodev
in bqt that has children hascv = αL(v). This is done top down.
For any node, it computes the difference betweencv andαL(v):
this is the slack that can be filled up by “borrowing” counts from
nodes below. The amount of count that is borrowed is denoted by
dbt. This is propagated down to the children, with preference to
the left child5. When the total amount of borrowed weight equals
the weight of the descendants of a node, we can remove all of these
descendants frombqt, to “repay the debt”. This is where we gain
in COMPRESS, since we can reduce|bqt|. A side-effect of COM-
PRESSTREE is to computeL(v) for each node inbqt as it operates.
Throughout, we take care to ensure that

P

v
cv = N at all times,

i.e. no counts are lost or added and condition (6). The details of
this procedure are given in pseudo-code in Figure 3.

For each nodev on the path fromu to the root, ifv ∈ bqt,
we run COMPRESSTREE on the right child ofv (if such a node is
materialized), setting the initial value ofdbt to zero, and the initial
value ofL to theL value ofv, which can be derived easily from
information already computed.

LEMMA 5. Conditions (1) – (6) are true after runningCOM-
PRESSover the bq-summary data structure.

PROOF. We first argue that the accuracy bounds (conditions (1)
and (2)) remain true after a COMPRESSoperation. (2) is straight-
forward: for all nodes inbqt that are not leaves of the tree, we
explicitly ensure thatcv ≤ αL(v). For (1), both the operations
on the leaves, and inserting some leaves intobqt, preserve (1),
following from Lemma 3. So we just have to argue that COM-
PRESSTREEoperations also preserve this condition. We first argue
that for anyx ∈ [U ], L(x) only increases when COMPRESSTREE

is carried out. This is because when we remove all descendants
of a nodev, all the counts associated with these deleted nodes are
added on tov or one of its ancestors. Since for anyu in the tree,
everyv ∈ anc(u) satisfieslf(v) ≤ lf(u), so noL(x) can decrease
when the count ofu is moved tov. Thus, ifrank(x) ≤ L(x) was
true before the COMPRESSTREEoperation, it must remain true af-
ter. We now argue that ifL(x) increases, thenA(x) increases by
the same amount. Letx be some node such that after a COM-
PRESSTREE operation,L(x) has increased by some valued. This
increase must be due to some nodesw satisfyingx < lf(w) whose
count was allocated to some nodev satisfyinglf(v) < x, elseL(x)
would not increase. Since count is only propagated to ancestors,
we must havev ∈ anc(w). Sinceanc(w) ⊆ anc(lf(w)), we have
v ∈ anc(lf(v)) andv ∈ anc(lf(w)), andlf(v) < x < lf(w). So
v ∈ anc(x). ThusA(x) also increases byd. HenceL(x) − A(x)
does not change, and so (1) is preserved.

5This preference does not affect correctness or space bounds; we exper-
imented with preferring both left and right, and found little difference in
practice between the two versions.

For the space bounds, observe that condition (4) is true since we
force |bql| > 1

α
, and (5) is also true, since we only add nodesv to

bqt that havelf(v) > maxu∈bql u. Lastly, (3) and (6) are enforced
by COMPRESSTREE, and if we delete any nodev from bqt then we
ensure that the entire subtree rooted atv is deleted while its count
is added on to that of an ancestor.

LEMMA 6. COMPRESScan be carried out in timeO(|bqt| +
|bql| log log U).

PROOF. Scanningbql to find the 1
α

-largest leaf takes time linear
in |bql|, using standard algorithms [2]. Adding dummy nodes to
bqt takes timeO(log U). Inserting each of the larger leaves into
bqt takes timeO(log log U) per leaf, from Lemma 4. Comput-
ing weight(v) for all v ∈ bqt takes timeO(|bqt|) as observed
above. Calling COMPRESSTREE(v) takes time linear in the num-
ber of nodes that are descendants ofv, as can easily be proved by
induction. This routine is called once for eachv ∈ bqt, a total of
|bqt| nodes, and takes constant time per node visited. Thus, the
total time to run a COMPRESSis given byO((|bql| log log U) +
log U + |bqt|) = O(|bqt| + |bql| log log U).

Query Procedure. We have already given the algorithm to return
the approximate rank of an itemx: we find L(x) andA(x), and
returnr̂(x) = L(x) − 1

2
A(x). To computeL(x) requires a linear

scan of the data structure. If many queries are posed in a batch, we
can reduce this cost, by computing theL values for all nodes inbq.
Computing these values requires sorting the nodes inbql, but can be
computed in linear time forbqt (indeed, this is done in the COM-
PRESSTREE algorithm). Queries can then be answered quickly:
given a queryx, we determine whetherx ≤ minu∈bqt lf(u). If it
is, then we findv = maxu∈bql,u<x and outputL(v). If x falls in
bqt, we findw such thatw is where we would insertx if we were
performing an insertion, and outputL(w). Thus, the time cost is
O(log log U) in thebqt case, andO(log log U + log(1/ǫ)) in the
bql case (a binary search into a sorted list of leaves).

THEOREM 2. We can maintain a data structure that allows us
to answer biased quantile queries and biased rank queries using
spaceO( log U

ǫ
log(ǫN)). The amortized cost isO(log log U) per

update.

PROOF. In order to ensure that all bounds hold, we must specify
how often to run the COMPRESSprocedure. Too frequent, and the
amortized cost is too high; too rare, and the space bounds may
be exceeded. We first run COMPRESSafter N = 4/α insertions
have been seen. Then we run COMPRESSwhenever the number
of updates since the last COMPRESSoperation,n, exceedslog ǫN′

α
,

for the current value ofN ′. Note after the previous COMPRESS

the space used was bounded byO( log ǫN

α
), and in the worst case,

after this many updates, the space used has grown byO( log(ǫN′)
α

),
since every INSERT can add at most one new tuple tobq. Thus
the total size of the data structure isO( log(ǫN′)

α
), sinceN < N ′.

The running time of the COMPRESSTREE is linear in the worst
case size of the data structure, which in turn is bounded by the
number of updates, so the cost can be amortized against the number
of updates. We also incur aO(log log U) cost for each member of
bql that is moved intobqt, but observe that this conversion happens
at most once for each leaf inbql, and can be charged back to an
INSERT operation. So, combining COMPRESSand INSERT, the
amortized time cost of each update is dominated byO(log log U).
The worst case space cost is just prior to a compress, which we
have argued isO( log(ǫN)

α
), giving the stated bounds.



4. APPLICATIONS AND EXTENSIONS

4.1 Simplified Algorithm
We now describe a simplified version of the above algorithm

which has some slightly weaker bounds but is much simpler to im-
plement. Instead of splittingbq into bqt andbql, it treats all ofbq
the same way. We do not maintain conditions (3), (4) or (5), but
instead use a new condition for proving space bounds:

∀v ∈ bq : par(v) ∈ bq andcpar(v) ≥ ⌊αL(par(v))⌋ (7)

This allows insertions ofx to be performed quickly, by binary
searching along the path fromx to the root of the tree for a node to
place the new count. However, we must allow some nodes inbq to
havecv = 0, which increases the space cost. In addition, we force
all cv counts to integral, by replacing the occurrences ofαL(v) in
Condition (2), INSERTand COMPRESSTREEwith ⌊αL(v)⌋.

THEOREM 3. We can maintain a data structure that allows us
to answer biased quantile queries and biased rank queries using
spaceO( log U

ǫ
(log ǫN + log U)). The amortized cost isO(log U)

per update.

PROOF SKETCH. We outline the key differences between the
simplified algorithm and the preceding algorithm. The main ob-
servation that links the two is that the leaves beneath dummynodes
that havecv = 0 correspond tobql from the previous algorithm.
After the first log U

ǫ
leaves, we can start populating internal nodes

with integer counts, sinceL(v) > 1/α and so⌊αL(v)⌋ > 1.
Further, whenL(v) > 2/α, we have⌊αL(v)⌋ ≥ α

2
L(v), thus

we know that, applying the same equivalence class argument as in
Theorem 1, eachLi is at least a(1+α/2) factor more than its pre-
ceding value, and one can show the sameO( log ǫN

α
) space bound.

Thus, the total space is given by adding on theO( 1
α
) leaves, each

of which hasO(log U) ancestors, giving the stated space bound.
This “full ancestry” property (every node in the data structure

has all its ancestors also present in the data structure) makes main-
tenance of the data structure conceptually simpler. INSERT(x) oper-
ations just have to binary search the path fromx to the root to deter-
mine where to insertx; the only complication is that we may have
to insertx as a leaf and create some missing ancestors with count
zero, which gives a worst caseO(log U) insertion cost. COM-
PRESSis straightforward: we just have to run the COMPRESSTREE

operation on the root node periodically. Following the sameargu-
ment as Theorem 2, the amortized cost of updates can be bounded
by the worst caseO(log U) cost of INSERT.

4.2 Partially Biased Algorithm
In the partially biased case (Definition 1 (b)), we are allowed to

give slightly weaker accuracy guarantees, so we should be able to
take advantage of this to reduce the space needed. In order todo
this, we can modify our previous algorithms slightly and give a new
analysis that shows reduced space costs. We adapt the conditions
(2) and (3) by replacingαL(v) with max( ǫminN

log U
, αL(v)). This

gives a potentially larger slack to the data structure for some nodes
that have smallL values.

We begin by running the unmodified biased quantiles algorithm,
with spaceO( log ǫN

α
), because untilN = log U

ǫmin
, there is little ben-

efit from applying the tighter pruning condition. However, when
N = log U

ǫmin
, every internal node has slack at least 1, and so we can

convert the data structure into one with the “full ancestry”property,
by inserting all the leaves frombql into the main tree structure, and
running COMPRESSTREE. We can perform INSERT(x) by binary
searching into the path betweenx and the root, finding a childless
node with capacity, or creating its child and inserting there.

THEOREM 4. We can answer partially biased rank queries with
error max(ǫminN, ǫ rank(v)) using spaceO( log U

ǫ
log ǫ

ǫmin
).

PROOF. To begin with, we use the algorithm of Theorem 1,
which uses spaceO( log αN

α
), while N ≤ log U

ǫmin
= ǫ

ǫminα
. Thus,

this space for this initial phase is bounded byO( log U

ǫ
log ǫ

ǫmin
).

For the analysis of the case whenN > log U

ǫmin
, we (notionally)

split the data structure into two parts: a left hand part to which the
ǫmin

log U
N bound applies, and a right hand part to which theαL(v)

bound applies. For this right hand part, we haveǫL(v) ≥ ǫminN .
We can now apply the same approach as in Theorem 1, of di-
viding the nodes into equivalence classes based on theirL val-
ues. As before, we haveLi+1 ≥ (1 + α|Ei|)Li. Starting from
the first equivalence class whereǫL(v) ≥ ǫminN , we can show
that the total number of internal nodes in this right hand side is
O( log U

ǫ
log(ǫ/ǫmin)), by modifying the proof of Theorem 1.

For the left hand part, the sum of counts of all nodes is at least
ǫminN/ǫ, by the condition onL(v). There is an equivalence class
i such thatLi < ǫminN/ǫ but Li+1 ≥ ǫminN/ǫ, which marks the
division between the left and right parts. The size of this equiva-
lence class is|Ei| < log U . The total number of internal nodes
retained in the left hand part each have count at leastǫmin/ log U ,
and the sum of their counts is at mostǫminN/ǫ. So there can be at
most(1 + 1/ǫ) log U = O( log U

ǫ
) nodes retained, accounting for

the extralog U nodes inEi. Combining these two parts, the space
required is dominated by the right hand part,O( log U

ǫ
log ǫ

ǫmin
).

So, irrespective of the value ofN , the space is bounded by this
quantity.

Observe that in the case thatǫmin ≤ 1/N , this cost reduces to the
bound for the fully biased case, as one would hope. We note that
in [3], a lower bound ofO( 1

ǫ
log(ǫ min(N, 1/ǫmin))) on the space

required was shown; hence this data structure is within a factor of
O(log U) of being optimal. Further, this is the first-knowndeter-
ministicalgorithm with proven space and accuracy guarantees.

4.3 Uniform Rank and Quantile Queries
Our data structure can be modified slightly in order to give uni-

form quantile error guarantees (Definition 2). That is, the error is at
mostǫminN for anyrank queryv, instead ofǫ rank(v). To do this,
we run the same algorithms, but replace all references toαL(v)
with ǫminN/ log U . This is similar to the structures given in [9, 6],
but gives a slightly improved amortized time bound (O(log log U)
instead ofO(log log U + log 1/ǫ)), which follows from [9].

THEOREM 5. Tracking quantiles in 1D with uniform error guar-
antees can be carried out using spaceO( log U

ǫmin
). Each update takes

amortized timeO(log log U), and queries take timeO( log U

ǫmin
).

PROOF. We no longer need to make a distinction betweenbql
and bqt; instead, we just have to buffer the first2 log U

ǫmin
updates.

This ensures thatN > 2 log U

ǫmin
, and so⌊ǫminN/ log U⌋ > 2. COM-

PRESSTREE ensures that each node stored in our data structure
such that some of its child nodes are stored, has count at least
⌊ǫminN/ log U⌋, and because we maintain a complete subtree, the
number of non-internal nodes is at most twice the number of inter-
nal nodes. The space bounds follows by considering the number
of internal nodes: since the sum of all counts must beN , we have
that the number of such nodes is at mostN/⌊ǫminN/ log U⌋ =
O( log U

ǫmin
). Insertions ofx take time worst caseO(log log U) to bi-

nary search for where to insert on the path fromx to the root. The
amortized cost of running COMPRESSTREE after everyO( log U

ǫmin
)

insertions isO(1) per insertion. Queries can be answered with a
linear scan over the data structure, i.e. in timeO( log U

ǫmin
).
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Figure 4: Comparison of algorithm from Section 3 with simplified version for fully biased quantiles (ǫ = 0.01).
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Figure 5: Space usage of the algorithms for fully biased quantiles (ǫ = 0.01).

4.4 Targeted Quantiles
Recall that the targeted quantiles problem (Definition 4) isspec-

ified by a setT of pairs {φj , ǫj}, and requires that we return a
set of itemsvj whose rank isφjN ± ǫjN . Any method which
answers quantile queries with uniform guarantees can be used to
solve the targeted quantiles problem by setting the accuracy pa-
rameterǫmin = minj{ǫj}. This gives a space requirement of
Ω(maxj{ǫ

−1
j }). However, we know that we should be able to do

better, since we do not need this guarantee over all the wholedo-
main, just forφj . For a single pairT = {φ1, ǫ1}, Manku et al. ob-
tained a sampling based randomized algorithm usingO(φ1

ǫ1
log 1

δ
)

samples [7]. Thus, for larger setsT , O(
P

j

φj

ǫj
log(|T |/δ)) space

is required. By applying our results for biased and fully biased
quantiles, we obtain improved deterministic bounds for thetargeted
quantiles problem.

THEOREM 6. A single targeted quantile query can be answered
using spaceO(φ1

ǫ1
log( 1

φ1
) log U)

PROOF. For simplicity, assumeφ1 ≤ 1
2

(if not, then we can re-
verse the ordering and replaceφ1 with 1 − φ1 to get the tighter
bound). We run the biased quantiles algorithm with parameters ǫ
andǫmin chosen as appropriate functions ofǫ1 andφ1, as follows:
The smallest error we need to guarantee isǫmin = ǫ1. When the
rank isφ1N , we need to give errorǫ1N This is a relative error of
ǫ = ǫ1/φ1. Substituting these values into the bounds for the biased
algorithm givesO( 1

ǫ
log ǫ

ǫmin
log U) = O(φ1

ǫ1
log( 1

φ1
) log U).

THEOREM 7. A set of targeted quantile queries can be answered
using spaceO(φk

ǫk
log( ǫk

φk
min(N, maxi{ǫ

−1
i })) log U) wherek =

argmaxj

φj

ǫj
.

PROOF. As above, consider the relative error implied by each
(φj , ǫj) pair. The smallest relative error is achieved byminj

ǫj

φj
,

i.e. (φk, ǫk). Hence if we can guarantee relative errorǫ = ǫk

φk
then

we can satisfy the accuracy requirements of all targeted quantile
requests (and potentially give tighter than required answers). We
apply the fully biased quantiles algorithm above, but sincewe never
require accuracy tighter thanǫmin = minj{ǫj}, we can get slightly
tighter bounds for this case, giving the stated bounds.

4.5 Distributed Streams
Given two bq-summaries, one can easily merge the two sum-

maries to create a bq-summary of the union of the inputs. We just
have to take the union of the twobqls as the newbql, and the union
of the bqts as the newbqt: if v is present in both summaries then
we set its countcv to be the sum of the counts, else if it is only
present in one summary, then we keep the previous value as itsnew
count. It is straightforward to show that merging preservesthe con-
ditions on the counts, sinceL, A, andrank are linear functions.
Following the merge, one can run COMPRESSto restore the space
bounds. This means that we can compute biased rank queries and
biased quantiles over distributed streams, by computing the sum-
maries locally and then merging the summaries at a central site.

5. EXPERIMENTS
In this section, we discuss our experimental results. In thefirst

subsection, we compare our bq-summary with fully biased error
guarantees against the deterministic algorithm for biasedquantiles [3]
as well as the randomized algorithm [10]. For fair time compari-
son, we obtained the implementations used by the authors of [3]
and [10] in their prior experimental evaluations. In the second sub-
section, we compare the partially biased version of our algorithm
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Figure 6: Runtime of the algorithms for fully biased quantiles (ǫ = 0.01).

against the partially biased version of the one in [3], as well as
the straightforward application of existing uniform quantile algo-
rithms [4, 6] using the minimum allowable error boundǫmin.

We implemented the simplified version of the proposed algo-
rithm described in Section 4.16. Recall that this version satisfies
invariants (1) and (2), and thus gives the desired accuracy guaran-
tees, but in theory may requireO( 1

ǫ
log2 U) additional space com-

pared to the one presented in Section 3. As we shall see, its space
usage is much less in practice. We also used our implementation of
the uniform quantiles problem described in Section 4.3.

Experiments were run on a Pentium 4 i686 machine running
Linux with 2.8 GHz CPU speed, 2 GB of main memory, and 512
KB cache size. We used both synthetic and real data in our exper-
iments. The synthetic data includes uniform random data from a
universe of size232; skewed data generated using the zeta (discrete
Pareto) distribution with parameterα, where the probability of the
ith most frequent item is proportional toi−α; and adversarial data
for the existing algorithm [3] as described in [10]: a sequence of
batches of items whose values are between the current maximum
and second-maximum tuples in the quantile summary. The real
data sets include flow-level IP traffic measurements obtained using
Cisco NetFlow at an ISP router carrying a heavy load of traffic,
and projected out the fields#pkts, #octets, duration, srcIP anddes-
tIP. We report space usage in terms of the number of tuples kept
by the respective data structures, as a function of the number of
stream items that have arrived. We measured the time cost of our
algorithms, and computed average throughput in items per second.

5.1 Fully Biased Quantiles
Our first set of experiments set out to study the space cost in-

curred by using the simplified version of our algorithm (“SBQ”)
described in Section 4.1, compared to the one in Section 3 (“BQ”);
we estimated the space cost of BQ by discounting the number of
nodes stored by SBQ with zero counts (this gives an upper bound
on the cost of BQ). We observed only small differences in the space
usage of BQ and SBQ on all of our data sets except on uniform data
(Figure 4 (a)). On uniform data, the difference was about 35Kafter
a million input items, which is considerably less than the theoreti-
cal worst case cost,1

ǫ
log2 U ≈ 102K. On skewed data, the space

usage decreases with skew–from|bq| =30K for zeta withα = 0
(uniform) to|bq| =12K with α = 0.7 (shown in Figure 4(b)) to 6K
with α = 0.9. Figure 4(c) shows that the space usage of SBQ on
real data: as expected, the cost is low, and the difference between
SBQ and BQ small, since in practice data exhibits significantskew.

To compare against prior algorithms, we tested the space and
6We have recently implemented the main algorithm, and experi-
mental results will be reported in the full version of this paper.

time costs for biased quantiles withǫ = 0.01. We compared our
methods with the deterministic algorithm (“CKMS”) from [3], and
the randomized algorithm (“MRC”) from [10], even though this
algorithm does not give deterministic error guarantees; the confi-
dence level(1 − δ) was set to be as generous as possible, at 90%.
Figure 5 graphs the space usage for these algorithms on threedif-
ferent data sets, and Figure 6 plots histograms of the throughput
(stream items per second) for the respective algorithms in log scale.
Whereas CKMS used very little space on (randomly-ordered) uni-
form data (see Figure 5(a)), SBQ required significantly more; in
fact, as was observed in [10], CKMS used less space than MRC on
uniform data. SBQ used the most space, since uniform data appears
to be one of the hardest cases for SBQ — it resulted in the largest
observed space usage out of all the data sets we tried — and our
experiments below demonstrate much better space and time effi-
ciency on real data. However, it was still over two orders of magni-
tude faster than MRC (Figure 6 (a)). Figure 5(b) shows the results
on the “adversarial” data set described in [10], where SBQ used
the smallest space and processing time compared to both CKMS
and MRC (running time again better by two orders of magnitude).
Finally, Figures 5(c) and 6(c) compare the performances of these
algorithms on (real) flow durations. After a million items, SBQ
used three times less space than MRC and seven times less than
CKMS; its processing throughput was 12 times better than CKMS,
and 27 times better than MRC, showing significant wins on both
time and space cost on real data sets.

5.2 Partially Biased Quantiles
We compared the partially biased variant of CKMS (see [3]) with

our partially biased algorithm, “PBQ”, using parametersǫ = 0.1
and ǫmin = 0.001. We also ran the GK algorithm (“GK”) as
well as our implementation of a uniform quantile algorithm,“UQ”,
(described in Section 4.3), both at the conservative error bound
ǫmin = 0.001 (thus guaranteeing to meet the accuracy require-
ments). Figures 7(a) and 8(a) present the space usage and through-
put using the adversarial data. Again, CKMS exhibits linearspace
usage on this data, whereas PBQ, which is provably sublinear, uses
significantly less space in practice. Interestingly, CKMS does much
worse than the GK algorithm from which it is adapted, since CKMS
prunes its summary structure more aggressively, which turns out to
be detrimental in the long term. UQ also required a lot more space
than PBQ, although unlike CKMS its space requirement is inde-
pendent ofN , and so it levels off. Figures 7(b) and 8(b) present
results using flow duration data. Note the bursty space usageof
CKMS in Figure 7(b). The space increase is due to values at low
ranks requiring very fine accuracy; the error constraint relaxes as
these ranks falls below the span of the partial bias, and withit the
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Figure 7: Space usage from the algorithms for partially biased quantiles on (a) adversarial data and (b) flow durations (ǫ =
0.1, ǫmin = 0.001).
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Figure 8: Runtime comparison from the algorithms for partially biased quantiles on (a) adversarial data and (b) flow durations
(ǫ = 0.1, ǫmin = 0.001).

space usage. GK requires less space than CKMS, but still oversix
times more than that of PBQ. On this data, it appears that the ad-
ditional pruning power of PBQ over its uniform counterpart gives
only a slight decrease in space cost (and a slight increase intime
cost). The overall runtime performance of PBQ/UQ is well over an
order of magnitude better than that of CKMS and GK.

6. CONCLUDING REMARKS
We have given the first space-efficient deterministic algorithms

for a variety of problems including biased quantiles, biased rank
queries, and targeted quantiles. They are fast to process each up-
date in high volume data streams, and have strong space guarantees
that are close to optimal. Experimentally, they often outperform ex-
isting methods in both time and space requirements.

Our algorithms given here use a “universe-aware” approach to
tracking the distributional information. They require knowledge of
the universe,U , from which the items are drawn, and incorporate
log U explicitly into the algorithm. This constraint is reasonable
for many data streaming scenarios—indeed, we saw that it is no
handicap in our experimental study—but for some settings, when
U is very large, or unbounded (e.g., arbitrary real values), it can
become problematic. For uniform guarantees, the GK algorithm
has no explicit dependency onU . Prior work on biased quan-
tiles gave algorithms derived from GK that did not require knowl-
edge ofU [3]; however, as shown in [10], these algorithms exhibit
worst case behavior that is linear inU . Thus, it remains open to
find solutions to the biased quantiles problems we study which are
“universe-agnostic”: they do not require specific knowledge of U ,
andlog U does not enter into their asymptotic bounds.
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