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ABSTRACT

While traditional database systems optimize for perforceaan
one-shot queries, emerging large-scale monitoring aguidias re-
quire continuous tracking of complex aggregates and dataitul-
tion summaries over collections of physically-distritditgreams.
Thus, effective solutions have to be simultaneously spéiment
(at each remote site), communication efficient (across tigely-
ing communication network), and provide continuous, gotaed-
quality estimates. In this paper, we propose novel algmiittsolu-
tions for the problem of continuously tracking complex ktiti ag-
gregates in such a distributed-streams setting — our pyifioaus
is on approximate quantile summaries, but our approach i® mo
broadly applicable and can handle other holistic-aggeefiatc-
tions (e.g., “heavy-hitters” queries). We present the frstwn
distributed-tracking schemes for maintaining accuratmntjle es-
timates with provable approximation guarantees, whileuttmme-
ously optimizing the storage space at each remote site dsawel
the communication cost across the network. In a nutshealllge-
rithms employ a combination of local tracking at remotessaed
simple prediction models for local site behavior in ordeptoduce
highly communication- and space-efficient solutions. Wdqre
extensive experiments with real and synthetic data to egplee
various tradeoffs and understand the role of predictioneatsoth
our schemes. The results clearly validate our approackalieg
significant savings over naive solutions as well as our dicaly
worst-case guarantees.

1. INTRODUCTION

Traditional data-management applications such as magagles
records, transactions, inventory, or facilities typigakquire data-
base support for a variety @ine-shot queriesincluding lookups,
sophisticated slice-and-dice operations, data mininkstaand so
on. One-shot means the data processing is essentially doeeia
response to the posed query. This has led to an enormousigssic
ful industry of database engines optimized for supportimmglex,
one-shot SQL queries over large amounts of data.
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data-management challenges. In one class of applicatinos;
itoring a large-scale system is an operational aspect ofitaiar
ing and running the system. As an example, consider the Netwo
Operations Center (NOC) for the IP-backbone network of gelar
ISP (such as Sprint or AT&T). Such NOCs are typically imphess
computing facilities, monitoring hundreds of routers,itbands of
links and interfaces, and blisteringly-fast sets of evaniifferent
layers of the network infrastructure (ranging from fibebleauti-
lizations to packet forwarding at routers, to VPNs and higbeel
transport constructs). The NOC has to continuously tratiepes

of usage levels in order to detect and react to hot spots aodsflo
failures of links or protocols, intrusions, and attacks. ifitar
example is that of data centers and web-content companieh (s
as Akamai) that have to monitor access to the thousands of web
caching nodes and do sophisticated load balancing, notfonly
better performance but also to protect against failuremil&i is-
sues arise for utility companies such as electricity s@pplthat
need to monitor the power grid and customer usage. A differen
class of applications is one in which monitoring is the gaoatself.
For instance, consider a wireless network of seismic, dmpund
physiological sensors that are deployed for habitat, enwiren-
tal, and health monitoring. Here, the sensor systems muottito
distribution of measurements for trend analysis, detgatioving
objects, intrusions, or other adverse events. Similaessuise in
sophisticated satellite-based systems that do atmospineriitor-
ing for weather patterns.

Examining these monitoring applications in detail allovésta
abstract a number of common elements. Primarily, monigoisn
continuousthat is, we need real-time tracking of measurements or
events, not merely one-shot responses to sporadicallylppssgies.
Second, monitoring is inherenttjistributed that is, the underlying
infrastructure comprises several remote sites (each tgithwn lo-
cal data source) that can exchange information through awoa
cation network. This also means that there typically areoirtgmt
communication constraintawing to network-capacity restrictions
(e.g., in IP-network monitoring, where the collected atlion and
traffic is voluminous [6]) or power and bandwidth restrictiqe.qg.,

Recent years, however, have witnessed the emergence of a newvin wireless sensor networks, where communication overiseti

class oflarge-scale event monitoringpplications that pose novel
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key factor in determining sensor battery life [18]). Furthere,
each remote site may seéhmgh-speed strearof data and has its
own local resource constraints, suctstmage-spacer CPU-time
constraints. This is true for IP routers that cannot pogstare the
log of all observed traffic due to the ultra-fast rates at Wipack-
ets are forwarded. This is also true for the wireless sensdes
even though they may not observe large data volumes, siege th
typically have very small memory onboard.

In addition, there are two key aspects of such large-scale mo
itoring problems. First, one needs a way to effectively rtami



the complete distribution of datée.g., IP traffic or sensor mea-
surements) observed over the collection of remote sitesiinga
an accurate picture of the overall data distribution is ielua un-
derstanding system behavior and characteristics, trgakipor-
tant trends, and making informed judgments about measunstne
utilization patterns. In other words, while hardwired @artidetec-
tion methods can be of use for certain applications (e.gwaor&
anomaly detection), monitoring the entire data distrimutgives

streams (at remote sites). More specifically, Olston e®2] §on-
sider aggregation queries that compsit@ple, non-holistic aggre-
gates(e.g., AVERAGE or MAX) of dynamically-changing numeric
values spread over multiple sources. Their approach retiegv-
ing each site a tolerance interval such that the cumulatiseithw
of per-site intervals is upper-bounded by the applicasidatal er-
ror tolerance. Das et al. [8] also employ similar ideas fer dis-
tributed monitoring of set-expression cardinalitiesgeitheir esti-

us a much broader and more robust indicator of overall system mation problem relies on set semantics, they propose a scf@m

behavior — such indicators are critical, for instance, itwoek-
provisioning systems that try to provision routing pathstwguar-
anteed Quality-of-Service parameters (e.g., delay arjitiver an
IP network (e.g., for a VoIP application). Second, answieas are
precise to the last decimal are typically not needed whezgkitng
statistical properties of large-scale systems; instapgroximate

effectively charginglocal changes against a site’s error tolerance.
Finally, Olston et al. [3] focus on monitoring the tépd.e., kK most
frequent) values over remote data streams; their techsignsure
the validity of the current top:set (at the coordinator) by installing
appropriate arithmetic constraints at each site. Oncenagjase
earlier papers focus on specific distributed-monitoringraggs (name-

estimategwith reasonable guarantees on the approximation error) ly, simple aggregates, set-expression cardinalities tapd), and

are often sufficient, since we are typically looking for icatiors
or patterns, rather than precisely-defined events. Obljiotiss
can work in our favor, allowing us to effectively tradeoffiefency
with approximation quality. To summarize, our focus is omgé
scale monitoring problems that aim to continuously provadeu-
rate summaries of the complete data distribution over a&ctdtn
of remote data streams. Solutions for such monitoring okl
have to work in a distributed setting (i.e., over a commutinca
network), be real-time ocontinuous and be space and commu-
nication efficient; furthermore, approximate, yet acogranswers
suffice.

Prior Work. Given the nature of large-scale monitoring applica-
tions, their importance for security as well as daily opierat, and
their general applicability, it is surprising that venytlitis known
about solutions for many basic distributed-monitoring bemns.
The bulk of recent work on data-stream processing has fdonise
developing space-efficient, one-pass algorithms for peiiftg a
wide range ofttentralized, one-shot computatioos massive data
streams; examples include computing quantiles [14], edihy
distinct values [11] and set-expression cardinalities],[t@unt-
ing frequent elements (i.e., “heavy hitters”) [5, 21], appmating
large Haar-wavelet coefficients [12], and estimating joies and
stream norms [1, 2]. As already mentioned, all the above oaksth
work in a centralized, one-shot setting and, therefore, atacan-
sider communication-efficiency issues. More recent woskfra-
posed methods that carefully optimize site communicatastscfor
approximating different queries in a distributed settimgluding
quantiles [15, 23] and heavy hitters [19]; however, the ulyidey
assumption is that the computation is triggered eitheroplaally
or in response to a one-shot request. Thus, such techniqriesta
immediately applicable for aontinuous-monitoringnvironment,
where the goal is to continuously provide guaranteed-tyuasti-
mates over a distributed collection of streams.

Itis important to realize that each of the dimensions of aobp
lem (distributed, continuous, and space-constrained)aadspe-
cific technical bottlenecks. For instance, even efficiergaghing
solutions at individual sites can lead to constant updateshe
distributed network and become highly communicationfinint
when they are directly used in distributed monitoring. e,
morphing one-shot solutions to continuous problems enpadpa-
gating each change and recomputing the solutions whichnso
nication inefficient, or involves periodic updates and oteuris-
tics that can no longer provide real-time estimation guaes

Closest in spirit to our work are the recent results of Olstbn
al. [3, 22] and Das et al. [8]. All three efforts consider thade-
off between accuracy and communication for monitoring atéch
class of continuous queries (at a coordinator site) overilliged

are not always applicable to more general settings (spaityfiéor
monitoring summaries of the entire data distribution or encom-
plex, holistic aggregatesver the remote sites).

Our Contributions. In this paper, we address the fundamental
problem of continuously tracking approximate, guaranigeality
summaries of the complete data distribution over distebudata
streams, in its full generality. More specifically, we foausap-
proximate quantile summaried the overall data distribution (i.e.,
equi-width histograms). Quantiles are a very general forimots-

tic aggregatesover the underlying distribution that, in fact, sub-
sumes other useful holistic-aggregate functions, sucleagyhhit-
ters. That is, tracking the quantiles immediately allowsamsack
heavy hitters based on the same information (as discusts&dra
this paper). Our contributions are as follows:

e Communication- and Space-Efficient Approximate Quantile
Tracking. We present the first known algorithms for tracking quan-
tiles over a distributed collection of streams to specifiecuaacy,
provably, at all times. In a nutshell, our algorithms ackieom-
munication efficiency by requiring remote sites to exchaoghky
concise, local-summary information over the communicatiet-
work. Our tracking schemes also exploit the novel idea op&m
per-siteprediction modelgor capturing the behavior of individual
stream distributions at remote sites. As our analysis asdlte
demonstrate, this intuitive idea is actually quite powkeréuind al-
lows our schemes to achieve a natutability property that, essen-
tially, renders communication unnecessary as long as thavie
of local distributions at remote sites remains reasonahbyis. Fur-
thermore, our analysis of the worst-case communicatiotsdos
simple cases of our distributed-tracking protocols shdves they
are, in fact, comparable to that of one-shot approximatentijea
computations. Finally, our schemes are also space-effigerce
they can be implemented using only slightly more space than t
used by centralized, one-shot quantile estimation metfardiata
streams. To the best of our knowledge, our work is the firstde p
vide principled models and analyses for the important gnobof
approximate quantile tracking over distributed streams.

e Extensions to General Monitoring Hierarchies and other Hols-

tic Aggregates. Our basic problem formulation is set using a flat,
single-coordinator distributed setting (as in [3, 22, 8Dater in
the paper, however, we show that our schemes and resultéstan a
be naturally extended to more complex, hierarchical-naoimig
architectures, where the communication network is arrdragea
tree-structurechierarchy of nodes (such as a sensoroating tree
[18]). We also demonstrate the broader applicability ofgbeeral
framework and tracking strategies proposed in this papettter
holistic-aggregategueries, including heavy hitters [5, 21] and large



wavelet coefficients [12]. Further applications of our isiéaeven
more complex distributed queries (e.g., joins) is a chgilemp di-
rection for future work.

e Experimental Results Validating our Approach. We perform a
thorough set of experiments from IP-traffic level (SNMP |égsn
IP networks) to application level (server downloads fromri/o
Cup HTTP request) and to synthetic data. The experimentsrexp
the space vs communication tradeoffs as well as the rolesofipr
tion models in detail, and discover more efficiencies thanamrst
case theoretical bounds indicate. They illustrate thah eimaple
prediction models can have significant impact on saving comm
nication: the data sent represents only a tiny fraction efttial
number of updates and, as the updates increase, this frattimks
further.

Throughout, we have omitted many proofs due to space camistra
the complete details will appear in the full version of thippr.

2. PROBLEM FORMULATION

In this section, we describe the key elements of our disteitbu
stream-processing architecture and formally define thieiloised
approximate quantile tracking problem addressed in thiepa

System Architecture. We consider a distributed-computing en-
vironment, comprising a collection &f remote sitesind a desig-
natedcoordinator site Streams of data updates arrive continuously
at remote sites, while the coordinator site is responsittegén-
erating approximate answers to (possibly, continuous) giseries
over theunion of all remotely-observed streams. Our distributed
stream-processing model is similar to that of Olston et3|2pP]
and Das et al. [8] where no direct communication between temo
sites is allowed; instead, as illustrated in Figure 1, a tersite ex-
changes messages only with the coordinator, providingtit state
information on its (locally-observed) stream. Note thatsa hier-
archical processing model is, in fact, representative afge class
of applications, including network monitoring where a cahNet-
work Operations Center (NOC) is responsible for procesgaigty
work traffic statistics (e.g., link bandwidth utilizatioi? source-
destination byte counts) collected at switches, routerd/ca Ele-
ment Management Systems (EMSs) distributed across theretw

User Query Q(5) Global Stream

Approximate Answe,_ S= S_I. U U §
for Q(S)

Coordinator

State-Update
Messages

update streani

T update stream

Figure 1: Distributed Stream Processing Architecture.

At each remote sitg € {1, ..., k}, the local update stream ren-
ders a multi-setS; (or, in other words, drequency distribution
over data elements from the integer domiain = {0, ..., U —1}.
As an example, in the case of IP routers monitoring the nuraber
connections between source and destination IP addr¢&3esthe
domain of64-bit (source, destination) IP-address pairs, andap-
tures the frequency of specific (source, destination) pdiserved

at routerj. (We useS; to denote both the update stream at gites
well as the underlying element multi-set/frequency disttion in
what follows.) To simplify the exposition, we initially assie that
each stream update at remote giteas the formg +1,v >, denot-

ing the insertion of data elemente [U] in the S; multi-set (i.e.,
anincrease of-1in v’s net frequency irf;); then, in Section 4, we
demonstrate that our key ideas and results actually holstfeams

S; of general updategi.e., elements insertions and deletions) of
the form< £1,v > at the remote sites. (Note that handling delete
operations substantially enriches our distributed stiegmodel;

for instance, it allows us to effectively handle trackingosliding
windowsof the streams by simply issuing implicit delete opera-
tions for expired stream items no longer in the window of ieg¢

at remote sites.) We also discuss the extension of our tggbsi

to more complex distributed-tracking architecture, whigre un-
derlying communication network is structured amalti-level tree
hierarchy (such as the routing trees typically built over sensornet
deployments [18]).

The Approximate Quantile Tracking Problem. Our focus in this
paper is on the problem of effectively answering user qeeethe
frequency distribution of thglobal collection of stream§ = U; S;
at the coordinator site. Rather than one-time query evaluaive
assume a continuous-querying environment which impliasttie
coordinator needs toontinuously maintairgor, track) a picture of
the global frequency distributiof as the local update strearfi
evolve at individual remote sites. More specifically, ounpary fo-
cus is on continuously tracking tlgiantiles(i.e., order-statistics)
of the global frequency distributiofi at the coordinator.

The distributed nature of the local streatfis comprising the
global frequency distributiof makes this a very challenging prob-
lem. A naive scheme that accurately tracks the quantile$ loy
forcing remote sites to ship every remote stream updatectadh
ordinator is clearly impractical, since it not only imposesinordi-
nate burden on the underlying communication infrastrécfaspe-
cially, for high-rate data streams and large numbers of teisites),
but also drastically limits the battery life of power-caaéhed re-
mote devices (such as wireless sensor nodes) [9, 18]. thstea
to reduce communication overhead, we focus on the contswuou
tracking ofapproximatequantiles ofS at the coordinator site with
strong guarantees on the quality of the approximation. @ldsvs
our schemes to effectively trade-off communication efficieand
quantile-approximation accuracy in a precise, quanggatianner;
in other words, larger error tolerances for the approxintpten-
tiles at the coordinator imply smaller communication oeexths to
ensure continuous approximate tracking.

More formally, letN = |S| denote the total size of the global
data strean$. For a domain value € [U], we user(v) andg(v)
to denote thebsolute rankand quantile (i.e., relative) ranlof v
in S, respectively; in other words;(v) = [{u € S : u < v}
andq(v) = % Given a prespecified error toleranegour
goal is to continuously maintain anapproximate quantile sum-
mary Q(S) of the global frequency distributia$i at the coordinator
while minimizing the overall amount of communication beéme
the coordinator and the remote sites. By providing a contisu
e-approximation guarantee, this quantile summaxys) at the co-
ordinator can, at any time instant, be employed to answer:

(1) e-approximate quantile-rank querigesvhere, given a domain
valuev € [U], we seek to find an approximate quantile raik) €
[0, 1] that is withine of v's true quantile rank irf, i.e., findg(v)
such thag(v) — e < g(v) < gq(v) + ¢ and,

(2) e-approximate quantile-value querieshere, given a quantile
rankg € [0, 1], we seek a value = v(g) € [U] whose quantile



rank in .S is within e of ¢, i.e., findv = v(q) sog — e < q(v) <
q+e

(The corresponding-approximate queries foabsolute rankare
also naturally defined in a similar manner—in the case of labso
rank, error tolerance for(v) is defined asteN.) Thus, our notion

of approximate quantile summaries fris identical to that of all
earlier research on approximate quantiles [14, 15, 13, Rijte
that an approximate quantile-value query is essentiaéhydtral of

an approximate quantile-rank query, and can be easily answe
with O(log U) quantile-rank queries using binary search to deter-
mine a valuev that generates an approximate quantile rank in the
desired rangéq — ¢, g + € for the original queryg. Symmetri-
cally, one we could answer approximate quantile-rank gsesiith

a bounded number of approximate quantile-value queriescéie
our discussion focuses on answering quantile-rank queritbse-
approximation guarantees, knowing that this is sufficienaliso
answer quantile-value queries within the same error baunds

3. OURQUANTILE TRACKING SOLUTION

In this section, we discuss the details of our proposed sehem
for the distributed tracking of approximate quantiles. \egib by
providing an overview of our general approach and a disonssi
important design desiderata for our distributed-tracldafytion.

3.1 Overview

In a nutshell, our distributed quantile-tracking schembased
on each individual remote sigecontinuously monitoring the quan-
tiles of itslocal update streans; (j = 1, ..., k). When a certain
amount of change is observed locally, then a site may contatei
with the coordinator in order to update the coordinator wmitbre
recent information about its local update stream and, ttesumes
monitoring its local updates. Our overall goal is to enstreng,
e-approximation guarantees for quantile queries aver U;S;
at the coordinator while minimizing the amount of commutima
with the remote sites. Besides the obvious goaafectnesdi.e.,
making sure that the coordinator maintairspproximate quantiles
of S at all times), we can identify other important design desitie
that our solution should strive for.

e Summary-based Information ExchangRather than ship-
ping the complete frequency distribution for their locaésims
S; to the coordinator, remote sites only communiceo@e-
cise quantile summarie@(S;) of their locally-observed up-
dates (along with, perhaps, some additional summary infor-
mation). The size of th@(S;) summary depends critically
on the desired-approximation guarantees at the coordinator.

e Stability. Intuitively, the stability property means that, pro-
vided the local distributions at remote sites remain approx
imately the same, there is no need for communication be-

tween the remote sites and the coordinator. The interpreta-

tion of this property depends on our abilityrrmodelthe sim-
ilarity of the up-to-date local distributionS; to their past

a scheme that distributes information on the global quan-
tiles over.S to all remote sites would typically need to re-
broadcast up-to-date global-quantile information toss{ts-
ther periodically or during some “global resolution” st48p

in order to ensure correctness. Our solutions are designed t
explicitly avoid such expensive “global synchronization”

As already mentioned, our solution is based on remote Sites ¢
tinuously monitoringocal constraintson the quantile distributions
of their local update streamS;, and contacting the coordinator
with an appropriate quantile summag(.S;) (and, possibly, addi-
tional summary information) once these local quantile traists
are violated. Briefly, our tracking scheme splits the alldvweeror
tolerancee at the coordinator into two distinct componenrtsand
0; thatis,e = ¢+ 0, where

e ¢ captures the error of local quantile summaries communi-
cated to the coordinator; and,

e 4 captures (an upper bound on) the deviation of local quan-
tiles at each remote site based on locally-observed updates
since the last communication with the coordinator.

Thus, in our solution, a local quantile summa®ysS; ) last commu-
nicated to the coordinator at tintecarries an approximation error
in the order ofp with respect to the snapshot of local stre&fat
time t wheread) bounds the deviation of local quantiles with re-
spect to the snapshot-summary information sent to the owaot
(since timet). Intuitively, a large® value allows for larger local de-
viations since the last communication and, therefore, iEsgewer
communications to the coordinator but, sirce ¢+ 6, for a given
error tolerance:, the size of thep-approximate summar@(.S;)
sent during each communication is larger. Our analysisigesv
rules for optimally dividing the allowed error toleraneé simple
cases; in more complex scenarios, we give empirical guidsifor
allocatingy andé.

Each local quantile summai@(.S;) communicated to the coor-
dinator at timet gives a O(¢)-approximate) picture of the snap-
shot of theS; stream at time.> In order to achieve thstabil-
ity property, a crucial component of our solutions is the cohcep
of conciseprediction modelghat may be communicated from re-
mote sites to the coordinator (along with the lo€¥S;) quantile
summaries) in an attempt to accurately capture the antezipze-
havior of local streams. The idea is that the coordinatorleysp
the prediction model for sitg (in conjunction with its most re-
centQ(S;) local snapshot summary) to predict tharent stateof
the S; stream when estimating the global, up-to-date quantiles fo
S; similarly, remote sitej employs the same prediction model to
check for the deviation of its local quantiles with respedtie cor-
responding predictions at the coordinator. Thus, as loagthdic-
tion models accurately capture the local update behavi@madte
sites, no communication is needed. Note that a predictictefrie
local information for a specific remote site, and it can be computed
either by the remote site itself or by the coordinator (afidparse,
transmitted to the other party for the purposes of quantilapu-

behavior—as long as our models accurately capture the true tation or local monitoring). Since our prediction models aiso
behavior of local update streams, no communication between part of the information exchanged between the remote sitds a

the remote sites and the coordinator is necessary.

e Minimal Global Information ExchangesEven though re-
mote sites communicate only summary information on their
local streams, as the number of sikescreases, the commu-
nication penalty for interrogating all remote sites beceme
inordinately high. Hence, we aim to avoid solutions that
may require regular collection or broadcasting of informa-
tion from/to every remote site in the system. For instance,

the coordinator, it is crucial to keep them simple and caneige
discuss several different options for such prediction ngdang-

ing from naive “empty” models to more natural models based on
locally-observed update rates.

7o simplify the exposition, we assume that communicatioitk the coor-

dinator are instantaneous. In the case of non-trivial dellayhe underlying
communication network, techniques based on timestampinignzessage
serialization can be employed to ensure correctness, a2jn [



To simplify the exposition, we initially focus solely on nimiz-
ing the overall communication cost, and assume that eacbhteem
site accurately maintains ttfell distribution for its local update
streamS; (and, thus, can compute its local quantiles exactly). Sub
sequently, we generalize our approach to additionally Hatine
space/time requirements at remote sites through the uesgpodx-
imate local-quantile tracking techniqueas we demonstrate, our

solution can be extended to accommodate the use of most knowng_

streaming quantile summaries at remote sites, includioggx-
ample, deterministic Greenwald-Khanna summaries [14}-di-
gests [23], as well as randomized subset-sum summariesfitB]
Count-Min sketches [4].

3.2 The Basic Tracking Scheme

Fix a remote sitej, and letQ(.S;) denote the collection af-
quantile values of (the current snapshot of) its local updateam
S;; thatis,Q(S;) compriseq’%] + 1valuesuvg j, . . ., Uriy such

that the quantile rank of th&" valuewv; ; in the local streans;
(denoted byy; (vs,;)) is ¢; (vi,;) = i¢ (or, equivalently, its absolute
rank isr;(vi;) = i¢N;), fori = 0,1, ..., [ﬁ.z In particular,
note thatvo ; andwvy /4 ; are the minimum and maximum values
observed in strearfi; (respectively).

It is not difficult to see that the above-described collettad
¢-quantile valuesQ(S;) = {vi; :i = 0, ..., 1/¢} is a 2-
approximate quantile summary (of sizb(% log M)) for stream
S;. This fact follows from the simple observation that, given a
valuev € [U], we can determine two consecutive valugg and
vit1,5 iIn Q(S;) such thaw € (v;,;,vit1,5], and estimate the ap-
proximate quantile rank of in S; as Le)t9iirLi) - gince,
q;(v) € [(g;(vi,5), g5 (vi+1,5)] and the quantile-rank difference be-
tween consecutive values is bounded¢hyhis estimate is guaran-
teed to be %-approximation ofu’s true quantile rank.

In our basic tracking scheme, remote sites can communioaite t
¢-quantile values summar@(S;) = {vi; : 4 = 0, ..., 1/¢},
along with (possibly) a concise prediction model for thedl up-
dates to the coordinator site. L&t denote the snapshot of the local
stream last communicated (throug@{.S;)) to the coordinator, and
let N; = |Sj|; also, letn; denote the total number of element up-
dates to the5; multi-set since this last communication. Thus, the
size of the up-to-date local stream at git@enoted byS; U AS;)
is N; + n;, while the size of the up-to-date global stredm=
U;(S; UAS;)is N = |S| = 3>, Nj + n;. Obviously, when site
j communicates with the coordinator, it sé{s < N; + n; and
resetsn; — 0.

After shippingQ(S;) = {v;,; : i =0, ..., 1/¢} and (possibly)

a corresponding prediction model to the coordinator, $it®n-
tinuously monitors the state of its local quantile valugg in its
up-to-date local stream. More specifically, for each loasrmile
valuev; ;, site j monitors both itgrue absolute rank;(v; ;) in

S; U AS;, as well as itspredicted absolute rank’(v; ;) based
on the prediction model communicated to/from the coordinat
Clearly, the exact methodology for computing the predictatk
r?(vi,j) depends on the specific prediction model being used an
is discussed in detail in Section 3.3; for now, we just tréatsi a

value that can be computed by both the remote site and the coor

dinator. In our solution, a communication with the coordimés
triggered at sitgj only if, for somew; j, [r%(vi ;) — 7;(vi,;)| >
6(N; + n;); that is, the predicted and true rank of the monitored
quantile value inS; U AS; deviate by more thad(N; + n;).2

2To simplify the notation, we typically omit the integral beg operators
in what follows.

%n general, if the same value occurs many times in the strgambsolute

Procedure SiteUpdate(y, ¢, 6, v)
Input: Site indexj; local summary-error and rank-deviation
parameters, 0; inserted value € [U].

1. SetS; :=5; U{v}, nj :=n; + 1, goodPredictions :true

2. fort:=0to1/¢ do

if (v< Vi,j ) then

o orilvig) =rivig) +1

if ( \r']’-(viﬁj) — rj(vi,j)\ > Q(Nj + n]-))then
goodPredictions :false

5.

7. if (not goodPredictions)hen

8. Seth ::Nj—i-nj,nj =0

9. Compute new locap-quantile value summarg(S;)

10. Send{j, Q(S;), Nj, predictionModelf) } to coordinator

Procedure AbsoluteRankQuery(v)
Input: Query valuev € [U].
Output: e-approximate absolute rank ofin the global update stream.

1. rank:=0

2. for j:=1tokdo

3. =0

4. fori:=0to1/¢ do

5. if (v;,; <v)theni =4

6. rank:=rankt (78 (vir ;) + 75 (virg15))/2

7. return (rank)

Figure 2: Procedures for (a) Quantile Maintenance at Remote Sites,
and (b) Approximate Rank-Query Answering at the Coordinator.

As our analysis demonstrates, this condition is sufficienpro-
vide stronge-approximation guarantees for rank and quantile esti-
mates based on the quantile summagis;) last communicated

to the coordinator. The pseudo-code for processing streaop-
dates and monitoring local quantile shifts at giie depicted at the
top of Figure 2.

Estimating Absolute- and Quantile-Rank Queries at the Coor
dinator. Let Q(S) = UJ'Q(SJ‘) = U]‘{Ui,j 11 =0,..., 1/¢},
i.e., the collection of the most recent quantile summargegived
from all remote sites at the coordinator — the global quarsilm-
mary used for approximate query answering at the coordinato
essentially a combination @(.S) and the per-site prediction mod-
els (used in conjunction witl®(S;)’'s to compute the predicted
ranks of quantile values i@(.S)). More specifically, definéV =
> 75 (v1/,5), that is, the sum of predicted maximum-element
ranks across alb; streams. Given a query value € [U], the
coordinator determines, for each site summ@is;), the index

i’ = argmax,;{vi,; € Q(S;) : vi,; < v}, and defines thbound-
ing quantile valudor v asv; ;. It then estimates the absolute and
quantile rank ofv using the formulas:

>

A pseudo-code description of our approximate rank estonatio-

cedure at the coordinator site is shown at the bottom of Eigur

The following theorem demonstrates that as long as the oreait
d local rank deviations at remote sites remain bounded, angred
dicted ranks satisfy a natural condition (that, as we shoBdn-
tion 3.3, is satisfied by all our proposed prediction modetsn
we can provide strong approximation guarantees for thelatieso
rank estimate at the coordinator.

5 (vir 5) + 75 (Virga,5) 7

2

(v)

and §(v) =

THEOREM 3.1. Assume that, for each remote sjtand local
quantile valuev; ; € Q(S;), we have (1)rf (vi ;) — rj(viz)| <

rank is actually a range, and we measure the deviation awaytfris range;
for simplicity of presentation, we gloss over this detailt bur results still
hold when it is taken into account.



O(N; +nj),i.e., therank ob; ; in S; UAS; is withind(N; +n;)
of its prediction; and, (2% (vi+1,5) — 5 (vi ;) < 26(N; +ny),
i.e., the range between consecutive predictions is uppanded
by 2¢(N; + nj). Then, for any value € [U], the absolute-rank
estimate’(v) at the coordinator is &¢ + 0)-approximation taw’s
true absolute rank(v) in .S; that is,

r(v) —(p+0)N < 7(v) < r(v)+ (¢ +6)N.

Proof: Note that the absolute ranks foracross different remote
sites are clearly additive (i.e., the overall rank is the swation of
the per-site ranks) and, further, by the definition of therubng
quantile values, we havg (v) € (r;(vy ;),75(vir+1,5)]; thus, we
have:

r(v) = >2ri(v) =32 ri(vir ;)
> ) + (15 (vir 5) — 7°(vir 5))]
_ P(vir )+ 5) P4 q,) =P (i 5)
- Zj 2 - Z]‘ 2
+ 225 (ri(ver 5) = rP(vir 5))-

Based on the definition of ou(v) estimate and the assumptions
of the theorem, this last inequality gives:

IV

r(v) > F(v) = 22, 6Ny +ny) + 30, (rP(vir ;) — 7 (vir 5))
2 F(v) = ¢N =3 |ri(vir 5) — rP(v 5)
> #(v) — N = 3, 0(N; +1y)
> F(v) = (¢ +0)N.
The other direction is symmetric. |

We should note here that, in principle, it is possible tocdle
a distinct total-error threshold;, = ¢; + 6; to each remote site

j = 1,...,k. However, as can be seen from the proof of Theo-

rem 3.1, the error guaranteeat the coordinator is determined by
the maximumper-site error, i.e.¢ = max;{¢;}. Thus, since the
per-site communication cost is clearly monotonically éasing in
its error tolerance, our algorithms allocate the same ertor) + 6
across all remote site$.

Our scheme also provides similar approximation guararftees
the quantile-rank estimatégsv) at the coordinator, as demonstrated
in the following corollary. The result employs a slightlgliter up-
per bound ofs(1+ 0)(N; +n;) on the range between consecutive
rank predictions that is, in fact, satisfied by all our pragmbpre-
diction models (Section 3.3); it also uses the natural aptions
0 < 2¢ (i.e., no tracked quantile valug, ; can shift more than two
quantile widths) anad < 1—% (typically, we would want to track
errors much smaller tham3N). The proof follows along similar
lines as that of Theorem 3.1, and the obgervation that, basedr
stipulated local-quantile deviation bound$,e (1 + 6)N.

COROLLARY 3.2. Letd < ¢pande = ¢ + 6 < 3. Also,
assume that, for each remote sjtand local quantile value; ; €
Q(5;), we have (1)rf(vi ;) — r;(vi;)| < O(N; + ny), and (2)
(T8 (vig1,5) =75 (vi3)) < d(1+0)(N; +n;). Then, our quantile-
rank estimategj(v) at the coordinator are &e-approximation to
v's true quantile rankg(v) in S.

Time and Space ComplexityIn order to track the quantile values
at each remote site, we can maintain an array with the curaekt

Ytis possible to “break” this global error threshelihto different(¢;, 6;)
components for different sites, and even dynamically riagothe per-site
error distribution betweer; andf; based on observed site behavior. To
keep the analysis tractable and focus on the key featuresrgioheme, we
assume the sani@, 6) error components across all sites.

of each of they; ; values, and update these with each update, as
shown in Figure 2. Thus, the time and space complexity fa thi
tracking procedure is onl{)(1/¢) per update, in addition to the
cost of maintaining sufficient information (i.e., full or @@ximate
local-distribution information) for the quantiles to becatculated

if the distribution changes. When communication is regljitbe

site must recompute a set of quantiles, send these to théinator,

and compute their ranks. The cost of this will depend on thihate
used to maintain quantiles, but is at Ieﬁss%) per communication.

3.3 Prediction Models

We now describe possible choices for the prediction models e
ployed to describe local update behaviors at the remote. stiech
models are part of the information exchanged between theteem
sites and the coordinator so that both parties are “in-symitfi
respect to predicted-rank computations; therefore, itritgcal to
keep prediction models concise and, yet, powerful enougifféc-
tively capturestability properties in our distributed-tracking envi-
ronmentS

Zero-Information Model. The simplest prediction model we con-
sider is the “empty” model, namely both the site and the deord
nator assume that there are no further local updates arsl, ttheu
absolute ranks for the quantile values; in the Q(S;) snapshot
summaries last communicated to the coordinator remainstlgxa

the same. (Under such “empty” predictions, no addition&drin
mation needs to be exchanged between remote sites and the co-
ordinator.) More formally, assuming empty predictions, keve

% (vi,j) = i¢Nj, foreachi =0, ..., 1/¢andj =1, ..., k.

Synchronous-Updates Model A key drawback for the zero-infor-
mation scheme is that it only achieves stability (i.e., @estd no
communication between remote sites and coordinator) imag-u
alistic scenario, namely when there is no update activitgmiote
sites. Intuitively, however, we should be able to achieabitity in
more general situations. In particular, assume a scendrévenre-
mote sites read in new updates periodically (i.e., one @palatach
time step) and, furthermore, the quantile distributionesbed at
each remote site remains relatively stable; in such scasahere
should be no need for communication to the coordinatoresihe
global quantile distribution remains about the same.

Our next prediction model works on the assumptiosyafchro-
nous update$or remote sites; that is, at each time step, every re-
mote site observes an update to its local distribution ,(b&y pe-
riodically polling a sensor node or a network switch everg-se
ond). Furthermore, our synchronous-updates model asstiraes
the quantile (i.e., relativeyanks of the values; ; in the Q(S;)
snapshot summaries last sent to the coordinator remairathe.s
In other words, letting; denote the number of time steps since the
Q(S;) summary was communicated to the coordinator, the pre-
dicted ranks for sitg are defined asf(vi;) = i¢(N; + t;), for
eachi =0, ..., 1/¢. Of course, since both the coordinator and all
remote sites work under the same synchronicity assumptmde-
tailed prediction-model information needs to be excharigetie
synchronous-updates case.

Note that this scheme implicitly requires some notion obtgll
time”, since the coordinator must be able to compute theigtesd
ranksr¥ (v; ;) in order to answer quantile queries. This depends
ont;, the number of time steps since the last communication from
site j, and so this must be something that the coordinator can com-
pute without contacting the sites. In a periodic polling reoéo

SNote that this is distinct from the notion and usage of the eldsed
in [9]: there, models are used in a sensor network to optirtfieecost of
evaluating one-shot queries by polling certain sensors.



(i.e., reading a value every second or minute) this is ditfog that the range of predicted ranl(s‘]’. (Vig1,5) — 7"? (vi,5)) is upper-
ward. In such a setting, where the (different) distribusiobserved bounded bys(1 + 6)(NV; + n;) at all times.

by remote sites remain reasonably stable (i.e., local sitatons
stay within thed bounds), stability is achieved, and no communi-
cation is required. This may not be the case if the updateaaire
synchronous. Consider the situation when there are tws, Sitee

of which sees a uniform distribution on valugs. . ., 6], and the
other sees a uniform distribution on valués. . ., 12]. If updates

arrive at equal rates, then we correctly compute the mediah a tion on local rank deviations meat@V, + 8;t;) — (N; + n,)| <

However, suppose that for every update to the first disiobytve O(N; +n,), which gives(N; +d;¢;) < (1+6)(N; +n;). Hence

see three updates to the second distribution. Now the meslian ¢ cop upper-bound the difference in our rate-based rarticpre
Hence, in order to better predict the behavior we must inmate

Proof: It suffices to show the bound for the case of general update
rates;, as mentioned above. Consider the case of the maximum el-
ementv, /4 ; at sitej. In particular, note that, if we force, /4 ; =

oo (i.e., we always track the rank of the maximum element seen
thus far), therr; (v, /4 ;) = N; + n;. Since, by our update-rates
model predictionsy’ (v1 /4 ;) = N; + d;t;, our maintained condi-

thelocal rate of updateat each remote site into our model. tl:ns' ;

Update-Rates Model.Our third model explicitly brings in the no- i itns) —r5(vig) = (i + 1SN, +05t) — id(N; +05t;)
tion of update rates for different local streams. We oncérsas: = ¢(N; +6;t;) < ¢(1+ 0)(N; + ny).
sume a notion of global time, and we assume that updates are ob 1
served at each siteat a uniform (local) rate, denoted by. This o

rated; completely specifies the prediction model for sitand is Thus, by Theorem 3.1, all three of our prediction models can

exchanged between the coordinator and the site when cornauni ~ guaranteg¢ + ¢)-approximate absolute-rank estimatgs) at the
tion takes place. The specific method of estimating the ¢otiyr ~ coordinator, as long as the local ranj(v; ;) of v;,; in the up-to-
update ratel; (at either the remote site or the coordinator) has no date local strean$; U AS; does not deviate from its prediction

effect on the correctness of our tracking but, obviouslyody6; r5(vi,;) by more thand(N; + n;), for eachi, j. We now pro-
estimates are important for reducing communication cdsisin- ceed to analyze the communication cost associated withrack-t
stanceg; can be defined either as a historic average over the entire iNg schemes.

history of updates at sitg, or, more naturally, as an average up- LEMMA 3.4. Assume the empty model, anddet ¢ + 0 de-

date rate over a recent window of observed update behavtbeat  note the error tolerance at the coordinator. Then, for agpiate
site; of course, other options (e.g., using a time-of-dagell value settings of parameters and ¢ (specifically,¢ = 6 = ¢/2), the
from recent-history table) are also possible. As in the Byorous- worst-case total communication costi§ - 5. In N;).

updates case, our update-rates model also assumes thattitde <
(i.e., relative)ranks in the latest snapshot summagdiss; ) remain
the same; that is, letting; denote the number of time steps since
the last communication between the coordinator andjsitee pre-
dicted ranks; (v; ;) are defined asf(v;,;) = i¢(N; + J;t;), for
eachi =0, ..., 1/¢. Itis not difficult to see that, if the distri-
butions (i.e., local quantile values) at each site remagpr@xi-
mately) the same, and the local-update rates are reasostablg,
then, by Theorem 3.1 and Lemma 3.3 (shown later in this sgctio
our update-rates model achieves stability making sitedinator
exchanges unnecessary in the long run.

Proof: Observe that the largest value tracked is the one whose rank
changes the most due to thelocal updates. If alh; updates at the

site happen below the maximum quantile valye, ; its absolute
rank increases by; (this is achieved if we force, ;4 ; = oo as

in the proof of Lemma 3.3), Thus, to ensuke+ 6) absolute-rank
estimates in the zero-information model, remote giteforced to
communicate its current local summary to the coordinatar; if-

0(N; + n;), or, equivalentlyn; > +%;N;; in other words, sitg
needs to send its summary to the coordinatece the number of
updatesn; exceeds a certain fraction of its earlier snapshot size

Nj;. The total number of communications required to reach d loca
The following table summarizes the key points for each of our count ofN; ism, Where(1+1f;9)m = (1-6)"™ > N, and hence

three prediction models (namely, the model informatiorhexged
between the sites and the coordinator, and the assumptiaies u
which they achieve stability).

m = O(3InNj). Since each communication is of siz¥ 3),
the total communication cost@(# In N;) per site. To optimize
this cost, note that minimizing/(40) is equivalent to maximizing

| Model [ Modelnfo. | Model Assumptions | ¢, and sincee = ¢ + 0 this leads us to choosg = 0 = ¢/2.
Zero-Information ] " (v;,5) = ipN; Hence, using these optimal settings forand 6, the worst-case
(Absolute ranks stabley; = 0) total communication cost i9( = > InN;). |
Synchronous [ Plvi,j) = 1d(N; +t; . . . . .
y (Qura{rsgléjr)ank;(z)s(taéle; , J_) t5) There is a couple of interesting things to note here. Ficsal-
g — b3 . .. . e
Rate-based Rated; 15 (i) = i6(Nj + ;) ing to the analysis in Lemma 3.4, in order to minimize the wors
(Quantile ranks stabley; = 5;;) case communication cost in a zero-information model forveryi

error tolerance;, the optimal settings for the and 6 parameters
) ) are¢p = 0 = ¢/2. In other words, we should equally distribute the

prediction models satisfy the upper bounds on the rangee®®tw  the |ocal-deviation error. Second, the worst-case comeation-

lary 3.2, assuming local rank deviations are bounded. Niatedur the case of our synchronous and rate-based models, asstiratng
update-rates model trivially captures both the synchrenmqdates the underlying update-rate assumptions (hg.= ¢; orn; = d;t;)
case §; = 1 for all j) and the zero-information case; (= 0 for are correct. Thus, dividing the specified error toleranaeaty be-

all j); hence, it suffices to demonstrate the result for the rageth ~ tweeng and6 provides a reasonable heuristic even for our more
case. sophisticated prediction models; in fact, our experimiemsults in

LEMMA 3.3. Under all three prediction models, maintaining Section 5 clearly validate this point.

the local conditionsr (v; ;) — r;(vi;)| < 0(N; + n;) implies Other Prediction Models. One could argue that even the rate-



based model of site variation (based on following the updaties
of at each remote site) is quite simplistic. It is certainbsgible to
expand our prediction-model repertoire, for instance, xgnan-
ing second-order effecsnd modeling the rate-of-change of local
update rates (i.e., the “acceleration” as opposed to theetSpof
updates). The parameters of such prediction models carabeeks
locally (at the sites or the coordinator) using a variety @fthods,
including, for example, averaging over sliding windowsgeamt-
history tables, or even more sophisticated machine-legrtéch-
niques (e.g., linear or higher-order regression). Thuscavehave
an entire family of sophisticated prediction models for oéensite
behavior — these models can all be easily incorporated ioto o
framework by creating new rank predictiorf§v;,;) based on mea-
surable parameters that can be shared between the renectadit
the coordinator. Provided that our prediction models ensbat
the predicted-rank rangés’ (vi+1,;) — 7% (vi,;)) remain bounded
by ¢(1 + 0)(N; + n;) (either by demonstrating that the condi-
tion always holds or by explicitly checking the conditiortlag site
and forcing communication when it is violated), then we caneo
again apply Theorem 3.1 and Corollary 3.2 to guarantee thktgu
of the approximate answers given by the coordinator. To kieep
exposition in this paper concise and simple, we do not censidy
further prediction models beyond the three key models roedliin
this section.

3.4 Using Approximate Local Summaries

Thus far, our discussion has assumed that each remote site ma
tains an accurate picture of tifidl distribution of its local update
streamS;, and uses that distribution to compute the exact quantile
values for its locakp-quantile value summar@(.S;). In several
application scenarios, however, maintaining the comptetal dis-
tribution is not feasible; for instance, when dealing withgsive,
rapid-rate streams, or remote sites with severe resouritations
(such as tiny sensor motes [18]). In these settings, renitge s
can make use of one of the several recently-proposed sipaee/t
efficient methods for tracking their local quantilapproximately
over their streams. Such approximate methods are either-det
ministic (based on retaining carefully-chosen subsetshefftill
stream distribution) [14, 23], or based on randomizedetliay
techniques [13, 4]. Furthermore, given a stregm(of size N;)
over [U] and an error bound:, these methods are able to track
quantile information and report any requested quantilb @it error
bounded byxN;, while using space/time that is only logarithmic
in N]‘, U.

Note that, in our proposed distributed-tracking scheme®-a
mote sitej needs to recompute igsquantile value summarg(.S;)
whenever one of its existing local quantiles breaks its ipted
rank bound (Figure 2). If we make use of an approximate glganti
tracking algorithm with errow at the remote sites then, when com-
puting thev; ; values inQ(S;), we can no longer ensure tha{v; ;)

In other words, tracking local quantiles approximatelyvithin
an « error) at each remote site implies an additiona¢rror for
the approximate global-rank estimates provided by ouritigied-
tracking schemes at the coordinator. Of course, these xipmae
tions also imply a drastic reduction in the local space nexménts
at each remote site. More specifically, in addition to @ /¢)
space to store the local quantile values (and associatedriaf
tion) in Q(S;), each site only needs to store a concise synopsis data
structure for approximating its quantiles. Typical spacerizs
for such synopses are: (D)(2 log(aN;)) using the Greenwald-
Khanna algorithm [14]; (2( < log U) using theg-digest [23]; or,
?3) O(é log 1/p) (p is the probability of error) using the Count-
Min sketch [4]. In practice, the space requirements of thaevab
methods are all approximatel?(é). Given a fixed amount of
spaces available at each remote site and a desired global error tol-
erance, this raises an interesting optimization problem — namely,
determine the settings for parametersd, and « that minimize
overall communication subject to the constraintst+ 0 + o = ¢
ands > O(2 ) The following lemma summarizes our analysis
of this prob?em in the simple case of a zero-information nhode

LEMMA 3.6. Assume a zero-information model, and det=
¢ + 6 + « denote the global error tolerance anddenote the
space available at each remote site. Provided thas at least
Q(1), the worst-case total communication cost is upper bounded
by O(}2 Z]. In ;) for appropriate settings of parametets 6,
anda (specifically$ = = s—0(1) anda = e—0—¢ = O(1)).

The interpretation of Lemma 3.6 is that, givemnde, we should
try to make the local approximation erraras small as possible
(consuming a constant fraction of the available spgcand divide
the rest of the available error budget equally betwgamdo.

4. EXTENSIONS

Heavy-Hitter Tracking. The heavy hitters are those values that oc-
cur more than some fractighof the time, i.e. their count is at least
fN. Note that this is distinct from the topitems, since although
any heavy hitters are in the tdp-f items, the inverse implication is
not always true. Observe that our method to continuoustktitae
ranks of itemsmmediatelyallows us to find (approximate) heavy
hitters: assume that(v) gives an estimate of the maximum rank
of itemw, then?(v) — #(v — 1) gives an estimate of theountof

v, with error at moseN. Hence, the coordinator continuously
maintainsO(e)-approximate counts of each item (more generally,
the approximate count of any range of contiguous items).mFro
this, count queries can be answered, and with some simple add
tional data structures, the heavy-hitter item set can béraowusly
maintained. In the full version of this paper, we give monecii
schemes to track heavy hitters, based on the same strustorg a
solution for quantiles: if every remote site tracks the lyglaitters

= i¢pN;; instead, we can only provide the weaker guarantee that from its stream, and only communicates to the coordinatcerwh

rj(vi;) € [i9pN; £+ aN;]. Examining Theorem 3.1, it is not diffi-
cult to see that, if we replacg (v;,;) with [r;(vi ;) & aN;], then
we can once again bound the approximation error at the auettati
as shown in the following corollary.

COROLLARY 3.5. Assume that, for each local quantile value

vi,; € Q(S;), sitej can compute only an approximate rank esti-
mater’; (vi ;) € [r;(vi,;) £aN;], and, furthermore, (1)-f (vi ;) —
75 (vi )| < O(N;+n; ), and (2)(rf (vita,5) =75 (vi;)) < 20(N;+
n;). Then, for any value € [U], "the absolute-rank estimaigv)
at the coordinator is &¢ + 6 + «)-approximation tov’s true ab-
solute rankr(v) in S; that is,

r(w) = (p+0+a)N < #(v) < r(v) + (d+ 6+ a)N.

the count of an item differs by more th#{N; + n;) from its
predictedcount. As before, one can plug in a variety of models
to predict the counts of items in order to minimize communica
tion to the coordinator. Recomputing heavy-hitter courgfote a
communication can be supported by keeping exact countsig us
summary methods just as with quantiles. Other holistic sanes,
such as the largest wavelet coefficients, may also be cochfute
this framework, since the computation can be decomposedray s
ming the components from the remote sites. We postpone the co
plete details to the full version of this paper.

Handling General Updates. Thus far our discussion has focused
on the case of insertion-only streams. This model fits mang da



stream scenarios but, in full generality, the observed igstaeams
can consist of both element insertions (arrivals) and aelst(de-
partures). For instance, in a network-monitoring appiicatsites
tracking the distribution of open TCP connections must supp
deletions in order to purge inactive connections from thuial S;
streams. We argue that our scheme naturally adapts to snehage
update streams, provided that the remote sites are capladxene
puting quantiles (either accurately or approximately)ravetream
containing both insertions and deletions. (Randomizechaoukt
for approximate local quantile tracking [13, 4] are appbieafor

general updates.) The key observation here is that, in tbg- pr

ence of deletions, we can defing as thenet changén the overall

size of the localS; stream since the last exchange betweengsite

and the coordinator; this implies thaj can now become negative.
However, all of the proofs of our key approximate-trackiegults

(namely, Theorem 3.1, Lemma 3.3, and Corollaries 3.2 ang 3.5

make no assumption on the signsof. Thus, provided that the re-
quired local-deviation bounds (with respect to predictaks) are
met, our scheme still guarantees accurate quantile preaicat the
coordinator. Note though that some of our subsequent amlyls
the communication cost implicitly assume insert-only atns. So

these bounds no longer apply to general updates, and inatead

can only provide weaker conservative worst-case boundsthy,.a
we observe that allowing deletions means that we can incarpa
sliding window approach, where only recent stream valuesain-
sidered to contribute to the current distribution. We wiltegfull
description of the necessary changes to accomodate tftis fiuilt
version of this paper.

Hierarchical Quantile Tracking. Consider a more complex dis-
tributed-tracking scenario where the communication netisar-

ranged as dree-structuredhierarchy of nodes (i.e., sites) — our

goal here is for the root node to effectively track approxerguan-

in order to minimize communication cost across levels1 and!.
Consider a node at levell in the tree hierarchy and I&t, de-
note the union of update streams in the subtree rooted @ener-
alizing from our approximate quantile tracking discussiioisec-
tion 3.4, define (1) as the accuracy at which tracks its local
quantile values (for th&,, stream); (2)p; as the granularity of the
quantile value summary that nodeships to its parent (i.eQ(S.)
comprises the values at approximate quantile ranks., 1/¢;);

and, (3)9; as the bound on the deviation of local quantiles (with re-

spect to their predictions) at node The following corollary then
follows easily from Corollary 3.5.

COROLLARY 4.1. Letqy, ¢, andf; be as defined above. Then,
the accuracy of local quantile estimates for nodes at lévell of
the hierarchy isy—1 = o+ 01+ ¢

Corollary 4.1 essentially allows us to “cascade” our basigle-
level tracking scheme to the case of multi-level hierarshi&pecif-

ically, if we let o, = « denote the error of the summaries used to

track update streams at leaf nodes, (= 0 if leaf nodes main-
tain the full stream distribution), then, by Corollary 4slymming
across all levels, the total quantile-tracking error atrthat node is
e=ao=a+ Y0+ ).

Fix the summary errot at leaf nodes. We now seek to optimize
the settings for thé, and¢; parameters for minimizing communi-
cation. We consider the worst-case bounds for the zerarirdtion
case, and two possible optimization objectives: (1)rfaximum
transmission cosfor any node in the hierarchy (or, equivalently,
the maximum load on any communication link), and (2) ahgre-
gate communication coster the entire communication hierarchy.
Both of the above objectives are important in the sensoroet ¢
text (e.g., for maximizing the lifetime of a sensor netwaak)well

tiles of the update streams observed at the leaf nodes ofithe h @S more traditional distributed network-monitoring scera Let

erarchy. (For simplicity, assume that internal nodes in Htes-

archy do not observe any updates; we can add dummy leaf-child

nodes to internal nodes to accept their correspondingsg@d his
hierarchical-monitoring architecture generalizes the$iagle-level
model discussed earlier in this paper (essentially, a emel-hierar-
chy with remote sites as leaves). Such monitoring hierascarise
naturally, for instance, in the context of sensor networkkere
sensor nodes are typically organized in a routing tree witboa
base-station monitoring the sensornet operation [18].utih sce-
narios, naively propagating quantile updates from thedsaw the
root node is wasteful; quantile shifts at leaf nodes of areghinay
effectively “cancel out” at a higher node in the hierarchpder-
ing further communication unnecessary. For such mulelén-
erarchies, our tracking scheme should be able to expldiilisya
propertiesat any node of the hierarchy

Assume that our tracking hierarchy compriges 1 levels, with
the root node at leved and the leaf nodes at levél We can

compute quantiles over the union of streams observed agtfe |

nodes by running our quantile-tracking scheme between ipach
ternal node and its children. That is, each internal nodek&ghe
(approximate) quantiles of its children, and then passaslepant
information to its parent when its locally-observed quast{which
summarize the quantiles of all streams in its subtree) {@@&pec-
ified deviation bound with respect to their correspondinedprted
values. Just as in the flat, single-level case it sufficesltzatie

the same error toleranee= ¢ + 6 to every remote site (see Sec-

tion 3.2), we argue that it suffices to allocate the same ¢; + 6,

parameters to every node at leveh the hierarchy— essentially,
this implies that each levél- — 1) node gives all its children the
maximum possible error tolerance (based on its own errondsu

k; denote the number of hierarchy nodes at |éwlthe hierarchy.
From our analysis in Section 3.3, the (worst-case) trarsonsost
for a node at level is O(ﬁ In kﬂl), which, for a given errog; =

@1+ 0; at levell, is minimized forg; = 6; = ¢;/2.

Maximum Transmission Cost Minimization Problem: Deter-
minee;’s that minimizemax; { % In kﬂl} subject toy_, e; = .

N
For this minimization problem the optimal point occurs wtika
per-node transmission costs at all levels are equal, giviagpti-

mal per-leveb, and¢; settings
e,/lnﬂ
k
gl = ¢l - I

1
~
22].1/111]6—]‘

In the case of minimizing total communication the per-nodas-
mission cost at levelis multiplied by a factor ok; and so we have
a sum objective function. This is a more complicated minaticn
problem, but we show a closed-form solution for the optithal,
settings.

Total Communication Cost Minimization Problem. Determine
e;'s that minimize the sun_, 2K In k—l\; subject to) ", ¢, =e.
€1

THEOREM 4.2. The optimald; and ¢; values for minimizing
the (worst-case) total communication cost over a multelerack-
ing hierarchy are given by

e(kuln F5)/°

b = ¢ = —=——F77=-
221.(1~cj1n,€ﬂj)1/3



Proof: Letc¢; = 4k; In kﬂl for all levelsl. Our proof use#idlder’s
inequality[16], which states that, for any;, y; > 0, andp, ¢ > 1
such that.+ - = L:

1/p 1/q
() (Tw) =T o
1 l 1
with equality holding only ify; = X - :c{’fl for all [.
Substitutingp = 3, ¢ = 3/2, = = (%)"/*, andy, = % in
l

Holder’s Inequality, we get

1/3 2/3
C
(Z —) | (Z ) > dh,
L 1 l
3
or, equivalently (sinc&, e =€), 3, % > % (Zl cll/S) .
l
Note that the left-hand side of this inequality is precisaly opti-
mization objective, whereas the right-hand side is constaius,
the optimal (i.e., minimum) value for our objective occurbem
equality holds in this instance of Holder’s inequality, equiva-
lently, if /% = A(%)?/®, which after some simplification, gives
l

e, = X¢}/? (where the new proportionality constantis= x'/?).

Coupled with the total error constrailt, ¢; = e, this directly im-
plies that the optimat; values are; = ec;’®/ > cj’®. Since,
e = ¢+ 6, and communication at levélis minimized for¢; =

61 = <, the result follows. |

5. EXPERIMENTAL STUDY

Our experimental study focused on the the main quantil&+rac
ing scheme, and the effect of the different prediction medeld
their parameters. We implemented a simulation of our tragki
scheme in C, with experiments carried out on a single machifee

each access point handled up to 32,000 updates. We did ettt
to clean the data set, and so there are some missing valums, so
access points not recording values for long periods, anc: stisa
ordered timestamps. Hence, we believe this to be a reatistiz
lenge for our algorithms to deal with less than perfect date
again compute quantiles over the number of bytes, whichegng
from zero to tens of Megabytes per interval.

Synthetic data, representing a single site. We further investigate
the power of our methods by examining synthetic data sets&ho
parameters we can control more directly. We simulated aesing
site, since we know that the communication cost of the method
in our scheme is just the sum of the costs over the differ¢es.si
We adopted simple distributions for the updates: the vahres
drawn from a Zipfian distribution with parameter and the de-
lay between subsequent updates (with parandtisrcomputed as
[0(1 4 N(0,1)/3)], whereN(0, 1) denotes the usual normal dis-
tribution (hence, we allow a small probability of a negatileday,
corresponding to out-of-order arrival of updates). We nhedi¢he
variability of the site with two parameters, andp,: with prob-
ability p4 the distribution changes, and we pick a new value of
uniformly from [0. . . 2]; with probability p,- the rate changes, and
we pick a new value of uniformly from[0. .. 100]. Although this

is a simplistic model, it allows us to understand better uneeat
conditions our algorithm achieves stability, when no comioa-
tion is necessary between remote site and coordinator.

For the rate-based prediction model, there is an issue ofthew
site should determine the rate when it communicates vatu#dset
coordinator. We implemented two methods. The “global histo
average rate is the total number of updates seen sd/fadivided
by the time elapsed. This requires only a constant amourngaufes
at the site. The “windowed” rate takes a sliding window of the
most recentV updates, and computé® divided by the time be-
tween the first and last update in the window. This requi?éd’)

simulated each remote site, and measured the amount of commu space at the remote site, but no additional space at theinatwd

nication in terms of the number of values sent to the cootdma

since the site merely has to inform the coordinator of the tlaat

We compare this number to the cost of sending every update di- it intends to use (i.ed;), when they communicate.

rectly to the coordinator to see the savings of our trackofgeme.
Overall, we found that our most sophisticated model peréatihe
best over a variety of data sets. The cost of maintainingcoots
quantiles is typically only a small percentage of the costah-
municating every update, and this fraction drops as the eurob
updates increases.

5.1 Data Sets and Methodology

We ran experiments on a variety of real-life and synthetia da
sets, as follows:

World Cup HTTP request data, obtained from the Internet Traf-
fic Archive [17]. We took two subsets of the data, 1 day of re-
quests (15 million) and 8 days of requests (51 million retpies
tal). Each request specified a timestamp, the server thdtdtthe
request, and the size of the object returned. In our dateg there

26 different servers (each one corresponding to one renitafe s
and they handled a varying number of requests, from a fewthou
sand to many millions. The object sizes varied from a few Hyve
several Megabytes in size, so computing quantiles overamsfer
sizes is a non-trivial task.

SNMP network usage dataobtained from the Dartmouth Wireless-
Network Trace Archive [7]. It comprises data from a total @bD2
remote wireless access points, each of which recorded thé to
number of bytes received during roughly five-minute intésever
a four-month period. This gave a total of 6 million updatebeve

A second issue to consider is that there is a “warm-up cost” fo
all our methods: when the number of items at a remote 3ijejs
small, then every update can trigger a communication oftinent
guantiles. So, instead, we can force remote sites to sendddtes
since the last communication if this is cheaper. This reslube
communication cost, but even without this adjustment wesgge
nificant savings.

5.2 Experimental Results

World Cup HTTP request data. Our first set of experiments on
the World Cup HTTP requests are shown in Figure 3(a). On this
data set, the synchronous model could not operate, sincatie
fluctuated over the course of the data and between servevee so
focus on the rate-based model and the zero-information m@die
first varied with the window sizelV, to give the best results in
computing the rate for the rate-based model. We found tleatph
timal window size was not very sensitive to the ratiaab 6, and

the smallest cost for this data set was found using a windasizef

W = 1500. As W increases, the cost converges on the (higher)
cost of the global rate method. This accords with intuitidoo
small a window, and the rate computation is too sensitivetemnt
minor fluctuations, but too large a window and rate changes da
long time to impact on the calculated rate. Our next expatirire
Figure 3(b) fixesx = 2%, and variesp and@ so thatp + 6 = e.

We plot the results for the zero-information and rate-based-

els (with windowed rate computed over the 1&Bt = 1500 up-
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Figure 3: Experiments on real-life data: HTTP request data from World Cup '98: (a) Effect of different window sizes for rate computtion; (b)

Tradeoff betweend and ¢; () Communication cost as number of updates

increases; (dyommunication cost as a function ofe. SNMP data from

Dartmouth Wireless Network: (e) Tradeoff betweenf and ¢; (f) Communication cost as updates increase.

dates). We observe that setting eithear 0 very small drives up the
communication cost significantly. The best results areinbthfor

0 = ¢ = ¢/2, for both the zero-information model (as predicted by
our analysis) and the rate-based model. Here, the comniigmica
costis less than 1% of the cost of sending all the data forgaging

at the coordinator. We have also plotted/a® curve to compare
the behavior of the zero-information method to its predigierfor-
mance. There is some divergence due to our technique ofreendi
updates to the coordinator when this is cheaper than sendimgr
tiles: one can see that this gives an improvement in comratioit
cost that is more pronounced for larger valueg.o8imilar results
were seen for other settings ©o&nd other parts of the data. Thus,
we can conclude that, at least for this data set, chooging 6
gives the best tradeoff.

For the rest of our results with the World Cup HTTP request
data, we focus further on the behavior of the rate-based mdde
setd = ¢ andW = 1500, and plot the communication cost as
the number of updates increases in Figure 3(c). We see tleat af
a sufficient number of updates, the model has “learned” tke di
tribution and the update rate sufficiently well that verylditcom-
munication is needed as the number of updates increasesa-the
tio of total communication to total updates becomes praively
smaller as the system is mostly stable. We see that the cost in
creases for smaller values @afin Figure 3(d). Fitting a trend line
to the rate-based model, we see (empirically) the costyisipro-
portion toe~ !¢, asymptotically better than the prediction ©f>
for the empty model.

SNMP network usage data. We now consider the SNMP data
set from Dartmouth College. This data was collected by piéio
polling, so we can apply the synchronous model to this cade an
compare to the rate-based method which has to discover tihe ra
This data set turned out to be more challenging for our method
because the number of updates per site is much smaller than o
the World Cup data: at most 32,000 compared to many millions
of web requests. Still, the savings over sending all updateise

coordinator are quite significant. This is seen in Figurg,3(bere

for e = 2%, the largest savings from our methods represent nearly
two thirds of the cost of sending all updates directly. Owutts
show that, for this data, using the synchronous method ifasiggu
that there is one update per polling period) does very wetlybing

the rate-based method with a small sliding winddw= 50 can do

a little better (5% improvement faér = ¢/5, but only 0.5% for9 =

¢ = €/2). This is because there are some fluctuations in the rate,
due to polling problems, drops and delays etc., which caocefor
communications in the synchronous method. Using a smédihgi
window to compute the rate allows these fluctuations to basaekl

for with fewer communications to the coordinator. The casirsg

with zero-information is rather small, and skewed by ourmar

up heuristic, whereas the best performance for both rateeband
synchronous comes lt= ¢ = ¢/2. As the number of updates
increases, the ratio of the communication per site to thebeurof
updates seen so far decreases. Figure 3(f) shows that, tlukile
empty model needs an extended warm-up period of approxXiynate
5,000 updates per site, the cost for our methods drops aftitye
ending up close to 20% of the number of updates.

Synthetic data. The synthetic data depends on two paramegers,
the probability of the update rate changing, andthe probability

of the distribution changing. In our first experiment, we fixbe
distribution and varied the rate with probabiliti#é =3, 10~* and
10°. ® We took one million updates to a single site, and plot-
ted the amount of communication as a fraction of the total-num
ber of updates (i.e., a million) in Figure 4(a). This lets as sin-
der what conditions stability is achieved for our rate-basedel.
Note that zero-information cost continues to climb througtthe
whole trial, whereas using our method is stable for longtciies.

6Although these may seem low, in experiments with higher abdhies
(e.g.,1072,10~1), we saw even lower overall cost: when the nature of
Nthe stream changes with high frequency (say, once every rtémirred
updates), then this becomes a “mixed” distribution thatrttemlel can fit
itself to.
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The overall cost depends on the frequency of rate change= si
each time a rate change occurs, some communication may be nec [5]
essary when this causes the predicted ranks to be invalicheWte

fixed p, = 0, and variedp,, as shown in Figure 4(b). Whepy

is highest, atl0~3, then stability persists after an initial period of
communication. This can be attributed to the fact that ttstrieli
bution itself becomes stable: with sufficiently frequenaiehes of

(6]

(7]

parameter, we get a uniform mixture of Zipfians with paramete

ranging from 0 to 2. By contrast, for very low probability dfang-

(8]

ing distribution,10~°, we see that stability is reached initially, but

then, when the first jump in distribution occurs (in this caalter
about 200,000 updates), then a period of communicationtéseah

El

as the model has to be adjusted for the new distribution. r8eve

subsequent distribution shifts prolong this communicatiout as
the number of updates increases, the cost levels off. Lasty
allowed both rate and distributional changes, in Figurg, &g set-
ting p» = pq for a different probabilities. Here, the overall cost for
rate-based methods is higher than before, but still aroatidas

[10]

[11]

much as for the empty model, and only 3% of the cost of sending
every update.

6. CONCLUDING REMARKS

We have presented principled, distributed, continuousking
algorithms for quantile summaries of data that work undercep
constraints at local sites processing high-speed stremonk under
communication constraints between sites, and maintainaptp
accurate quantile summaries at all times. Our algorithmgl@m
a combination of local tracking of quantiles and simple preéoh
models to guarantee communication efficiency, as demdaedtia
our experiments with real-life and synthetic data sets. approach
and results apply immediately to tracking problems for ptlzdu-
able statistics, such as heavy hitters and heavy wavel#iaiests,
since they can be viewed as special cases of quantile tgacRiar
results are general and comprehensive for distributedreanis
monitoring applications which are of growing interest farde-

scale systems.
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