
Brief Announcement: Tracking Distributed Aggregates
over Time-based Sliding Windows

Graham Cormode
AT&T Labs–Research

Florham Park, NJ, USA
graham@research.att.com

Ke Yi
Hong Kong University of Science and Technology

Hong Kong, PRC
yike@cse.ust.hk

ABSTRACT
The area of distributed monitoring requires tracking the value of
a function of distributed data as new observations are made. An
important case is when attention is restricted to only a recent time
period, such as the last hour of readings—the sliding window case.
In this announcement, we outline a novel paradigm for handling
such monitoring problems, which we dub the “forward/backward”
approach. This provides clean solutions for several fundamental
problems, such as counting, tracking frequent items, and maintain-
ing order statistics. We obtain efficient protocols for these prob-
lems that improve on previous work, and are easy to implement.
Specifically, we obtain optimal O(k

ε
log(εn/k)) communication

per window of n updates for tracking counts and heavy hitters
with accuracy ε across k sites; and near-optimal communication
of O(k

ε
log2(1/ε) log(n/k)) for quantiles.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complexity]: Nonnu-
merical algorithms and problems

General Terms
Algorithms

Keywords
Data streams, sliding windows

1. INTRODUCTION
Problems of distributed tracking involve trying to compute vari-

ous aggregates over data that is distributed across multiple observ-
ing sites. Each site observes a stream of information, and aims
to collaborate with the other sites to continuously track a function
over the union of the streams. For example, a number of routers in
a network might try to collaborate to track the most popular desti-
nations. The goal is to allow a single distinguished entity, known
as the “coordinator”, to track the desired function. Within such
settings, it is natural to only want to capture the recent behavior—
say, the most popular destinations within the last 24 hours. Thus,
attention is limited to a “time-based sliding window”.

For these problems, the primary goal is to analyze the (total)
communication required to achieve accurate tracking. This should
be much smaller than the trivial solution of simply centralizing all
the observations at the coordinator site. In this area, prior work has

Copyright is held by the author/owner(s).
PODC’11, June 6–8, 2011, San Jose, California, USA.
ACM 978-1-4503-0719-2/11/06.

tended to be network topology agnostic, and measures just the total
number of bytes transmitted by the protocols. Secondary goals in-
clude minimizing the space required at each site to run the protocol,
and the time to process each new observation. These quantities are
functions of k, the number of distributed sites, n, the total size of
the input data, and ε, an approximation parameter to tolerate some
imprecision in the computed answer.

Within this context, there has been much work on the “infinite
window” case, where all historic data is included. Results have
been shown for monitoring functions such as counts, distinct counts,
order statistics, join sizes, entropy, and others [1, 3, 5, 6, 8, 10, 13].
Lately, there has been interest in only tracking a window of recent
observations, defined by all those elements which arrived within the
most recent w time units. Results in this model have been shown
for tracking counts and frequent items [3], and for sampling [7].

Our results are most directly related to the recent work of Chan
et al. [3]. The approach taken in [3] is somewhat complicated: the
analysis of the proposed protocols is quite lengthy, and requires
detailed analysis of multiple cases. They consider three problems:
basic counting, which is to maintain the count of items observed
within the window; heavy hitters, which is to maintain all items
whose frequency (within the window) is more than a given fraction;
and to maintain the quantiles of the distribution. Each problem tol-
erates an error of ε, and is parameterized by k, the number of sites
participating in the computation, and n, the number of items ar-
riving in a window. [3] shows (per window) communication costs
of O(k

ε
log εn

k
) bits for basic counting, O(k

ε
log n

k
) words for fre-

quent items and O(k
ε2 log n

k
) words for quantiles. Our main contri-

butions are simple algorithms with straightforward analysis which
meet and in some cases improve on these bounds. To do this, we
outline a conceptually simple approach for decomposing sliding
windows, which also extends naturally to other problems in this
setting. We call this the “forward/backward” framework. This can
be applied to tracking counts, heavy hitters and quantiles to obtain
optimal or near optimal communication bounds. It also extends to
other functions, such as distinct counts and geometric properties.

Problem definitions and our results. Figure 1 shows the model:
k sites each observe a stream Si of item arrivals, and communi-
cate with a single distinguished coordinator node to continuously
compute some function of the union of the update streams.

The basic counting problem is to track (approximately) the num-
ber of items which have arrived across all sites within the last w
time units. More precisely, let the stream of items observed at site i
be Si, a set of (x, t(x)) pairs, which indicates that an item x arrives
at time t(x). Then the exact basic count at time t is given by

C(t) =
X

1≤i≤k

|{(x, t(x)) ∈ Si | t− t(x) ≤ w}|.

· · ·S1 S2 S3 Sk

time

Ccoordinator

sites

Figure 1: Schematic of the distribute streaming model

Tracking C(t) exactly requires alerting the coordinator every
time an item arrives or expires, so the goal is to track C(t) ap-
proximately within an ε-error, i.e., the coordinator should maintain
a C̃(t) such that (1− ε)C(t) ≤ C̃(t) ≤ (1+ ε)C(t) at all times t.

The heavy hitters problem extends the basic counting problem,
and generalizes the concept of finding the mode [11]. In the basic
counting problem we count the total number of all items, while here
we count the frequency of every distinct item x, i.e., the coordinator
tracks the approximate value of

nx(t) =
X

1≤i≤k

|(x, t(x)) ∈ Si | t− t(x) ≤ w}|.

Since it is possible that many nx(t) are small, say 0 or 1 for all
x, requiring a multiplicative approximation for all x would require
reporting all items to the coordinator. Consequently, the commonly
adopted approximation guarantee for heavy hitters is to maintain a
ñx(t) that has an additive error of at most εC(t), where C(t) is
the total count of all items. This essentially makes sure that the
“heavy” items are counted accurately while compromising on the
accuracy for the less frequent items. In particular, all items x with
nx(t) ≤ εC(t) can be ignored altogether as 0 is considered a good
approximation for their counts. This way, at most 1/ε distinct items
will have nonzero approximated counts.

The quantiles problem is to continuously maintain approximate
order statistics on the distribution of the items. That is, the items
are drawn from a total order, and we wish to retain a set of items
q1, . . . , q1/ε such that the rank of qi (number of input items within
the sliding window that are less than qi) is between (i − 1)εC(t)
and (i + 1)εC(t) [12]. It is known that this is equivalent to the
“prefix-count” problem, where the goal is to maintain a data struc-
ture on the sliding window such that for any given x, the number
of items smaller than x can be counted within an additive error of
at most εC(t).

The key insight of the forward-backward approach is that we can
partition time into fixed intervals of length w, the desired window
size. Now at any time, our sliding window of interests intersects
two of these fixed partitions. In one of these partitions, new items
are arriving only; in the other, old items are expiring only. We can
consider these two windows independently, and combine approxi-
mations of each to obtain overall guarantees over the whole data.
This simplifies the problem dramatically, since we now have to deal
only with monotonic behavior (arrivals or departures), which, for

Problem Communication Cost Space Cost
Basic Counting O(k

ε
log(εn/k)) bits O(1

ε
log εn)

Heavy Hitters O(k
ε

log(εn/k)) O(1
ε

log εn)
Quantiles O(k

ε
log2(1/ε) log(n/k)) O(1

ε
log2(1/ε) log n)

Figure 2: Summary of Results. All bounds are in terms of
words unless specified otherwise.

many functions of interest, implies monotonic behavior of the de-
sired output also. Consequently, we obtain monitoring algorithms
for these problems which are based on running simple protocols
assuming an unbounded window for the “forward” (arriving) part
of the data, and building data structures which allow approximate
computations of the desired function on the “backward” (departing)
part of the data.

A summary of our results appears in Figure 2. Here, the com-
munication cost is measured as the total amount of communication
between all k sites and the central coordinator site, as a function of
n, the number of observations in each window, and ε, the approxi-
mation parameter. We also list the space required local to each site
to run the protocol.

2. REFERENCES
[1] C. Arackaparambil, J. Brody, and A. Chakrabarti. Functional

monitoring without monotonicity. In ICALP, 2009.
[2] C. Busch, S. Tirthapura, and B. Xu. Sketching asycnhronous

streams over sliding windows. In ACM PODC, 2006.
[3] H.-L. Chan, T.-W. Lam, L.-K. Lee, and H.-F. Ting.

Continuous monitoring of distributed data streams over a
time-based sliding window. In STACS, 2010.

[4] G. Cormode and M. Garofalakis. Sketching streams through
the net: Distributed approximate query tracking. In VLDB,
2005.

[5] G. Cormode, M. Garofalakis, S. Muthukrishnan, and
R. Rastogi. Holistic aggregates in a networked world:
Distributed tracking of approximate quantiles. In ACM
SIGMOD , 2005.

[6] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for
distributed, functional monitoring. In ACM-SIAM SODA,
2008.

[7] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang.
Optimal sampling from distributed streams. In ACM PODS,
2010.

[8] Y. Emek and A. Korman. Efficient threshold detection in a
distributed environment. In ACM PODC, 2010.

[9] P. Gibbons and S. Tirthapura. Distributed streams algorithms
for sliding windows. In ACM SPAA, 2002.

[10] R. Keralapura, G. Cormode, and J. Ramamirtham.
Communication-efficient distributed monitoring of
thresholded counts. In ACM SIGMOD , 2006.

[11] F. Kuhn, T. Locher, and S. Schmid. Distributed computation
of the mode. In ACM PODC, 2008.

[12] B. Patt-Shamir. A note on efficient aggregate queries in
sensor networks. In ACM PODC, 2004.

[13] I. Sharfman, A. Schuster, and D. Keren. A geometric
approach to monitoring threshold functions over distributed
data streams. In ACM SIGMOD , 2006.

[14] K. Yi and Q. Zhang. Optimal tracking of distributed heavy
hitters and quantiles. In ACM PODS, 2009.

