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ABSTRACT
A fundamental problem in data management is to draw a
sample of a large data set, for approximate query answer-
ing, selectivity estimation, and query planning. With large,
streaming data sets, this problem becomes particularly dif-
ficult when the data is shared across multiple distributed
sites. The challenge is to ensure that a sample is drawn
uniformly across the union of the data while minimizing
the communication needed to run the protocol and track
parameters of the evolving data. At the same time, it is
also necessary to make the protocol lightweight, by keep-
ing the space and time costs low for each participant. In
this paper, we present communication-efficient protocols for
sampling (both with and without replacement) from k dis-
tributed streams. These apply to the case when we want
a sample from the full streams, and to the sliding window
cases of only the W most recent items, or arrivals within the
last w time units. We show that our protocols are optimal,
not just in terms of the communication used, but also that
they use minimal or near minimal (up to logarithmic factors)
time to process each new item, and space to operate.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical algorithms and problems; H.2.4 [Database
management]: Systems—distributed databases

General Terms
Algorithms, theory
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Distributed tracking, random sampling
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1. INTRODUCTION
It is increasingly important for data management systems

to cope with large quantities of data that are observed at ge-
ographically distributed locations. As data volumes increase
(through greater power of measurement in sensor networks,
or increased granularity of measurements in network mon-
itoring settings), it is no longer practical to collect all the
data together in a single location and perform processing us-
ing centralized methods. Further, in many of the motivating
settings, various monitoring queries are lodged which must
be answered continuously, based on the total data that has
arrived so far. These additional challenges have led to the
formalization of the continuous, distributed, streaming model
[8]. In this model, defined more formally below, a number of
distributed peers each observe a high-speed stream of data,
and collaborate with a centralized coordinator node to con-
tinuously answer queries over the union of the input streams.

Protocols have been defined in this model for a number
of classes of queries, which aim to minimize the communica-
tion, space and time needed by each participant. However,
the protocols proposed so far seem to have overlooked the
fundamental problem of producing a sample drawn from the
distributed streams. A sample is a powerful tool, since it
can be used to approximately answer many queries. Various
statistics over the sample can indicate the current distribu-
tion of data, especially if it is maintained to be drawn only
from a recent history of data. In this paper, we present tech-
niques for drawing a sample over distributed data streams
either with or without replacement, and show how to adapt
them for sliding windows of recent updates.

In doing so, we build on the long history of drawing a sam-
ple from a single stream of elements. Random sampling, as a
fundamental problem and a basic tool for many applications,
had been studied in the streaming setting long before formal
models of data streams were first introduced. The classical
reservoir sampling algorithm [15] (attributed to Waterman)
maintains a random sample of size s without replacement
over a stream. It is initialized with the first s elements;
when the i-th element arrives for i > s, with probability 1/i
it adds the new element, replacing an element uniformly cho-
sen from the current sample. It is clear that this algorithm
uses optimal O(s) space and O(1) time per element.

There have been various extensions to the basic reservoir
sampling algorithm. Using an appropriate distribution, it
is possible to determine how many forthcoming elements to
“skip” over until the next sample will be drawn [21]. More
recently, there has been much interest in understanding how
to maintain a uniform sample efficiently over a sliding win-
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Figure 1: The distributed streaming model.

dow [2, 4, 10]. There are two models for sliding windows:
in sequence-based windows, we must maintain a sample over
the last W elements in the stream; in time-based windows,
every element arrives at a particular time (called its times-
tamp), and we want to maintain a sample over the elements
that have arrived in the time interval [t−w, t] for a window
length w, where t denotes the current time. Time-based win-
dows are more intuitively useful than sequence-based win-
dows but usually require more complex algorithms and more
space and time resources to handle.

Distributed streaming. Many streaming applications in-
volve multiple, say k, streams distributed in different loca-
tions linked by a network. The goal is to track some func-
tion at a designated coordinator over the combined data
received from all the streams, as opposed to just one. This
is shown schematically in Figure 1. For example, consider a
collection of routers in a network, each of which processes a
high-speed stream of packets. Maintaining a random sample
of the packets from the union of these streams is valuable
for many network monitoring tasks where the goal is to de-
tect some global features [13]. Beyond network monitoring,
similar problems also arise naturally in applications like dis-
tributed databases, telecommunications, web services, sen-
sor networks, and many others.

In this setting, the communication cost is the primary
measure of complexity of a tracking algorithm, while its
space and time costs are also important to bound. Moti-
vated by the many applications in networking and databases,
there has been a lot of work on designing communication-
efficient algorithms for tracking certain functions (including
frequent items [3, 14, 16, 22], quantiles [7, 22], frequency mo-
ments [6, 8], various sketches [7, 9], entropy [1], and other
non-linear functions [18, 19]) over distributed streams. But
surprisingly, the important and fundamental problem of ran-
dom sampling has not yet been addressed.

Problem definition. We formally define our problem as
follows. Let A = (a1, . . . , an) be a sequence of elements. The
sequence A is observed in an online fashion by k remote sites
S1, . . . , Sk collectively, i.e., ai is observed by exactly one of
the sites at time ti, where t1 < t2 < · · · < tn. It is assumed
that ai arrives with its timestamp ti, but the index i, namely
its global sequence number, is unknown to ai. Let A(t) be
the set of elements received up until the current time t from

all sites. There is a designated coordinator C who has a
two-way communication channel to each of the k sites and
needs to maintain a random sample of size s (with or without
replacement) of A(t) at all times.

We also consider two sliding-window versions of the prob-
lem. In a sequence-based window, for a given window size
W , the coordinator needs to maintain a random sample over
the last W elements received across all sites; in a time-based
window, for a given window duration w, the coordinator
maintains a random sample over the set A(t) \ A(t − w) at
all times t.

In the above setting, our primary concern is the total com-
munication cost between the coordinator and the k sites.
There are no other direct communications allowed between
sites; but up to a factor of 2 this is not a restriction. We
assume that communication is instantaneous. Other than
communication we also care about the space/time costs for
the coordinator as well as for each site. Note that this model
is more general than the standard streaming model: by set-
ting k = 1 and ignoring the communication cost, our model
degenerates into the latter for both the non-windowed and
windowed cases.

One of the major challenges of distributed sampling is that
the current value of i (the total number of elements that
have arrived) is not known. In fact, tracking i exactly re-
quires every site to notify the coordinator upon the arrival of
each element, costing Θ(n) communication. In the standard
streaming model with a single stream, i is trivial to track,
and algorithms in this model can rely on this knowledge. For
example, the reservoir sampling algorithm samples the i-th
element with probability 1/i. Similarly, the sliding-window
algorithms of [2, 4], track exactly how many elements have
arrived since a “landmark” time T . One approach would be
to use existing methods to track i approximately [8, 14]. But
this does not immediately yield efficient algorithms, and any
sample maintained will be somewhat approximate in nature:
some elements will be more likely to be sampled than others.
Such non-uniformity is undesirable, since it is unclear how
this error will impact approximations based on the sample,
and how this will propagate in various applications.

Our results. In this paper, we present algorithms that
maintain a true random sample (i.e., no approximation)
over distributed streams, without explicitly tracking i. Our
asymptotic bounds are summarized in Table 1 for sampling
without replacement under different settings. We measure
the communication and space costs in terms of words, and
assume that quantities polynomial in k, s and n can be rep-
resented in O(1) words. For the two sliding-window cases,
the bounds are for each window where W denotes the num-
ber of elements in the window; note that W may vary from
window to window in the time-based case. In the table we
do not show the results for sampling-with-replacement, since
the bounds are quite similar.

Ignoring the log factors, our algorithms are optimal si-
multaneously in all the five measures; in fact most bounds
are even optimal while considering the log factors. Some
bounds are clearly optimal, such as a site taking constant
time to process each new element and the coordinator re-
quiring Ω(s) space, while others are less obvious. We prove
the lower bounds after presenting the algorithms for each
case.

In the centralized setting, time-based windows are usu-
ally more difficult to handle than sequence-based windows



coordinator site
window communication space total time space time (per element)
infinite (k + s) log n s (k + s) log n 1 1

sequence-based ks log(W/s) s ks log(W/s) 1 1
time-based (k + s) log W s log W (k + s) log W s log W 1

Table 1: Our algorithms’ asymptotic costs for sampling without replacement over distributed streams.

because the number of active items can vary dramatically
over time. There is a space lower bound of Ω(s log W ) [10]
for time-based windows while sequence-based windows only
need space O(s) [2, 4]. One interesting observation from Ta-
ble 1 is that in the distributed setting, time-based windows
turn out to be easier than sequence-based windows, and
there is a quadratic difference (when k ≈ s) in terms of
communication, while the space bounds match those for the
centralized case. The fundamental reason is that it is much
harder to determine whether an element ai has “expired”
in the sequence-based case, since we do not have the global
sequence number i. Meanwhile, in the time-based window
case, expiration can be determined by comparing an item’s
timestamp to the current time. A formal proof of this hard-
ness is given in Theorem 4.2.

As mentioned above, the distributed streaming model de-
generates into the standard streaming model if we set k = 1
and ignore the communication aspect. When restricted to
this case, our algorithms achieve the same bounds as the pre-
vious centralized streaming algorithms over infinite-streams
(reservoir sampling), as well as the two sliding-window cases
[2, 4]. So our algorithms generalize previous techniques with
the same space/time bounds while achieving optimal com-
munication. Note however that the space bounds in [4] are
worst-case, while ours and those in [2] are probabilistic.

All our algorithms are in fact based on one simple idea,
which we call binary Bernoulli sampling. We describe this
idea on a conceptual level in Section 2. Then we present our
sampling algorithms (with and without replacement) for the
three cases in Table 1 in Section 3, 4, and 5, respectively.

Applications. Our results immediately yield protocols to
track a number of interesting functions in the distributed
streaming setting. Some of them improve (for certain pa-
rameter ranges) previous results while others are new.

Tracking the frequent items (a.k.a. the heavy hitters) and
quantiles (approximately) over distributed streams have re-
ceived a lot of attention [3, 7, 14, 16, 22]. There is a deter-

ministic algorithm that costs Õ(k/ε) communication1, which
is optimal [22], where ε is the approximation error. On the
other hand, it is well known that a random sample without
replacement of size Õ(1/ε2) can be used to extract these
statistics with high probability. Our result immediately
gives a probabilistic algorithm for tracking the heavy hitters
and quantiles with communication Õ(k+1/ε2), which breaks
the deterministic lower bound when k > 1/ε. However, the
optimality of the sampling algorithm does not imply that
it is optimal for these two problems; in fact it remains an
open problem to determine the randomized communication
complexity for these two problems.

If the elements in the streams are d-dimensional points,
for example IP packets in the source-destination space, then
a random sample of size Õ(1/ε2) is an ε-approximation [20]

1The Õ notation suppresses log factors.

with high probability. Such a sample allows us to approxi-
mately count the number of points in any range from a range
space with bounded VC dimensions, such as rectangles, cir-
cles, halfspaces, etc. With our algorithm we can now track
all these range-counts with communication Õ(k + 1/ε2). If
one only needs to determine if a range is large enough, that
is, contains at least a ε-fraction of all points, then a ran-
dom sample of size Õ(1/ε) suffices for this purpose, and is
known as an ε-net [12]. Thus our algorithm tracks an ε-net

with communication Õ(k + 1/ε). There are numerous other
applications of random samples which we do not enumerate
here.

2. BINARY BERNOULLI SAMPLING
Binary Bernoulli sampling is a way of implementing Ber-

noulli random sampling which makes the analysis of the cost
of the various sampling protocols more convenient. In its
simplest form, the method associates each element in the in-
put, e, with a (conceptually unbounded) binary string b(e).
The string b(e) is chosen uniformly at random: each bit is
independently set to 0 or 1 with probability 1

2
. From this,

we can extract a Bernoulli sample of items each chosen in-
dependently with probability p = 2−j for any (integer) j:
we simply select all those items whose binary strings have a
prefix of 0j (i.e., the first j bits are all 0).

A key feature of this method is that we do not need to
materialize each bit string b(e) immediately. Instead, it is
often sufficient to materialize a prefix of b(e) to determine
whether an item in the input passes some initial filter. By
the principle of deferred decisions, more bits of b(e) can be
generated later, to break ties or to accommodate a smaller
p, when needed. In what follows, we treat b(e) as if it is
fully defined, with the understanding that if an algorithm
accesses b(e)[i] that is not yet fixed, it sets the value of b(e)[i]
as needed by drawing a random value.

One straightforward way of using this idea to maintain
a random sample of size s without replacement is to keep
the s elements with the (lexicographically) smallest b(e)’s.
Implementing this idea over k distributed streams costs com-
munication O(ks log n): the coordinator makes sure that all
the sites know the global s-th smallest b(e), say τ , and a site
sends in a newly arrived element e iff its b(e) is smaller than
this threshold; every time τ changes, the coordinator broad-
casts the new τ . Standard analysis shows that τ changes
O(s log n) times, hence giving the claimed communication
cost. It is also easy to show that the length of each string
|b(e)| that we need is O(log n) with high probability to break
all ties, so it fits in O(1) words. However, this simple way of
using binary Bernoulli sampling is far from optimal. Below
we present protocols that implement this idea in a smarter
way so as to achieve optimal communication.



Algorithm 1: ISWoR(s) for site in round j

foreach e do
f ← 1;
for l = 1, . . . , j do

if b(e)[l] 6= 0 then f ← 0

if f=1 then send e to Coordinator

3. SAMPLING OVER AN INFINITE
WINDOW

3.1 Sampling without replacement
We define the protocol ISWoR(s) (for Infinite window Sam-

pling Without Replacement) as follows: The coordinator
ensures that all sites are kept up to date with a current
sampling probability p, which is a power of two. Initially, p
is 1, and periodically the coordinator will broadcast to all
sites to reduce p by half. We call the time while p = 2−j the
jth round. On receiving an element e, a site tests the first
j bits of b(e), and reports this element to the coordinator if
they are all zero.

The coordinator maintains the invariant that its sample
is of size at least s wherein all items are selected with prob-
ability p (so this sample is initialized with the first s items
from all streams). In fact, the coordinator maintains two
subsamples in round j, denoted by Tj and Tj+1. On receiv-
ing a new item e sent by a site to add to the sample, the
coordinator assigns the item to Tj if the (j+1)-th bit of b(e)
is 1, or to Tj+1 if it is 0.

The coordinator proceeds until |Tj+1| = s. At this time it
sends out a broadcast message to halve p, and discards Tj .
The coordinator then examines bit j + 2 of b for each item
in Tj+1 to determine whether it remains in Tj+1 (the bit is
1), or is “promoted” to Tj+2 (the bit is 0). Pseudo-code for
the protocol as executed by each site and by the coordinator
is shown in Algorithm 1 and 2 respectively.

At any moment in round j, a sample without replacement
of size s can be derived from the active set of sampled items
via sub-sampling: we take Tj∪Tj+1 (so that |Tj∪Tj+1| ≥ s)
and sample s items from this set without replacement. In
some situations, it is desirable to ensure that the sample
produced is consistent over time: that is, after an item is
ejected from the sample it never returns to the sample. To
achieve this in our setting, we can pick the s elements e
with the smallest b(e) values (generating extra bits of b(e)
as needed to break ties).

Theorem 3.1. The protocol ISWoR(s) continuously main-
tains a sample of size s drawn without replacement uni-
formly from all items in A(t). The amount of communica-
tion is O((k+s) log n); the coordinator needs O(s) space and
O((k + s) log n) time; each site needs O(1) space and O(1)
time per item. These bounds hold with high probability.

Proof. The correctness of the protocol (it draws a uni-
form sample with replacement) is seen most easily by imag-
ining that b(e) is generated in full at the remote site when
the item is seen. We can observe that any item e reaches
Tj when b(e) has a prefix of j zeros, which happens with
probability 2−j . This is true irrespective of the round the
item is first sent to the coordinator, since the decisions are
made based on the bits of b(e), which we can treat as being

Algorithm 2: ISWoR(s) for coordinator in round j

foreach e received do
if b(e)[j + 1] = 0 then

Tj+1 ← Tj+1 ∪ {e}
else Tj ← Tj ∪ {e} ;
if |Tj+1| = s then

foreach e ∈ Tj+1 do
if b(e)[j + 2] = 0 then

Tj+2 ← Tj+2 ∪ {e} ;
Tj+1 ← Tj+1\{e} ;

discard Tj ;
broadcast to halve p;
j ← j + 1 and go to next round;

fixed. Since each b(e) is chosen independently, it is easy to
see that the items constituting Tj ∪ Tj+1 at the coordinator
in the j-th round are each picked with the same uniform
probability of 2−j . By the properties of the protocol, there
are always at least s items in this Bernoulli sample, from
which it is straightforward to subsample to pick a sample of
size exactly s.

Now we analyze the various costs. For the j-th round,
the amount of communication can be bounded as follows.
In expectation, there is O(s) communication: at the start
of the round there are (in expectation) s/2 items in Tj+1,
and each item sent to the coordinator is placed in Tj+1 with
probability 1/2. We can bound the communication with
high probability by analyzing the number of items received
by the coordinator before a round is terminated. This can
be modeled using the Binomial distribution with p = 1/2;
certainly, after s positive outcomes (when an item is placed
in Tj+1) are obtained, the current round must be over. Let
Xm be a random variable denoting the number of heads
observed after m trials. By an additive Chernoff bound,
Pr[X4s < s] is exponentially small in s.

The total number of rounds as a function of the total
number of items in all streams, n, is bounded similarly. Ob-
serve that the protocol will terminate round j after O(s)
events each of which occurs with probability 2−j−1 for ev-
ery item. In expectation, after n items we should be in round
log2(n/s). We bound the probability that we reach round
2 log n: this is polynomially small in n by another Chernoff
bound. So with high probability, there are O(log n) rounds.
In each round, with high probability O(s) samples are sent,
and the coordinator sends O(k) messages to signal the end
of the round. Therefore, the communication cost is bounded
by O((k + s) log n).

The coordinator’s time cost is asymptotically the same as
the communication. The other bounds are immediate.

The coordinator’s space and the site’s space/time bounds
are clearly optimal. We will show below that the communi-
cation cost is also nearly optimal. Note that the coordina-
tor’s time is at least proportional to its communication.

Theorem 3.2. Any protocol that maintains a sample of
size s (with or without replacement) over k distributed streams
needs communication Ω(k + s log n) in expectation.

Proof. The number of items that will ever appear in
the sample is Θ(s log n), since the i-th element should have



Algorithm 3: ISWR(s) for site in round j

foreach e do
for i = 1, . . . , s do

f ← 1;
for l = 1, . . . , j do

if b(e)[l] 6= 0 then f ← 0

if f=1 then send (e, i) to Coordinator

probability s/i of being sampled. Thus this also gives a lower
bound on the communication, since these elements have to
be sent to the coordinator.

To argue Ω(k) is also a lower bound, just notice that a site
cannot be totally ignored since the coordinator must know
whether it contains the first element.

3.2 Sampling with replacement
The simple solution to sampling with replacement is to run

the ISWoR(1) protocol in parallel s times. Naively extrap-

olating the above bounds indicates that the cost is Õ(ks).
However, this is suboptimal, and can be improved as follows.

We define a protocol ISWR(s) (Infinite window Sampling
With Replacement) that uses the idea of“round sharing”: ef-
fectively, it runs a modified version of the ISWoR(1) protocol
in parallel s times; however, the jth round is terminated only
when every instance has terminated the jth round. That is,
in round j ≥ 0 for each item e that arrives at a local site,
the site generates s binary strings b1(e), . . . , bs(e). If any of
these strings has a prefix of j 0s, then the item is forwarded
to the coordinator, along with the index (or indices) of the
successes.

The coordinator receives a sequence of items, each tagged
with some index i. For each index i, the coordinator retains
a single item as T [i], along with its current binary string
b[i]. During round 0, the first time that an item arrives
for a particular index i, the coordinator stores it as T [i].
Then for each item e received in round j for index i with
binary string b(e), the coordinator ensures that both strings
b(e) and b[i] have enough bits generated so that b(e) 6= b[i].
The two strings are interpreted as integers: if b[i] < b(e),
then e is discarded; else, b(e) < b[i], and e replaces T [i],
and b[i] is overwritten with b(e). The jth round terminates
when the jth bit of b[i], b[i][j] is 0 for all i. At this point,
the coordinator begins the (j + 1)-th round by informing
all sites to sample with p = 2−j−1. At any moment, the
coordinator can obtain a sample of size s with replacement
by reporting T [i] for all i = 1, . . . , s. Pseudo-code for the site
and coordinator is shown in Algorithm 3 and 4 respectively.

Theorem 3.3. The protocol ISWR(s) continuously main-
tains a sample of size s with replacement drawn uniformly
from A(t). The communication is O((k+s log s) log n) items;
the coordinator needs O(s) space and O((k + s log s) log n)
total time; each site needs O(1) space and O(1) time per
item. These bounds hold with high probability.

Proof. For uniformity of the sampling, consider just a
single value of i and the corresponding T [i]. The protocol
described carries out the Bernoulli Binary sampling proce-
dure to track a single sampled item. The effect is to select
the item from the input whose b(e), interpreted as an inte-
ger, is the least. Each item has an equal chance of attaining

Algorithm 4: ISWR(s) for coordinator in round j

foreach (e, i) received do
if bi(e) < b[i] then T [i]← e, b[i]← b(e);
if ∀1 ≤ i ≤ s : b[i][j] = 0 then

j ← j + 1;
broadcast new j and go to the next round;

the least such string, since nothing specific to the item or the
order in which it arrives influences this process. Therefore
T [i] is a uniform sample over the input.

To analyze the length of each round, observe that this is
essentially a coupon collector problem. That is, conditioned
on an item being selected in round j to be sent to the coor-
dinator, it is equally likely to have been selected for any of
the s samples. A round must have terminated by the time
we have “collected” one item for every i. So the round ter-
minates after O(s log s) items are received, with high prob-
ability. Here, we do not consider that the same item might
be selected for multiple samples, or that the previous round
may have already provided items with the required prefix to
their binary string, since this only helps to reduce the cost,
but does not change the asymptotic bound.

For the number of rounds, we can use a variant of the anal-
ysis of the ISWoR(s) protocol to bound: the protocol will
finish round j when there are O(s log s) events which each
occur with probability 2−j , out of ns trials (since each item is
chosen with probability p with s independent repetitions). A
variant of the previous analysis indicates that there is a poly-
nomially small chance of reaching round 2 log(ns/s log s) =
O(log n). Therefore, the total communication cost is bounded
by O((k + s log s) log n), with high probability.

The other costs follow straightforwardly from the protocol
description.

4. SAMPLING FROM A SEQUENCE-BASED
SLIDING WINDOW

In this and the next section, we consider sampling in a
sliding window. We emphasize that the sliding window is
defined on the union of the k streams, not on the individual
streams.

We first consider how to sample from a sequence-based
sliding window, that is, the sample is uniform from the last
W elements received by the whole system. This model be-
comes particularly challenging in the distributed setting, due
to the need to decide when an item in the sample expires (is
no longer among the W most recent): its expiration is an im-
plicit event defined by the arrivals of sufficiently many new
items. To this end, we make use of a “threshold monitoring”
protocol which can determine, for a given r, when exactly
r new items have arrived. For completeness we present a
simplified protocol to achieve this, based on a more general
solution presented in [8].

Threshold protocol. The Threshold(r) protocol proceeds
in O(log r) rounds. The protocol is initiated by a message
from the coordinator to all k sites telling them to begin
round 1. The coordinator should terminate the protocol
when exactly r items have been observed across the k sites.
Each site maintains a counter of items that have been ob-
served but not reported to the coordinator. In round j,
each site counts each arriving item. When the count reaches
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Figure 2: Schematic of SSWoR protocol for s = 4

(or exceeds) br2−j/kc, the site announces this fact to the
coordinator, and reduces its counter by br2−j/kc. Corre-
spondingly, the coordinator increases its global counter by
br2−j/kc. After the coordinator receives k such messages,
it starts round j + 1 by announcing this to all sites. (Note
that a round change can trigger messages from sites whose

counter c is in the range r2−j

2k
≤ c < r2−j

k
). The protocol

reaches the final round when the global counter maintained
at the coordinator is in the range of [r−O(k), r]. In the final
round, each site simply sends a message to the coordinator
at every arrival of the items to increase the global counter by
1, until exactly r item arrivals have been counted. It is not
difficult to see that each round requires O(k) communica-
tion, so the total cost of this protocol is therefore O(k log r).
The protocol correctly identifies exactly the moment when
r items have arrived across all sites since the protocol was
initiated.

4.1 Sampling without replacement
A simple solution to sampling from a sequence-based slid-

ing window is periodic sampling, that is, whenever a sampled
item expires, the next arriving item is sampled. This trivial
predictability is not acceptable in many applications (see the
discussions in e.g. [2, 4]), so usually we require that samples
from disjoint windows must be independent.

Instead, we define a new protocol, SSWoR(s) (for Sequence-
based window Sampling Without Replacement), which makes
extensive use of the above Threshold protocol. The coordi-
nator runs an instance of the protocol to demark every mul-
tiple of W arrivals: as soon as an instance of Threshold(W )
terminates, a fresh instance is initiated. Within each such
window of W , an instance of the ISWoR protocol is executed
to draw a sample of size s. At the end of a window, the cur-
rent sample S drawn by the ISWoR protocol is “frozen”, and
a new instance of the protocol is initiated. Assume for now
that the coordinator can determine which items in S have
“expired” (i.e. fall outside of the window of W most recent
items). To draw a sample of size s without replacement,
the coordinator extracts all items in S that have not ex-
pired. It then uniformly samples without replacement from
the sample provided by the instance of ISWoR on the cur-
rent window to make up the shortfall. Note that all these
items are by definition unexpired.

Figure 2 shows a schematic view of the samples stored by
the protocol for a sample size of s = 4. The frozen sample,
S, is drawn from a window of W items. Two items (shown
in gray) have expired, so a sample of non-expired items is
found by taking the two remaining samples (shown in black).
Two more samples are taken from the 4 samples picked by
ISWoR by subsampling uniformly. When the threshold pro-
tocol indicates that the ISWoR instance has seen W total
items, all the items in S will have expired, and the new
sample is frozen, and forms the new S.

Theorem 4.1. The SSWoR(s) protocol continuously main-

tains a uniform sample of size s drawn without replace-
ment from the W most recent items. Samples from dis-
joint windows are independent. The communication cost
is O(ks log(W/s)) per window; the coordinator needs O(s)
space and O(ks log(W/s)) time per window; each site needs
O(1) space and O(1) time per item. These bounds hold with
high probability.

Proof. The correctness of the protocol, in that the re-
sulting sample is drawn uniformly, follows from the results
of Braverman et al. [4]. They show that given a uniform
sample without replacement from a window with some ex-
pired elements, and a uniform sample of all subsequent (non-
expired) elements, combining the two samples as described
above for the SSWoR protocol results in a sample without
replacement that is uniform from the non-expired elements
only. Besides, they also show that by this method the sam-
ples from disjoint windows are independent. So the bulk of
our work is in analyzing the costs of our protocol.

First, observe that the communication cost of running
the ISWoR(s) protocol is O((k + s) log W ) per window, so
tracking the size of window with Threshold(W ) at a cost of
O(k log W ) is dominated by this. However, the bulk of the
cost of the protocol arises from deciding when each sam-
pled item expires. The straightforward way of doing this is
to initialize a separate Threshold(W ) protocol whenever an
item is sampled by ISWoR. An instance of the Threshold(W )
protocol for an item e could be terminated prematurely if
e is replaced by another item in ISWoR; else the protocol
terminates normally at the time e expires. Since there are
O(s) running instances of the Threshold(W ) protocol in the
system, this requires O(s) space at each site to maintain
their state. Below we show how to reduce this space cost by
running only one instance of the protocol at any given time.

For every item ai sampled by ISWoR, we contact all k
sites to compute its index i. Provided each site counts how
many items have arrived locally, the index i for an item is
the sum of all these local counts when it is sampled. When
a window freezes and S is produced, the sampled items in
S will start to expire. These s sampled items are stored in
order of their computed indices. Based on these indices, it is
possible to compute how many more items must arrive be-
fore each of them expires one by one. This can be achieved
by running a Threshold(r) protocol for every sampled item
with possibly a different r. Since the order of expiration
is known in advance, it makes more sense to run these in-
stances sequentially rather than in parallel. In this case,
the parameters of each instance of Threshold(ri), r1, . . . , rs,
satisfy

Ps
j=1 rj ≤ W . Thus the communication cost per

window is O(k
Ps

j=1 log rj) = O(ks log W
s

) (and so is the co-

ordinator’s running time), which dominates the other com-
munication costs. All the items in S must expire before the
next window is frozen, so the coordinator’s space is O(s)
and each site’s space is O(1).

Each site spends O(W +s log W
s

) time per window, which

is O(1 + s
W

log W
s

) = O(1) per item.

Although the Õ(ks) communication cost may be much
more than the infinite-window case, we show that this is
actually the best that can be hoped for with sequence-based
windows.

Theorem 4.2. Any (Las Vegas) protocol that maintains
a sample of size s (with or without replacement) over k dis-



tributed streams for a sequence-based sliding window of size
W needs communication Ω(ks log(W/ks)) per window in ex-
pectation.

Proof. Consider the process when the window slides from
the first W items to the next W items. When the first win-
dow completes, the algorithm returns s sampled items. We
will argue that the algorithm has to know the precise time
when each of these s items expire. Suppose the algorithm
only knows that a sampled item e expires in a time interval
[t1, t2]. In order to not make a mistake by returning an ex-
pired item in the sample, it has to remove e from the sample
with probability one before t1. But if e’s actual expiration
time is t2, then the probability that e is sampled within
[t1, t2] is zero, rendering the protocol incorrect.

With s sampled items in a window of size W , there must
be Ω(s) pairs of adjacent items, each of which are at least
Ω(W/s) items apart. This becomes Ω(s) independent thresh-
old problems with r = Ω(W/s). A lower bound in [8]
shows that any randomized algorithm (with no errors) for
the threshold problem with has to communicate Ω(k log r

k
)

messages in expectation. So the total communication cost
is Ω(ks log W

ks
).

4.2 Sampling with replacement
We define a SSWR(s) protocol (for Sequence-based win-

dow Sampling With Replacement). As in the infinite win-
dow case, the core idea is to run a protocol to sample a single
item s times in parallel. Here, things are somewhat simpler
than the ISWR case, because the need to track whether items
have expired dominates the other costs; as a result, we do not
use the round-sharing approach since it does not generate an
asymptotic improvement in this case. Hence, the SSWR(s)
protocol runs s instances of the SSWoR(1) protocol in par-
allel, which all share the same instance of Threshold(W ) to
determine when to freeze the current window and start a
new one. The result is slightly simpler, in that each parallel
instance of the protocol retains only a single item in S, and a
single item from the current window, which replaces S when
the item expires. It is straightforward to analyze the cor-
rectness and cost of this protocol given the above analysis,
so we state without proof:

Theorem 4.3. The ISWR(s) protocol continuously main-
tains a uniform sample of size s drawn with replacement
from the W most recent items. The communication cost
is O(ks log(W/s)) per window; the coordinator needs O(s)
space and O(ks log(W/s)) time per window; each site needs
O(1) space and O(1) time per item. These bounds hold with
high probability.

5. SAMPLING FROM A TIME-BASED SLID-
ING WINDOW

The case of sampling from a time-based sliding window
allows reduced communication bounds. This is because the
coordinator can determine when an item expires from the
window directly, based on the current time and the times-
tamp of the item. Therefore, it is not necessary to run any
instances of the Threshold protocol, resulting in a much lower
cost. This stands in contrast to the centralized case, where
typically time-based windows are more costly to compute
over.

Nevertheless, the fact that sampling from time-based win-
dows is less costly does not mean the problem is easier.

In fact the protocols here are more complicated than the
previous ones in order to achieve the (asymptotically) op-
timal bounds. We first provide a relatively simple protocol
for sampling without replacement over a time-based sliding
window, which identifies the key challenges for this model.
Here, we use w to denote the duration of the sliding window
in time, and nt to denote the size of the window ending at
time t, i.e., the number of items with timestamps in [t−w, t].

5.1 A simple protocol
The idea is to maintain a sample of size s′ ≥ s over a

partial stream starting from some “landmark” time T . At
time t, as long as there are at least s active items (namely,
in the window [t − w, t]) among the sample of size s′ that
we are maintaining, then a sample of size s for the current
sliding window can be obtained by sub-sampling from these
items. When there are fewer than s unexpired items left in
the sample, we restart the protocol.

A good value for s′, on one hand, should be large enough
so as to minimize the number of restarts. On the other
hand, it cannot be too large since otherwise maintaining a
sample of size s′ will be expensive. It turns out that setting
s′ = c · (s + log nT ) (for some constant c) strikes the right
balance.

The protocol. In the protocol each site retains all active
items. We first run the ISWoR(s′) protocol until t = w. The
protocol at the coordinator side then does the following.

1. Set T = t, and compute nT by contacting all sites.
Restart the ISWoR(s′) protocol to maintain a sample
of size s′ from time T −w. This is possible since each
site retains all items after time T − w.

2. At time t,

(a) If there are fewer than s′ items in the sample,
then the coordinator must have actually collected
all the items in the window [T−w, t]. From these,
we can subsample s items from the active ones (or
just report all active items if there are fewer than
s in total).

(b) Else, we check if there are at least s active items
in the sample. If so, we subsample from these
items to pick a sample of size s. Otherwise we go
back to step 1.

The correctness of the protocol is straightforward: given
two partial streams D1, D2 with D2 ⊆ D1, if S is a random
sample in D1, then S ∩D2 is a random sample of D2.

To bound the communication cost we need to prove that
the protocol restarts O(log W ) times in a window with W
elements. Consider the first time T in this window when we
restart. Recall that we maintain a random sample of size
s′ for the window [T − w, t]. As long as half of the items
in this window have timestamps in the range [t−w, t], then
with high probability we will have at least s unexpired items
from the s′ sampled items for some constant c large enough,
by a Chernoff bound. Therefore with high probability, the
first restart happens when n1 ≥ W/2 items arriving after
time T − w expire, causing T to reset. Similarly, we can
show that with high probability, the second restart happens
when another n2 ≥ (W − n1)/2 ≥ W/4 items arriving after
time T − w expire (note that the number of items arriving
after time T − w is at least W − n1), and so on. Therefore,



Algorithm 5: Update Level-Sampling

foreach e do
l← 0 ;
repeat

l← l + 1 ;
Insert e in queue l ;
while queue l has > s items from levels > l do
delete oldest item from queue l;

until b(e)[l] = 1 ;

with high probability, the total number of rounds will be
O(log W ). So the total communication is O((s + k) log2 W )
with high probability.

However, the simple protocol above needs each site to keep
all the active items. Below we show how to reduce the space
cost to Õ(s) at each site, which is shown to be optimal. The
new protocol below also improves the communication by an
O(log W ) factor.

5.2 Sampling without replacement
The key challenge in the time-based sliding window set-

ting arises because the item arrivals may not occur uniformly
over time. In particular, later arrivals may be much less fre-
quent than earlier ones. As a result, any current sample
may be dominated by earlier items. When these items ex-
pire, there may be insufficiently many later items sampled
to provide a sample of size s. In the above protocol, this ne-
cessitates the “restart” step, to revisit the earlier items and
redraw a sufficiently large sample of them. In this section,
we provide a protocol which allows the coordinator to draw
a sample of sufficiently many items from the history without
having to resample from past items.

We define the TSWoR(s) (Time-based window Sampling
Without Replacement) protocol based on the ISWoR proto-
col. To keep track of the current window, an instance of the
ISWoR(s) protocol is run. This is terminated after w time
units, and a fresh instance begun—we refer to each such pe-
riod of w as an “epoch”, and we denote the start point of
the most recent epoch as T . In addition, each site main-
tains a sample of recent items at various rates of sampling.
These are kept private to the site until the end of an epoch,
at which point the coordinator collects certain information
from the sites about their current samples.

Level sampling at sites. For each item e that is observed
at a site, the site assigns it to several “levels” based on b(e).
e is assigned to level l ≥ 1 if the first l−1 bits of b(e) are all
zero. That is, if b(e) has a prefix of i zeroes, it is assigned
to all levels l ≤ i + 1. Note that an item is assigned to level
l with probability 2−l+1. The site then retains a queue for
each level l consisting of the most recent items assigned to
this level until either (i) at least s are also assigned to level
l + 1, or (ii) all active items at that level are retained. The
update process is shown in Algorithm 5.

An example is shown in Figure 3 with s = 3. In the
figure, circles represent items that have been sampled at
particular levels, where a hollow circle is sampled at level
l and a filled circle is an item that was also sampled at a
higher level. Level 5 has a single item that was sampled with
p = 1/32, while level 4 contains three items, two of which
were sampled at level 4, and the one that was sampled at
level 5 (so condition (ii) holds). Level 2 retains only the

Figure 3: Example level-sampling data structure for
s = 3

most recent items so that there are s = 3 included which
were sampled at levels 3 and above (the three filled circles
at level 2), meeting condition (i). The same is true at level
1.

Collection of sampled items. At the end of each epoch,
the coordinator aims to collect a Level-Sampling data struc-
ture equivalent to the one resulting if one site had seen the
union of all items. This is done most efficiently as a k-way
merge: starting at the greatest level with any items sam-
pled, each site sends the most recent sampled item at level
l. The coordinator determines which of these is the most re-
cent globally, adds this to its queue at level l, and prompts
the corresponding site for the next most recent sampled item
at level l. The current level concludes when the coordinator
has either obtained all unexpired items from all sites at that
level, or until at least s items have been collected that also
belong to level l + 1.

Production of a sample. At any time t, the coordinator
can produce a uniform random sample of size s from the
current window of duration w. The coordinator considers
the level-sampling data structure of the most recent com-
plete epoch, and identifies the level l which still has at least
s non-expired items: this is guaranteed to exist by definition
of the procedure (except in the extreme case when there are
fewer than s non-expired items from that epoch, in which
case all these items are retained). It also takes the current
set of items from the instance of ISWoR which is operating
in round j. Then we have a set of items A from the current
epoch [T, t] (Bernoulli) sampled with probability 2−j , and
a set of items B from [t − w, T ] sampled with probability
2−l+1. If j = l− 1 = 0, then it means that we have actually
collected all items in the window [t−w, t] and sampling will
be trivial. Otherwise at least one of A and B has at least s
items. Letting ` = max(j, l − 1), the coordinator selects all
those items whose b(e) has a prefix of ` 0’s, so these repre-
sent a Bernoulli sample with probability 2−`. This results in
the set C of at least s items, from which uniformly selecting
s items gives the final sample.

Theorem 5.1. The protocol TSWoR(s) maintains a ran-
dom sample of size s without replacement from all items with
timestamps in the range [t− w, t]. The communication cost
is O((k + s) log W ) per window (where W is the number of
items within it); the coordinator needs O(s log W ) space and
O((k+s) log W ) time per window; each site needs O(s log W )
space and O(1) time per item. These bounds hold with high
probability.

Proof. For the correctness, we claim that the result of
the sampling process is to draw a Bernoulli sample C of size
at least min(s, nt) so that each item in C is from the range



[t− w, t], and every item in this range selected into C with
equal probability. Having established this, the fact that the
resulting sample is a uniform sample without replacement
of size min(s, nt) follows easily.

To see this uniformity, consider the two epochs with un-
expired items. First, each item in the current epoch (by
definition, unexpired) is Bernoulli sampled by the ISWoR(s)
protocol running round j with probability 2−j . Meanwhile,
each (unexpired) item in the previous epoch that is retained
at level l is also the result of Bernoulli sampling with prob-
ability 2−l+1, irrespective of which site it was observed at.
The coordinator picks the level l where at least s non-expired
items are retained. Such a level is guaranteed to exist based
on the definition of the data structure: consider a level l
whose earliest item is expired, and where the earliest item
retained at level l − 1 is not expired. By the requirements
on l − 1, it must contain at least s items which are present
at level l, and these are unexpired. So there are at least s
unexpired items stored at level l. The subsampling proce-
dure then reduces the probability of sampling of whichever
set (A or B) is at the higher probability, so the result set C
is drawn with the same probability 2−`. So the probability
of any unexpired item from any site to reach C is the same,
2−`.

For the communication cost, we have to analyze the num-
ber of items at each level in the data structure stored by the
coordinator. If the coordinator collects s′ items from sites
to fill level l, the communication cost is O(k + s′) to do the
k-way merge. We argue that the total number of items col-
lected at level l is bounded with high probability. The items
stored in the level sampling data structure at level l all have
0l as a prefix of b(e). The items that are sampled to level
l have b(e)[l + 1] = 1, whereas the items also sampled to
higher levels have b(e)[l +1] = 0. So the probability that an
item is sampled to level l, conditioned on the fact that it is
sampled to level l or higher is 1

2
. Hence the number of items

at level l is bounded by O(s), with high probability. Like-
wise, over the W items in the epoch [T − w, T ], with high
probability the highest level reached is O(log W ). There-
fore the communication cost of collected the sampled items
to the coordinator at time T is O((k + s) log W ), which is
also the coordinator’s running time in this epoch. The other
costs follow straightforwardly.

Since sampling from time-based window is more general
than the infinite-window case, so the communication lower
bound of Theorem 3.2 also applies here with n = W . A
space bound of Ω(s log W ) follows from [10] since our model
is more general than the centralized setting. However it is
unclear if all the parties (coordinator and each site) need to
pay this much space; all our previous protocols only needed
O(1) space on each remote site while only the coordinator

has Õ(s) space. Below we argue that this is not possible for
time-based windows.

Theorem 5.2. Any (Las Vegas) protocol that maintains
a sample of size s over k distributed streams for a time-
based sliding window requires that each of at least k/2 sites
must store at least s/2 items, unless the protocol incurs a
communication cost of Ω(W ).

Proof. We generate inputs as follows. We first send s
items to site S1. By the sampling requirement S1 needs to
send all of them to the coordinator as sampled items. Then

we send the next s items to S2. Assume S2 does not have
space to store s/2 items. If S2 sends fewer than s/2 items
to the coordinator, then some of the s items must have been
discarded. Then we stop generating further items until these
s items received by S2 are the only active ones in the slid-
ing window. This causes a failure in the sampling protocol.
Otherwise we continue sending s items to S3, S4, . . . , Sk, one
by one. By the same argument, for any site that does not
have s/2 space, it has to send at least s/2 elements to the
coordinator. If there are more than k/2 such sites, then
a constant fraction of the elements have been transmitted.
Finally we can use the same construction in a round-robin
fashion to cause Ω(W ) communication in each window.

5.3 Sampling with replacement
A naive solution to drawing a sample with replacement

for a time-based sliding window is to execute the TSWoR(1)
protocol s times in parallel. This is certainly correct, but
would be costly, requiring Õ(ks) communication. Instead,
we propose to achieve (almost) the same result by more care-
ful use of communication.

The protocol. We use again the notion of epochs to define
the TSWR(s) protocol. For the current epoch, the ISWoR(s)
protocol is used to maintain a sample at the coordinator
of unexpired items in the range [T, t]. For the previous
epoch, each site maintains s independent copies of the level-
sampling data structure, where the ith one is based on the
bi(e) values. Simply merging each of these in turn would cost

Õ(ks) communication. Instead, the coordinator merges all
these in parallel: for each level l, it obtains the most recent
sampled item from each site for any of the s instances of the
data structure. It then does the k-way merge on these se-
quences until it has obtained the necessary samples for each
of the s instances.

To form the ith sample at time t, the coordinator extracts
all samples from the appropriate level of the merged data
structure as Bi, at level l (note that Bi may contain more
than one sampled item). It also extracts the ith sample from
the ISWoR(s) protocol from round j, along with its associ-
ated binary string b[i], as A. For each item in Bi, we also
have its binary string bi(e). We then interpret the binary
strings as integers, and pick the item e with the smallest
bi(e) as the ith sampled item (ties are broken by examining
longer prefixes of the bitstrings and drawing more random
bits as needed).

Theorem 5.3. The protocol TSWR(s) draws a uniform
sample of size s with replacement from all items with times-
tamps in the range [t − w, t]. The communication cost is
O((k + s log s) log W ), and so is the coordinator’s running
time. The other bounds are the same as in Theorem 5.1.

Proof. For the communication cost, we focus on the
merging procedure. For each level l, we consider all those
items that were selected by any site for any sample at level l
or above. Walking backwards from T , we encounter each of
these items in turn, and the coordinator can stop collecting
items after it has received at least one item for each i at
a level above l. Each sampled item is equally likely to be
for any of the s samples, and equally likely to be at level
l or above level l. So, by appealing to the coupon collec-
tor’s problem, the coordinator only needs to see O(s log s)
sampled items until the level can be terminated, with high



probability. Similar to previous analysis, there are O(log W )
levels with high probability.

To see that the samples are drawn uniformly, we adapt
the argument of Theorem 3.3. For a particular value of i,
the item drawn as the sample is the e in the time range
[t − w, t] with the lowest bi(e). By interrogating the stored
data structure, the coordinator recovers a set of items with
0l as a prefix of bi(e), and guarantees that there are no other
unexpired items from that epoch with the same prefix. From
the instance of ISWR(s), the coordinator recovers e with 0j

as a prefix of bi(e), and guarantees that there is no other e
from the same epoch with a lower bi(e). The remainder of
the process combines these two sets of items to find the item
from [t−w, t] with the smallest bi(e) is recovered as the ith
sample.

6. CONCLUSION AND OPEN PROBLEMS
In this paper we have generalized classical reservoir sam-

pling algorithms to multiple distributed streams. To mini-
mize communication, we have required new techniques and
analysis since those for a single stream rely on information
(the current total number of elements) that is inherently
hard to maintain in the distributed setting.

At the end of Section 1, we mentioned a number of applica-
tions of random sampling. Random sampling indeed solves
these problems, but it is unclear if it always gives the best
solution. On a single stream, better algorithms are known
that either do not use random sampling at all (e.g., the heavy
hitter [17] and quantile problem [11]), or use some more so-
phisticated sampling algorithms (e.g., ε-approximations in
bounded VC dimensions [5]). While some of these problems
have been studied in this distributed streaming setting, but
only the deterministic complexity has been understood [22].
It remains open to see how randomization can help reduce
communication for these problems in this model.
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