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Abstract

Emerging applications in sensor systems and network-wide
IP traffic analysis present many technical challenges. They
need distributed monitoring and continuous tracking of events.
They have severe resource constraints not only at each site in
terms of per-update processing time and archival space for high-
speed streams of observations, but also crucially, communication
constraints for collaborating on the monitoring task. These
elements have been addressed in a series of recent works.

A fundamental issue that arises is that one cannot make the
“uniqueness” assumption on observed events which is present in
previous works, since widescale monitoring invariably encounters
the same events at different points. For example, within the net-
work of an Internet Service Provider packets of the same flow will
be observed in different routers; similarly, the same individual
will be observed by multiple mobile sensors in monitoring wild
animals. Aggregates of interest on such distributed environments
must be resilient to duplicate observations.

We study such duplicate-resilient aggregates that measure the
extent of the duplication—how many unique observations are
there, how many observations are unique—as well as standard
holistic aggregates such as quantiles and heavy hitters over
the unique items. We present accuracy guaranteed, highly
communication-efficient algorithms for these aggregates that
work within the time and space constraints of high speed streams.
We also present results of a detailed experimental study on both
real-life and synthetic data.

1 Introduction
In recent years, a variety of large-scale monitoring applica-
tions have arisen. A key example is network-wide monitor-
ing of the IP network, where network management requires
collecting data from multiple routers and locations, collat-
ing them, performing real-time analyses for network opera-
tions, quality monitoring, security, providing service-level
guarantees, and so on. Another example is wildlife mon-
itoring of animals in the wild such as the ZebraNet [19]
project where collars containing a variety of sensors are
placed on Zebras in the wild and fixed and mobile basesta-
tions (some on elephants!) are used to monitor the herds.

Such large scale monitoring applications represent
many challenges to data management and require new
approaches to cope with them. For example, they are

inherently distributed over a wide area, and rely on a pos-
sibly unreliable communication network. Data collected
is massive and typically is presented as a “stream” of
(unsorted) readings. Further, there are severe resource
constraints in
• space: routers typically do not have high speed memory

capable of capturing packet logs for more than a few
minutes; sensors on zebras have a few Mb of memory and
can not store more than a few minutes of readings from
accelerometer, GPS, and other sensors.
• processing power: much of router CPU is devoted to

packet forwarding and flow management and only a small
portion is available for logging or monitoring, a portion
that goes down significantly in times of greatest need such
as during Denial of Service Attacks when the number
of flow increases sharply and more of the CPU time is
needed to manage the traffic; sensors have modest CPUs
with low power requirements and a significant portion
of the processing is devoted to radio management for
communication, and
• communication capability: communicating entire pack-

ets logs will be a significant fraction of network capacity
and is rarely done in large Internet Service Providers; radio
communication in sensors is a power-hog, can be spotty
and sporadic, and is used only sparingly.

In addition, the challenges in large scale monitoring are
also conceptual, related to query processing.
Nature of query processing. Rather than on-demand,
user-driven queries, specified ad hoc by users in SQL for
immediate processing as is common in Database Manage-
ment Systems, the monitoring is typically continuous. For
example, in an IP network, one task is to continuously ob-
serve the traffic patterns and cause an alert (or take some
action) when a Denial of Service attack is detected.

While continuous queries present challenges even within
a standard DBMS context, for large-scale monitoring, the
challenges are deeper. The volume of the data collected
means that the simple solution of pushing all data back
to a single coordinator node for centralized processing
does not scale. Instead, the goal must be to minimize
communication to the extent possible.

The emerging approach to supporting continuous queries



in distributed monitoring applications is to allow approxi-
mation and do in-network aggregation. That is, the mon-
itoring query is compiled into a set of constraints that are
pushed down into the monitoring nodes. These create con-
cise summaries of the data observed, and send the sum-
maries to coordinator nodes, which collate and recompute
constraints, guaranteeing that the monitoring problem is ac-
curately answered at the coordinator, up to some approxi-
mation criterion.

Nature of Queries. Sophisticated monitoring queries tend
to be holistic, requiring features from multiple attributes at
multiple locations to be coordinated and compared. For
example, in wildlife monitoring, a natural query is to
track the herd size comprising members that form a social
community that is distinct from merely being at a waterhole
at discrete times. In IP routers, a natural query is to track
total traffic volume of traffic that is generated inside a
network and is destined to the outside. Hence, distributed
monitoring queries go beyond queries that can be easily
decomposed into aggregates at each monitoring point, and
aggregated via select, project, SUM, COUNT etc.

One of the chief characteristics of large scale monitoring
systems is that the same “event” may be observed multiple
times at multiple locations. In an IP network, the same
packet may be seen at many tap points within the network,
or by only one, depending on how the packet is routed.
In sensor networks, each meeting between two members
of the herd may be registered by multiple sensors, but
should only be counted once; for example, in tracking
wild animal interactions it is important to distinguish
between previously observed groupings and new ones,
which may happen in different locations or at different
times. Further, the communication itself may be lossy,
so in-network aggregation must be resilient to information
that is repeated to avoid loss of data. For example, TCP
retransmits lost packets and leads to the same packet being
seen even at a given monitor more than once. In order
to account for sporadic sampling and provide reliability,
wildlife monitoring systems such as the ZebraNet rely
on periodic exchange of data between members so that
when data is collected from multiple members, there is
significant repetition of same events. Other sensor systems
also see such duplications [6, 23]. Hence we must support
tracking of events in a way that is duplicate-resilient so
duplication of messages and readings does not affect the
overall accuracy of the monitoring task.

In this paper, we study duplicate-resilient aggregates in
the continuous, distributed scenario setting for large-scale
monitoring. In particular, we propose two problem classes:
1. What is the amount of duplication in the network?
We study direct aggregates that quantify the amount of
duplication in the system, such as tracking the number of
distinct events seen, or how many events are unique (i.e. are
not duplicated), or more generally, what is the duplication
factor for each event.
2. What are the versions of classical aggregates in the

presence of duplicates? Here, we study the indirect aspects
of duplications by studying classical holistic aggregates—
like quantiles, heavy hitters—and more generally various
selectivity queries over distinct events.
More precisely, our contributions are as follows.
• We formalize duplicate-resilient monitoring in a contin-
uous, distributed setting.
• We identify two fundamental primitives—distinct count-
ing and distinct sampling—at the heart of a wide variety
of more complex queries that are duplicate-resilient, and
present efficient solutions for tracking them in the contin-
uous, distributed setting within resource constraints—per-
item processing time and limited space—at each monitored
site. Our solutions give trade-offs between the communica-
tion cost and the accuracy of the monitored query at a cen-
tral site. In addition, they show the trade-offs of each site
monitoring aggregates with and without global knowledge
of the data distribution at other sites, and the trade-offs in-
volved in information flow between the central monitoring
site and the monitored sites.
• We show applications of the primitives above to several
duplicate-resilient aggregate monitoring problems.
• We perform an extensive experimental evaluation of
our methods. This highlights the differences between the
design choices across our techniques, and points to which
approaches are generally the most successful at minimizing
the communication burden of the monitoring task beyond
the asymptotic costs found from our analysis.

2 Related Work
There has been a lot of work recently on estimating vari-
ous aggregates on data “streams” that work within our lim-
ited space and per-item processing concerns, motivated by
IP traffic, financial, web click streams and others. These
methods are surveyed in [2, 22]. There has been tremen-
dous progress in building Data Stream Management Sys-
tems (DSMSs) as evidenced by many emerging DSMSs in
academia (Aurora [1], STREAM [24], Telegraph [5], Bore-
alis [14]) and industry (Gigascope [12], StreamBASE [25],
CMON [26]) etc. However, much of this work applies to
a single monitoring site and do not explicitly optimize the
communication between multiple sites for continuous mon-
itoring tasks. Some of these methods, especially those that
rely on sketches and samples, can be extended to the dis-
tributed scenario for on-demand or periodic queries in a
communication-efficient manner, but they do not work for
continuous aggregate estimation from multiple sites.

Technically, some of the precise problems of our interest
here have been studied before in the single site, on-demand
queries case. For example, distinct counting has been stud-
ied in [15, 16], and we use these primitives to build on.
Motivated by sensor networks, simple duplicate-resilient
aggregates have been studied in [6, 23]. These begin
with computing aggregates (SUM, COUNT) in a duplicate-
resilient way, and progress to quantiles and heavy hitters
but remain an on-demand computation rather than continu-



ous. In particular, the challenge in our distributed, continu-
ous setting is how to monitor local and global information
to decide when to send updated summaries around the net-
work. Our work fits into the model of duplicate-sensitive
aggregates proposed in [23], but extends the model to ad-
dress the continuous nature of query processing not previ-
ously studied [6, 23]. Some of our duplicate-resilient ag-
gregates are generalizations of inverse distribution queries,
for which solutions were presented in [11], again for on-
demand, single site case. We build on all these technical
primitives to the continuous, distributed setting by design-
ing what information to maintain at sites, what/how/when
to communicate between the sites and the coordinator and
apply the resulting protocols to duplicate-resilient aggre-
gates.

Previous works that directly worked in the continuous,
distributed setting to optimize the space, time and commu-
nication costs as we do here studied non-duplicate resilient
aggregates such as heavy hitters [3, 21], quantiles [9], and
L2 sketch maintenance with applications [8]. These papers
do not address any problems that are duplicate-resilient.
There is a concrete technical challenge we face that is
not faced by the papers above because of the duplicate-
resiliency. Say there are k monitored sites, and a cen-
tral site that has the number of distinct elements seen by
all the sites thus far. When each of the sites sees a new
item, should it update the central site or not? Ideally, it
would only send this information if the item has not been
observed elsewhere, but sharing this information is costly.
Previous work has studied the problem of continuously an-
swering set expression queries [13] by maintaining infor-
mation about the presence or absence of each item at each
site. This approach does not scale when there are very high
numbers of items at each site; instead one must keep ap-
proximate sketches of the item sets, but it is not clear how
to modify this scheme to give guaranteed accuracy using
summaries since the protocol relies on tracking frequencies
of individual items. Instead, here, we give novel methods,
and focus on a variety of aggregates, many of which (quan-
tiles and heavy hitters in particular) cannot be specified as
set expressions.

3 Preliminaries
We first formally define the model in which our algorithms
will operate, and define the two problems that are at
the heart of all our duplicate-resilient aggregate tracking
solutions. As in previous work, we acknowledge that
communication is delay-prone and messages may get lost,
but for the sake of simplicity we focus on the underlying
technical problems and so assume that message delivery
is instantaneous, i.e. any necessary timestamping and
reordering of messages is taken care of. In order to produce
communication efficient schemes, we rely on some existing
techniques originally proposed in the data streams context.
These produce small summaries allowing the estimation of
the number of distinct items seen and related functions.

3.1 Distributed Streaming Model
There are k remote sites, each having an insertion update
stream Si, i = 1 . . . k. Each element in Si is from the
integer domain [U ] = {0 . . . U − 1}. Each remote site only
communicates with the designated site 0, which acts as a
coordinator to answer user queries about the union of all
the remote streams. Let S0 = S1 ∪ S2 ∪ . . . ∪ Sk be the
union stream, and N0 be the number of distinct values in
S0. We let |Si| denote the number of items (not necessarily
distinct) in each stream Si, and hence |S0| =

∑k
i=1 |Si|.

Each item v in S0 has its observed count at site i denoted
by Cv,i, and its overall count Cv,0 =

∑k
i=1 Cv,i.

Our main focus within this model are on two problems,
of distinct counting and distinct sampling, which we define
formally below. Solutions to these problems are the basis
of our methods for tracking duplicate-resilient aggregates.

Definition 1. The distinct count problem is, given param-
eters 0 < ε < 1 and 0 < δ < 1, for the coordina-
tor site to continuously be able to produce an estimate,
DC, so that at any time the current value of DC satisfies

Pr[N0(1− ε) ≤ DC ≤ N0(1 + ε)] > 1− δ

Definition 2. The distinct sample problem is, given param-
eters T and θ for the coordinator site to continuously be
able to produce a sample of pairs DS = {(v, c)} of size at
most T so that each item v in DS is drawn uniformly from
S0 and its associated count c is a (1± θ) approximation of
Cv,0, its number of occurrences in S0.

In considering our algorithms, we give attention to two
important features. Correctness says that the algorithm
gives the (sometimes probabilistic) guarantee on the an-
swer to the query at the coordinator. Communication Cost
is (the worst-case bound on) the amount of communica-
tion between sites and the coordinator in order to achieve
these guarantees. The goal is to minimize the communi-
cation cost while guaranteeing correctness. We will also
give consideration to the computational cost of running
the protocol at the remote sites and coordinators, and to the
space cost of these algorithms, but these are secondary to
the goal of minimizing communication. In any event, all
our algorithms are relatively fast and space efficient.

3.2 Flajolet-Martin Sketch (FM)
The Flajolet-Martin sketch [15] is a simple, bitmap based
algorithm that allows efficient estimation of the number
of distinct items. Each entry in the sketch is a bitmap of
length log U , where U is an upper bound on the number
of distinct items (eg U = 232 or 264). A hash function
h maps items onto the range [1 . . . log U ] so that the
probability of any item mapping onto i is 2−i. For every
item seen, v, we set the h(v)th bit of the bitmap to 1.
After processing all items, the least significant bit in the
bitmap that is still 0 is a good estimator for the logarithm
of the number of distinct items. To improve accuracy,
we can take multiple instances of the same algorithm



(using independently chosen hash functions) and repeat,
and output the average of the estimates. Under assumptions
about the independence of the hash functions, the result is
an estimate of the number of distinct items seen, D, that is
between (1 − α)D and (1 + α)D with probability at least
1− δ provided we take at least O( 1

α2 log 1/δ) repetitions.
An important feature of the data structure that we will

use is the ability to merge two FM sketches together to
get a summary of the number of distinct items seen over
the union of both sets of items. It is a simple observation
that the merger is simply the bitwise-or of each pair of
corresponding bitmaps. We will use set notations over
these sketches Sk: setting Sk = Sk ∪ {v} denotes adding
a new item v to the sketch, and Sk ∪ Sk′ denotes merging
two sketches. We will write |Sk| to denote the estimate of
the number of distinct items given by sketch Sk.

3.3 Distinct Sampling
The Distinct Sampling algorithm proposed by Gibbons and
Tirthapura [16, 17] is a streaming algorithm that allows the
drawing of a uniform sample of items, DS, from the set
of distinct items seen in the stream. The method uses a
hash function h with the same properties as the FM sketch:
the probability of an item hashing to i is exponentially
decreasing in i. Based on a level, l, we store each item
from the input (and keep count of how many times it is
seen) for which h(v) ≥ l. If the number of items being
stored exceeds a threshold, T , then we increment l, and
remove from DS any items v with h(v) < l. By keeping a
total of T = O( 1

α2 log 1/δ) items sampled from the input,
one can answer a variety of queries over the input with high
accuracy, as we describe later.

As with the FM sketch, two distinct samples can be
easily merged: set l to be the maximum of the ls of the
two distinct samples, and merge the set of items. Prune
any items which have h(v) < l and sum the counts of
items which appear in both samples. If after the merge the
size of the set is above the threshold T , increment l and
purge items hashing to less than l as usual. The result is
precisely the distinct sample that would have been obtained
if all items had been processed by a single instance of the
algorithm in the centralized model. The challenge is how to
to get a good approximation of this at a central site without
requiring communication from remote sites every time a
new update is received.

4 Distinct Count Tracking
All our algorithms for the Distinct Count problem have
the same basic structure: every update that is received at
a local site is incorporated into a local sketch Ski and
the current estimate Di compared to a threshold. If this
local threshold is exceeded, then a communication of Ski

is triggered between the site and the coordinator. The
coordinator updates its data structures Sk0 and D0, and
sends some information out to some or all sites, such as
a copy of its sketch or its current count. To distinguish

Symbol Description
Si Local stream at remote site i

S0 = ∪iSi The union of all streams
at the coordinator(conceptual)

Ni, N0 Current local/conceptual global true
number of distinct values

N t
i , N t

0 Local/global true
number of distinct values at last update

Ski, Sk0 Current local/conceptual global sketch
Di, D0 Current local/conceptual global

estimate of distinct values from sketch
Cv,i, Cv,0 Local/global count of item v
Skt

i , Skt
0 Local/global sketch at last update

Dt
i , D

t
0 Local/global estimate at last update

Ct
v,i, C

t
v,0 Local/global count of v at last update

Figure 1: Commonly used symbols

between the current value of a data structure at one site
from a (possibly stale) copy at another site, we use Dt

i , Skt
i

to denote these values at time t. We usually use this
as shorthand to indicate the most recent copy of Di or
Ski received by another site or sent out by site i. These
commonly used symbols are shown in Figure 1.

The crucial choices in the design of our solutions are
what thresholds to use locally, and what communication the
coordinator has with the sites. Our algorithms are designed
to be conservative, so that the coordinator can always
accurately answer queries. The error at the coordinator
comes from two components: the inherent error from using
sketches, α, and the maximum permitted “lag”, θ. We
design our algorithms to try to minimize communication
while always communicating to the coordinator when it is
possible that the coordinator’s answer is no longer accurate.

The basic algorithms are outlined in Figure 2: SKREMO-
TEUPDATE processes each new item arriving at a remote
site i, to update the local sketch and possibly send an up-
date to the coordinator. SKCOORDUPDATE processes the
sketches that are received from remote sites. As can be
observed, these are essentially quite simple, and the com-
plexity comes in the choice of the two pieces which vary
over the algorithms (denoted by underlined names): what
threshold to use, skt(θ, k,Dt

0, D
t
i) (as a function of number

of sites k, lag parameter θ and recently sent and received
counts); and what messages the coordinator sends back to
the site, skm(i, Sk0) . skt(θ, k,Dt

0, D
t
i) is a function that

returns a numerical value, and skm(i, Sk0) returns a set of
pairs {(i′,m)} meaning that message m is sent to site i′.
From our analysis, all our proposed algorithms have the
same worst case communication cost 1; however, exper-
imentally we will see significant variations in this cost on
practice, since the constants, and conditions which provoke
the worst case behavior, vary across the methods.

Throughout, we discuss the implementation of our
algorithms in terms of sending sketches. At the end of this
Section we discuss various implementation optimizations,

1We omit proofs due to space limitations



SKREMOTEUPDATE(v, i)
Input: New item v to site i

1: Ski ← Ski ∪ {v}; Di = |Ski|;
2: if Di > skt(θ, k, Dt

0, D
t
i ) then

3: send(i, Ski) to coordinator
4: Skt

i = Ski; Dt
i = |Skt

i |;

SKCOORDUPDATE(i, Ski)
Input: Site i sketch Ski

1: Sk0 = Sk0 ∪ Ski

2: D0 = |Sk0|
3: send(skm(i, Sk0) )

Figure 2: Outline of Tracking Algorithms

but for the sake of clarity we pose the algorithms in terms
of sending full sketches only.

4.1 Algorithms
We propose four variations of the basic algorithm based
on the communications between sites and the coordinator.
These are illustrated in Figure 3.
DC Algorithm 1: No Sharing (NS). In our simplest al-
gorithm, the threshold for sending is based solely on infor-
mation local to the algorithm. So we set skt(θ, k,Dt

0, D
t
i)

= Dt
i(1 + θ

k ), and skm(i, Sk0) = ∅, meaning no message
is ever sent from the coordinator. The advantage of
this approach is that it is quite simple. The constraint at
site i depends only on local estimates and does not in-
volve coordinating message from the central site. However,
for sites with a relatively small number of distinct values,
their updates to the coordinator do not affect the answer
much, causing unnecessary communication. Subsequent
solutions address this issue.
DC Algorithm 2: Shared Count (SC). In our second
algorithm, the coordinator ensures that all sites have the
current approximate count of distinct items Dt

0 on which
they can base their threshold. We set skt(θ, k,Dt

0, D
t
i) =

Dt
i + θ

kDt
0, and skm(i, Sk0) = {(i,D0)|1 ≤ i ≤ k} is sent

to all sites whenever this value changes. This ensures that
each site has a larger threshold than in the previous case,
and can reduce overall communication cost if the overhead
from broadcasting updated counts is not too large.
DC Algorithm 3: Shared Sketch (SS). So far, we have not
used much information about other sites. When we receive
a new item at some site i, we don’t know whether it has
been seen before at any of the other sites. To be able to
tell this exactly would require very much communication
(at least linear in the number of items); however, we
can instead ask whether this new item can change the
coordinator’s sketch. This is a weaker demand, and we can
more effectively answer it by sharing the most recent sketch
from the coordinator, Sk0 with the remote sites. Instead
of updating a sketch of just their items, they update their
local copy of the global sketch, and communicate with the
coordinator when the new estimate of the distinct items is
above skt(θ, k,Dt

0, D
t
i) = Dt

0(1+ θ
k ). The message sent by

the coordinator to all sites is skm(i, Sk0) = {(i′, Sk0)|i′ 6=
i}: the current global sketch is sent to every site except
i, which prompted the update (since i can compute this
information itself). If an item is seen first at one site, and
then later at another site, and the first site communicates to
the coordinator in time then the sketch at the second site

will not change when the item is seen there. A price is paid
by this algorithm: broadcasting a sketch every time there is
an update can be very expensive. On some data, the saving
from sketch sharing may not be enough to buy back the cost
of broadcasting sketches.

DC Algorithm 4: Lazily Shared Sketch (LS). We
observe that the main penalty in cost of the Shared Sketch
algorithm comes from the eager broadcasting of sketches
whenever Sk0 changes. In some cases there could be
relatively little benefit to sending this sketch to everyone.
Instead, we can more lazily distribute the updated sketch:
every time a site contacts the coordinator, it gets the
current Sk0 in return—sketches are never broadcast. Thus
skt(θ, k,Dt

0, D
t
i) is the same as in the previous algorithm,

Dt
0(1 + θ

k ), and skm(i, Sk0) is the single pair {(i, Sk0)}:
the global sketch is only sent back to site i.

Lemma 1. All algorithms guarantee error at most α + θ
with probability at least 1 − δ. To guarantee error at most
εN0, they require communication as follows:
NS: O( k

ε3 log 1
δ log Ni) per site, O(k2

ε3 log 1
δ log N0) over-

all; SC: O(k
ε (k + 1

ε2 log 1
δ ) log Ni) per site, O(k2

ε (k +
1
ε2 log 1

δ ) log N0) overall; SS and LS: O(k2

ε3 log 1
δ log N0)

overall.

Exact Distinct Count algorithm (EC). For comparison,
we give an alternate algorithm that avoids any approxima-
tion. Each site looks at each new update, and sends it to
the coordinator if it has not been seen before at that site.
This is slightly more complicated than the trivial algorithm
of sending every update to the coordinator, since it sup-
presses duplicates: it needs much more space than the pre-
vious algorithms, since it has to store the set of seen items
exactly, requiring space Ω(U). The coordinator combines
these results and computes N0 exactly. One can easily see
that this algorithm is correct, and the communication cost
is O(

∑k
i=1 Ni). We compare the communication cost of

our algorithms to the Exact Count approach.

4.2 Implementation Issues
Communication Optimizations. In implementing these
algorithms, there are several natural optimizations to try.
For example, the description speaks of sending sketches,
but in the initial phases of the algorithm when the number
of distinct items seen at each site is relatively low, it would
be more efficient to send the set of new items exactly.
Making this optimization requires only a relatively small
amount of extra space at site to keep the set of items
seen so far, since we can switch over to a sketch when
this is sufficiently big. Based on this optimization, the
total (outward) communication of each remote site using
a sketch based algorithm should never exceed that of the
Exact Count algorithm described above.

Space and Time Cost. The space cost of our algorithms
are much smaller than the space required to record the
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Figure 3: Actions as site i communicates for Distinct Count Tracking algorithms

set of all distinct items seen at a site: to make this trade-
off, we need to store at most k/θ times the size of sketch
(because we switch over when the number of new items,
kDi/θ is more than the size of a sketch). The space cost of
our algorithms at each site is then dominated by this cost,
O( k

α2θ log 1/δ). The remaining space cost is that to store a
constant number of sketches and some additional variables.
The time to process each update is the time required to
update a sketch, and possibly add the item to a set of items
seen so far if this is small. If a communication is needed,
then a sketch or set of items are sent to the coordinator. In
the worst case, the time for this is linear in the size of a
sketch, O( 1

ε2 log 1/δ).
Sketch Type. Although we have couched our discussion
in terms of the Flajolet-Martin (FM) sketch data structure,
there is little in our algorithms so far that is specific to this
structure. Rather, any sketch structure that supports adding
new items, merging two sketches and outputting the ap-
proximate number of distinct items could be used, eg [7, 4].
Once a particular sketch is chosen, various sketch-specific
optimizations could be implemented. For example, we
could concisely encode the difference between subsequent
sketches sent using compression techniques. We did not
include such techniques in our implementation in order to
get a clearer comparison between methods.

5 Maintaining Distinct Samples
Our goal is to maintain a distinct sample, DS, at the
coordinator with the property that the count of every item
in the sample at the coordinator is a good approximation of
the item’s true count over all sites. As when we maintain
sketches, the basic outline of our algorithms are similar,
and they vary in two respects: under what threshold the
sites update the coordinator with counts of items, and what
information the coordinator sends out to the sites.

We simulate running the distinct sample algorithm at
the coordinator, so there is a single global notion of l,
the “level” of sampling that defines which items we keep.
The coordinator keeps information about items whose hash
value is at least l, and when the size of this set DS exceeds
the threshold T , it increments l and removes all items from
DS whose hash value is less than l. It broadcasts the new
value of l as soon as l changes: we argue that this is an
important step, since it instructs all remote sites that the
coordinator is not interested in any items whose hash value

DSREMOTEUPDATE(v, i)
1: if h(v) ≥ l then
2: Cv,i = Cv,i + 1
3: if Cv,i > dst(θ, Ct

v,i, C
t
v,0)

then
4: ∆v,i = Cv,i − Ct

v,i

5: send(i, v, ∆v,i) to coord

DSCOORDUPDATE(i, v, ∆v,i)
1: Cv,0 = Cv,0 + ∆v,i

2: send(dsm(i, v, Cv,0) )
3: if |DS| > T then
4: l = l + 1; broadcast(l)
5: for all v ∈ DS do
6: if h(v) < l then
7: delete v from DS

Figure 4: Distinct Sample Tracking Algorithms

is less than l. This can lead to significant savings, since the
fraction of items whose count is l or more is approximately
2−l. Hence we push out changes in l as soon as possible.

In addition to tracking the set of items in level l or
higher, the coordinator also tracks the count of items v ∈
DS as Cv,0. Keeping exact counts would be too costly,
especially in the case when there are a small number of
distinct items which all occur very frequently. Instead,
we allow approximation in the counts of each item, and
study how different approximation strategies affect the
communication cost. For each site i and each update v, we
update the local count of v as Cv,i, and determine whether
communication with the coordinator is required (based on
dst(θ, Ct

v,i, C
t
v,0) ). The coordinator maintains the distinct

sample, broadcasting a new value of l if necessary, and
sending messages dsm(i, v, Cv,0) concerning item counts.
The algorithms are given in outline form in Figure 4.

DS Algorithm 1: Local Counts Only (LCO) Again, we
begin by sharing as little information as possible between
coordinator and sites. In the Local Count algorithm, we
keep information on only the local counts of items v
with h(v) ≥ l. We send whenever Cv,i increases by a
(1+ θ) fraction, i.e. we set dst(θ, Ct

v,i, C
t
v,0) = (1+ θ)Ct

v,i.
The coordinator does not need to send any additional
information back to sites so we set dsm(i, v, Cv,0) = ∅.

DS Algorithm 2: Global Count Sharing (GCS) In the
previous algorithm, the use of local counts only means
that some sites will send much more often than is needed,
since their local counts are much smaller than the global
count. For our second algorithm we set dst(θ, Ct

v,i, C
t
v,0)

= Ct
v,i + θ

kCt
v,0. We then broadcast the new value of Cv,0

when it changes, so dsm(i, v, Cv,0) = {(i′, v, Cv,0)|i′ 6= i}
(we do not need to send Cv,0 to i since site i can compute
this from its local information).



DS Algorithm 3: Lazy Count Sharing (LCS) The
broadcast of counts again adds to communication with
uncertain benefit. An alternative is to take a lazier approach
to count propagation: when a remote site communicates
with the coordinator, it receives the current value of Cv,0 in
return. Thus dst(θ, Ct

v,i, C
t
v,0) is the same as in the previous

algorithm, but dsm(i, v, Cv,0) = {(i, Cv,0)}.

Lemma 2. All three algorithms correctly maintain a
distinct sample at the coordinator. Counts of items in the
sample are correct within a factor of 1 + θ. The worst case
communication cost is O(Tk2 log |S0| log U

θ ).

Exact Distinct Sample algorithm (EDS). To compare the
cost of our algorithms, we measure against the algorithm
that propagates every update to the coordinator site, which
can then draw a sample uniformly from the items in S0

either directly, or by running Distinct Sampling on the
reconstructed stream. This algorithm is clearly correct, and
the communication cost is O(|S0|).
Space and Time Costs. Each site has to keep track of
the subset of DS that it has seen at its site, and counts of
those items. Since |DS| ≤ T , the space required is O(T ).
Each update can be processed quite quickly: we determine
whether it is included in T , update the associated count
information if so, and communicate with the coordinator
if necessary. Thus the time cost is essentially constant
(depending on how many different hash functions are used
by the distinct sampling).

6 Duplicate-Resilient Aggregates
Using the techniques for the two problems, of tracking
distinct counts and distinct samples, we are able to answer
many of the duplicate-resilient aggregates described in the
introduction. These fall into two main classes, measuring
the amount of duplication, and tracking standard (holistic)
aggregates in the presence of duplicates. Our results apply
to many problems within these two classes, and here we
show applications to some of the most important.

6.1 Amount of Duplication
The most basic query, tracking the number of duplicates
seen, is answered directly by the Distinct Count itself:
if each site sees a stream consisting of events (such as
animal interactions, or observed packets), then the number
of unique events is given by the distinct count of these
events, which we can track accurately up to a (1± ε) factor.

The next query we answer is the number of events that
are unique, that is, those that are observed exactly once.
Here, we use the distinct sample, and make use of the fact
that it samples uniformly from the set of events that are
seen, without being biased by the number of times an event
is seen. Hence, the number of events that are unique (have
count 1) in the distinct sample is a good estimator for the
number of events that are globally unique. If the size of the

sample, T , is Ω( 1
ε2 log 1/δ) then we estimate this quantity

up to an error of εN0 with probability at least 1− δ.2.
More generally, once the coordinator has an (approxi-

mate) distinct sample, this can be used to answer a variety
of queries on the degree of duplication of events. For ex-
ample, one can estimate the median occurrence count of
events that have been seen by computing this function over
the sample [11]. The guarantees from using a distinct sam-
ple tracked with lag θ is slightly different: in addition to the
approximation error due to the size of the sample (|DS|),
there is additional uncertainty due to θ. For example, when
finding the median occurrence count, we return an approx-
imate median (an item whose rank is within ±εN0 of the
true median) and an approximation of the count (within a
1±θ factor of the true count) with probability at least 1−δ,
provided T = Ω( 1

ε2 log 1/δ).

6.2 Aggregates with Duplicates
Standard holistic aggregates, such as quantiles and heavy
hitters, have been extensively studied in the centralized
streaming model without duplicates. Recent work [10, 18]
has shown how to adapt sketching techniques in order to
find “Distinct Heavy Hitters”. This generalizes the heavy
hitters problem of finding items which occur frequently
to finding items that occur in conjunction with a large
number of other items. Formally, the input now consists
of streams of pairs (v, w), and the goal is, for any v′, to
estimate the number of distinct pairs dv′ in which v′ occurs,
|{(v, w)|(v, w) ∈ S0, v = v′}|. From this one can find
those vs with the largest dvs etc.

The basic data structure introduced in [10, 18] consists
of an array of c × d FM sketches. Each input pair is by d
hash functions f1 . . . fd onto this array: (v, w) is mapped
to f1(v) in the first row, f2(v) in the second row, and so
on. The pair (v, w) is then added to the corresponding FM
sketches. It can be shown that taking the minimum of the
estimates from each of the sketches that v falls in is a good
estimate for dv [10].

We can apply our distributed sketch tracking algorithm
to this data structure: for every update that arrives, we
update the d sketches that it affects, and run the sketch
tracking algorithms on each sketch independently. This
ensures that the coordinator has a good approximation
of each sketch, and consequently overall has a good
approximation of the whole data structure. The guarantees
shown in [10] can then be extended to this distributed
scenario in terms of α and θ. One feature shown
experimentally in [10] is that the size of the FM sketches
needed to give good results are relatively small, so the
communication burden should scale reasonably well. 3

2Note that θ does not enter into this expression, because as long as
θ < 1 we can distinguish between events that are unique and events that
are duplicated.

3 Similar techniques can be applied to tracking quantiles in a duplicate
resilient way [10], by again using sketch data structures based on FM
sketches; we omit full details due to space limitations.
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Figure 5: Distinct Counts: (a) – (d) HTTP (clientID, objectID) data from World Cup ’98 (e) – (f) Synthetic data.

7 Experiments
Our experimental study focused on the continuous distinct
count and distinct sample tracking schemes, their commu-
nication costs and query answer accuracy under different
parameter settings. We implemented our tracking algo-
rithms in C, with experiments carried out on a 3.2GHz
desktop machine. We simulated the remote sites and the
coordinator site, and measure the communication cost as
the number of bytes sent between the coordinator and each
remote site. The communication cost of each algorithm
is measured against the cost of the appropriate exact algo-
rithm (EC or EDS), to give a relative cost as a ratio, com-
paring bytes to bytes. In all experiments, we used the con-
fidence level as 90%, i.e. δ = 0.1.

7.1 Data Sets and Methodology
World Cup ’98 HTTP request data, obtained from the
Internet Traffic Archive [20]. We took entire days of
requests, consisting of approximately 20 million tuples.
The 29 servers were located in four geographic regions.
We experimented with the 29 distinct sites, as well as four
sites made by grouping all requests to the same region
as a single stream. Each HTTP request record contains
clientID, objectID and other attributes. In the experiments
presented here, we focus on the clientID attribute, and
(objectID, clientID) pairs. Analyzing the data offline found
that there are about 16 million distinct (clientID,objectID)
pairs and about 120K distinct clientIDs in the data set.

Hence, depending on which combination of attributes were
used, the degree of duplication varied significantly.
Synthetic data was formed to test the ability of the sites to
use information about the distribution seen so far. For each
of k sites, we generated a stream in two parts. In the first
part each remote stream has n data items, and there are no
common data items between two streams. The second part
of each stream at each site consists of randomly ordered
arrivals of all the kn data items from the first part.

7.2 Experimental Results
Distinct Count Tracking. Our first set of experiments are
on the sketch-based distinct count tracking algorithms. In
Figure 5(a) and Figure 5(e) we vary the “lag” value θ while
fixing the total error guarantee ε at the coordinator. We
see savings of between one and two orders of magnitude
over the exact algorithm (which in turn can be orders
of orders of magnitude cheaper than the naive algorithm
of passing every update to the coordinator without any
duplicate suppression). When appropriate settings of θ are
chosen, the LS (Lazily Shared Sketch) algorithm achieves
the least communication cost, edging out the SC (shared
count) algorithm. The best setting of θ is θ = 0.3ε for most
algorithms, in line with our worst case analysis; however,
for LS, the optimum point appears to be closer to 0.15ε.
In other experiments (not shown), where we compared the
cost in the radio network model (all data is effectively
broadcast), we found that the SS algorithm achieved the
lowest cost, by a factor of two, indicating that the cost
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Figure 6: Distinct Samples experiments

model is also a significant factor.
From Figure 5(b) (real data with 4 sites), Figure 5(c)

(real data with 29 sites, SS not shown because cost is too
high) and Figure 5(f) (synthetic data with 20 sites) we
can see the communication costs decrease quickly as more
updates arrive. LS always gets the lowest cost overall, by
an appreciable fraction over its closest competitor SC (seen
most clearly on the synthetic data). This shows the value
of sharing a sketch, but not eagerly broadcasting it since
SS has the worst cost of all methods. In these plots we
set θ to be the value that produces optimal communication
cost for each algorithm. Testing with other θ values gave
similar results. The accuracy of the distinct count is shown
in Figure 5(d), where we plot the cumulative distribution
of the relative error. We see that our objective, of ε = 10%
relative error 1 − δ = 90% of the time is met, and is not
very high outside this range. Observe that algorithm SC has
appreciably lower quality results than the others (a higher
line is better).
Distinct Sample Tracking. For distinct sample-based
algorithms, we first tested on the same two data sets as
in previous counting experiments. We fixed the lag value
θ and varied the sample size from 10 to around 3000.
Figure 6(a) and Figure 6(b) show the communication cost
on HTTP (clientID, objectID) pairs and synthetic data.
On these data sets (with relatively few duplicates), the
communication cost is a saving of two to three orders of
magnitude. The communication cost increases linearly
with the sample size T , as predicted in the bounds given in
Section 5. The LCO algorithm incurs least communication,
showing that for sampling, local information gives better
results than global. An interesting artifact of the algorithm
is visible in Figure 6(b), where sharp discontinuities in the
cost are visible. These correspond to points where the
Distinct Sampling algorithm terminates at different levels
l, which corresponds to an overall cost of approximately
twice the previous level.

Figure 6(c) shows the cost (as θ varies) on a data set
with much higher levels of duplication, considering only
the clientID values in the HTTP data. Here the overall cost
is appreciably higher, and the separation of the algorithms
clearer. The cost decays weakly as θ increases. We lastly

remark on the time cost of our algorithms. For the sketch
based algorithms, all methods had similar cost, and our
simulator processed in the order of half a million items
per second. The distinct sampling algorithms were up to
an order of magnitude faster still. This shows that our
algorithms should easily cope with the most demanding
settings in network traffic monitoring applications.

7.3 Duplicate-Resilient Aggregate Computation
Amount Of Duplication The accuracy of counting the
number of unique events has already been discussed in the
previous section. For measuring the number of events that
are unique, we show an experiment over the HTTP data
using the distinct sample to generate estimates. Figure 7(a)
shows that a highly accurate result (within 1% error) can
be obtained using a sample of size 1000 or so items, which
could be collected using communication less than 0.1%
of the exact algorithm. All three algorithms achieve the
same accuracy here since for this query their estimates are
identical (and independent of θ so long as θ < 1). We
also compute the median amount of duplication based on
the distinct sample. Again, we see high accuracy results in
Figure 7(b) with a sample of size a few thousand. Here,
we see that there is an appreciable difference in accuracy
between LCO and the count sharing algorithms, which are
both very similar in terms of accuracy.

Holistic Duplicate-Resilient Aggregates. As outlined
in Section 6.2, we can apply our tracking algorithms to
tracking more sophisticated aggregates. Here, we focused
on the distinct heavy-hitters problem, over (objectID,
clientID) pairs: that is, we must identify those objects
requested by the largest number of distinct clients, without
being influenced by clients requesting the same object
multiple times. Figure 7(c) shows the results of processing
the streams using a sketch containing about 1500 FM
sketches, each of which consisted of 10 repetitions. Here,
we observed that the setting of θ had little impact because
even at the largest setting of θ, any time a FM sketch
changed it would trigger a communication of that FM
sketch. We observe that the SC algorithm, which on
a single stream was very competitive, is now the worst
performer, by a factor of around 4, whereas LS uses the
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Figure 7: Duplicate-resilient aggregates

least communication, again by an appreciable factor (about
20% over NS, the closest competitor). The accuracy for this
algorithm is very high, with an estimation error of less than
0.1% of the number of distinct pairs for all four methods.

We conclude that, for sketch based methods, there is
benefit in sharing sketches in a careful fashion (i.e. LS),
especially for problems which build on the basic methods
for duplicate resilient aggregates. Knowing a summary of
other sites can significantly reduce the cost. In contrast, for
distinct sampling, using local information gives the lowest
cost. Here, it makes sense to give a bigger threshold to
items that have been seen more often at some site.

8 Conclusions
In distributed monitoring applications, the same items may
be duplicated at multiple sites, and one needs continuous
methods for tracking the extent of duplications and ag-
gregates resilient to them. We formalize such duplicate-
resilient event monitoring problems and provide a variety
of algorithms that use small space and per-item process-
ing at each site and trade-off the communication between
the sites and the central coordinator for accuracy guaran-
teed. In contrast to the non-duplicate-resilient aggregate
tracking studied before where typically there is little or no
communication from the coordinator to the sites [8, 9] here,
we benefit from the coordinator sharing a summary of the
whole data distribution to individual sites. Our results can
be extended to handling deletions and sliding window se-
mantics, and a limited set of prediction models in the style
of [8, 9]4. Our experience shows there are many practi-
cal challenges in handling the asymmetric information flow
and distributed monitoring systems have to optimize this
carefully.
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