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ABSTRACT
While traditional database systems optimize for performance on
one-shot queries, emerging large-scale monitoring applications re-
quire continuous tracking of complex aggregates and data-distribu-
tion summaries over collections of physically-distributed streams.
Thus, effective solutions have to be simultaneously space efficient
(at each remote site), communication efficient (across the underly-
ing communication network), and provide continuous, guaranteed-
quality estimates. In this paper, we propose novel algorithmic solu-
tions for the problem of continuously tracking complex holistic ag-
gregates in such a distributed-streams setting — our primary focus
is on approximate quantile summaries, but our approach is more
broadly applicable and can handle other holistic-aggregate func-
tions (e.g., “heavy-hitters” queries). We present the firstknown
distributed-tracking schemes for maintaining accurate quantile es-
timates with provable approximation guarantees, while simultane-
ously optimizing the storage space at each remote site as well as
the communication cost across the network. In a nutshell, our algo-
rithms employ a combination of local tracking at remote sites and
simple prediction models for local site behavior in order toproduce
highly communication- and space-efficient solutions. We perform
extensive experiments with real and synthetic data to explore the
various tradeoffs and understand the role of prediction models in
our schemes. The results clearly validate our approach, revealing
significant savings over naive solutions as well as our analytical
worst-case guarantees.

1. INTRODUCTION
Traditional data-management applications such as managing sales

records, transactions, inventory, or facilities typically require data-
base support for a variety ofone-shot queries, including lookups,
sophisticated slice-and-dice operations, data mining tasks, and so
on. One-shot means the data processing is essentially done once, in
response to the posed query. This has led to an enormously success-
ful industry of database engines optimized for supporting complex,
one-shot SQL queries over large amounts of data.

Recent years, however, have witnessed the emergence of a new
class oflarge-scale event monitoringapplications that pose novel

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06$5.00.

data-management challenges. In one class of applications,mon-
itoring a large-scale system is an operational aspect of maintain-
ing and running the system. As an example, consider the Network
Operations Center (NOC) for the IP-backbone network of a large
ISP (such as Sprint or AT&T). Such NOCs are typically impressive
computing facilities, monitoring hundreds of routers, thousands of
links and interfaces, and blisteringly-fast sets of eventsat different
layers of the network infrastructure (ranging from fiber-cable uti-
lizations to packet forwarding at routers, to VPNs and higher-level
transport constructs). The NOC has to continuously track patterns
of usage levels in order to detect and react to hot spots and floods,
failures of links or protocols, intrusions, and attacks. A similar
example is that of data centers and web-content companies (such
as Akamai) that have to monitor access to the thousands of web-
caching nodes and do sophisticated load balancing, not onlyfor
better performance but also to protect against failures. Similar is-
sues arise for utility companies such as electricity suppliers that
need to monitor the power grid and customer usage. A different
class of applications is one in which monitoring is the goal in itself.
For instance, consider a wireless network of seismic, acoustic, and
physiological sensors that are deployed for habitat, environmen-
tal, and health monitoring. Here, the sensor systems monitor the
distribution of measurements for trend analysis, detecting moving
objects, intrusions, or other adverse events. Similar issues arise in
sophisticated satellite-based systems that do atmospheric monitor-
ing for weather patterns.

Examining these monitoring applications in detail allows us to
abstract a number of common elements. Primarily, monitoring is
continuous, that is, we need real-time tracking of measurements or
events, not merely one-shot responses to sporadically posed queries.
Second, monitoring is inherentlydistributed, that is, the underlying
infrastructure comprises several remote sites (each with its own lo-
cal data source) that can exchange information through a communi-
cation network. This also means that there typically are important
communication constraintsowing to network-capacity restrictions
(e.g., in IP-network monitoring, where the collected utilization and
traffic is voluminous [6]) or power and bandwidth restrictions (e.g.,
in wireless sensor networks, where communication overheadis the
key factor in determining sensor battery life [18]). Furthermore,
each remote site may see ahigh-speed streamof data and has its
own local resource constraints, such asstorage-spaceor CPU-time
constraints. This is true for IP routers that cannot possibly store the
log of all observed traffic due to the ultra-fast rates at which pack-
ets are forwarded. This is also true for the wireless sensor nodes,
even though they may not observe large data volumes, since they
typically have very small memory onboard.

In addition, there are two key aspects of such large-scale mon-
itoring problems. First, one needs a way to effectively monitor



the complete distribution of data(e.g., IP traffic or sensor mea-
surements) observed over the collection of remote sites. Having
an accurate picture of the overall data distribution is crucial in un-
derstanding system behavior and characteristics, tracking impor-
tant trends, and making informed judgments about measurement or
utilization patterns. In other words, while hardwired outlier detec-
tion methods can be of use for certain applications (e.g., network
anomaly detection), monitoring the entire data distribution gives
us a much broader and more robust indicator of overall system
behavior — such indicators are critical, for instance, in network-
provisioning systems that try to provision routing paths with guar-
anteed Quality-of-Service parameters (e.g., delay or jitter) over an
IP network (e.g., for a VoIP application). Second, answers that are
precise to the last decimal are typically not needed when tracking
statistical properties of large-scale systems; instead,approximate
estimates(with reasonable guarantees on the approximation error)
are often sufficient, since we are typically looking for indicators
or patterns, rather than precisely-defined events. Obviously, this
can work in our favor, allowing us to effectively tradeoff efficiency
with approximation quality. To summarize, our focus is on large-
scale monitoring problems that aim to continuously provideaccu-
rate summaries of the complete data distribution over a collection
of remote data streams. Solutions for such monitoring problems
have to work in a distributed setting (i.e., over a communication
network), be real-time orcontinuous, and be space and commu-
nication efficient; furthermore, approximate, yet accurate, answers
suffice.

Prior Work. Given the nature of large-scale monitoring applica-
tions, their importance for security as well as daily operations, and
their general applicability, it is surprising that very little is known
about solutions for many basic distributed-monitoring problems.
The bulk of recent work on data-stream processing has focused on
developing space-efficient, one-pass algorithms for performing a
wide range ofcentralized, one-shot computationson massive data
streams; examples include computing quantiles [14], estimating
distinct values [11] and set-expression cardinalities [10], count-
ing frequent elements (i.e., “heavy hitters”) [5, 21], approximating
large Haar-wavelet coefficients [12], and estimating join sizes and
stream norms [1, 2]. As already mentioned, all the above methods
work in a centralized, one-shot setting and, therefore, do not con-
sider communication-efficiency issues. More recent work has pro-
posed methods that carefully optimize site communication costs for
approximating different queries in a distributed setting,including
quantiles [15, 23] and heavy hitters [19]; however, the underlying
assumption is that the computation is triggered either periodically
or in response to a one-shot request. Thus, such techniques are not
immediately applicable for acontinuous-monitoringenvironment,
where the goal is to continuously provide guaranteed-quality esti-
mates over a distributed collection of streams.

It is important to realize that each of the dimensions of our prob-
lem (distributed, continuous, and space-constrained) induce spe-
cific technical bottlenecks. For instance, even efficient streaming
solutions at individual sites can lead to constant updates on the
distributed network and become highly communication-inefficient
when they are directly used in distributed monitoring. Likewise,
morphing one-shot solutions to continuous problems entails propa-
gating each change and recomputing the solutions which is commu-
nication inefficient, or involves periodic updates and other heuris-
tics that can no longer provide real-time estimation guarantees.

Closest in spirit to our work are the recent results of Olstonet
al. [3, 22] and Das et al. [8]. All three efforts consider the trade-
off between accuracy and communication for monitoring a limited
class of continuous queries (at a coordinator site) over distributed

streams (at remote sites). More specifically, Olston et al. [22] con-
sider aggregation queries that computesimple, non-holistic aggre-
gates(e.g.,AVERAGE or MAX) of dynamically-changing numeric
values spread over multiple sources. Their approach relieson giv-
ing each site a tolerance interval such that the cumulative width
of per-site intervals is upper-bounded by the application’s total er-
ror tolerance. Das et al. [8] also employ similar ideas for the dis-
tributed monitoring of set-expression cardinalities; since their esti-
mation problem relies on set semantics, they propose a scheme for
effectively charging local changes against a site’s error tolerance.
Finally, Olston et al. [3] focus on monitoring the top-k (i.e.,k most
frequent) values over remote data streams; their techniques ensure
the validity of the current top-k set (at the coordinator) by installing
appropriate arithmetic constraints at each site. Once again, these
earlier papers focus on specific distributed-monitoring queries (name-
ly, simple aggregates, set-expression cardinalities, andtop-k), and
are not always applicable to more general settings (specifically, for
monitoring summaries of the entire data distribution or more com-
plex,holistic aggregatesover the remote sites).

Our Contributions. In this paper, we address the fundamental
problem of continuously tracking approximate, guaranteed-quality
summaries of the complete data distribution over distributed data
streams, in its full generality. More specifically, we focuson ap-
proximate quantile summariesof the overall data distribution (i.e.,
equi-width histograms). Quantiles are a very general form of holis-
tic aggregatesover the underlying distribution that, in fact, sub-
sumes other useful holistic-aggregate functions, such as heavy hit-
ters. That is, tracking the quantiles immediately allows usto track
heavy hitters based on the same information (as discussed later in
this paper). Our contributions are as follows:

• Communication- and Space-Efficient Approximate Quantile
Tracking. We present the first known algorithms for tracking quan-
tiles over a distributed collection of streams to specified accuracy,
provably, at all times. In a nutshell, our algorithms achieve com-
munication efficiency by requiring remote sites to exchangeonly
concise, local-summary information over the communication net-
work. Our tracking schemes also exploit the novel idea of simple,
per-siteprediction modelsfor capturing the behavior of individual
stream distributions at remote sites. As our analysis and results
demonstrate, this intuitive idea is actually quite powerful, and al-
lows our schemes to achieve a naturalstabilityproperty that, essen-
tially, renders communication unnecessary as long as the behavior
of local distributions at remote sites remains reasonably stable. Fur-
thermore, our analysis of the worst-case communication costs for
simple cases of our distributed-tracking protocols shows that they
are, in fact, comparable to that of one-shot approximate quantile
computations. Finally, our schemes are also space-efficient, since
they can be implemented using only slightly more space than that
used by centralized, one-shot quantile estimation methodsfor data
streams. To the best of our knowledge, our work is the first to pro-
vide principled models and analyses for the important problem of
approximate quantile tracking over distributed streams.

•Extensions to General Monitoring Hierarchies and other Holis-
tic Aggregates.Our basic problem formulation is set using a flat,
single-coordinator distributed setting (as in [3, 22, 8]).Later in
the paper, however, we show that our schemes and results can also
be naturally extended to more complex, hierarchical-monitoring
architectures, where the communication network is arranged as a
tree-structuredhierarchy of nodes (such as a sensornetrouting tree
[18]). We also demonstrate the broader applicability of thegeneral
framework and tracking strategies proposed in this paper toother
holistic-aggregatequeries, including heavy hitters [5, 21] and large



wavelet coefficients [12]. Further applications of our ideas to even
more complex distributed queries (e.g., joins) is a challenging di-
rection for future work.

• Experimental Results Validating our Approach. We perform a
thorough set of experiments from IP-traffic level (SNMP logsfrom
IP networks) to application level (server downloads from World
Cup HTTP request) and to synthetic data. The experiments explore
the space vs communication tradeoffs as well as the role of predic-
tion models in detail, and discover more efficiencies than our worst
case theoretical bounds indicate. They illustrate that even simple
prediction models can have significant impact on saving commu-
nication: the data sent represents only a tiny fraction of the total
number of updates and, as the updates increase, this fraction shrinks
further.

Throughout, we have omitted many proofs due to space constraints;
the complete details will appear in the full version of this paper.

2. PROBLEM FORMULATION
In this section, we describe the key elements of our distributed

stream-processing architecture and formally define the distributed
approximate quantile tracking problem addressed in this paper.

System Architecture. We consider a distributed-computing en-
vironment, comprising a collection ofk remote sitesand a desig-
natedcoordinator site. Streams of data updates arrive continuously
at remote sites, while the coordinator site is responsible for gen-
erating approximate answers to (possibly, continuous) user queries
over theunion of all remotely-observed streams. Our distributed
stream-processing model is similar to that of Olston et al. [3, 22]
and Das et al. [8] where no direct communication between remote
sites is allowed; instead, as illustrated in Figure 1, a remote site ex-
changes messages only with the coordinator, providing it with state
information on its (locally-observed) stream. Note that such a hier-
archical processing model is, in fact, representative of a large class
of applications, including network monitoring where a central Net-
work Operations Center (NOC) is responsible for processingnet-
work traffic statistics (e.g., link bandwidth utilization,IP source-
destination byte counts) collected at switches, routers, and/or Ele-
ment Management Systems (EMSs) distributed across the network.
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Figure 1: Distributed Stream Processing Architecture.

At each remote sitej ∈ {1, . . . , k}, the local update stream ren-
ders a multi-setSj (or, in other words, afrequency distribution)
over data elements from the integer domain[U ] = {0, . . . , U −1}.
As an example, in the case of IP routers monitoring the numberof
connections between source and destination IP addresses,[U ] is the
domain of64-bit (source, destination) IP-address pairs, andSj cap-
tures the frequency of specific (source, destination) pairsobserved

at routerj. (We useSj to denote both the update stream at sitej as
well as the underlying element multi-set/frequency distribution in
what follows.) To simplify the exposition, we initially assume that
each stream update at remote sitej has the form< +1, v >, denot-
ing the insertion of data elementv ∈ [U ] in theSj multi-set (i.e.,
an increase of+1 in v’s net frequency inSj ); then, in Section 4, we
demonstrate that our key ideas and results actually hold forstreams
Sj of general updates(i.e., elements insertions and deletions) of
the form< ±1, v > at the remote sites. (Note that handling delete
operations substantially enriches our distributed streaming model;
for instance, it allows us to effectively handle tracking over sliding
windowsof the streams by simply issuing implicit delete opera-
tions for expired stream items no longer in the window of interest
at remote sites.) We also discuss the extension of our techniques
to more complex distributed-tracking architecture, wherethe un-
derlying communication network is structured as amulti-level tree
hierarchy (such as the routing trees typically built over sensornet
deployments [18]).

The Approximate Quantile Tracking Problem. Our focus in this
paper is on the problem of effectively answering user queries on the
frequency distribution of theglobal collection of streamsS =∪jSj

at the coordinator site. Rather than one-time query evaluation, we
assume a continuous-querying environment which implies that the
coordinator needs tocontinuously maintain(or, track) a picture of
the global frequency distributionS as the local update streamsSj

evolve at individual remote sites. More specifically, our primary fo-
cus is on continuously tracking thequantiles(i.e., order-statistics)
of the global frequency distributionS at the coordinator.

The distributed nature of the local streamsSj comprising the
global frequency distributionS makes this a very challenging prob-
lem. A naive scheme that accurately tracks the quantiles ofS by
forcing remote sites to ship every remote stream update to the co-
ordinator is clearly impractical, since it not only imposesan inordi-
nate burden on the underlying communication infrastructure (espe-
cially, for high-rate data streams and large numbers of remote sites),
but also drastically limits the battery life of power-constrained re-
mote devices (such as wireless sensor nodes) [9, 18]. Instead,
to reduce communication overhead, we focus on the continuous
tracking ofapproximatequantiles ofS at the coordinator site with
strong guarantees on the quality of the approximation. Thisallows
our schemes to effectively trade-off communication efficiency and
quantile-approximation accuracy in a precise, quantitative manner;
in other words, larger error tolerances for the approximatequan-
tiles at the coordinator imply smaller communication overheads to
ensure continuous approximate tracking.

More formally, letN = |S| denote the total size of the global
data streamS. For a domain valuev ∈ [U ], we user(v) andq(v)
to denote theabsolute rankandquantile (i.e., relative) rankof v
in S, respectively; in other words,r(v) = |{u ∈ S : u ≤ v}|

and q(v) = r(v)
N

. Given a prespecified error toleranceǫ, our
goal is to continuously maintain anǫ-approximate quantile sum-
maryQ(S) of the global frequency distributionS at the coordinator
while minimizing the overall amount of communication between
the coordinator and the remote sites. By providing a continuous
ǫ-approximation guarantee, this quantile summaryQ(S) at the co-
ordinator can, at any time instant, be employed to answer:
(1) ǫ-approximate quantile-rank queries, where, given a domain
valuev ∈ [U ], we seek to find an approximate quantile rankq̂(v) ∈
[0, 1] that is withinǫ of v’s true quantile rank inS, i.e., findq(v)
such thatq(v)− ǫ ≤ q̂(v) ≤ q(v) + ǫ; and,
(2) ǫ-approximate quantile-value queries, where, given a quantile
rank q ∈ [0, 1], we seek a valuev = v(q) ∈ [U ] whose quantile



rank inS is within ǫ of q, i.e., findv = v(q) soq − ǫ ≤ q(v) ≤
q + ǫ.
(The correspondingǫ-approximate queries forabsolute rankare
also naturally defined in a similar manner—in the case of absolute
rank, error tolerance forr(v) is defined as±ǫN .) Thus, our notion
of approximate quantile summaries forS is identical to that of all
earlier research on approximate quantiles [14, 15, 13, 20].Note
that an approximate quantile-value query is essentially the dual of
an approximate quantile-rank query, and can be easily answered
with O(log U) quantile-rank queries using binary search to deter-
mine a valuev that generates an approximate quantile rank in the
desired range[q − ǫ, q + ǫ] for the original queryq. Symmetri-
cally, one we could answer approximate quantile-rank queries with
a bounded number of approximate quantile-value queries. Hence,
our discussion focuses on answering quantile-rank querieswith ǫ-
approximation guarantees, knowing that this is sufficient to also
answer quantile-value queries within the same error bounds.

3. OUR QUANTILE TRACKING SOLUTION
In this section, we discuss the details of our proposed scheme

for the distributed tracking of approximate quantiles. We begin by
providing an overview of our general approach and a discussion of
important design desiderata for our distributed-trackingsolution.

3.1 Overview
In a nutshell, our distributed quantile-tracking scheme isbased

on each individual remote sitej continuously monitoring the quan-
tiles of its local update streamSj (j = 1, . . . , k). When a certain
amount of change is observed locally, then a site may communicate
with the coordinator in order to update the coordinator withmore
recent information about its local update stream and, then,resumes
monitoring its local updates. Our overall goal is to ensure strong,
ǫ-approximation guarantees for quantile queries overS = ∪jSj

at the coordinator while minimizing the amount of communication
with the remote sites. Besides the obvious goal ofcorrectness(i.e.,
making sure that the coordinator maintainsǫ-approximate quantiles
of S at all times), we can identify other important design desiderata
that our solution should strive for.

• Summary-based Information Exchange.Rather than ship-
ping the complete frequency distribution for their local streams
Sj to the coordinator, remote sites only communicatecon-
cise quantile summariesQ(Sj) of their locally-observed up-
dates (along with, perhaps, some additional summary infor-
mation). The size of theQ(Sj) summary depends critically
on the desiredǫ-approximation guarantees at the coordinator.
• Stability. Intuitively, the stability property means that, pro-

vided the local distributions at remote sites remain approx-
imately the same, there is no need for communication be-
tween the remote sites and the coordinator. The interpreta-
tion of this property depends on our ability tomodelthe sim-
ilarity of the up-to-date local distributionsSj to their past
behavior—as long as our models accurately capture the true
behavior of local update streams, no communication between
the remote sites and the coordinator is necessary.
• Minimal Global Information Exchanges.Even though re-

mote sites communicate only summary information on their
local streams, as the number of sitesk increases, the commu-
nication penalty for interrogating all remote sites becomes
inordinately high. Hence, we aim to avoid solutions that
may require regular collection or broadcasting of informa-
tion from/to every remote site in the system. For instance,

a scheme that distributes information on the global quan-
tiles overS to all remote sites would typically need to re-
broadcast up-to-date global-quantile information to sites (ei-
ther periodically or during some “global resolution” stage[3])
in order to ensure correctness. Our solutions are designed to
explicitly avoid such expensive “global synchronization”.

As already mentioned, our solution is based on remote sites con-
tinuously monitoringlocal constraintson the quantile distributions
of their local update streamsSj , and contacting the coordinator
with an appropriate quantile summaryQ(Sj) (and, possibly, addi-
tional summary information) once these local quantile constraints
are violated. Briefly, our tracking scheme splits the allowed error
toleranceǫ at the coordinator into two distinct componentsφ and
θ; that is,ǫ = φ+ θ, where

• φ captures the error of local quantile summaries communi-
cated to the coordinator; and,
• θ captures (an upper bound on) the deviation of local quan-

tiles at each remote site based on locally-observed updates
since the last communication with the coordinator.

Thus, in our solution, a local quantile summaryQ(Sj) last commu-
nicated to the coordinator at timet carries an approximation error
in the order ofφ with respect to the snapshot of local streamSj at
time t, whereasθ bounds the deviation of local quantiles with re-
spect to the snapshot-summary information sent to the coordinator
(since timet). Intuitively, a largerθ value allows for larger local de-
viations since the last communication and, therefore, implies fewer
communications to the coordinator but, sinceǫ = φ+ θ, for a given
error toleranceǫ, the size of theφ-approximate summaryQ(Sj)
sent during each communication is larger. Our analysis provides
rules for optimally dividing the allowed error toleranceǫ in simple
cases; in more complex scenarios, we give empirical guidelines for
allocatingφ andθ.

Each local quantile summaryQ(Sj) communicated to the coor-
dinator at timet gives a (O(φ)-approximate) picture of the snap-
shot of theSj stream at timet.1 In order to achieve thestabil-
ity property, a crucial component of our solutions is the concept
of conciseprediction modelsthat may be communicated from re-
mote sites to the coordinator (along with the localQ(Sj) quantile
summaries) in an attempt to accurately capture the anticipated be-
havior of local streams. The idea is that the coordinator employs
the prediction model for sitej (in conjunction with its most re-
centQ(Sj) local snapshot summary) to predict thecurrent stateof
theSj stream when estimating the global, up-to-date quantiles for
S; similarly, remote sitej employs the same prediction model to
check for the deviation of its local quantiles with respect to the cor-
responding predictions at the coordinator. Thus, as long the predic-
tion models accurately capture the local update behavior atremote
sites, no communication is needed. Note that a prediction model is
local information for a specific remote site, and it can be computed
either by the remote site itself or by the coordinator (and, of course,
transmitted to the other party for the purposes of quantile compu-
tation or local monitoring). Since our prediction models are also
part of the information exchanged between the remote sites and
the coordinator, it is crucial to keep them simple and concise—we
discuss several different options for such prediction models, rang-
ing from naive “empty” models to more natural models based on
locally-observed update rates.

1To simplify the exposition, we assume that communications with the coor-
dinator are instantaneous. In the case of non-trivial delays in the underlying
communication network, techniques based on timestamping and message
serialization can be employed to ensure correctness, as in [22].



To simplify the exposition, we initially focus solely on minimiz-
ing the overall communication cost, and assume that each remote
site accurately maintains thefull distribution for its local update
streamSj (and, thus, can compute its local quantiles exactly). Sub-
sequently, we generalize our approach to additionally bound the
space/time requirements at remote sites through the use ofapprox-
imate local-quantile tracking techniques; as we demonstrate, our
solution can be extended to accommodate the use of most known
streaming quantile summaries at remote sites, including, for ex-
ample, deterministic Greenwald-Khanna summaries [14] orq-di-
gests [23], as well as randomized subset-sum summaries [13]and
Count-Min sketches [4].

3.2 The Basic Tracking Scheme
Fix a remote sitej, and letQ(Sj) denote the collection ofφ-

quantile values of (the current snapshot of) its local update stream
Sj ; that is,Q(Sj) comprises⌈ 1

φ
⌉+1 valuesv0,j , . . . , v⌈ 1

φ
⌉,j such

that the quantile rank of theith valuevi,j in the local streamSj

(denoted byqj(vi,j)) is qj(vi,j) = iφ (or, equivalently, its absolute
rank isrj(vi,j) = iφNj), for i = 0, 1, . . . , ⌈ 1

φ
⌉.2 In particular,

note thatv0,j andv1/φ,j are the minimum and maximum values
observed in streamSj (respectively).

It is not difficult to see that the above-described collection of
φ-quantile valuesQ(Sj) = {vi,j : i = 0, . . . , 1/φ} is a φ

2
-

approximate quantile summary (of sizeO( 1
φ

log M)) for stream
Sj . This fact follows from the simple observation that, given a
valuev ∈ [U ], we can determine two consecutive valuesvi,j and
vi+1,j in Q(Sj) such thatv ∈ (vi,j , vi+1,j ], and estimate the ap-

proximate quantile rank ofv in Sj as
qj(vi,j )+qj(vi+1,j)

2
. Since,

qj(v) ∈ [(qj(vi,j), qj(vi+1,j)] and the quantile-rank difference be-
tween consecutive values is bounded byφ, this estimate is guaran-
teed to be aφ

2
-approximation ofv’s true quantile rank.

In our basic tracking scheme, remote sites can communicate their
φ-quantile values summaryQ(Sj) = {vi,j : i = 0, . . . , 1/φ},
along with (possibly) a concise prediction model for their local up-
dates to the coordinator site. LetSj denote the snapshot of the local
stream last communicated (throughQ(Sj)) to the coordinator, and
let Nj = |Sj |; also, letnj denote the total number of element up-
dates to theSj multi-set since this last communication. Thus, the
size of the up-to-date local stream at sitej (denoted bySj ∪∆Sj)
is Nj + nj , while the size of the up-to-date global streamS =
∪j(Sj ∪∆Sj) is N = |S| =

P

j Nj + nj . Obviously, when site
j communicates with the coordinator, it setsNj ← Nj + nj and
resetsnj ← 0.

After shippingQ(Sj) = {vi,j : i = 0, . . . , 1/φ} and (possibly)
a corresponding prediction model to the coordinator, sitej con-
tinuously monitors the state of its local quantile valuesvi,j in its
up-to-date local stream. More specifically, for each local quantile
valuevi,j , site j monitors both itstrue absolute rankrj(vi,j) in
Sj ∪ ∆Sj , as well as itspredicted absolute rankrp

j(vi,j) based
on the prediction model communicated to/from the coordinator.
Clearly, the exact methodology for computing the predictedrank
rp

j(vi,j) depends on the specific prediction model being used and
is discussed in detail in Section 3.3; for now, we just treat it as a
value that can be computed by both the remote site and the coor-
dinator. In our solution, a communication with the coordinator is
triggered at sitej only if, for somevi,j , |rp

j(vi,j) − rj(vi,j)| >
θ(Nj + nj); that is, the predicted and true rank of the monitored
quantile value inSj ∪ ∆Sj deviate by more thanθ(Nj + nj).3

2To simplify the notation, we typically omit the integral ceiling operators
in what follows.
3In general, if the same value occurs many times in the stream,its absolute

ProcedureSiteUpdate(j, φ, θ, v)
Input : Site indexj; local summary-error and rank-deviation

parametersφ, θ; inserted valuev ∈ [U ].
1. SetSj := Sj ∪ {v}, nj := nj + 1, goodPredictions :=true
2. for i := 0 to 1/φ do
3. if ( v < vi,j ) then
4. rj(vi,j ) := rj(vi,j) + 1
5. if ( |rp

j(vi,j) − rj(vi,j )| > θ(Nj + nj) ) then
6. goodPredictions :=false
7. if (not goodPredictions)then
8. SetNj := Nj + nj , nj := 0
9. Compute new localφ-quantile value summaryQ(Sj)
10. Send{j, Q(Sj), Nj , predictionModel(j) } to coordinator

ProcedureAbsoluteRankQuery(v)
Input : Query valuev ∈ [U ].
Output : ǫ-approximate absolute rank ofv in the global update stream.
1. rank :=0
2. for j := 1 to k do
3. i′ := 0
4. for i := 0 to 1/φ do
5. if ( vi,j < v ) then i′ := i
6. rank := rank+ (rp

j(vi′,j) + rp
j(vi′+1,j))/2

7. return (rank)

Figure 2: Procedures for (a) Quantile Maintenance at Remote Sites,
and (b) Approximate Rank-Query Answering at the Coordinator.

As our analysis demonstrates, this condition is sufficient to pro-
vide strongǫ-approximation guarantees for rank and quantile esti-
mates based on the quantile summariesQ(Sj) last communicated
to the coordinator. The pseudo-code for processing streaming up-
dates and monitoring local quantile shifts at sitej is depicted at the
top of Figure 2.

Estimating Absolute- and Quantile-Rank Queries at the Coor-
dinator. Let Q(S) = ∪jQ(Sj) = ∪j{vi,j : i = 0, . . . , 1/φ},
i.e., the collection of the most recent quantile summaries received
from all remote sites at the coordinator — the global quantile sum-
mary used for approximate query answering at the coordinator is
essentially a combination ofQ(S) and the per-site prediction mod-
els (used in conjunction withQ(Sj)’s to compute the predicted
ranks of quantile values inQ(S)). More specifically, definêN =
P

j rp
j(v1/φ,j), that is, the sum of predicted maximum-element

ranks across allSj streams. Given a query valuev ∈ [U ], the
coordinator determines, for each site summaryQ(Sj), the index
i′ = argmaxi{vi,j ∈ Q(Sj) : vi,j < v}, and defines thebound-
ing quantile valuefor v asvi′,j . It then estimates the absolute and
quantile rank ofv using the formulas:

r̂(v) =
X

j

rp
j(vi′,j) + rp

j(vi′+1,j)

2
and q̂(v) =

r̂(v)

N̂
.

A pseudo-code description of our approximate rank estimation pro-
cedure at the coordinator site is shown at the bottom of Figure 2.
The following theorem demonstrates that as long as the monitored
local rank deviations at remote sites remain bounded, and our pre-
dicted ranks satisfy a natural condition (that, as we show inSec-
tion 3.3, is satisfied by all our proposed prediction models), then
we can provide strong approximation guarantees for the absolute-
rank estimate at the coordinator.

THEOREM 3.1. Assume that, for each remote sitej and local
quantile valuevi,j ∈ Q(Sj), we have (1)|rp

j(vi,j) − rj(vi,j)| ≤

rank is actually a range, and we measure the deviation away from this range;
for simplicity of presentation, we gloss over this detail, but our results still
hold when it is taken into account.



θ(Nj +nj), i.e., the rank ofvi,j in Sj ∪∆Sj is withinθ(Nj +nj)
of its prediction; and, (2)(rp

j(vi+1,j)− rp
j(vi,j)) ≤ 2φ(Nj + nj),

i.e., the range between consecutive predictions is upper bounded
by 2φ(Nj + nj). Then, for any valuev ∈ [U ], the absolute-rank
estimatêr(v) at the coordinator is a(φ + θ)-approximation tov’s
true absolute rankr(v) in S; that is,

r(v)− (φ + θ)N ≤ r̂(v) ≤ r(v) + (φ + θ)N.

Proof: Note that the absolute ranks forv across different remote
sites are clearly additive (i.e., the overall rank is the summation of
the per-site ranks) and, further, by the definition of the bounding
quantile values, we haverj(v) ∈ (rj(vi′,j), rj(vi′+1,j)]; thus, we
have:

r(v) =
P

j rj(v) ≥
P

j rj(vi′,j)

≥
P

j [r
p(vi′,j) + (rj(vi′,j)− rp(vi′,j))]

=
P

j

rp(vi′,j)+rp(vi′+1,j)

2
−
P

j

rp(vi′+1,j)−rp(vi′,j )

2

+
P

j(rj(vi′,j)− rp(vi′,j)).

Based on the definition of our̂r(v) estimate and the assumptions
of the theorem, this last inequality gives:

r(v) ≥ r̂(v)−
P

j φ(Nj + nj) +
P

j(r
p(vi′,j)− rj(vi′,j))

≥ r̂(v)− φN −
P

j |rj(vi′,j)− rp(vi′,j)|

≥ r̂(v)− φN −
P

j θ(Nj + nj)
≥ r̂(v)− (φ + θ)N.

The other direction is symmetric.

We should note here that, in principle, it is possible to allocate
a distinct total-error thresholdǫj = φj + θj to each remote site
j = 1, . . . , k. However, as can be seen from the proof of Theo-
rem 3.1, the error guaranteeǫ at the coordinator is determined by
the maximumper-site error, i.e.,ǫ = maxj{ǫj}. Thus, since the
per-site communication cost is clearly monotonically decreasing in
its error tolerance, our algorithms allocate the same errorǫ = φ+θ
across all remote sites.4

Our scheme also provides similar approximation guaranteesfor
the quantile-rank estimateŝq(v) at the coordinator, as demonstrated
in the following corollary. The result employs a slightly tighter up-
per bound ofφ(1+ θ)(Nj +nj) on the range between consecutive
rank predictions that is, in fact, satisfied by all our proposed pre-
diction models (Section 3.3); it also uses the natural assumptions
θ ≤ 2φ (i.e., no tracked quantile valuevi,j can shift more than two
quantile widths) andǫ ≤ 3

10
(typically, we would want to track

errors much smaller than0.3N ). The proof follows along similar
lines as that of Theorem 3.1, and the observation that, basedon our
stipulated local-quantile deviation bounds,N̂ ∈ (1± θ)N .

COROLLARY 3.2. Let θ ≤ φ and ǫ = φ + θ ≤ 3
10

. Also,
assume that, for each remote sitej and local quantile valuevi,j ∈
Q(Sj), we have (1)|rp

j(vi,j) − rj(vi,j)| ≤ θ(Nj + nj), and (2)
(rp

j(vi+1,j)− rp
j(vi,j)) ≤ φ(1+ θ)(Nj +nj). Then, our quantile-

rank estimateŝq(v) at the coordinator are a2ǫ-approximation to
v’s true quantile rankq(v) in S.

Time and Space Complexity.In order to track the quantile values
at each remote site, we can maintain an array with the currentrank

4It is possible to “break” this global error thresholdǫ into different(φj , θj)
components for different sites, and even dynamically negotiate the per-site
error distribution betweenφj andθj based on observed site behavior. To
keep the analysis tractable and focus on the key features of our scheme, we
assume the same(φ, θ) error components across all sites.

of each of thevi,j values, and update these with each update, as
shown in Figure 2. Thus, the time and space complexity for this
tracking procedure is onlyO(1/φ) per update, in addition to the
cost of maintaining sufficient information (i.e., full or approximate
local-distribution information) for the quantiles to be recalculated
if the distribution changes. When communication is required, the
site must recompute a set of quantiles, send these to the coordinator,
and compute their ranks. The cost of this will depend on the method
used to maintain quantiles, but is at leastΩ( 1

φ
) per communication.

3.3 Prediction Models
We now describe possible choices for the prediction models em-

ployed to describe local update behaviors at the remote sites. Such
models are part of the information exchanged between the remote
sites and the coordinator so that both parties are “in-sync”with
respect to predicted-rank computations; therefore, it is critical to
keep prediction models concise and, yet, powerful enough toeffec-
tively capturestability properties in our distributed-tracking envi-
ronment.5

Zero-Information Model. The simplest prediction model we con-
sider is the “empty” model, namely both the site and the coordi-
nator assume that there are no further local updates and, thus, the
absolute ranks for the quantile valuesvi,j in theQ(Sj) snapshot
summaries last communicated to the coordinator remains exactly
the same. (Under such “empty” predictions, no additional infor-
mation needs to be exchanged between remote sites and the co-
ordinator.) More formally, assuming empty predictions, wehave
rp

j(vi,j) = iφNj , for eachi = 0, . . . , 1/φ andj = 1, . . . , k.

Synchronous-Updates Model.A key drawback for the zero-infor-
mation scheme is that it only achieves stability (i.e., a state of no
communication between remote sites and coordinator) in an unre-
alistic scenario, namely when there is no update activity atremote
sites. Intuitively, however, we should be able to achieve stability in
more general situations. In particular, assume a scenario where re-
mote sites read in new updates periodically (i.e., one update at each
time step) and, furthermore, the quantile distribution observed at
each remote site remains relatively stable; in such scenarios, there
should be no need for communication to the coordinator, since the
global quantile distribution remains about the same.

Our next prediction model works on the assumption ofsynchro-
nous updatesfor remote sites; that is, at each time step, every re-
mote site observes an update to its local distribution (e.g., by pe-
riodically polling a sensor node or a network switch every sec-
ond). Furthermore, our synchronous-updates model assumesthat
the quantile (i.e., relative)ranks of the valuesvi,j in theQ(Sj)
snapshot summaries last sent to the coordinator remain the same.
In other words, lettingtj denote the number of time steps since the
Q(Sj) summary was communicated to the coordinator, the pre-
dicted ranks for sitej are defined asrp

j(vi,j) = iφ(Nj + tj), for
eachi = 0, . . . , 1/φ. Of course, since both the coordinator and all
remote sites work under the same synchronicity assumption,no de-
tailed prediction-model information needs to be exchangedin the
synchronous-updates case.

Note that this scheme implicitly requires some notion of “global
time”, since the coordinator must be able to compute the predicted
ranksrp

j(vi,j) in order to answer quantile queries. This depends
on tj , the number of time steps since the last communication from
sitej, and so this must be something that the coordinator can com-
pute without contacting the sites. In a periodic polling scenario

5Note that this is distinct from the notion and usage of the models used
in [9]: there, models are used in a sensor network to optimizethe cost of
evaluating one-shot queries by polling certain sensors.



(i.e., reading a value every second or minute) this is straightfor-
ward. In such a setting, where the (different) distributions observed
by remote sites remain reasonably stable (i.e., local site variations
stay within theθ bounds), stability is achieved, and no communi-
cation is required. This may not be the case if the updates arenot
synchronous. Consider the situation when there are two sites, one
of which sees a uniform distribution on values[0, . . . , 6], and the
other sees a uniform distribution on values[6, . . . , 12]. If updates
arrive at equal rates, then we correctly compute the median as 6.
However, suppose that for every update to the first distribution, we
see three updates to the second distribution. Now the medianis 8.
Hence, in order to better predict the behavior we must incorporate
the local rate of updatesat each remote site into our model.

Update-Rates Model.Our third model explicitly brings in the no-
tion of update rates for different local streams. We once again as-
sume a notion of global time, and we assume that updates are ob-
served at each sitej at a uniform (local) rate, denoted byδj . This
rateδj completely specifies the prediction model for sitej and is
exchanged between the coordinator and the site when communica-
tion takes place. The specific method of estimating the (current)
update rateδj (at either the remote site or the coordinator) has no
effect on the correctness of our tracking but, obviously, good δj

estimates are important for reducing communication costs.For in-
stance,δj can be defined either as a historic average over the entire
history of updates at sitej, or, more naturally, as an average up-
date rate over a recent window of observed update behavior atthe
site; of course, other options (e.g., using a time-of-day-based value
from recent-history table) are also possible. As in the synchronous-
updates case, our update-rates model also assumes that thequantile
(i.e., relative)ranks in the latest snapshot summariesQ(Sj) remain
the same; that is, lettingtj denote the number of time steps since
the last communication between the coordinator and sitej, the pre-
dicted ranksrp

j(vi,j) are defined asrp
j(vi,j) = iφ(Nj + δjtj), for

eachi = 0, . . . , 1/φ. It is not difficult to see that, if the distri-
butions (i.e., local quantile values) at each site remain (approxi-
mately) the same, and the local-update rates are reasonablystable,
then, by Theorem 3.1 and Lemma 3.3 (shown later in this section),
our update-rates model achieves stability making site-coordinator
exchanges unnecessary in the long run.

The following table summarizes the key points for each of our
three prediction models (namely, the model information exchanged
between the sites and the coordinator, and the assumptions under
which they achieve stability).

Model Model Info. Model Assumptions
Zero-Information ∅ rp

j(vi,j) = iφNj

(Absolute ranks stable,nj = 0)
Synchronous ∅ rp

j(vi,j ) = iφ(Nj + tj)

(Quantile ranks stable,nj = tj )
Rate-based Rateδj rp

j(vi,j ) = iφ(Nj + δjtj)

(Quantile ranks stable,nj = δjtj )

Analysis. We now demonstrate that all three of the above-described
prediction models satisfy the upper bounds on the range between
consecutive predicted ranks assumed in Theorem 3.1 and Corol-
lary 3.2, assuming local rank deviations are bounded. Note that our
update-rates model trivially captures both the synchronous-updates
case (δj = 1 for all j) and the zero-information case (δj = 0 for
all j); hence, it suffices to demonstrate the result for the rate-based
case.

LEMMA 3.3. Under all three prediction models, maintaining
the local conditions|rp

j(vi,j) − rj(vi,j)| ≤ θ(Nj + nj) implies

that the range of predicted ranks(rp
j(vi+1,j)− rp

j(vi,j)) is upper-
bounded byφ(1 + θ)(Nj + nj) at all times.

Proof: It suffices to show the bound for the case of general update
ratesδj , as mentioned above. Consider the case of the maximum el-
ementv1/φ,j at sitej. In particular, note that, if we forcev1/φ,j =
∞ (i.e., we always track the rank of the maximum element seen
thus far), thenrj(v1/φ,j) = Nj + nj . Since, by our update-rates
model predictions,rp

j(v1/φ,j) = Nj + δjtj , our maintained condi-
tion on local rank deviations means|(Nj + δjtj)− (Nj + nj)| ≤
θ(Nj +nj), which gives(Nj + δjtj) ≤ (1+ θ)(Nj +nj). Hence
we can upper-bound the difference in our rate-based rank predic-
tions:

rp
j(vi+1,j)− rp

j(vi,j) = (i + 1)φ(Nj + δjtj)− iφ(Nj + δjtj)

= φ(Nj + δjtj) ≤ φ(1 + θ)(Nj + nj).

Thus, by Theorem 3.1, all three of our prediction models can
guarantee(φ + θ)-approximate absolute-rank estimatesr̂(v) at the
coordinator, as long as the local rankrj(vi,j) of vi,j in the up-to-
date local streamSj ∪ ∆Sj does not deviate from its prediction
rp

j(vi,j) by more thanθ(Nj + nj), for eachi, j. We now pro-
ceed to analyze the communication cost associated with our track-
ing schemes.

LEMMA 3.4. Assume the empty model, and letǫ = φ + θ de-
note the error tolerance at the coordinator. Then, for appropriate
settings of parametersφ and θ (specifically,φ = θ = ǫ/2), the
worst-case total communication cost isO( 1

ǫ2

P

j ln Nj).

Proof: Observe that the largest value tracked is the one whose rank
changes the most due to thenj local updates. If allnj updates at the
site happen below the maximum quantile valuev1/φ,j its absolute
rank increases bynj (this is achieved if we forcev1/φ,j = ∞ as
in the proof of Lemma 3.3), Thus, to ensure(φ + θ) absolute-rank
estimates in the zero-information model, remote sitej is forced to
communicate its current local summary to the coordinator ifnj >
θ(Nj + nj), or, equivalently,nj > θ

1−θ
Nj ; in other words, sitej

needs to send its summary to the coordinatoronce the number of
updatesnj exceeds a certain fraction of its earlier snapshot size
Nj . The total number of communications required to reach a local
count ofNj ism, where(1+ θ

1−θ
)m = (1−θ)−m ≥ Nj and hence

m = O( 1
θ

lnNj). Since each communication is of sizeO( 1
φ
),

the total communication cost isO( 1
φθ

lnNj) per site. To optimize
this cost, note that minimizing1/(φθ) is equivalent to maximizing
φθ, and sinceǫ = φ + θ this leads us to chooseφ = θ = ǫ/2.
Hence, using these optimal settings forφ and θ, the worst-case
total communication cost isO( 1

ǫ2

P

j ln Nj).

There is a couple of interesting things to note here. First, accord-
ing to the analysis in Lemma 3.4, in order to minimize the worst-
case communication cost in a zero-information model for a given
error toleranceǫ, the optimal settings for theφ andθ parameters
areφ = θ = ǫ/2. In other words, we should equally distribute the
specified error tolerance between the quantile-summary error and
the local-deviation error. Second, the worst-case communication-
cost analysis in Lemma 3.4 can actually be shown to hold even in
the case of our synchronous and rate-based models, assumingthat
the underlying update-rate assumptions (i.e.,nj = tj ornj = δjtj )
are correct. Thus, dividing the specified error tolerance equally be-
tweenφ andθ provides a reasonable heuristic even for our more
sophisticated prediction models; in fact, our experimental results in
Section 5 clearly validate this point.

Other Prediction Models. One could argue that even the rate-



based model of site variation (based on following the updaterates
of at each remote site) is quite simplistic. It is certainly possible to
expand our prediction-model repertoire, for instance, by examin-
ing second-order effectsand modeling the rate-of-change of local
update rates (i.e., the “acceleration” as opposed to the “speed” of
updates). The parameters of such prediction models can be learned
locally (at the sites or the coordinator) using a variety of methods,
including, for example, averaging over sliding windows, recent-
history tables, or even more sophisticated machine-learning tech-
niques (e.g., linear or higher-order regression). Thus, wecan have
an entire family of sophisticated prediction models for remote-site
behavior — these models can all be easily incorporated into our
framework by creating new rank predictionsrp

j(vi,j) based on mea-
surable parameters that can be shared between the remote site and
the coordinator. Provided that our prediction models ensure that
the predicted-rank ranges(rp

j(vi+1,j) − rp
j(vi,j)) remain bounded

by φ(1 + θ)(Nj + nj) (either by demonstrating that the condi-
tion always holds or by explicitly checking the condition atthe site
and forcing communication when it is violated), then we can once
again apply Theorem 3.1 and Corollary 3.2 to guarantee the quality
of the approximate answers given by the coordinator. To keepthe
exposition in this paper concise and simple, we do not consider any
further prediction models beyond the three key models outlined in
this section.

3.4 Using Approximate Local Summaries
Thus far, our discussion has assumed that each remote site main-

tains an accurate picture of thefull distribution of its local update
streamSj , and uses that distribution to compute the exact quantile
values for its localφ-quantile value summaryQ(Sj). In several
application scenarios, however, maintaining the completelocal dis-
tribution is not feasible; for instance, when dealing with massive,
rapid-rate streams, or remote sites with severe resource limitations
(such as tiny sensor motes [18]). In these settings, remote sites
can make use of one of the several recently-proposed space/time-
efficient methods for tracking their local quantilesapproximately
over their streams. Such approximate methods are either deter-
ministic (based on retaining carefully-chosen subsets of the full
stream distribution) [14, 23], or based on randomized-sketching
techniques [13, 4]. Furthermore, given a streamSj (of sizeNj )
over [U ] and an error boundα, these methods are able to track
quantile information and report any requested quantile with an error
bounded byαNj , while using space/time that is only logarithmic
in Nj , U .

Note that, in our proposed distributed-tracking schemes, are-
mote sitej needs to recompute itsφ-quantile value summaryQ(Sj)
whenever one of its existing local quantiles breaks its predicted
rank bound (Figure 2). If we make use of an approximate quantile-
tracking algorithm with errorα at the remote sites then, when com-
puting thevi,j values inQ(Sj), we can no longer ensure thatrj(vi,j)
= iφNj ; instead, we can only provide the weaker guarantee that
rj(vi,j) ∈ [iφNj ± αNj ]. Examining Theorem 3.1, it is not diffi-
cult to see that, if we replacerj(vi,j) with [rj(vi,j) ± αNj ], then
we can once again bound the approximation error at the coordinator
as shown in the following corollary.

COROLLARY 3.5. Assume that, for each local quantile value
vi,j ∈ Q(Sj), sitej can compute only an approximate rank esti-
mater̂j(vi,j) ∈ [rj(vi,j)±αNj ], and, furthermore, (1)|rp

j(vi,j)−
r̂j(vi,j)| ≤ θ(Nj+nj), and (2)(rp

j(vi+1,j)−rp
j(vi,j)) ≤ 2φ(Nj+

nj). Then, for any valuev ∈ [U ], the absolute-rank estimatêr(v)
at the coordinator is a(φ + θ + α)-approximation tov’s true ab-
solute rankr(v) in S; that is,

r(v)− (φ + θ + α)N ≤ r̂(v) ≤ r(v) + (φ + θ + α)N.

In other words, tracking local quantiles approximately (towithin
an α error) at each remote site implies an additionalα error for
the approximate global-rank estimates provided by our distributed-
tracking schemes at the coordinator. Of course, these approxima-
tions also imply a drastic reduction in the local space requirements
at each remote site. More specifically, in addition to theO(1/φ)
space to store the local quantile values (and associated informa-
tion) inQ(Sj), each site only needs to store a concise synopsis data
structure for approximating its quantiles. Typical space bounds
for such synopses are: (1)O( 1

α
log(αNj)) using the Greenwald-

Khanna algorithm [14]; (2)O( 1
α

log U) using theq-digest [23]; or,
(3) O( 1

α
log 1/p) (p is the probability of error) using the Count-

Min sketch [4]. In practice, the space requirements of the above
methods are all approximatelyO( 1

α
). Given a fixed amount of

spaces available at each remote site and a desired global error tol-
eranceǫ, this raises an interesting optimization problem — namely,
determine the settings for parametersφ, θ, andα that minimize
overall communication subject to the constraints:φ + θ + α = ǫ
ands ≥ O( 1

φ
+ 1

α
). The following lemma summarizes our analysis

of this problem in the simple case of a zero-information model.

LEMMA 3.6. Assume a zero-information model, and letǫ =
φ + θ + α denote the global error tolerance ands denote the
space available at each remote site. Provided thats is at least
Ω( 1

ǫ
), the worst-case total communication cost is upper bounded

by O( 1
ǫ2

P

j lnNj) for appropriate settings of parametersφ, θ,

andα (specifically,φ = θ = ǫ
2
−Θ( 1

s
) andα = ǫ−θ−φ = Θ( 1

s
)).

The interpretation of Lemma 3.6 is that, givens andǫ, we should
try to make the local approximation errorα as small as possible
(consuming a constant fraction of the available spaces), and divide
the rest of the available error budget equally betweenφ andθ.

4. EXTENSIONS
Heavy-Hitter Tracking. The heavy hitters are those values that oc-
cur more than some fractionf of the time, i.e. their count is at least
fN . Note that this is distinct from the top-k items, since although
any heavy hitters are in the top-1/f items, the inverse implication is
not always true. Observe that our method to continuously track the
ranks of itemsimmediatelyallows us to find (approximate) heavy
hitters: assume that̂r(v) gives an estimate of the maximum rank
of item v, thenr̂(v) − r̂(v − 1) gives an estimate of thecountof
v, with error at most2ǫN . Hence, the coordinator continuously
maintainsO(ǫ)-approximate counts of each item (more generally,
the approximate count of any range of contiguous items). From
this, count queries can be answered, and with some simple addi-
tional data structures, the heavy-hitter item set can be continuously
maintained. In the full version of this paper, we give more direct
schemes to track heavy hitters, based on the same structure as our
solution for quantiles: if every remote site tracks the heavy hitters
from its stream, and only communicates to the coordinator when
the count of an item differs by more thanθ(Nj + nj) from its
predictedcount. As before, one can plug in a variety of models
to predict the counts of items in order to minimize communica-
tion to the coordinator. Recomputing heavy-hitter counts before a
communication can be supported by keeping exact counts or using
summary methods just as with quantiles. Other holistic summaries,
such as the largest wavelet coefficients, may also be computed in
this framework, since the computation can be decomposed by sum-
ming the components from the remote sites. We postpone the com-
plete details to the full version of this paper.

Handling General Updates.Thus far our discussion has focused
on the case of insertion-only streams. This model fits many data



stream scenarios but, in full generality, the observed update streams
can consist of both element insertions (arrivals) and deletions (de-
partures). For instance, in a network-monitoring application, sites
tracking the distribution of open TCP connections must support
deletions in order to purge inactive connections from theirlocalSj

streams. We argue that our scheme naturally adapts to such general
update streams, provided that the remote sites are capable of com-
puting quantiles (either accurately or approximately) over a stream
containing both insertions and deletions. (Randomized methods
for approximate local quantile tracking [13, 4] are applicable for
general updates.) The key observation here is that, in the pres-
ence of deletions, we can definenj as thenet changein the overall
size of the localSj stream since the last exchange between sitej
and the coordinator; this implies thatnj can now become negative.
However, all of the proofs of our key approximate-tracking results
(namely, Theorem 3.1, Lemma 3.3, and Corollaries 3.2 and 3.5)
make no assumption on the sign ofnj . Thus, provided that the re-
quired local-deviation bounds (with respect to predicted ranks) are
met, our scheme still guarantees accurate quantile predictions at the
coordinator. Note though that some of our subsequent analyses of
the communication cost implicitly assume insert-only streams. So
these bounds no longer apply to general updates, and insteadwe
can only provide weaker conservative worst-case bounds. Lastly,
we observe that allowing deletions means that we can incorporate a
sliding window approach, where only recent stream values are con-
sidered to contribute to the current distribution. We will give full
description of the necessary changes to accomodate this in the full
version of this paper.

Hierarchical Quantile Tracking. Consider a more complex dis-
tributed-tracking scenario where the communication network is ar-
ranged as atree-structuredhierarchy of nodes (i.e., sites) — our
goal here is for the root node to effectively track approximate quan-
tiles of the update streams observed at the leaf nodes of the hi-
erarchy. (For simplicity, assume that internal nodes in thehier-
archy do not observe any updates; we can add dummy leaf-child
nodes to internal nodes to accept their corresponding streams.) This
hierarchical-monitoring architecture generalizes the flat, single-level
model discussed earlier in this paper (essentially, a one-level hierar-
chy with remote sites as leaves). Such monitoring hierarchies arise
naturally, for instance, in the context of sensor networks,where
sensor nodes are typically organized in a routing tree with aroot
base-station monitoring the sensornet operation [18]. In such sce-
narios, naively propagating quantile updates from the leaves to the
root node is wasteful; quantile shifts at leaf nodes of a subtree may
effectively “cancel out” at a higher node in the hierarchy render-
ing further communication unnecessary. For such multi-level hi-
erarchies, our tracking scheme should be able to exploit stability
propertiesat any node of the hierarchy.

Assume that our tracking hierarchy comprisesh + 1 levels, with
the root node at level0 and the leaf nodes at levelh. We can
compute quantiles over the union of streams observed at the leaf
nodes by running our quantile-tracking scheme between eachin-
ternal node and its children. That is, each internal node tracks the
(approximate) quantiles of its children, and then passes uprelevant
information to its parent when its locally-observed quantiles (which
summarize the quantiles of all streams in its subtree) violate a spec-
ified deviation bound with respect to their corresponding predicted
values. Just as in the flat, single-level case it suffices to allocate
the same error toleranceǫ = φ + θ to every remote site (see Sec-
tion 3.2), we argue that it suffices to allocate the sameǫl = φl + θl

parameters to every node at levell in the hierarchy— essentially,
this implies that each level-(l − 1) node gives all its children the
maximum possible error tolerance (based on its own error bounds)

in order to minimize communication cost across levelsl − 1 andl.
Consider a nodeu at levell in the tree hierarchy and letSu de-

note the union of update streams in the subtree rooted atu. Gener-
alizing from our approximate quantile tracking discussionin Sec-
tion 3.4, define (1)αl as the accuracy at whichu tracks its local
quantile values (for theSu stream); (2)φl as the granularity of the
quantile value summary that nodeu ships to its parent (i.e.,Q(Su)
comprises the values at approximate quantile ranks0, . . . , 1/φl);
and, (3)θl as the bound on the deviation of local quantiles (with re-
spect to their predictions) at nodeu. The following corollary then
follows easily from Corollary 3.5.

COROLLARY 4.1. Letαl, φl, andθl be as defined above. Then,
the accuracy of local quantile estimates for nodes at levell − 1 of
the hierarchy isαl−1 = αl+ θl+ φl.

Corollary 4.1 essentially allows us to “cascade” our basic,single-
level tracking scheme to the case of multi-level hierarchies. Specif-
ically, if we let αh = α denote the error of the summaries used to
track update streams at leaf nodes (αh = 0 if leaf nodes main-
tain the full stream distribution), then, by Corollary 4.1,summing
across all levels, the total quantile-tracking error at theroot node is
ǫ = α0 = α+

Ph
l=1(θl + φl).

Fix the summary errorα at leaf nodes. We now seek to optimize
the settings for theθl andφl parameters for minimizing communi-
cation. We consider the worst-case bounds for the zero-information
case, and two possible optimization objectives: (1) themaximum
transmission costfor any node in the hierarchy (or, equivalently,
the maximum load on any communication link), and (2) theaggre-
gate communication costover the entire communication hierarchy.
Both of the above objectives are important in the sensornet con-
text (e.g., for maximizing the lifetime of a sensor network)as well
as more traditional distributed network-monitoring scenarios. Let
kl denote the number of hierarchy nodes at levell of the hierarchy.
From our analysis in Section 3.3, the (worst-case) transmission cost
for a node at levell is O( 1

φlθl
ln N

kl
), which, for a given errorǫl =

φl+ θl at levell, is minimized forφl = θl = ǫl/2.

Maximum Transmission Cost Minimization Problem: Deter-
mineǫl’s that minimizemaxl{

4
ǫ2
l

ln N
kl
} subject to

P

l ǫl = ǫ.

For this minimization problem the optimal point occurs whenthe
per-node transmission costs at all levels are equal, givingthe opti-
mal per-levelθl andφl settings

θl = φl =
ǫ
q

ln N
kl

2
P

j

q

ln N
kj

.

In the case of minimizing total communication the per-node trans-
mission cost at levell is multiplied by a factor ofkl and so we have
a sum objective function. This is a more complicated minimization
problem, but we show a closed-form solution for the optimalθl, φl

settings.

Total Communication Cost Minimization Problem. Determine
ǫl’s that minimize the sum

P

l
4kl

ǫ2
l

ln N
kl

subject to
P

l ǫl = ǫ.

THEOREM 4.2. The optimalθl and φl values for minimizing
the (worst-case) total communication cost over a multi-level track-
ing hierarchy are given by

θl = φl =
ǫ(kl ln

N
kl

)1/3

2
P

j(kj ln N
kj

)1/3
.



Proof: Let cl = 4kl ln N
kl

, for all levelsl. Our proof usesHölder’s
inequality[16], which states that, for anyxl, yl ≥ 0, andp, q > 1
such that1

p
+ 1

q
= 1:
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with equality holding only ifyl = λ · xp−1
l for all l.

Substitutingp = 3, q = 3/2, xl = ( cl

ǫ2
l

)1/3, andyl = ǫ
2/3
l in

Hölder’s Inequality, we get
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or, equivalently (since
P
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P

l c
1/3
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.

Note that the left-hand side of this inequality is preciselyour opti-
mization objective, whereas the right-hand side is constant. Thus,
the optimal (i.e., minimum) value for our objective occurs when
equality holds in this instance of Hölder’s inequality, or, equiva-
lently, if ǫ

2/3
l = λ( cl

ǫ2
l

)2/3, which after some simplification, gives

ǫl = λ′c
1/3
l (where the new proportionality constant isλ′ = λ1/3).

Coupled with the total error constraint
P

l ǫl = ǫ, this directly im-

plies that the optimalǫl values areǫl = ǫc
1/3
l /

P

j c
1/3
j . Since,

ǫl = φl+ θl and communication at levell is minimized forφl =
θl = ǫl

2
, the result follows.

5. EXPERIMENTAL STUDY
Our experimental study focused on the the main quantile track-

ing scheme, and the effect of the different prediction models and
their parameters. We implemented a simulation of our tracking
scheme in C, with experiments carried out on a single machine. We
simulated each remote site, and measured the amount of commu-
nication in terms of the number of values sent to the coordinator.
We compare this number to the cost of sending every update di-
rectly to the coordinator to see the savings of our tracking scheme.
Overall, we found that our most sophisticated model performed the
best over a variety of data sets. The cost of maintaining continuous
quantiles is typically only a small percentage of the cost ofcom-
municating every update, and this fraction drops as the number of
updates increases.

5.1 Data Sets and Methodology
We ran experiments on a variety of real-life and synthetic data

sets, as follows:

World Cup HTTP request data, obtained from the Internet Traf-
fic Archive [17]. We took two subsets of the data, 1 day of re-
quests (15 million) and 8 days of requests (51 million requests to-
tal). Each request specified a timestamp, the server that handled the
request, and the size of the object returned. In our data, there were
26 different servers (each one corresponding to one remote site),
and they handled a varying number of requests, from a few thou-
sand to many millions. The object sizes varied from a few bytes to
several Megabytes in size, so computing quantiles over the transfer
sizes is a non-trivial task.

SNMP network usage data, obtained from the Dartmouth Wireless-
Network Trace Archive [7]. It comprises data from a total of 220
remote wireless access points, each of which recorded the total
number of bytes received during roughly five-minute intervals over
a four-month period. This gave a total of 6 million updates, where

each access point handled up to 32,000 updates. We did not attempt
to clean the data set, and so there are some missing values, some
access points not recording values for long periods, and some dis-
ordered timestamps. Hence, we believe this to be a realisticchal-
lenge for our algorithms to deal with less than perfect data.We
again compute quantiles over the number of bytes, which ranged
from zero to tens of Megabytes per interval.

Synthetic data, representing a single site. We further investigate
the power of our methods by examining synthetic data sets whose
parameters we can control more directly. We simulated a single
site, since we know that the communication cost of the methods
in our scheme is just the sum of the costs over the different sites.
We adopted simple distributions for the updates: the valuesare
drawn from a Zipfian distribution with parameterz, and the de-
lay between subsequent updates (with parameterδ) is computed as
⌈δ(1 + N(0, 1)/3)⌉, whereN(0, 1) denotes the usual normal dis-
tribution (hence, we allow a small probability of a negativedelay,
corresponding to out-of-order arrival of updates). We modeled the
variability of the site with two parameters,pr andpd: with prob-
ability pd the distribution changes, and we pick a new value ofz
uniformly from [0 . . . 2]; with probabilitypr the rate changes, and
we pick a new value ofδ uniformly from [0 . . . 100]. Although this
is a simplistic model, it allows us to understand better under what
conditions our algorithm achieves stability, when no communica-
tion is necessary between remote site and coordinator.

For the rate-based prediction model, there is an issue of howthe
site should determine the rate when it communicates values to the
coordinator. We implemented two methods. The “global historic”
average rate is the total number of updates seen so far,Nj , divided
by the time elapsed. This requires only a constant amount of space
at the site. The “windowed” rate takes a sliding window of the
most recentW updates, and computesW divided by the time be-
tween the first and last update in the window. This requiresO(W )
space at the remote site, but no additional space at the coordinator,
since the site merely has to inform the coordinator of the rate that
it intends to use (i.e.,δj), when they communicate.

A second issue to consider is that there is a “warm-up cost” for
all our methods: when the number of items at a remote site,Nj , is
small, then every update can trigger a communication of the current
quantiles. So, instead, we can force remote sites to send allupdates
since the last communication if this is cheaper. This reduces the
communication cost, but even without this adjustment we seesig-
nificant savings.

5.2 Experimental Results
World Cup HTTP request data. Our first set of experiments on
the World Cup HTTP requests are shown in Figure 3(a). On this
data set, the synchronous model could not operate, since therates
fluctuated over the course of the data and between servers, sowe
focus on the rate-based model and the zero-information model. We
first varied with the window size,W , to give the best results in
computing the rate for the rate-based model. We found that the op-
timal window size was not very sensitive to the ratio ofφ to θ, and
the smallest cost for this data set was found using a window ofsize
W = 1500. As W increases, the cost converges on the (higher)
cost of the global rate method. This accords with intuition:too
small a window, and the rate computation is too sensitive to recent
minor fluctuations, but too large a window and rate changes take a
long time to impact on the calculated rate. Our next experiment in
Figure 3(b) fixesǫ = 2%, and variesφ andθ so thatφ + θ = ǫ.
We plot the results for the zero-information and rate-basedmod-
els (with windowed rate computed over the lastW = 1500 up-
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Figure 3: Experiments on real-life data: HTTP request data from World Cup ’98: (a) Effect of different window sizes for rate computation; (b)
Tradeoff betweenθ and φ; (c) Communication cost as number of updates increases; (d)Communication cost as a function ofǫ. SNMP data from
Dartmouth Wireless Network: (e) Tradeoff betweenθ and φ; (f) Communication cost as updates increase.

dates). We observe that setting eitherφ or θ very small drives up the
communication cost significantly. The best results are obtained for
θ = φ = ǫ/2, for both the zero-information model (as predicted by
our analysis) and the rate-based model. Here, the communication
cost is less than 1% of the cost of sending all the data for processing
at the coordinator. We have also plotted ac/ǫ2 curve to compare
the behavior of the zero-information method to its predicted perfor-
mance. There is some divergence due to our technique of sending
updates to the coordinator when this is cheaper than sendingquan-
tiles: one can see that this gives an improvement in communication
cost that is more pronounced for larger values ofθ. Similar results
were seen for other settings ofǫ and other parts of the data. Thus,
we can conclude that, at least for this data set, choosingφ = θ
gives the best tradeoff.

For the rest of our results with the World Cup HTTP request
data, we focus further on the behavior of the rate-based model. We
setθ = φ andW = 1500, and plot the communication cost as
the number of updates increases in Figure 3(c). We see that after
a sufficient number of updates, the model has “learned” the dis-
tribution and the update rate sufficiently well that very little com-
munication is needed as the number of updates increases—thera-
tio of total communication to total updates becomes progressively
smaller as the system is mostly stable. We see that the cost in-
creases for smaller values ofǫ, in Figure 3(d). Fitting a trend line
to the rate-based model, we see (empirically) the cost rising in pro-
portion toǫ−1.6, asymptotically better than the prediction ofǫ−2

for the empty model.

SNMP network usage data. We now consider the SNMP data
set from Dartmouth College. This data was collected by periodic
polling, so we can apply the synchronous model to this case and
compare to the rate-based method which has to discover the rate.
This data set turned out to be more challenging for our methods,
because the number of updates per site is much smaller than on
the World Cup data: at most 32,000 compared to many millions
of web requests. Still, the savings over sending all updatesto the

coordinator are quite significant. This is seen in Figure 3(e), where
for ǫ = 2%, the largest savings from our methods represent nearly
two thirds of the cost of sending all updates directly. Our results
show that, for this data, using the synchronous method (assuming
that there is one update per polling period) does very well, but using
the rate-based method with a small sliding windowW = 50 can do
a little better (5% improvement forθ = ǫ/5, but only 0.5% forθ =
φ = ǫ/2). This is because there are some fluctuations in the rate,
due to polling problems, drops and delays etc., which can force
communications in the synchronous method. Using a small sliding
window to compute the rate allows these fluctuations to be adjusted
for with fewer communications to the coordinator. The cost saving
with zero-information is rather small, and skewed by our warm-
up heuristic, whereas the best performance for both rate-based and
synchronous comes atθ = φ = ǫ/2. As the number of updates
increases, the ratio of the communication per site to the number of
updates seen so far decreases. Figure 3(f) shows that, whilethe
empty model needs an extended warm-up period of approximately
5,000 updates per site, the cost for our methods drops off steadily,
ending up close to 20% of the number of updates.

Synthetic data.The synthetic data depends on two parameters,pr,
the probability of the update rate changing, andpd, the probability
of the distribution changing. In our first experiment, we fixed the
distribution and varied the rate with probabilities10−3, 10−4 and
10−5. 6 We took one million updates to a single site, and plot-
ted the amount of communication as a fraction of the total num-
ber of updates (i.e., a million) in Figure 4(a). This lets us see un-
der what conditions stability is achieved for our rate-based model.
Note that zero-information cost continues to climb throughout the
whole trial, whereas using our method is stable for long stretches.
6Although these may seem low, in experiments with higher probabilities
(e.g.,10−2, 10−1), we saw even lower overall cost: when the nature of
the stream changes with high frequency (say, once every ten or hundred
updates), then this becomes a “mixed” distribution that themodel can fit
itself to.
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Figure 4: Synthetic data: (a) Fixed distribution, varying rate; (b) Fixed rate, varying distribution; (c) Varying distribution and rate.

The overall cost depends on the frequency of rate changes, since
each time a rate change occurs, some communication may be nec-
essary when this causes the predicted ranks to be invalid. Wenext
fixed pr = 0, and variedpd, as shown in Figure 4(b). Whenpd

is highest, at10−3, then stability persists after an initial period of
communication. This can be attributed to the fact that the distri-
bution itself becomes stable: with sufficiently frequent changes of
parameter, we get a uniform mixture of Zipfians with parameter z
ranging from 0 to 2. By contrast, for very low probability of chang-
ing distribution,10−5, we see that stability is reached initially, but
then, when the first jump in distribution occurs (in this case, after
about 200,000 updates), then a period of communication is entered
as the model has to be adjusted for the new distribution. Several
subsequent distribution shifts prolong this communication, but as
the number of updates increases, the cost levels off. Lastly, we
allowed both rate and distributional changes, in Figure 4(c), by set-
ting pr = pd for a different probabilities. Here, the overall cost for
rate-based methods is higher than before, but still around half as
much as for the empty model, and only 3% of the cost of sending
every update.

6. CONCLUDING REMARKS
We have presented principled, distributed, continuous tracking

algorithms for quantile summaries of data that work under space
constraints at local sites processing high-speed streams,work under
communication constraints between sites, and maintain provably
accurate quantile summaries at all times. Our algorithms employ
a combination of local tracking of quantiles and simple prediction
models to guarantee communication efficiency, as demonstrated in
our experiments with real-life and synthetic data sets. Ourapproach
and results apply immediately to tracking problems for other valu-
able statistics, such as heavy hitters and heavy wavelet coefficients,
since they can be viewed as special cases of quantile tracking. Our
results are general and comprehensive for distributed continuous
monitoring applications which are of growing interest for large-
scale systems.
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