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ABSTRACT
Monitoring is an issue of primary concern in current and next gen-
eration networked systems. For example, the objective of sensor
networks is to monitor their surroundings for a variety of differ-
ent applications like atmospheric conditions, wildlife behavior, and
troop movements among others. Similarly, monitoring in data net-
works is critical not only for accounting and management, but also
for detecting anomalies and attacks. Such monitoring applications
are inherently continuous and distributed, and must be designed to
minimize the communication overhead that they introduce. In this
context we introduce and study a fundamental class of problems
called “thresholded counts” where we must return the aggregate
frequency count of an event that is continuously monitored by dis-
tributed nodes with a user-specified accuracy whenever the actual
count exceeds a given threshold value.

In this paper we propose to address the problem of thresholded
counts by setting local thresholds at each monitoring node and initi-
ating communication only when the locally observed data exceeds
these local thresholds. We explore algorithms in two categories:
static thresholds and adaptive thresholds. In the static case, we
consider thresholds based on a linear combination of two alternate
strategies, and show that there exists an optimal blend of the two
strategies that results in minimum communication overhead. We
further show that this optimal blend can be found using a steep-
est descent search. In the adaptive case, we propose algorithms
that adjust the local thresholds based on the observed distributions
of updated information in the distributed monitoring system. We
use extensive simulations not only to verify the accuracy of our
algorithms and validate our theoretical results, but also to evalu-
ate the performance of the two approaches. We find that both ap-
proaches yield significant savings over the naive approach of per-
forming processing at a centralized location.

1. INTRODUCTION
Many emerging systems are fundamentally distributed in nature.

The current and next generation of networks are large-scale, and
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widespread. Within this distributed networked systems, a princi-
pal concern is monitoring: either monitoring the environment sur-
rounding each of the network nodes, or monitoring the behavior of
the network itself. Two prototypical applications are in: (i) Sensor
networks, whose raison d’etre is for monitoring and collating in-
formation on atmospheric conditions, wildlife behavior, and troop
movements in military applications among others, and (ii) Net-
work traffic monitoring in (wired or wireless) data networks, for
traffic management, routing optimization, and anomaly and attack
detection.

Over the past few years, the defining characteristics of these ap-
plications have been identified to pose new challenges that are not
answered by traditional data management systems. The challenges
in monitoring arise mainly because the systems are fundamentally:

• Continuous: Unlike the traditional database “on-demand”
view of the world, where queries are posed in SQL and an
answer returned to the user, queries in these monitoring situ-
ations are typically long running queries over the data, which
must continuously run and return answers as and when they
are found.
• Distributed: The data required to answer the monitoring queries

is distributed throughout the network. Typically, a query re-
quires information to be collated and aggregated from many,
if not all, nodes in the network.
• Resource-constrained: Efficiency of operation is absolutely

vital in the distributed monitoring world. In sensor networks,
we must ensure that the life of the network is extended as
long as possible by minimizing the energy drain of running
the monitoring protocol; in data networks, we must ensure
that the protocol does not hinder the principal operation of
the network, allowing the delivery of messages unencum-
bered by the monitoring overhead. These concerns manifest
themselves principally as a requirement to minimize (to the
extent possible) the communication cost of the monitoring
protocols: communication is the principal energy drain for a
sensor, and excess communication in a data network reduces
the capacity for normal operation. As a secondary concern,
computation and memory usage should also be minimal for
efficient execution of the monitoring.

Thresholded Counts. Within this framework of continuous, dis-
tributed, and resource-constrained systems, there are many possi-
ble types of monitoring queries that can be posed. Prior work has
looked at particular query types such as top-k monitoring [3], set
expression cardinality [12], and holistic aggregates such as quan-
tiles [8]. But many queries rely at heart on monitoring sums or
counts of values, in combination with thresholds (lower bounds).
Consider the following queries from a variety of different domains:



• (from [22]) Report when at least 40 soldiers have crossed a
specified boundary.
• Raise an alert when the total number of cars on the highway

exceeds 4000 and report the number of vehicles detected.
• Which species have more than 50 members within a certain

region for more than an hour?
• Identify all destinations that receive more than 2GB of traffic

from the monitored network in a day, and report their transfer
totals
• (Query Q1 of [21]) Monitor the volume of remote login (tel-

net, ssh, ftp etc.) request received by hosts within the orga-
nization that originate from the external hosts.
• Which users within the monitored network receive more than

1000 different connections?

In each case there are two parts to the query: a request for a sum
or count of a particular quantity (vehicles, animals, network con-
nections etc.), and a minimum threshold, or trigger, for when we
need to know this information. Such thresholds are vital in focusing
the information returned to the user, and in reducing the monitoring
burden on the network. In almost every application involving mea-
suring quantities like these, it is only important to know the quan-
tities when they exceed a specified level. Small counts (of remote
logins, human activity, network traffic) are prevalent and can be ig-
nored to reduce the reporting burden on the monitoring system. But
in all the above situations we can define a threshold, such that it is
critical to know when this threshold has been crossed. Our focus
in this paper is on designing protocols and algorithms to monitor
such sums and counts with thresholds. In the extreme case, these
thresholds can be trivial (i.e. zero or one), but in all the scenarios
we have outlined, there exists a non-trivial threshold which can be
used to reduce the communication cost. In general, the thresholds
can be specified either as part of the query, or learned by the system
in response to the observed data. For this work, without loss of gen-
erality we assume that the threshold is fixed a priori and focus on
answering queries for thresholded counts given such a threshold;
dynamic thresholds can be accommodated, but we do not discuss
them here.

The second component of these types of queries is to return a
count of a particular set of values. Here, one can make the obser-
vation that an application rarely needs to know the exact count so
long as the answer is given with reasonable precision: it is not nec-
essary to know whether the number of cars on the highway is 4237
or 4251, if either answer is accurate to within 1%. So instead of
demanding exact results, we can explore the tradeoff between ac-
curacy and communication: clearly, allowing larger uncertainties
about counts allows monitoring sites to be more conservative about
when they send their updates to a central monitor. This benefit be-
comes clear in our experiments, which show significant savings as
the allowable uncertainty increases.

Our Contributions. We address the problem of continuously mon-
itoring thresholded counts in a distributed environment. Our con-
tributions are as follows:

1. We introduce and formalize the thresholded counting prob-
lem, which is fundamental to several distributed monitoring scenar-
ios. We give guaranteed solutions to the problem based on monitors
comparing their local counts to local thresholds, and postponing
communication until these thresholds are violated. We consider
two approaches, depending on whether the thresholds are deter-
mined statically in advance, or can be allocated adaptively as the
distribution of updated information is observed.

2. In the static case, we show two different fundamental tech-
niques for setting the local thresholds. We introduce a blended

approach, based on a linear combination of the two fundamental
methods while retaining the correctness guarantee. We give a care-
ful and detailed analysis of the optimal setting of this blend which
depends only on coarse properties of the total count.

3. In the adaptive case, we introduce a variety of increasingly
sophisticated algorithms that attempt to capture the observed dis-
tribution of count updates, and hence reduce the overall number of
messages sent within the system.

4. We show that our static and adaptive algorithms can be easily
extended to include negative updates, sliding windows, approxi-
mate counts, and time-dependent threshold values.

5. We conduct a thorough and detailed set of experiments to
verify the efficacy of our methods for giving a low cost monitoring
scheme for thresholded queries. We compare to applications of
prior work on a variety of real and synthetic data, and show that
there are significant savings for using our methods.

Outline. In Section 2, we review prior work in continuous, distrib-
uted monitoring. We formally define the problem of thresholded
counts in Section 3. We propose algorithms which set static thresh-
olds in Section 4, and adaptive thresholds in Section 5. We discuss
some extensions to our current work in Section 6. We present re-
sults from our experimental evaluation in Section 7 and conclude
in Section 8.

2. RELATED WORK
Our work is related to the design and construction of systems

to handle large streams of data. There are several general pur-
pose “Data Stream Management Systems” (DSMSs), such as Au-
rora [1], Stream [2], and Telegraph [4], and special purpose sys-
tems (such as for network data streams) including Gigascope [11]
and Tribeca [23]. However, our problem is inherently distributed,
whereas these systems are primarily focused on centralized moni-
toring. Recently, distributed data stream management systems have
been proposed such as Borealis [14] and Medusa [24, 5]. The main
focus of these systems is how to effectively distribute the work of
the system, and hence balance the load; it is therefore assumed pos-
sible to redirect data streams. In our model, we explicitly rule out
the possibility of sending all observed data to a different processor:
in resource constrained situations, our only possibility is to process
the stream of data at the monitor where it is observed. (In our ex-
periments, we are able to improve on the cost of sending the whole
data stream by three orders of magnitude by processing at the point
of observation).

The model of continuous distributed computation has been adopted
by a series of papers over recent years. Within this context, a num-
ber of different problems have been addressed, including monitor-
ing the (exact) top-k set [3], evaluating set expressions [12], and
quantiles and heavy hitters [8, 16]. Techniques have been proposed
which allow the continuous, distributed monitoring of a variety of
queries based on using sketches [7] (from which join-sizes and
many other functions can be estimated accurately) and based on
techniques that are resilient to duplication of information [10].

The problem we consider, of maintaining accurate counts above
a threshold, is not covered by any of these approaches. We now
discuss previous work that is closer to this problem. Various works
have considered accurate maintenance of sums and counts in a dis-
tributed sensor network setting, but these are typically for duplicate-
resilient “on-demand” computations, rather than continuous [19,
17, 6]. The “heavy hitters” problem is to find all items whose count
is above some fraction φ of the count of all items (e.g. users in a
wired network consuming more than 1% of the total bandwidth).
While semantically related to our threshold based problem, con-
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Figure 1: Distributed Monitoring Architecture
tinuous monitoring of the heavy hitters is a somewhat easier prob-
lem, since there can be at most 1/φ heavy hitters at any one time,
whereas there can be an unbounded number of monitored counts
exceeding their thresholds. The permitted error for Heavy Hitters
also scales with the sum of the counts, rather than the count of
the individual item, as we demand in our formal definition of this
problem (see next section). A continuous, distributed algorithm for
heavy hitters follows as a special case of quantile monitoring [8],
but this cannot be applied to our problem since the guarantees are
insufficient to meet our requirements.

More closely related to our problem is the work of Jain et al [15],
which considers triggers. The authors make a compelling argument
for continuous distributed monitoring of trigger conditions based
on local counts fi, and suggest some potential approaches. The
method outlined relates to triggers of the form

P
i fi > C, i.e.

the trigger should be raised if the total of the fis at different sites
exceeds the threshold C. This is clearly a simplified version of our
problem. The algorithms given are randomized, and in expectation
give errors of constant factors times C, which are much larger than
the δ guarantees we provide.

Olston et al [21] propose a filter based approach to maintaining
accurate counts. There, the central site wishes to know each sum
Fj =

P
i fi,j with uncertainty at most δj for a fixed δj . The ap-

proach is to allocate “filters” (allowable ranges) at each site, and
when values are observed that lie within these filters, no action is
taken; if they fall outside the range, then they are passed up to the
central site. To adapt to the observed distribution, filters are peri-
odically resized based on how long the filter has been valid. This
approach can be modified to apply to our problem, and we compare
against this algorithm in our experimental section.

Most recently, an approach to monitoring general functions has
been proposed by Sharfman et al [25]. Applied to our problem,
their technique gives algorithms of a similar nature to those we
propose, however our algorithms are designed to take advantage of
specific features of our problem. It will be of interest to compare
the two in future.

3. PROBLEM DEFINITION AND APPROACH
We define the problem of efficiently maintaining approximate

counts in a distributed scenario in this section and describe our ap-
proach.

3.1 System Architecture
We consider a distributed monitoring system as shown in Fig-

ure 1. The system consists of m remote sites and a central co-
ordinator site. The remote sites observe a continuous stream of
updates, which taken together define a distribution of values. The
remote sites can communicate with the coordinator in order to en-
sure that the coordinator is able to accurately answer queries over
the union of the update streams. In general, the remote sites can
communicate amongst themselves as well as with the coordinator;

however, in line with previous work, we only consider protocols
that have (pairwise) communications between the coordinator and
remote sites. This is the model that is adopted in most prior work
on continuous, distributed monitoring problems [3, 21, 12, 8, 7]1.

Each site i ∈ {1 . . . m} monitors a set of k values Nv,i, v ∈
{1 . . . k}, which are defined incrementally. We model each stream
of updates observed at the remote site i as a sequence of tuples
〈i, v, t, ci,v,t〉. This is interpreted as an update of ci,v,t to Nv in
site i at time t. We assume that updates are ordered by timestamp,
and site i only sees updates to itself2. Then Nv,i(t), the value of the
count in site i at time t, is defined as Nv,i(t) =

P
t′<t ci,v,t′ . The

global count, Nv(t), is defined as Nv(t) =
P

i∈{1...m} Nv,i(t).
Our goal is to monitor the value of each Nv(t) within specified ac-
curacy bounds. Since we are interested only in the “current” value
of counts, in the rest of the paper we drop reference to t and use Nv

and Nv,i to represent the global and local counts.
This model accurately captures the scenarios we described in the

introduction. For example, in network traffic monitoring, each up-
date might correspond to the observation of a packet at a remote site
(or monitor). In this context, t is the current time, i is the identifier
of the monitor, and v and ci,v,t are properties of the packet, such
as destination IP address and size of packet, respectively. Based on
the inputs from all the remote sites, the coordinator tracks the ag-
gregate traffic to various destinations and raises an alarm when the
total traffic becomes high, indicative of an unusual activity (like a
DDoS attack). Monitoring in sensor networks can also be mapped
onto this model in a natural way.

In general, the updates, ci,v,t, can be negative (corresponding to
a decrease in Nv,i, such as temperature updates in sensor networks)
or fractional (like rainfall measurements). All our methods will
handle such settings, but for clarity we focus on the case where
ci,v,ts are positive integers, and postpone discussion of negative
updates to Section 6.

3.2 The Thresholded Count Problem
Our focus is on monitoring the Nv at the central coordinator.

Since Nv is defined by updates to remote sites, if we require to
know Nv exactly, then we must eagerly send every update from a
remote site to the coordinator as soon as it is observed. This en-
sures accurate values at the coordinator at all times, but comes with
huge communication overhead. As observed in Section 1, such fine
accuracy is not needed in practice. Another possibility is for the re-
mote sites to send their counts periodically to the coordinator site.
This reduces the communication burden, but still has some issues
in practice: updates in real systems are typically bursty, i.e., counts
change rapidly in some time periods while it may hardly change in
others. The former results in inaccurate values at the coordinator,
while the latter results in unnecessary communications. In this pa-
per, we define the problem of continuously monitoring thresholded
counts, which ensures that the coordinator always has an accurate
count with minimal delay3.

DEFINITION 1. Given a threshold Tv and an error guarantee
δv , the δv-deficient thresholded count, N̂v satisfies the following
1 As in the cited prior work, we concentrate on the key algorith-
mic challenges in designing effective protocols for this setting, and
hence we do not consider issues of message loss. Instead, we as-
sume that there are sufficient mechanisms in place such as mes-
sage acknowledgments, retransmissions, and timestamping to en-
sure that the correct behavior is observed.
2This is not a strong assumption; typically, the site observes only
the pair v, ci,v,t, and supplies t and i itself.
3Since network delay from remote sites to coordinator is unavoid-
able, every tracking algorithm must incur some minimum delay.



properties

• 0 ≤ N̂v < Tv when Nv < Tv

• Nv(1− δv) < N̂v < Nv when Nv ≥ Tv

Where it is clear from context, we will drop the qualification v
and refer to N, T, δ. Note that this definition is distinct from the
Heavy Hitter definition in data streams [18], which requires an ad-
ditive error that scales as the sum of all monitored counts; instead,
we have a much more demanding requirement to monitor all counts
with relative error on each count, above the threshold. Without a
threshold, T , the communication overhead is high to begin with,
as low counts require every update to be pushed to the coordinator
in order to maintain the error guarantee δ. Since low counts are
typically uninteresting for monitoring applications, by supressing
communication for these counts, the overhead of the monitoring
can be kept low.

The value of the threshold depends on individual applications.
For applications in network monitoring that track anomalous be-
havior, like DDoS attacks, the value of the threshold can be high,
while applications like traffic accounting [13] that count the traffic
sent by hosts or networks beyond a certain initial minimum can use
a lower threshold value.

3.3 Our Approach
Our basic approach is to set local thresholds at each remote site

such that the current count is bounded by the local threshold. When
a local threshold in a remote site is violated, the remote site will
communicate this to the coordinator and sets a new threshold. The
ith remote site maintains local thresholds, ti,j , j = 0, 1, . . . , and
ensures that ti,f(i) ≤ Nv,i < ti,f(i)+1 for some threshold f(i) that
is known to the coordinator. If the ith remote site’s count violates
this condition, it sends an update to the coordinator with a new
f ′(i) and ti,f ′(i) such that ti,f ′(i) ≤ Nv,i < ti,f ′(i)+1 for the
current value of Nv,i. The coordinator can use the set of ti,f(i)s to
estimate any global count as N̂v =

Pm
i=1 ti,f(i).

Note that while the count at a remote site obeys the ti,f(i) ≤
Nv,i < ti,f(i)+1 bounds, the remote site does not send any up-
dates until the count is outside these bounds. Until the coordi-
nator receives the next threshold update the actual count can lie
anywhere between the two threshold values. Hence, the maximum
error contributed to the global count error by remote site i is given
by ti,f(i)+1 − ti,f(i). An algorithm that tracks counts must ensure
that the error is within the δ-deficient requirement when the count
is greater than the specified threshold. Formally, we must ensure
that 0 <

P
i∈{1...m} ti,f(i)+1 − ti,f(i) < δNv when Nv > T .

Thus, adjacent thresholds need to be chosen to be close enough to
satisfy this requirement. The total number of updates sent from re-
mote sites to the coordinator corresponds to the number of thresh-
old boundaries crossed at the remote sites. This means we want
to set the local thresholds as far apart as possible to minimize the
communication overhead.

Algorithms that track the δ-deficient thresholded count of an
item need to balance the error requirement with minimal communi-
cation overhead. We consider two fundamental categories for set-
ting threshold: static thresholding, and adaptive thresholding. In
static thresholding methods, each remote site is assigned a prede-
termined set of thresholds that do not change over the entire course
of tracking the count. It simply tracks between which pair of thresh-
olds its count currently lies, and informs the coordinator when this
changes. In the adaptive case, when old thresholds are violated,
new thresholds at the remote sites are chosen by the central site
according to the observed conditions, to dynamically reduce the
communication overhead.

While the adaptive thresholding methods can be expected to per-
form better than the static methods, the static methods are desir-
able when the capabilities of the remote sites and the coordinator
are limited. The adaptive thresholding places additional process-
ing overhead and additional functional requirements on the remote
sites and the coordinator. The coordinator needs to recompute new
thresholds and export them to the remote sites, in addition to process-
ing updates from the remote sites to maintain the count. In cer-
tain cases, like sensor networks or high speed routers, this addi-
tional processing overhead may be too expensive to accommodate.
A further practical issue with using adaptive thresholding is that
the system has to be more resilient to network delays. Specifi-
cally, the coordinator may need to collect current values from sites,
and send out many new thresholds, which incurs appreciable delay
where the current counts may be outdated. The static thresholding
scheme does not have this problem because the communication is
performed from the remote site to the coordinator only. Thus the
choice of adaptive or static thresholds will depend not only on their
relative cost (which we analyze in detail in subsequent sections),
but also on the underlying network properties and performance.

4. STATIC THRESHOLDS
We now describe the static thresholding scheme to maintain the

δ-deficient thresholded counts. In these schemes, the threshold val-
ues in the remote sites are predetermined and do not change over
the period of tracking. We present three such threshold assign-
ment regimes to determine the local threshold values at the remote
sites and discuss their complexity in terms of communication over-
head. In this work we consider all the remote sites to be symmetric
and hence use the same set of static threshold values. Our focus is
on determining the local threshold values in the remote sites for a
given value of δ and T . The static threshold assignment problem
can be formally stated as:

DEFINITION 2. Given m remote sites, a global threshold T , an
error guarantee δ, and f(i) (the current threshold level at site i),
determine threshold values, tj , j = [0,∞), such that the following
constraints are satisfied

• ∀j ≥ 0 : tj+1 > tj , and t0 = 0
• ∀f ∈ Nm :

Pm
i=1 tf(i)+1 − tf(i) ≤ δ

Pm
i=1 tf(i), whenPm

i=1 tf(i)+1 ≥ T

The first constraint ensures that the threshold values are increas-
ing. The second constraint captures the error requirement of the
thresholded count problem. The maximum error in the ith remote
site when f(i) is the threshold in force at site i is tf(i)+1 − tf(i).
Thus, the second constraint states that the total error in the count at
the coordinator must satisfy the thresholded error guarantee for all
possible threshold values at the remote sites.

4.1 Uniform Threshold Assignment
The simplest solution is to keep the maximum global error level

at δT at all times even when the global count, N , is much greater
than T . This can be accomplished by setting the threshold levels
in each monitor as tj = jδT

m
. When N ≥ T , we have the total

error
Pm

i=1 tf(i)+1 − tf(i) ≤ δT ≤ δN , thus satisfying the δ-
deficient thresholded count constraints. If the global count is N ,
the maximum number of updates sent to the coordinator is given
by bmN

δT
c. This simplicity comes at a price. The method works

well for counts that are small (below T or only above T by a small
amount), since the threshold gaps are relatively large. But as N
increases above T , the cost scales linearly with N , as the overly
tight error guarantee is maintained. In summary,



LEMMA 1. The total number of messages from all remote sites
to the coordinator with uniform threshold assignments is O(mN

δT
).

4.2 Proportional Threshold Assignment
A more scalable solution is to assign threshold values propor-

tional to the local count at the remote site. The thresholds at the re-
mote sites are assigned as tj = (1 + δ)tj−1 and t0 = 0, t1 = 1. If
the threshold value reported by site i to the coordinator is tf(i), the
maximum possible error from the site is tf(i)+1 − tf(i) = δtf(i).
The maximum error at the coordinator is:

mX
i=1

tf(i)+1 − tf(i) =

mX
i=1

δtf(i) ≤ δ

mX
i=1

Ni = δN

where N is the global count. This assignment satisfies the error
requirement even when the global count is less than the threshold
T .

LEMMA 2. The total number of messages from all remote sites
to the coordinator with proportional threshold assignments is O(m

δ
log N

m
).

PROOF. If tf(i) ≤ Ni < tf(i)+1, the number of updates from
remote site i is given by f(i). Since tf(i) = (1 + δ)f(i)−1 we get

f(i) = 1 +
log(tf(i))

log(1 + δ)
≤ 1 +

log(Ni)

log(1 + δ)

The total number of messages is bounded by
mX

i=1

f(i) ≤ m +

mX
i=1

log(Ni)

log(1 + δ)
≤ m + m

log
�

N
m

�
log(1 + δ)

We use the fact that
Pm

i=1 Ni = N ,
Pm

i=1 log Ni = log
�Qm

i=1 Ni

�
,

and
Qm

i=1 Ni is maximized when ∀i : Ni = N
m

. Since for δ < 1,
log−1(1 + δ) = O( 1

δ
), the stated bound follows.

This method of assignment performs well when N � T . The
relative cost of the uniform assignment to the proportional assign-
ment is O(m/δ log(N/m))/O(Nm/(δT )) = O(T/N log(N/m)).
When T is greater than N , the uniform spread assignment performs
better, but as N increases above T , the proportional assignment re-
quires fewer communications.

4.3 Blended Threshold Assignment
The main idea of blended threshold assignment is to exploit the

best features of the previous two assignments and provide a mech-
anism to tune the performance for different values of N .

DEFINITION 3. The blended assignment sets the local thresh-
old values as

• tj = (1+αδ)tj−1 +(1−α) δT
m

, for a parameter 0 ≤ α ≤ 1
• t0 = 0, and when α = 1, t1 = 1

Note that α = 0 corresponds to the uniform assignment while
α = 1 corresponds to the proportional assignment. Varying the
value of α helps in tuning the threshold values to combine uniform
and proportional thresholds.

THEOREM 4. The blended threshold assignment satisfies the δ-
deficient thresholded error guarantee for all values of α ∈ [0, 1].

PROOF. Using the blended threshold assignment, the maximum
error in the ith remote site is

tf(i)+1 − tf(i) = αδtf(i) + (1− α)
δT

m

Thus, the total error in the global count is given byPm
i=1 tf(i)+1 − tf(i) = αδ(

Pm
i=1 tf(i)) + (1− α)δT

≤ αδN + (1− α)δT
≤ δN, when N > T

LEMMA 3. The total number of messages from all remote sites
to the coordinator with blended threshold assignments and 0 <
α < 1 is O( m

αδ
log(1 + α(N

T
− 1)))

PROOF. The threshold values using the blended assignment for
α ∈ (0, 1) can be written as

tj =

�
(1 + αδ)j − 1

αδ

�
(1− α)δT

m

Thus, the number of updates from remote site i when the threshold
value exceeded is f(i) is

f(i) =
log(1 + tf(i)

αm
(1−α)T

)

log(1 + αδ)

≤
log(1 + Ni

αm
(1−α)T

)

log(1 + αδ)
, since tf(i) ≤ Ni

=
log(1 + αhi)− log(1− α)

log(1 + αδ)
, where hi =

Nim

T
− 1

Note that given
Pm

i=1 hi = Nm
T
−m, the expression

Qm
i=1 (1 + αhi)

is maximized when ∀i : hi = h = N
T
− 1. The total number of

updates from all remote sites is
mX

i=1

f(i) =
log(

Qm
i=1 (1 + αhi))−m log(1− α)

log(1 + αδ)
(1)

≤m
log(1 + αh)− log(1− α)

log(1 + αδ)
(2)

Upper bounding this expression gives the stated worst case bound.

Determining the optimum value of α. For small values of N <
T , α = 0 gives us the best possible assignment and for large values
of N � T , α = 1 gives us the best assignment. For intermediate
values of N , the best value of α can be determined by minimizing
the number of updates.

Note that the communication cost in Lemma 3 is dependent on
the global count, N . Hence, the optimal value of α depends on
N . We advocate two approaches to determining the best value of
α. The first approach is to track the global count and determine
an expected value of N , Ne after a long period of observation,
and use this value to determine the optimal value of α. This can be
expected to result in good performance if the actual value of N does
not vary a lot from the estimate Ne. A more sophisticated approach
is to track the distribution of N over a large set of observations and
determine the value of α that minimizes the expected number of
update messages over this distribution.

THEOREM 5. The total number of updates (from Eqn 2), KN =

m
log(1 + αh)− log(1− α)

log(1 + αδ)
is a convex function in α in the range

α ∈ (0, 1) for small values of δ.

The proof of this theorem is presented in Appendix A.

THEOREM 6. Given an expected value of N or a discrete prob-
ability distribution of N , we can find a value of α that minimizes
the number of messages with blended threshold assignments.



PROOF. First, observe that if p(N) is the probability density
function of N , then the expected maximum number of updates
given by K =

P∞
N=1 p(N)KN is a convex function in α in the

range α ∈ (0, 1). Since K is a convex combination of convex
functions KN , K is itself convex.

Since K and KN are convex functions in α in the range (0, 1),
there exists a single minimum for K and KN that can be searched
by using techniques like gradient descent. The descent algorithm
can be used to determine the optimal values of α for both the pro-
posed approaches. In the first approach where we are given the ex-
pected value Ne, we determine the optimal value of α by minimiz-
ing KNe . In the second approach where we are given the distribu-
tion of N , we can use the descent method to determine the optimal
value of α by minimizing the function K as defined above.

5. ADAPTIVE THRESHOLDS
Unlike the static thresholding scheme, in the adaptive threshold-

ing scheme the thresholds in the monitoring nodes are adaptively
set by the coordinator every time there is a threshold violation in a
node. In other words, the coordinator not only receives the thresh-
old violations from the monitoring nodes, but also reacts to them
by sending new thresholds back. This gives the coordinator more
power to set thresholds based on more information about how the
distributions at each site are evolving, and hence try to reduce the
number of threshold violations. In a general scenario, the coordi-
nator may wait for multiple violations before resetting thresholds,
and may reset thresholds for arbitrary subsets of the nodes based
on a complete history of past violations. In this work, we react to
each threshold violation, and consider only recent history.

5.1 Adaptive Threshold Assignment Problem
In the adaptive thresholding scheme, two levels of thresholds,

lower and higher thresholds, are maintained at every node at all
times. The lower threshold at node i is denoted by tiL, and the
higher threshold by tiH , so that at all times tiL ≤ Ni < tiH . If
these thresholds are violated, i.e. if this condition is no longer true,
then the site i contacts the coordinator site with its current count
Ni, and it resets its lower threshold tiL = Ni. The coordinator es-
timates the count as the sum of the reported counts from the remote
sites, N̂ =

Pm
i=1 tiL. The coordinator then updates the tiH for

node i, and possibly those of other nodes, to ensure that its count
still meets the δ-deficient requirement. To minimize the communi-
cation in the system, the coordinator needs to set the upper thresh-
olds to as high a value as possible. Note that the maximum error
contributed by site i is tiH − tiL.

The problem of setting the upper thresholds of the remote sites
by the coordinator can be formally stated as follows.

DEFINITION 7. Given m remote monitoring nodes, a global
threshold T , an error guarantee δ, and a threshold violation from
node j, our objective is to determine the higher threshold values,
tiH , in all m monitoring nodes such that the number of messages in
the monitoring system is kept as low as possible, and the following
constraints are satisfied:

• ∀1 ≤ i ≤ m, tiH > tiL

•
Pm

i=1 tiH − tiL ≤ δ
Pm

i=1 tiL, when
Pm

i=1 tiH ≥ T

Similar to the static thresholding scheme, the first constraint en-
sures that the higher thresholds are greater than the lower thresholds
in all the nodes and the second constraint ensures that the total er-
ror in the count at the coordinator must satisfy the thresholded error
guarantee.

BASICADAPT(δ, T, m)
1: tiL ← 0; tiH ← T

m
; N̂ ← 0

2: loop {receive update (i, Ni); }
3: if ((N̂ < (1− δ)T ) and (N̂ +Ni− tiL ≥ (1− δ)T )) then
4: poll all sites j for Nj ; tjL ← Nj ; send tjH ← (1+δ)tjL;
5: tiL ← Ni; N̂ ←

Pm
j=1 Nj ;

6: if (N̂ < (1− δ)T ) then
7: for all j send tjH ← tjL

T

N̂
to j;

8: else
9: send tiH ← tiL(1 + δ) to i

Figure 2: Basic Adaptive Thresholding Algorithm

In the static threshold method, the remote sites do not know if
the current global count is greater than T or lesser at any time.
Hence, the thresholds need to be set to handle both these cases.
A key advantage of the adaptive algorithm is that when the global
count is less than the threshold, the coordinator can afford to set
higher thresholds at the remote sites than in the static algorithm.
To illustrate this, define the slack in the system as the difference
between the threshold and the current estimate of the global count,
S = T − N̂ . The coordinator can now split this slack among
the remote sites in any manner and still be able to satisfy the δ-
deficient error requirement. Assume that the slack is split among
the remote sites as ηi, i = 1, . . . , m, such that

Pm
i=1 ηi ≤ S.

Thus, tiH = tiL + ηi. If the counts at all the remote sites are less
than their respective upper thresholds, then the global count must
be lesser than the global threshold because N <

Pm
i=1 tiH ≤ T .

If at any point the global count exceeds the threshold, at least one
of the thresholds in the remote sites will be exceeded. This allows
the coordinator to determine when the count exceeds the threshold
and switch to the case when N ≥ T and track the count closely to
satisfy the δ-deficient error requirement.

5.2 Basic Adaptive Algorithm
When the total count estimated at the central site, N̂ , is less than

T , a naive approach is to split the slack equally among all the nodes;
instead, we propose to split the difference proportional to the cur-
rent count in the nodes, since nodes that have larger counts than
others are likely to grow larger. We set the new tiH = tiL +
(T−
Pm

j=1 tjL)tiLPm
j=1 tiL

= tiL
T

N̂
.

If N̂ ≥ (1−δ)T , we set tiH− tiL = δtiL, so that the maximum
error in each node is δtiL. This approach is similar to the propor-
tional spread threshold assignment algorithm for static thresholding
problem presented in Section 4.2. The adaptive thresholding algo-
rithm is presented in Figure 2. Line 7 performs the proportional
split when the counts are small, and line 9 performs the propor-
tional growth when the counts are large. Lines 3 and 4 handle the
case when we switch from having N̂ < (1−δ)T to N̂ ≥ (1−δ)T .

LEMMA 4. The adaptive thresholding assignment algorithm pre-
sented in Figure 2 satisfies the δ-deficient thresholded count con-
straints.

PROOF. When N̂ =
Pm

i=1 tiL < (1− δ)T , we have that N =Pm
i=1 Ni <

Pm
i=1 tiH = T

N̂

Pm
i=1 tiL = T , so we know that the

total count is less than the threshold T . When N̂ ≥ (1 − δ)T , we
know that the total count exceeds (1 − δ)T and the algorithm is
similar to the proportional spread threshold assignment algorithm
for the static thresholding scheme. In this case, tiH − tiL = δtiL

and so
Pm

i=1(tiH − tiL) = δN̂ ≤ δN , as required.



MODIFIEDADAPT(δ, T, m)
1: tiL ← 0; tiH ← T

m
; R← ∅; N̂ = 0;

2: loop {receive update (i, Ni); }
3: if (N̂ < (1− δ)T ) and (N̂ − tiL + Ni ≥ (1− δ)T ) then
4: poll all sites j for Nj ; tjL ← Nj ; send tjH ← (1+δ)tjL;
5: if (R = ∅) then
6: for j = 1 to m do
7: Poll site j for Nj ; tjL ← Nj ; sj ← max{tjL, δT

m
};

8: if Nj < δT
m

then send tjH ← δT
m

to j

9: tiL ← Ni; N̂ ←
P

j tjL; si ← tiL; R← R ∪ {i};
10: if (N̂ < (1− δ)T ) then
11: S ←

Pm
r=1 sr; tmin ← minj{ tjLP

r∈R trL
(T − S)};

12: for all j ∈ E do
13: if tmin < δT

m
then send tjH ← δT

m
to j;

14: else send tjH ← tjL +
tjLP

r∈S trL
(T − S)} to j

15: else send tiH ← (1 + δ)tiL to i;

Figure 3: Modified Adaptive Thresholding Algorithm

Although this algorithm is simple and intuitive, it has some draw-
backs: The first time there is a threshold violation from some re-
mote site i, the tiH value at the node is set to T while the value at
all other nodes will be set to 0, since Nj = 0 at the coordinator
site initially. This could unnecessarily trigger a lot of communi-
cations especially when several nodes have non-zero counts. Sec-
ondly, when the estimated aggregate count at the central node is
close to T the new threshold will be very close to the old thresh-
old, thus triggering a lot of threshold violations. In the following
section we present a modified algorithm that addresses the above
shortcomings.

5.3 Modified Adaptive Algorithm
In order to avoid the problems in the original algorithm for adap-

tive thresholds we modify the original algorithm, which is illus-
trated in Figure 3. There are two main differences between the
original and modified algorithms: (a) As soon as the central node
receives the first threshold violation the tiH values in all the nodes
whose counts Ni are below δT

m
are initialized to δT

m
, and (b) when

the difference between global threshold and the estimated aggre-
gate count is small (i.e., below δT

m
), instead of using the adaptive

strategy of distributing the difference to all the nodes, we maintain
a constant difference between the upper and lower thresholds, i.e.,
tiH − tiL = δT

m
. In our algorithm in Figure 3, we maintain a set

R of nodes whose count exceeds δT
m

. Lines 5–9 deal with the first
threshold violation, by polling all nodes to initialize S, and setting
upper bounds for the nodes not in R. If the total count is suffi-
ciently below T , lines 10-14 allocate the slack in proportion to the
counts; however, we ensure that the difference between higher and
lower thresholds is at least δT

m
, using extra variables si, to ensure

that the total amount of slack allocated stays within the permitted
bounds. Lines 3–4 deal with the case when the count first exceeds
T , and from that point on, we switch to proportionally increasing
counts (line 15) as before.

LEMMA 5. The modified adaptive thresholding assignment al-
gorithm presented in Figure 3 satisfies the δ-deficient thresholded
count constraints.

PROOF. Consider the case when N̂ < (1 − δ)T . If a remote
site i does not belong to R (i /∈ R), tiH = δT

m
. In line 11, the rest

of the available slack, T − S, is proportionally divided to the rest
of the sites ∈ R. tmin denotes the minimum of the slack values. If
tmin < δT

m
, then all sites ∈ R are allocated a slack of δT

m
in line 13

of the algorithm. Hence N <
Pm

i=1 tiH = N̂ +
Pm

i=1
δT
m

< T .
If tmin > δT

m
, then the slacks are proportionally allocated to the

sites. Hence N <
Pm

i=1 tiH = T , because the algorithm allo-
cates the slack in the system to the sites. Thus, if N̂ < (1 − δ)T ,
N < T . When N̂ ≥ (1 − δ)T , the total count exceeds (1 − δ)T
and the algorithm follows the proportional spread threshold assign-
ment in the static scheme, and the proof is the same as the previous
Lemma. Thus, the modified algorithm satisfies the δ-deficient error
constraints.

THEOREM 8. The total number of messages from all remote
sites to the coordinator using the modified adaptive algorithm is
O(m

δ
(m+log(N−T

m
)) when N > T , and O(m2N

δT
) when N ≤ T .

PROOF. We split our analysis into two parts, first when the total
count is less than T , and the second when it exceeds T . In the
first part, the algorithm ensures that the “slack” in each threshold,
i.e. tiH − tiL is always at least δT

m
. Thus, there can be at most

mN
δT

threshold violations before the count reaches T , simplifying
to m

δ
when N first exceeds T . Each threshold violation causes at

most O(m) messages to be sent, to inform the sites of their new
high thresholds tiH . When the count is above T , the algorithm
mimics the proportional threshold assignment case in Section 4.2,
and adapting Lemma 2, the number of messages between remotes
sites and the central site to go from T to N is O(m

δ
log N−T

m
). The

result follows by summing these two bounds.

Note that one can easily force Ω(m2+ m
δ

log N−T
m

) messages by
first making one site have count T

m
, then setting m

2
counts Ni = δT

m
(to set up the adaptive thresholds). Then for each of the same m

2

sites in turn, set their local count to Ni = T
m

: each of these settings
causes θ(m) messages, over m

2
sites gives the Ω(m2) bound. Us-

ing the remaining m
2

sites (currently with zero local count each),

one can then elicit the m
2

+ m
2

log
2(N−T )

m
log(1+δ)

= Ω(m
δ

log(N−T
m

))

cost from the proportional threshold settings. However, in general,
we expect to do much better than this worst case bound, since the
analysis is somewhat pessimistic.

6. EXTENSIONS
Negative Updates. Thus far we have assumed that all updates re-
ceived at remote sites are non-negative. However, a simple ob-
servation is that our static protocols remain correct when negative
updates are permitted. Instead of checking for thresholds being ex-
ceeded, we must check that the upper threshold remains an upper
bound, and also that the lower threshold remains a lower bound.
Similarly, our adaptive protocols can also handle negative updates
with minor modifications. The analysis in previous sections that
relates the cost of the protocol to the value of the global count no
longer applies: positive and negative updates can cause a lot of
communication but leave the global count quite low, thus the com-
munication bound cannot still hold. Indeed, if the updates cause
counts to repeatedly cross the same threshold boundaries (in the
static case), then the best bound we can state is one that is linear in
the number of updates. In the adaptive case, this adverse outcome
can be avoided.

Sliding Windows. Being able to handle negative updates means
that we can apply our methods to other models of computing counts.
Typically, we do not want to monitor counts which increase indefi-
nitely. Indeed, in several of the queries outlined in the Introduction,



time windows were implicitly given in the form of “within an hour”
or “in a day”. There are several models for dealing with such time-
windowed queries: (a) Periodic reset. After the time period has
elapsed, reset all counts to zero, and restart the protocol. (b) Slid-
ing window. Ensure that the current count covers exactly the last
hour, for example, by keeping track of past updates, and applying
updates older than one hour as negative updates. In the case that
there is insufficient storage to retain this many updates, then ap-
proximate information can be kept, as explained below. (c) Over-
lapping window. A compromise between periodic reset and sliding
window is to apply the overlapping window approach: for exam-
ple, the window consists of one hour’s data, and the start of the
window is advanced by five minute intervals every five minutes (so
the window contains between 1 hour and 1 hour and five minutes
of updates). Now we just have to record the sum of updates in each
five minutes and apply these as a single negative update when the
start of the window is advanced.

Approximate Counts. So far we have assumed that there is suf-
ficient storage capacity at the remote nodes to store all local count
values. But in the case when there are very many updates of dif-
ferent values (for example, tracking network activity), we cannot
make this assumption. We may use the same (static) thresholds and
δ value for all counts to reduce space usage, but still there may be
too many counts to store. The natural solution is to adopt an ap-
proximate way of storing the counts, such as Lossy Counting [18]
or Count-Min sketch [9]. However, using such approximate struc-
tures mean that the guarantees that we can give are much weaker:
instead of the δ-deficient guarantee, we must now give a guarantee
relative to δNv + ε

P
v Nv , since the approximate counting meth-

ods return counts of each item with error ε
P

v Nv . Although we
can reduce ε (at the cost of more space), in general it is not possi-
ble to set a non-zero value of ε that gives a δ-deficient guarantee.
Hence, the result appear more in line with those that follow for
Heavy-hitter style problems [8].

Time-dependent Thresholds. Prior work has built models of how
data varies with time in order to reduce the communication cost
further [8, 7]. We could apply a similar approach to our methods:
the result is time-dependent local thresholds. Now we would set
our thresholds so that they can increase or decrease as time passes,
so that we ensure that the total uncertainty still remains within the
same bounds. The idea is that the varying thresholds predict where
the true count will lie at time t; if this prediction is correct, then no
communication cost is incurred. If any (now time dependent) local
threshold is broken, then communication is triggered with the coor-
dinator, and the model can be recalibrated with the recent history.
We hope to investigate such extensions in future work.

7. EXPERIMENTAL STUDY
In this section we present the experimental evaluation of our sta-

tic and adaptive algorithms. We also compare the performance of
these algorithms with a technique proposed by Olston et al in [21]
(referred to as the OJW algorithm in the rest of this work) where
the authors try to minimize communication overhead while main-
taining a certain accuracy for continuous queries over a distributed
data stream.

We begin by presenting our experimental setup in Section 7.1.
We then experimentally show that our algorithms always satisfy
the problem requirements. We also validate our blended approach
for static thresholds by comparing the theoretical results from the
model with the results from our experiments. Then we present
some observations that provide more insights about the usefulness
of our algorithms.

7.1 Experimental Setup
To gain a better understanding of our theoretical analysis, we

built a simulator with m monitoring nodes and one central node.

Data Sets. Although the definition of thresholded counts problem
is applicable in a variety of different scenarios (as pointed out in
Section 1), our focus in the experiments is on a distributed network
monitoring system. In this scenario, every node monitors traffic on
a link for all the registered events and increments the count for all
the events that are observed. We define an event as the occurrence
of a combination of destination IP address and the destination port
number in a packet seen by a monitoring node.

We use publicly available link traces from NLANR [20] as input
to our distributed monitoring system. These traces are for a single
ingress link, and we transform this data for our distributed system
by assigning a probability distribution for distributing packets ran-
domly to the various monitors. By using different probability dis-
tributions, we can simulate various scenarios that can occur in real
networks. For example, a skewed probability distribution function
represents a scenario where a few nodes (that are monitoring large
inter-domain “peering” links) receive large number of events while
others do not. Similarly, a uniform distribution represents a sce-
nario where events are equally likely to occur in any of the mon-
itoring nodes. Although we track all the events that occur in the
link traces from NLANR, for the ease of illustration, we present
the results for tracking one event whose overall count was 960000.

Implementation Issues. We implemented the static and adaptive
algorithms described earlier in Sections 4 and 5. Since the OJW al-
gorithm was not proposed to address the thresholded counts prob-
lem, we need to set certain parameters of the algorithm in [21] to
apply it to our problem. The main issues are:

• The OJW algorithm assumes that a single node can monitor
all the updates for a given object/event and a single query can
include multiple objects. Since we are interested in tracking
the same objects/events in multiple monitors, we treat each
item in each site as a separate object/event that is the subject
of a single query.
• In the thresholded counts problem definition, the error values

are relative, i.e., the maximum error allowed for an event in
the system depends on its current count. The original OJW
algorithm uses absolute errors (i.e., the total error in the sys-
tem is required to be below a certain constant value), so to
apply to our problem, we set the maximum allowed error for
each count to be fixed at δT , divided evenly between all sites
where it can occur.

These parameter settings of the OJW algorithm are our best ef-
fort to make the algorithm apply to our δ-deficient thresholded
count problem. They ensure that the algorithm generates results
that are correct according to our problem definition (and the algo-
rithm falls into our class of adaptive algorithms); however, we will
see that the cost is much higher than our algorithms that were de-
signed for this problem.

7.2 Performance Accuracy
Count Accuracy. In Figure 4(a) we examine the total error in the
distributed monitoring system as packets arrive at various monitor-
ing nodes while using the blended static threshold assignment. We
set the values of T , δ, and m to be 10000, 5%, and 20 respectively.
When the count of the event is less than T the error in the system
can be as high as 50%, but after the count exceeds the value of T
the error is always less than the value specified by δ (indicated by
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(a) N Vs Error percentage in the static case
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(b) N Vs Error percentage in the adaptive case

Figure 4: Testing accuracy for static and adaptive cases
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Figure 5: Comparing the optimal theoretical α values with the
results obtained from simulation. The x-axis represents differ-
ent combinations of T , δ, and N . Each combination is referred
to as a “parameter setting” and represents a point on the x-axis.

the heavy line on the figure). Different parameter settings yielded
similar results.

The results for the same experiment performed with the adaptive
algorithms (but varying values of T ) are shown in Figure 4(b). The
distinctive shape of the curve for the modified adaptive algorithm
is explained by the different parts of the algorithm: the initial high
error is due to allocating tiH = T

m
in the initial phase of the al-

gorithm. The error drops to zero when the central node polls all
the monitoring nodes and hence has accurate count information.
The error gradually increases when nodes are allocated adaptive
thresholds, which allows the total error to grow (within the allowed
bounds), until the count reaches (1 − δ)T . Finally, the algorithm
switches to proportionally growing thresholds, which keep the frac-
tional error within the necessary bounds. Thus we observe that the
total error in the system is less than the value specified by δ after
the total count exceeds T . Meanwhile, the basic adaptive algorithm
has consistently higher error for N < T , but also higher commu-

nication cost.

Setting α for the Static Algorithm. To validate our theoretical
results, we compare the optimal value of α obtained from our the-
oretical model using a gradient descent approach to the ideal value
of α obtained from experiments. For this experiment, we use a
uniform distribution to send a given packet from the input file to
the monitoring nodes. This is because the static threshold assign-
ment algorithms have a worst case when the packets are uniformly
distributed across the remote sites. We repeat the experiment 100
times to ensure that the outcome is not biased by outliers (while
generating uniform distribution), and the experimental results pre-
sented here are the average value from all the 100 runs.

In our experiments we consider several different values for T
and δ. The range of values for T was [100,100000] and the range
of values δ was [0.01, 0.1]. As we showed in Section 4.3, the total
number of messages in a monitoring system using blended static
thresholding approach also depends on Ni, the count of the event
in the monitor i. Hence in our experiments we also vary the over-
all count of the event that we track in the range [2500, 960000].
For each combination of values for T , δ, and N (referred to as a
parameter setting), we vary the value of α from 0 to 1 with incre-
ments of 0.001. For every parameter setting we compute the value
of α that resulted in the minimum number of communications, both
using simulations and the theoretical model.

The comparison of the ideal values of α from the simulations
and theoretical model is shown in the top of Figure 5. Although the
theoretical results closely match the experimental values in most
of the cases, there are a few cases where the difference between
the two is significant. However, these have minimal impact on the
overall cost, as shown in the lower half of the figure. The discrep-
ancies are mainly due to the fact that we use integer values in our
simulator while our theoretical model ignores this condition and
considers thresholds to be real values. The difference between the
experimental and theoretical results are significant only when the
values of both T and δ are small (i.e., when the system requires
high accuracy). We see that in most cases, the cost using the theo-
retically predicted alpha is as good as or better than the value found
by simulations, and in only a few cases is there a slight benefit for
the empirically found value.
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Figure 6: Communication Cost of Static and Adaptive Algorithms
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Figure 7: Variation in communication cost with varying α in
the static model over 500 repetitions with random incoming
packet distribution.

7.3 Communication Cost

Uniformly Distributed Events. Figure 6(a) examines the impact
of α on the number of messages exchanged in a monitoring system
using static thresholds. The total count, N , of the event that is
tracked is 960000. For a small value of T (i.e., a high value of
the ratio N

T
), as the value of α increases, the number of messages

exchanged in the system decreases. In other words, the optimal
value of α is close to 1. For a larger value of T (i.e., a small value
of N

T
), the optimal value of α is closer to 0. In essence, as the ratio

N
T

decreases, the optimal value of α moves towards 0. However,
there is a broad range of settings of α which achieve similarly low
costs, showing that an approximate value of α will often suffice.
Lastly, in line with expectations, decreasing δ increases total cost.

In Figure 6(b) we compare the performance of the basic adap-
tive, modified adaptive, and the OJW algorithms. The top graph in
the figure compares the total number of messages exchanged in the
system (from the monitors to the central node and vice versa) using
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Figure 8: Comparing cost of adaptive and static threshold set-
tings. Each combination of T , δ, and Ni is referred to as a
“parameter setting” and represents a single point on the x-axis.

basic adaptive and modified adaptive algorithms. The modified al-
gorithm outperformed the basic algorithm by an appreciable factor
in all our experiments. The bottom graph in the figure compares the
performance of OJW algorithm with modified adaptive algorithm.
Note that the y-axis in this graph is in log scale. The graph shows
that the modified algorithm performs at least two orders of mag-
nitude better than the OJW algorithm confirming that the existing
techniques are insufficient for this problem.

Randomly Distributed Events. Previous results were based on se-
lecting which node to update uniformly. In Figure 7 we explore the
effect of using random distributions to update different nodes. Ran-
dom distributions are created by generating random probabilities
associated with each of the monitoring nodes. These probabilities
are used to send the updates from the input trace to the monitoring
nodes. Note that a different random distribution is generated for
every simulation run. We repeat the simulation 500 times to ensure
that we capture a variety of different random distributions. In Fig-
ure 7 we plot the average number of messages exchanged due to
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(a) Number of messages Vs. α for static thresholds using one
hour’s data from a live network.
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(b) Number of messages Vs. T for adaptive thresholds using one
hour’s data from a live network.

Figure 9: Experiments on real network data

these random distributions. The error bars in the figure represent
the range of values for the number of messages generated by the
500 runs of the simulator. We can see that the effect of using ran-
dom distributions is relatively small. As before, the optimal value
of α that results in the minimum number of messages in the system
decreases as the ratio N

T
decreases. Note that the total number of

messages in the best case (1000-2000) is approximately 0.1% of
the total number of updates. Hence we observe a thousand-fold re-
duction in cost compared to the cost of sending every update to the
central site.

Comparing Costs of Static and Adaptive Algorithms. Figure 8
compares the blended static thresholding algorithm and the mod-
ified adaptive algorithm in terms of the number of messages in
the monitoring system for different parameter settings. For both
the algorithms, we vary the values of T , δ, and N in the range
[100,100000], [0.01, 0.1], and [2500, 960000] respectively. In the
static algorithm, we used the empirically determined optimal value
of α for the given parameter setting. We can see that the perfor-
mance of the adaptive algorithm is always slightly better than the
static algorithm. However, which method is best will depend on
the scenario in which they are being applied: every message in the
static algorithm is only a few bytes long (to indicate the current
threshold being used by the site), while the messages are longer in
adaptive algorithms since the central site must give more informa-
tion (the type of message, the new threshold being sent, etc.). In
power constrained sensor networks, the energy consumption of the
adaptive algorithms may therefore be higher, whereas in more tra-
ditional wired networks, the size of message headers will make the
difference in size of the messages insignificant.

Experiments on Real Network Data. The results from our exper-
iments presented until now tracked a single event. In order to ex-
plore a more realistic and practical scenario, we obtained complete
network packet traces from a research network. The network con-
sists of several routers and we obtained anonymized traces of all the
packets that entered the network at each of the routers for one hour
on Aug 15, 2005.4 Our network monitoring system architecture

4For anonymity and proprietary reasons, we cannot give further
details of the experimental set up.

consisted of monitoring nodes, one collocated with every router in
the network. We used the traces from the collocated router as the
input to the monitoring node. The monitoring nodes tracked all the
incoming events for one hour, approximately 8 million in total.

Figure 9(a) shows the number of messages required by the sta-
tic monitoring system to track all the events with δ-accuracy. We
can see that when the value of T is small, a high value of α re-
sults in minimum communication overhead, and at higher values
of T , the best value of α reduces. Figure 9(b) shows the number
of messages in the monitoring system using adaptive thresholds.
Comparing Figures 9(a) and 9(b) we can see that, at large values
of T , the adaptive algorithm performs significantly better than the
static algorithm. Since Figure 9(b) is plotted on a log-log scale,
it shows an approximately linear relation between the logarithm of
the number of messages and log T , implying an inverse polynomial
dependency on T . This agrees with our analysis of the adaptive al-
gorithm, suggesting that the bulk of the cost is due to items whose
count Nv < T : for these items, the number of messages is propor-
tional to Nv

δT
, which agrees with the observed behavior.

8. CONCLUSIONS AND FUTURE WORK
We have given a number of algorithms to efficiently monitor

distributed sets of counts in a continuous fashion, a fundamental
problem at the heart of many network and sensor monitoring prob-
lems. In our experimental evaluation, we observed that our adaptive
algorithms typically outperform those based on maintaining static
thresholds. However, the adaptive algorithms may be more expen-
sive in terms of resources required to run and computational power
of the participants.

Several problems remain open to study in future work: firstly,
to compare the cost of deploying the these algorithms in real net-
work scenarios such as a particular sensor network environment or
IP network monitoring setting (so far we have focused on the per-
vasive cost issues rather than considering any particular situation).
In these situations, we can consider other network topologies, such
as more hierarchical approaches to avoid overwhelming the central
coordinator. It will be of interest to extend our approach to other
query types with a similar thresholded nature, such as arithmetic
combinations of thresholds (“report x + y when x + y > T ” or



“report x ∗ y when x ∗ y > T ”) or apply across sites (“report the
number of sites observing event E when E is observed by more
than n sites”).
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APPENDIX
A. PROOF OF CONVEXITY OF KN

THEOREM 5. KN = m
log(1 + αh)− log(1− α)

log(1 + αδ)
is a con-

vex function in α in the range α ∈ (0, 1) for small values of δ.
PROOF. We prove that k is convex in α by showing that the

second derivative k′′ ≥ 0, where

k =
KN

m
=

log(1 + αh)− log(1− α)

log(1 + αδ)

=
log(1 + αh)− log(1− α)

αδ

Since h = N
T
−1 and N, T > 0, h ∈ (−1,∞) or h+1 > 0. Also,

α, δ ∈ (0, 1), and assuming that δ is very small, we approximate
ln(1 + αδ) as αδ.

Differentiating k, we get the first and second derivates as

δα k′ =
h

1 + hα
+

1

1− α
− δk (3)

δα k′′ =
1

(1− α)2
− h2

(1 + hα)2
− 2δk′ (4)

=
1

(1− α)2
− h2

(1 + hα)2
− 2

α

�
h

1 + hα
+

1

1− α
− δk

�

(5)

Using Lemma 6,

ln(1 + hα)− ln(1− α) = ln

�
1 + hα

1− α

�
≥ 2α(h + 1)

2 + hα− α

Note that 1+hα
1−α

> 1, since h + 1, α > 0. Thus,

k ≥ 1

δα

2α(h + 1)

2 + hα− α
=

2

δ

�
h + 1

2 + hα− α

�

Substituting this is in Equation( 5), we get

δαk′′ ≥ (h + 1)(1 + 2hα− h)

(1− α)2(1 + hα)2

− 2

α

�
h + 1

(1 + hα)(1− α)
− 2(h + 1)

2 + hα− α

�

=
(h + 1)(1 + 2hα− h)2

(1− α)2(1 + hα)2(2 + hα− α)
≥ 0

Since k′′ ≥ 0, k is convex in α.

LEMMA 6. ln(x) ≥ 2
�

x−1
x+1

�
, when x > 1

PROOF. Using Taylor’s series, we get
ln( 1

x
) = − ln(x) =

�
1
x
− 1

�
− 1

2

�
1
x
− 1

�2
+ 1

3

�
1
x
− 1

�3− . . .

So ln(x) =
�
1− 1

x

�
+ 1

2
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�2
+ 1
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x
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+ . . .
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�3
+ . . .

=
�
1− 1

x

� �
1 + 1−1/x

2
+
�

1−1/x
2

�2

+ . . .

�

=
�
1− 1

x

� �
1

1− 1−1/x
2

�
= 2

�
1−1/x
1+1/x

�

= 2
�

x−1
x+1

�

http://www.nlanr.net/
http://www-db.stanford.edu/stream/sqr

	Introduction
	Related Work
	Problem Definition and Approach
	System Architecture
	The Thresholded Count Problem
	Our Approach

	Static Thresholds
	Uniform Threshold Assignment
	Proportional Threshold Assignment
	Blended Threshold Assignment

	Adaptive Thresholds
	Adaptive Threshold Assignment Problem
	Basic Adaptive Algorithm
	Modified Adaptive Algorithm

	Extensions
	Experimental Study
	Experimental Setup
	Performance Accuracy
	Communication Cost

	Conclusions and Future Work
	References
	Proof of convexity of KN

