
Conquering the Divide: Continuous Clustering of Distributed Data Streams

Graham Cormode1

AT&T Labs–Research
graham@research.att.com

S. Muthukrishnan
Rutgers University

muthu@cs.rutgers.edu

Wei Zhuang
Rutgers University

weiz@cs.rutgers.edu

Abstract

Data is often collected over a distributed network, but in many
cases, is so voluminous that it is impractical and undesirable to
collect it in a central location. Instead, we must perform dis-
tributed computations over the data, guaranteeing high quality
answers even as new data arrives. In this paper, we formalize and
study the problem of maintaining a clustering of such distributed
data that is continuously evolving. In particular, our goal is to
minimize the communication and computational cost, still provid-
ing guaranteed accuracy of the clustering.

We focus on the k-center clustering, and provide a suite of al-
gorithms that vary based on which centralized algorithm they de-
rive from, and whether they maintain a single global clustering or
many local clusterings that can be merged together. We show that
these algorithms can be designed to give accuracy guarantees that
are close to the best possible even in the centralized case. In our
experiments, we see clear trends among these algorithms, showing
that the choice of algorithm is crucial, and that we can achieve a
clustering that is as good as the best centralized clustering, with
only a small fraction of the communication required to collect all
the data in a single location.

1 Introduction
Modern data acquisition systems are essentially auto-

matic, distributed and continuous. For example, environ-
mental sensors automatically gather their own sets of mea-
surements that change over time; each soldier on the field
has a series of location updates as they move around; mul-
tiple web/blog crawlers independently grow collections of
gathered text and links; different mail servers collate their
share of mails over time; multiple repositories of books, au-
dio and video data evolve on their own; etc.

Formally, we have distributed sites 1 . . .m. Each site i
has a changing source of data St

i at time t. Not only may
each source be large in size |St

i |, individual items in the
sources may be high dimensional including audio, video or
text. While it may indeed be desirable to put a database
infrastructure atop these distributed sources for storing, in-
dexing, accessing and searching all of the data, in many of

1Work done while the author was at Bell Labs.

t

S S S1 2 3
t tt

S

Figure 1. Continuous Distributed Clustering:
m = 3 remote sites aim to find k = 3 clusters

the applications, the more immediate need is to monitor de-
sirable properties of the union

⋃m
i=1 St

i of all the data dis-
tributed over the sites.

In this paper, we study a quintessential monitoring prob-
lem on continuously changing distributed sources, namely,
clustering. More specifically, it is of great interest to main-
tain a clustering of the points in St =

⋃m
i=1 St

i at all times t,
illustrated in Figure 1. Clustering is a fundamental problem
in data engineering which lies at the interface of databases,
data mining and machine learning. Irrespective of the nature
of the data—text, spatial, or high dimensional vectors—
dividing many points into a small number of representative
clusters is a powerful way to understand the large quan-
tity of data, and provide insights into its structure. To un-
derstand the challenge in monitoring a clustering over dis-
tributed sources, consider two straightforward “solutions”:

1. At each time t, each site updates a central site with newly
gathered points. The central site updates the clustering of⋃m

i=1 St
i whenever a new point is seen.

This presents a communication and processing bottle-
neck. All data collected at the sites reach a central store
and the total communication is proportional to the union of
the data which is prohibitive in most modern applications.

2. Periodically, say every τ seconds, each site packages its
data and sends it to the central site. The central site updates
the clustering for

⋃m
i=1 St

i , every τ seconds.

The first problem this poses is one of latency. Between
the τ instants, the clustering could change radically, a seri-
ous drawback for monitoring applications. This also does
not overcome the communication problem of collecting all
the data at a central site.

This helps us formalize the problem further. Our prob-
lem is one of “conquering the divide”: to design efficient
methods to cope with dynamic data that is divided into
pieces, minimize the overall communication between sites,
and effectively perform clustering to yield clusters of com-
parable quality to a centralized clustering. Unlike some par-
allel computations, we do not have the luxury of designating
how the data is shared between the participants; instead, we
must be able to adapt to arbitrary divisions, and yet guar-
antee that the amount of communication needed is signifi-
cantly less than would be required to share all updates with
a single central site. Our methods must be able to moni-
tor changes in the locally observed updates, and determine
what communication is necessary, and when, in order to en-
sure the continued quality of the clustering.

Motivating Example. Underwater sensor networks are a
particularly resource constrained setting because of phys-
ical conditions (reduced channel capacity, harsh environ-
ment) [2]. A typical problem is when m remote tracking
stations are deployed in an underwater acoustic monitoring
system. Each station keeps track of certain schools of fishes
based on a given wave length, and reports the location infor-
mation to a central base station. This station maintains a k-
clustering of the schools so k attracting or dispelling acous-
tic devices can be deployed near the k center points to use
the minimum energy to cover the whole region [20].

Our Contributions. Our main contributions are as follows:

1. We introduce and motivate the problem of clustering
evolving distributed data, minimize the communication be-
tween sites and obtain clustering as good as the best cen-
tralized solution at any time.

2. We give the first algorithms for this problem, with accu-
racy guarantees. Our algorithms are easy to implement, and
demonstrate a variety of tradeoffs between the amount of
information that is shared and the guarantees on the quality
of the clustering that arises. Our algorithms rely on trading
of local clustering and global clustering in a careful way.

3. We perform a detailed experimental study, which shows
that our proposed algorithms send only a small fraction of
the data while generating a clustering that is as good as the
best centralized clustering.

Outline. In the next section we give important background
to our work and describe the model of Continuous, Dis-
tributed monitoring (Section 2.1) and prior work on cluster-
ing (Section 2.2). We then describe efficient algorithms for
computing and merging k-center clusterings in Section 3.

Our new algorithms for clustering in the continuous, dis-
tributed model are described in Section 4, and extensions
described in Section 5. We give a thorough experimental
evaluation in Section 6, and conclude in Section 7.

2 Preliminaries
2.1 Continuous Distributed Model

The Continuous Distributed model of computation has
been refined over recent years through a sequence of pa-
pers [4, 26, 9, 7, 6]. It abstracts the key features of a broad
variety of scenarios and identifies the principle dimensions.
In the model there are a set of m different remote sites,
each of which observes an update stream St

i defining the
local data set. These sites cooperate with a distinguished
node, known as the coordinator, to compute some function
over the union of the streams St = ∪m

i=1S
t
i . Communica-

tion is permitted between any pair of sites, but in several
cases, the best results are found when every communication
involves the coordinator node. The goal is that, at every in-
stant, the coordinator has an accurate answer to a query, or
set of queries, over St, even though the distributions and
arrival rates at each site may vary widely. This accuracy is
typically guaranteed in terms of some parameter ε.

We can compare algorithms in this model based on:
(1) The communication used by the algorithm, as a function
of the size of the streams, |St

i |, and the accuracy ε.
(2) The amount of space required by each remote site and
the coordinator: do the remote sites need to store their full
streams, or can they keep a summary of much smaller size?
(3) How much information is shared between sites and the
coordinator, if any, and how is this kept up to date?
(4) How is the communication charged for: the basic model
assumes direct links between each pair, but can be extended
to a hierarchical communication tree; costs can also vary
in settings where broadcasting costs the same as sending a
unicast message (modeling radio networks).

A variety of problems have been studied within this
model, including: monitoring the top-k most frequent
items [4]; tracking set expressions and duplicate resilient
quantities [9, 8]; monitoring quantiles of a distribution [7];
and finding accurate sketch summaries of the data [6, 8]. In
most cases, it is possible to write the communication cost of
the protocol in terms of the accuracy parameter ε, establish-
ing a trade-off between communication and accuracy. Note
that the model abstracts away issues of message delay, syn-
chronization and loss, by assuming that each message is de-
livered immediately. These assumptions can be removed us-
ing standard techniques of timestamping, acknowledgments
and re-sending. Such concerns are removed from the model
to focus on the main underlying computation.

Our focus in this work is on performing clustering in the
Continuous, Distributed model. Thus, our streams St

i con-
sist of points arriving at each site i, and our goal is to allow

the coordinator to continuously maintain a clustering (de-
scription of the clusters) of St, the union of the St

i ’s. As is
standard, we will focus on the features defined above: the
communication cost, accuracy, and space required, as well
as the communication model and information shared.

We do not make assumptions about the nature of the
points to be clustered (i.e. whether they are text documents
or high dimensional vectors etc.), but rather assume only
that we have a distance function d which tells us the dis-
tance between any pair of points.

2.2 Prior Work on Clustering Algorithms

Clustering is an important problem in databases, mining,
and beyond. We do not attempt to give a thorough survey
of clustering work, since it spans over 150 years. Moreover
despite the large volume of prior work, only a very small
number of papers are relevant to our study on the continu-
ous, distributed version of clustering.

Clustering can be defined informally as the problem of
dividing the input data into clusters, such that all points in
the same cluster are similar, and all points in different clus-
ters are dissimilar. The definition can be formalized in var-
ious ways; however, many attempts to formulate a precise
mathematical definition yield a problem that is NP-hard to
optimize [21, 12]. Hence, most clustering work focuses ei-
ther on efficient algorithms that give good results in prac-
tice, such as BIRCH [30], CURE [18] DBSCAN [11], k-
means [23] and so on; or on giving guaranteed approxi-
mations to particular clustering optimization criteria, such
as k-center (minimizing the maximum radius/diameter of
any cluster) [16] and k-median (minimizing the sum of dis-
tances from each point to its cluster center) [3]. All of these
methods assume full access to (static) data, and hence do
not naturally adapt to the continuous distributed model.

Some prior work touches on aspects of our setting – for
example, the DEMON project [15] considers the case when
(centralized) data can be somewhat dynamic. In [29] and
[10] the authors consider how to perform clustering on par-
allel processors, which shares some concerns with our set-
ting. However, they have the freedom to preprocess and
distribute the data to processors, whereas in our setting, the
allocation of data to sites is fixed. From the Distributed
Data Mining community (DDM), distributed clustering has
been explored [13]. This motivated the problem of cluster-
ing distributed static data, and gave results based on col-
lecting sufficient statistics for density based clustering al-
gorithms from remote sites. [24] extends DBSCAN to a
distributed setting, again assuming static data. Each one
of these touches on some aspects of continuous, distributed
clustering, but none fully solve this problem.

Also relevant to our study is work on clustering points
that arrive as a data stream. Because such algorithms keep
small memory state, this state can sometimes be used as a

summary of the much larger data, and shared or merged
with others to allow clustering of the union of streams.
In [5], the “doubling algorithm” allows the k-center objec-
tive to be approximated over a single stream, up to a factor
of 8, using merging techniques and storing only k points.
We use similar ideas, but are able to get much better ap-
proximations with slightly more storage. The k-median ob-
jective was studied in [17], but much more space and much
worse approximation factors make this algorithm imprac-
tical in our setting. Similarly, more recent work using ε-
nets [19] and gridding techniques [22, 14] have addressed
clustering in lower-dimensional spaces, but the complexity
of the algorithms makes them unusable for our purposes.
Prior work on clustering evolving data considered captur-
ing historic trends at a central site [1], whereas our goal is
to cluster the current set of point streams.

3 Centralized Clustering Algorithms
In this work we concentrate on the k-center objective for

clustering, since this is a simple and popular criterion for
clustering in arbitrary metric spaces. We first introduce the
formal definition of k-center clustering, and then give algo-
rithms that yield provably good clusterings.

Definition 1. The k-center problem is, given a set P of
n points and an integer k < n, to identify a set C of k
points as centers. Given a point p and a set of centers C,
we define its closest center as C(p) = argminc∈C d(c, p),
where d is a metric over the points. The radius objective
is to minimize the radius, maxp∈P d(p, C(p)). The diame-
ter objective is to minimize the diameter of the clustering,
maxp,q∈P,C(p)=C(q) d(p, q).

The two objectives of radius and diameter are closely
related. Since d(p, q) ≤ d(p, C(p))+d(C(p), q), the diam-
eter of a cluster is at most twice its radius (coinciding with
our intuitions regarding radius and diameter of circles and
spheres in Euclidean space). The methods we consider give
similar guarantees for both radius and diameter objectives.
The cost (or quality) of a clustering is either its radius or
diameter (depending on context).

A clustering method may draw the centers as arbitrary
points from the metric space (sometimes known as “con-
tinuous” clustering) or insist that C ⊂ P (“discrete” clus-
tering). We focus mostly on the latter version, since this
is most natural when the points are from high dimensional
metric spaces, where it is hard to create arbitrary points
not in the input. Considering all (n

k) possible ways of
choosing k centers from n points, the optimal clustering is
the one which minimizes the cost. Explicit search of this
space takes time Ω(nk), and the problem has been shown
to be NP-hard [21, 12]. So we focus on guaranteed α-
approximation algorithms: these are algorithms which re-
turn a clustering with a guarantee that the cost of the cluster-

ing is at most α the cost of the optimal clustering. The NP-
hardness proof can be extended to show that it is NP-hard to
guarantee any solution with α < 2. Next, we will describe
algorithms which obtain α-approximations with α = 2 or α
arbitrarily close to 2.

3.1 Furthest Point Algorithm
The Furthest Point algorithm [16] gives a guaranteed 2-

approximation for both the radius and diameter measures.
It begins by picking an arbitrary point as the first center,
C1 = {c1}. Then find the i + 1st center as the point that
maximizes its distance from the first i centers, i.e.

ci+1 = argmaxp∈P minc∈Ci d(p, c)
and let Ci+1 = Ci ∪ ci+1. After k iterations, one can show
that Ck is a factor 2 approximation to the optimal cluster-
ing [16]. The algorithm is illustrated in Figure 2 (a).

The proof of approximation quality proceeds by consid-
ering a k + 1st iteration, which produces a set of k + 1
points all separated by a distance of at least D, implying
that the optimal clustering must have diameter at least D.
By the triangle inequality, the chosen clustering has diame-
ter at most 2D. A similar argument shows that the radius of
the produced clustering is at most D, and any clustering of
the points must have radius at least D/2. The algorithm re-
quires k scans of the data in order to find the furthest points,
so takes O(kn) distance computations.

3.2 Parallel Guessing Algorithm
The correctness of the above algorithm relies on the fact

that if there exists a set of k + 1 points separated by at least
2R, then R is a lower bound on the optimal radius, and a
solution of cost 2R can be found. We now propose an alter-
native algorithm with a slightly worse approximation factor,
but requiring only a single pass over the input points2. Sup-
pose we knew R. We pick an arbitrary point as the first
center, C = {c1}, and for each point p in P compute

rp = minc∈C d(p, c)
and test whether rp > R. If it is, then set C = C ∪ {p}.
Since we do not know R in advance, we make multi-
ple guesses of R as (1 + ε

2), (1 + ε
2)2, (1 + ε

2)3... and
run the algorithm in parallel on each of these. We will
bound the number of guesses made in terms of the ra-
tio of the closest pair to furthest pair of points, ∆ =
maxp,q∈P d(p, q)/ minp,q∈P,p 6=q d(p, q). The algorithm is
illustrated in Figure 2 (b).

Theorem 1. The Parallel Guessing algorithm finds a 2 + ε
approximation to the k-center problem and stores at most
O(k

ε log ∆) points.

Proof. First, observe that every guess R that generates k or
fewer centers is a valid k clustering of P with radius less

2As far as we know, this algorithm has not been formally described
before, but related ideas are considered ‘folklore’ in the clustering world.

than R. The diameter of the clustering is at most 2R, since
by the triangle inequality, any p, q in the same cluster are
separated by at most 2R. Consider the optimal clustering of
the points, which has a radius of Ropt. Any guess R < Ropt

will cause us to choose more than k centers, and so can tell
that the guess of R was too small. If this were not the case,
we would find a clustering of the points with radius less than
Ropt, contradicting the optimality of Ropt.

For a guess of R ≥ 2Ropt, then we will find k or fewer
centers, and generate a valid k center clustering of P . Sup-
pose we found more than k points from P such that each
pair is separated by a distance of more than 2Ropt. Then
by the pigeonhole principle, at least two of these points
must be placed in the same cluster, so any clustering will
have a diameter greater than 2Ropt, and hence must have
a radius greater than Ropt, contradicting the claim that
Ropt provided an optimal clustering. A guess of R so that
Ropt ≤ R < 2Ropt can either allow us to find a valid clus-
tering with k or fewer centers, or we may be unlucky, and
find more than k centers from this guess. In the worst case,
all guesses below 2Ropt may lead to more than k centers,
and the next guess above 2Ropt may be as far above as pos-
sible. By our choice of guesses, we know that in this worst
case, our guess cannot be bigger than 2Ropt(1 + ε

2). Thus,
we guarantee to find a solution with radius at most 2 + ε
the optimal radius. Similarly, the algorithm gives a 2 + ε
approximation of the diameter cost.

If the ratio maxp,q d(p, q)/ minp,q d(p, q) = ∆, then
the number of parallel guess made by the algorithm is
O(log1+ε/2 ∆) = O(1

ε log ∆) (since we never need a guess
less than minp,q d(p, q) or larger than maxp,q d(p, q)). Any
guess that identifies more than k points as centers is no
good, and so can be dropped. Thus the space needed is
that to store O(k

ε log ∆) points. To process each new point,
we compare it to each point stored at each level to find the
closest center, so requiring O(k

ε log ∆) comparisons.

Some important features of this algorithm are that it re-
quires an amount of storage that is independent of n, the
number of points; it depends only on the geometric proper-
ties of the point set; and it takes only a single pass through
the point set. Thus it is suited for cases when there are a
large number of points arriving in an incremental (stream-
ing) fashion, since the algorithm can run incrementally as
new points arrive. The output is sensitive to the order of
arrival of the points (and to the point c1 chosen as the first
center), but the guarantee holds true irrespective of the or-
der. A prior algorithm, due to Charikar et al. gave a sim-
ilar result, storing only k points but guaranteeing a (much
weaker) 8-factor approximation [5].

3.3 Merging Clusterings
We demonstrate that clusterings can be merged by run-

ning a clustering algorithm on the cluster centers.

c
4

2

3

c
1

c

c

3

c
4

r

c
1

c2

c i

p

C (p)

C(p)

(a) In the Furthest Point algorithm, an
arbitrary point is chosen as c1, then sub-
sequent centers are chosen to maximize
their distance from existing centers.

(b) The Parallel Guessing algorithm
guesses a radius R, and creates a new
center every time a point is seen which
is further than r from an existing center.

(c) In merging clusters, a point p with
an initial center Ci(p) has a final cen-
ter C(p). The distance d(p, C(p)) is
bounded by the triangle inequality.

Figure 2. Figures illustrating Centralized k-Center Clustering Algorithms

Theorem 2. Let a set of points P be divided into m (pos-
sibly overlapping) subsets P1 . . . Pm. Let Ci ⊆ Pi be the k
centers of an α approximate k-center clustering of Pi. Run-
ning a β approximate k-center clustering on the union of the
Cis guarantees the resulting k-centers C form an (α + β)
approximation of the clustering for P .

Proof. Let RP denote the optimal radius of the clustering
of P , and RC the optimal clustering of the union of cluster
centers Ci Then (see Figure 2 (c)):

d(p, C(p)) ≤ d(p, Ci(p)) + d(Ci(p), C(p))
≤ αRP + βRC ≤ (α + β)RP

The result relies on the fact that the cost of the optimal
clustering on any subset of P has cost at most RP . RC ≤
RP follows immediately because C ⊆ P .

4 Continuous Distributed Clustering
4.1 Merging Local Solutions

Our first algorithms maintain an accurate clustering by
having each remote site keep a clustering of its local points,
and only sending updates when this changes.
Local Algorithm based on Furthest Point (Local-FP).
Each local site i maintains a Furthest Point clustering of
its points, C, with radius Ri. When a new point p arrives,
we measure the distance between p and its closest center,
C(p). If d(C(p), p) ≤ (1 + ε

2)Ri, then we know that the
local clustering is still good for this new point: since Ri is
at most twice the optimal radius, adding this extra point in-
creases the radius to at most 2 + ε times the optimal radius.
Hence we take no further action. If this condition is not true,
then a reclustering is forced. We recompute a furthest point
clustering on all the points held by the local site, and inform
the coordinator of the new cluster centers. The coordinator
can then recompute its clustering as the clustering of the
union of the centers from each site. By Theorem 2 above,

this guarantees a 2 + (2 + ε) = 4 + ε-approximation to the
optimal cost. In order to allow the reclustering, each site
must retain all its points. Each reclustering requires O(k)
points to be sent to the coordinator, but since it is not clear
how many communications there will be, we do not have a
closed form for the total communication cost.

A natural improvement is to ensure that each site knows a
better lower bound on the clustering cost, such as the max-
imum over all local clusterings and the global clustering,
Rmax = max(Rglobal,maxi Ri) (where Rglobal denotes
the cost of the clustering found by the coordinator). We
can delay reclustering until a point more than (1 + ε

2)Rmax

from its closest center is seen, instead of (1 + ε
2)Ri. This

maintains the same 4 + ε accuracy guarantee, but may de-
grade the actual quality of clustering seen in practice. We
keep sites informed of Rmax either by eagerly broadcast-
ing the value when it changes, or by informing sites lazily,
when they contact the coordinator with a new clustering.

Theorem 3. Algorithm Local-FP guarantees that at any
time the coordinator has a k-center clustering of the input
which is a 4 + ε approximation to the optimal clustering.

Local Algorithm based on Parallel Guessing (Local-
PG). Each local site i maintains the Parallel Guessing al-
gorithm over its points. It shares with the coordinator the
current “good” guess and associated centers: this is the
smallest guess Ri such that there are no more than k cen-
ters for site i. When this guess is no longer good (a new
point arrives which is at least Ri from all k current cen-
ters), then we move to the next larger guess Ri(1 + ε

2),
and communicate this guess and its centers to the coordi-
nator. If a current good guess has fewer than k centers
and a new center is opened, this new center is sent to the
coordinator. The coordinator merges the most recent clus-
ter centers it has received from each site using an appro-

priate algorithm, such as Furthest Point. By appealing to
Theorem 2, we ensure a 2 + (2 + ε) = 4 + ε accurate
solution. Each site needs space to store only O(k

ε log ∆)
points, and takes O(k

ε log ∆) point comparisons per new
arrival. Further, each remote site sends up to k centers for
each guess, and works through at most O(1

ε log ∆) guesses.
Over m sites, the total communication cost is therefore at
most O(km

ε log ∆) points.
As in the previous algorithm based on furthest point, we

can try to pre-empt communication by ensuring that each
site knows that over all remote sites, the largest good guess
is Rglobal = maxi Ri. This shows that Rglobal is a lower
bound on the best possible clustering over the whole point
set, and so we can immediately drop all guesses less than
Rglobal, and consequently reduce communication. Again,
this reduction in communication may come at the cost of
observed accuracy; the guarantee still remains 4 + ε.

Theorem 4. Algorithm Local-PG guarantees the coordina-
tor always has a 4+ε-approximation to the optimal cluster-
ing. The communication is bounded by O(km

ε log ∆) data
points, and stores O(k

ε log ∆) points at each remote site.

4.2 Maintaining Global Solutions
Our next set of algorithms are based on running a central-

ized algorithm in a distributed way. This turns out to give
tighter approximation bounds, close to the best possible.
Global Algorithm Based on Furthest Point (Global-FP)
The first approach is to take the furthest point algorithm and
run it in a distributed fashion. The algorithm operates in two
phases: computing a new clustering in O(k) rounds of clus-
tering, and then monitoring that this remains a good solu-
tion as new points arrive. To build a clustering, we assume
that the coordinator knows some point from the input, c1. It
broadcasts this point to all sites, which each return the fur-
thest point from their input from c1. The coordinator can
then process these m responses, and identify which is truly
the furthest from c1, and broadcast this back as c2. Sites re-
spond with the point that maximizes its distance from c1 and
c2. The process can continue for k + 1 rounds of commu-
nication, until the coordinator has picked a set of k centers
C and found R, the radius of the clustering. By the proto-
col, the remote sites also know these centers and r. They
then enter the monitoring phase, where they observe new
points, and for each new point p, the find C(p), and deter-
mine whether d(p, C(p)) > (1 + ε

2)R. If not, then p is
stored but no other action is needed; if the bound is broken,
then the coordinator must initiate reclustering. The proto-
col guarantees that the current clustering is always a 2 + ε
approximation of the optimal clustering. Each reclustering
requires O(mk) points to be sent. However, there are draw-
backs: the remote sites must retain all their input points in
order to correctly perform reclustering; and no non-trivial
bound has been shown on the communication cost.

Theorem 5. Algorithm Global-FP guarantees a 2 + ε ap-
proximation to the optimal clustering at the coordinator.

Global Algorithm Based on Parallel Guessing (Global-
PG). The final approach has the coordinator site and all
remote sites maintain multiple guesses of the optimal ra-
dius. For each active guess R, the coordinator maintains
a set of at most k points CR whose pairwise distance is at
least R. Whenever a remote site observes a new point p for
an active guess R, such that d(p, CR(p)) > R, it sends p
to the coordinator. The coordinator must deal with sequen-
tialization and duplication of messages from remote sites,
and announce when a new point is to be added to CR. The
communication cost can be bounded: in the worst case, all
m remote sites simultaneously observe a new point p for
guess R, and send it to the coordinator, who picks one and
announces it back (Note that if more points arrive at re-
mote sites after sending to the coordinator, they must buffer
them and wait for the response before proceeding). For
each guess, this can happen k times, and there are at most
O(1

ε log ∆) guesses, hence the total cost is O(km
ε log ∆)

points sent. The coordinator always knows which guess is
currently good, and so the result is guaranteed to be a 2 + ε
approximation. As in the local version, each new point that
arrives must be compared to O(k

ε log ∆) others.

Theorem 6. Algorithm Global-PG guarantees a 2 + ε-
approximation to the optimal clustering at the coordinator,
while using at most O(km

ε log ∆) communication and stor-
ing O(k

ε log ∆) points at each site.

4.3 Summary of Properties of the Algorithms
Algorithm Guarantee Space Communication
Local-FP 4 + ε O(n) —
Local-PG 4 + ε O(k

ε log ∆) O(km
ε log ∆)

Global-FP 2 + ε O(n) —
Global-PG 2 + ε O(k

ε log ∆) O(km
ε log ∆)

This table summarizes properties of the four algorithm
types. Global algorithms have better accuracy guarantees,
while the PG-based algorithms have smaller space require-
ments and communication guarantees. From the table, it
seems the global-PG variation is the method of choice, how-
ever in our experimental evaluation later we see that this
algorithm does not always achieve the best combination of
communication cost and clustering quality in practice.

5 Extensions
5.1 Dynamic Point Sets

In full generality, our methods naturally extend to when
the data arriving is dynamic. That is, in addition to arrivals
of points, old points may get deleted or moved; or we may
only be concerned with a sliding window of recent points.
In this setting, it is not straightforward to maintain small

space: if many points are deleted so only k points remain,
these k points must be returned to give an approximation to
the optimal clustering, since the optimal cost is zero. Hence,
we focus on variations of clustering algorithms which store
all current points. These can be maintained in the presence
of deletions, moves, or sliding windows.

Our insert-only methods based on global or local solu-
tions all build a clustering, monitor that it is still a good
clustering, and then recluster when needed. The same ap-
proach works in the presence of deletions. Recall that the
furthest point algorithm finds a set of k +1 points that form
a proof to the quality of the clustering. So long as none of
these k + 1 points is deleted, then we know that the cost
of the clustering does not decrease. Thus we can run the
same algorithms as before, but additionally monitor when
one of these k +1 centers is deleted, and recluster. For non-
adversarial sequences of transactions (i.e. when deletions
are not deliberately targeted at the centers), reclusterings
due to deletions will be relatively rare.

Situations where points move can be modeled as the
deletion of a point and reinsertion at its new location; simi-
larly, in the sliding window case, when a point is no longer
within the sliding window, this can be treated as a deletion
of that point. Hence, our methods naturally extend to these
cases. In the full version of this paper we show experiments
demonstrating the communication cost of these extensions
remains low while accuracy remains high.

5.2 Variable Numbers of Clusters
So far, we have assumed that k is fixed up front, before

any points are seen. In full generality, we would like to be
more flexible. A useful feature of our algorithms is that they
can accept any given k′ after processing the points, and re-
turn a guaranteed approximation to the k′-center problem,
provided k′ ≤ k. This can be seen by studying the cen-
tralized algorithms on which we base our distributed algo-
rithms. The Furthest Point algorithm only uses k to deter-
mine when to halt. Hence, the k′ clustering is just the first k′

centers of the k clustering. Similarly, the Parallel Guessing
algorithm uses k to determine when a guess is too small.
So, given a set of parallel guesses, the k′ clustering is the
smallest guess that generates at most k′ centers.

In the distributed setting, algorithms which merge local
solutions can take the same local solutions, and run a k′-
center clustering algorithm on the same (k center) solutions
to find k′ centers. Since the cost of the clustering is mono-
tone increasing as k′ decreases, the accuracy remains guar-
anteed. Algorithms that maintain a global solution have to
extract the k′ centers from the k centers, as indicated above.

5.3 1-center in Geometric Spaces
For the case of 1-center (equivalently, minimum enclos-

ing ball), the above algorithms all coincide to the trivial so-
lution of picking an arbitrary point from the input. The tri-

angle inequality ensures that the radius of the ball enclosing
all points centered at an arbitrary point is at most twice the
radius of the smallest ball that encloses all points. In gen-
eral we would like to do better, especially for applications
such as monitoring mobile users. In such cases, where the
points reside in low-dimensional Euclidean space, we can
offer much better guarantees on the accuracy, by picking a
center that is not necessarily from the input (i.e. continu-
ous clustering). We outline solutions for two dimensional
Euclidean space, other low-dimensions are similar.

Our algorithms reduce the problem of 1-center in two
dimensions to multiple instances of the problem in one di-
mension. The one-dimensional case is quite simple: the 1-
center is defined by the midpoint of the smallest and greatest
points seen so far, which can be easily maintained exactly
or approximately in a distributed setting. So in two dimen-
sions, each site takes each input point and projects it onto
lines spaced uniformly at multiples of some angle α through
the origin. For each line, we track the maximum and mini-
mum projection onto the line, and a point that achieves that
projection. We allow these projections to be approximated:
we only replace a maximum or minimum point with a new
point if it increases the extent ei (distance between max-
imum and minimum point on projection i) by a (1 + β)
factor, where 0 ≤ β < ε.

Theorem 7. Computing the Minimum Enclosing Ball of the
points stored by this algorithm is a (1 + ε)-approximation
to the 1-center of the point set, where ε = α2/8+β

1−α2/8 .

We can use this structure as the basis of our algorithms
for maintaining 1-center in a continuous distributed way. If
each remote site ensures that the coordinator has approxi-
mate extents of projections on regularly spaced directions,
the coordinator can merge these (by taking the max and
min point in each direction) to get good approximate ex-
tents for the whole point set, and hence compute a (1 + ε)-
approximate 1-center. We outline two possible variations:
(1) Sites send approximate (upto (1 + β)) extents (β < ε).
(2) Sites only send extents when they have changed by more
than a (1 + β) fraction of the diameter of the point set.

These algorithms can be shown to give accurate answers,
and we can analyze the communication cost:

Lemma 1. The worst case communication cost of algo-
rithms (1) and (2) is O(log ∆

ε3/2).

Our experimental results in the full version of this paper
show that these algorithms save up to four orders of magni-
tude in communication compared to naively sending every
point to the coordinator.

6 Experimental Study
We performed a thorough experimental study of algo-

rithms, in terms of the communication cost of performing

0 0.2 0.4 0.6 0.8 1
0%

5%

10%

15%

20%

25%

30%

Error factor ε

C
om

m
un

ic
at

io
n

co
st

 (
in

 r
at

io
)

Stock data,10 sites, 100 dimensions, k=20

localFP
localPG
globalFP
globalPG

(a) Effect of different ε values, 10 sites

0 1 2 3 4

x 10
5

0%

5%

10%

15%

20%

25%

30%

Number of updates

C
om

m
un

ic
at

io
n

co
st

(in
 r

at
io

)

Stock data,10 sites, 100 dimensions, k=20, ε=0.5

localFP
localPG
globalFP
globalPG

(b) Cost as updates increase, 10 sites

10 100 1000 10000 100000 1000000
0

2

4

6

8

10

Number of updates

C
lu

st
er

 r
ad

iu
s

Stock data,10 sites, 100 dimensions, ε=0.5

localFP
localPG
globalFP
globalPG
centralFP
centralPG

(c) Radius as updates increase, 10 sites

0 0.2 0.4 0.6 0.8 1
0%

1%

2%

3%

4%

5%

6%

Error factor ε

C
om

m
un

ic
at

io
n

co
st

 (
in

 r
at

io
)

Tiger data, 21 remote sites

localFP
localPG
globalFP
globalPG

(d) Effect of different ε values, 21 sites

0 1 2 3 4 5 6

x 10
5

0%

1%

2%

3%

4%

5%

6%

Number of updates

C
om

m
un

ic
at

io
n

co
st

 (
in

 r
at

io
)

Tiger data, 21 sites, ε = 0.5

localFP
localPG
globalFP
globalPG

(e) Cost as updates increase, 21 sites

10 100 1000 10000 100000 1000000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Number of updates

C
lu

st
er

 r
ad

iu
s

Tiger data, radius measure, ε = 0.5

localFP
localPG
globalFP
globalPG
centralFP
centralPG

(f) Radius as updates increase, 21 sites

Figure 3. k-center clustering: (a) – (c) 100-D stock series data. (d) – (f) 2-D US Census (Tiger) data

distributed clustering, and the dependence on parameters
such as the accuracy ε, number of sites and number of clus-
ters, and the algorithm used. We implemented simulations
of all four algorithms and their variants in C. We performed
experiments on a mixture of low and high dimensional data,
and measured the communication cost of each run in terms
of the total number of bytes transmitted by the algorithm.
This includes all points and counts transmitted, but does
not include other header information, as this will vary from
system to system. We present these costs as ratios to the
naive cost of sending every local point to the coordinator
site for centralized clustering. Experiments were performed
on a 3.2GHZ machine with 1GB RAM. We did not explic-
itly compare the time costs, since our simulations are not
fully optimized. However, we observed that in all cases,
the time cost was very small, processing millions of high
dimensional data points in a few seconds.

6.1 Data Sets and Methodology

We ran our experiments on a mixture of real and syn-
thetic data sets. We used Euclidean distance between points,
although our methods work for any metric. For brevity, we
focus primarily on two real data sets, and describe but do

not plot experiments on other data.

US Census 2005 (Tiger [28]) data. This data set consists
of extracts of selected geographic and cartographic informa-
tion from the Census Bureau’s TIGER (Topologically In-
tegrated Geographic Encoding and Referencing) database.
We selected all the (latitude,longitude) pairs for New Jersey
as 2-D data points. It contains about 600K points, divided
into 21 counties. By default, we set the number of sites m to
21, and each site was allocated all points from one county.
The default number of clusters was k = 20.

Stock price series [27]. The stock data series consists of
the price for a single stock taken at frequent intervals over a
six year period. In total, this defines a time series with over
n =330K values. From this, we create a high-dimensional
data set by sliding a window of width d over the series to
produce a sequence of (n − d) d-dimensional points.3 For
the experiments shown here, we used d = 100, sufficient to
show the effect of high dimensional data (where the size of
the points is significantly larger than other data that may be
transmitted). Each point is randomly assigned to a site.

3Although the result of clustering such a set of points may not always
be meaningful, it remains a good test of the clustering algorithms.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

x 10
5

Error factor ε

C
lu

st
er

 r
ad

iu
s

Tiger data, 21 sites

localFP
localPG
globalFP
globalPG
centralFP
centralPG

(a) Radius and error, 20 clusters

0 10 20 30 40 50
0%

5%

10%

15%

20%

25%

30%

Number of clusters k

C
om

m
un

ic
at

io
n

co
st

(in
 r

at
io

)

Tiger data, 21 sites

localFP
localPG
globalFP
globalPG

(b) Effect of varying number of clusters, 21 sites

0 10 20 30 40 50
0%

5%

10%

15%

20%

25%

30%

Number of sites

C
om

m
un

ic
at

io
n

co
st

 (
in

 r
at

io
)

Stock data, 100 dimensions, k=20, ε=0.5

localFP
localPG
globalFP
globalPG

(c) Effect of varying number of sites, 20 clusters

Figure 4. k-center clustering: varying varying accuracy, number of clusters, and number of sites

Synthetic Data [25]. We also ran experiments on a syn-
thetic aperiodic time series consisting of 1 million entries.
We again made this into high-dimensional data points by
using a sliding window of default size d = 100.

6.2 Experimental Results
We implemented the improvements to the local algo-

rithms outlined in Section 4.2, of (lazily) sharing lower
bounds on the radius of the clustering as Rglobal or Rmax,
after observing that this helped the performance of the al-
gorithms without affecting the clustering quality.
Fixed number of sites and number of clusters. Our first
set of experiments focused on how the communication cost
and quality of clustering varied between algorithms as a
function of the error parameter ε and size of the input data.
Figures 3(a) and 3(d) show that the communication cost of
all algorithms are only a small fraction of the cost of send-
ing all updates to the coordinator, and that this decreases
as ε is increased. On both the high and low dimensional
data, the relative performance of the algorithms is the same:
the global algorithms are more expensive than the local
ones, and the parallel guessing (PG) better than their fur-
thest point (FP) counterparts. We saw this relationship on
all experiments, and in all cases, the Local-PG algorithm
obtained the lowest communication cost.

In Figure 3(b), Global-PG significantly outperforms the
cost of Global-FP, by several times, whereas in the corre-
sponding experiment on Tiger data (Figure 3(e)) the two
have similar cost. This turns out to be a function of the
data ordering: the Tiger data is arranged so that each site
sees data that is locally clustered (each site sees points from
the same county). When we randomized the allocation of
points to sites, we observed that the Global-PG cost stayed
about the same, but the Global-FP cost increased by a factor
of about 4, suggesting that the FP algorithm is much more
sensitive to the point distribution. These plots show that as
more points are seen, the communication cost of this clus-

tering is very small: the cost of Local-PG on the Tiger data
is 0.1% of sending the full data, and 0.5% on the stock data.
Similar results were observed on synthetic data.

Dependence on accuracy parameter ε. We should like to
be sure that the local methods, while offering much lower
communication cost, are not doing so at the expense of the
quality of the clustering. We measure the clustering qual-
ity by computing the radius of the observed clustering. Al-
though we do not know what is the optimal clustering, we
can compare to the radius of an algorithm which takes the
full data and runs a centralized clustering algorithm on it:
either furthest point (central-FP) or parallel guessing with a
very small value of ε (central-PG). It is perhaps surprising
that in our experiments (Figures 3(c) and 3(f)) we saw close
similarity between the performance of all our algorithms in
radius (the worst case analysis allows for up to a factor of
two worse between the local and global algorithms)4. On
synthetic data with ε = 0.5 (not shown), we observed some
cases where local algorithms had radius upto 20% higher
than centralized algorithms — an appreciable difference,
but still significantly within the 2 + ε guarantees.

We see in more detail how the quality depends on ε in
Figure 4(a): as ε increases, we see more variability in the
radius of the clustering output. But even for the larger val-
ues of ε, most methods (notably, the local algorithms) are
very close to the centralized algorithms (which obtain al-
most identical results to each other).

Varying number of clusters and sites. The relative order-
ing of the algorithms remained the same over different num-
bers of clusters and numbers of sites. Figure 4(b) shows that
as the number of clusters increases, the FP algorithms in-
crease the communication cost much more quickly than the
PG algorithms. Fitting a curve to these trends shows that the
dependency of both local and global PG algorithms is linear

4We show these plots on a log-scale, since the radius of the clustering
typically stabilizes after seeing only a small fraction of the points.

in k, the number of clusters, while the dependency of both
FP algorithms are quadratic. The quality of the curve fitting
(the r2 coefficient) is 0.99 in all cases, indicating a very ac-
curate fit. This implies that the analytic bounds for the PG
algorithms in Section 4, which showed linear dependency
in k, are quite tight, and that an analytic O(k2) dependency
may follow for the FP algorithms. The effect of increas-
ing the number of sites is shown in Figure 4(c). Here, it
is the two global algorithms that show similar, clearly de-
fined trends: both Global-FP and Global-PG show a cost
that is strictly linear in m, the number of sites, with r2 val-
ues indistinguishable from 1 (perfect fit). For the local algo-
rithms, the trend is less clear: at worst, it is linear or sublin-
ear. These results are in line with the analysis of Section 4,
which guarantees worst-case linear dependency on m.

7 Conclusions
We have introduced the problem of continuous, dis-

tributed clustering, and given a selection of algorithms,
based on the paradigms of local vs. global computations,
and furthest point or parallel guessing clustering. In our ex-
perimental evaluation, the combination of local and parallel
guessing gave the least communication cost: typically only
a fraction of one percent of the cost of sending all the data
to a central site. The resultant clustering was very similar in
quality to a centralized clustering, and the space required is
independent of the size of the input. This emphasizes that
in distributed monitoring scenarios, it is frequently prefer-
able to track each site locally, and combine the results at
the coordinator site. It remains to extend this work to other
settings, and other clustering algorithms. For some meth-
ods, such as k-means, it is easy to see how to create global
instantiations, but less clear how to form accurate local ver-
sions. It will also be of interest to study other popular clus-
tering algorithms, such as BIRCH, DBSCAN and others.

References
[1] C. C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for

clustering evolving data streams. In VLDB, 2003.

[2] I. F. Akyildiz, D. Pompili, and T. Melodia. Underwater acous-
tic sensor networks: Research challenges. Ad Hoc Networks,
3(3):257–279, May 2005.

[3] V. Arya, N. Garg, R. Khandekat, A. Meyerson, K. Munagala,
and V. Pandit. Local search heuristics for k-median and facility
location problems. SIAM J. Computing, 33(3):544–562, 2004.

[4] B. Babcock and C. Olston. Distributed top-k monitoring. In
SIGMOD, 2003.

[5] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incre-
mental clustering and dynamic information retrieval. In STOC,
1997.

[6] G. Cormode and M. Garofalakis. Sketching streams through
the net: Distributed approximate query tracking. In VLDB,
2005.

[7] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Ras-
togi. Holistic aggregates in a networked world: Distributed
tracking of approximate quantiles. In SIGMOD, 2005.

[8] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s
different: Distributed, continuous monitoring of duplicate re-
silient aggregates on data streams. In ICDE, 2006.

[9] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Dis-
tributed set-expression cardinality estimation. In VLDB, 2004.

[10] I. Dhillon and D. Modha. A data-clustering algorithm on
distributed memory multiprocessors. In Large-scale Parallel
Data Mining, 2000.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In KDD, 1996.

[12] T. Feder and D. H. Greene. Optimal algorithms for approxi-
mate clustering. In STOC, 1988.

[13] G. Forman and B. Zhang. Distributed data clustering can be
efficient and exact. SIGKDD Explorations, 2(2):34–38, 2000.

[14] G. Frahling and C. Sohler. Coresets in dynamic geometric
data streams. In STOC, 2005.

[15] V. Ganti, J. Gehrke, and R. Ramakrishnan. DEMON: Mining
and monitoring evolving data. In ICDE, 2000.

[16] T. F. Gonzalez. Clustering to minimize the maximum inter-
cluster distance. Theoretical Computer Science, 38(2-3):293–
306, 1985.

[17] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clus-
tering data streams. In FOCS, 2000.

[18] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clus-
tering algorithm for large databases. In SIGMOD, 1998.

[19] S. Har-Peled and S. Mazumdar. Coresets for k-means and
k-median clustering and their applications. In STOC, 2004.

[20] C. Holden. Sound Sightings. Science, 313(5788):777, Au-
gust 2006.

[21] W. Hsu and G. Nemhauser. Easy and hard bottleneck loca-
tion problems. Disc. Appl. Math., 1:209–215, 1979.

[22] P. Indyk. Algorithms for dynamic geometric problems over
data streams. In STOC, 2004.

[23] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, 1988.

[24] E. Januzaj, H.-P. Kriegel, and M. Pfeifle. Towards effective
and efficient distributed clustering. In Workshop on Clustering
Large Data Sets (ICDM), 2003.

[25] E. J. Keogh and M. J. Pazzani. Pseudo periodic synthetic
time series. http://kdd.ics.uci.edu/databases/
synthetic/synthetic.html

[26] C. Olston, J. Jiang, and J. Widom. Adaptive filters for con-
tinuous queries over distributed data streams. In SIGMOD,
2003.

[27] SFR-USD tickwise stock data set. http://www-psych.
stanford.edu/∼andreas/Time-Series/Data/

[28] Topologically Integrated Geographic Encoding and Refer-
encing system (TIGER), US census bureau, 2005. http:
//www.census.gov/geo/www/tiger/

[29] X. Xu, J. Jäger, and H.-P. Kriegel. A fast parallel cluster-
ing algorithm for large spatial databases. Data Mining and
Knowledge Discovery, 3:263–290, 99.

[30] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an effi-
cient data clustering method for very large databases. In SIG-
MOD, 1996.

