
What’s New: Finding Significant Differences in
Network Data Streams

Graham Cormode S. Muthukrishnan

Abstract— Monitoring and analyzing network traffic usage pat-
terns is vital for managing IP Networks. An important problem
is to provide network managers with information about changes
in traffic, informing them about “what’s new”. Specifically, we
focus on the challenge of finding significantly large differences in
traffic: over time, between interfaces and between routers. We
introduce the idea of adeltoid: an item that has a large difference,
whether the difference isabsolute, relative or variational.

We present novel algorithms for finding the most significant
deltoids in high speed traffic data, and prove that they use small
space, very small time per update, and are guaranteed to find
significant deltoids with pre-specified accuracy. In experimental
evaluation with real network traffic, our algorithms perform well
and recover almost all deltoids. This is the first work to provide
solutions capable of working over the data with one pass, at
network traffic speeds.

I. I NTRODUCTION

IP networks are sophisticated engineering systems. Moni-
toring and analyzing network traffic usage patterns is essen-
tial for managing these systems. For example,provisioning
IP networks needs capacity planning and forecasting which
needs detailed analysis of traffic usage over time. Running a
service—hosting, providing network connectivity, etc—needs
detailedaccountingfor billing, verifying Service Level Agree-
ments, periodic reporting of usage per customer, etc. Enforcing
and ensuring thesecurityof the infrastructure needs constant
monitoring of network activity for patterns of anomalous
traffic. In general, it is a fundamental operational detail in
interacting with an IP network at any level—single user or a
large ISP—that one have tools to gather and analyze traffic
usage.

Our study here is primarily motivated by analysis of mas-
sive, high speed data generated by IP networks, from the
perspective of a large ISP. For motivation, consider analysis
of the header information on each IP packet, or at a higher
level of aggregation, the records of IP flows say from Cisco’s
netflow, from each of the routing elements of a large ISP. Our
focus is on rapid collection of the necessary summarizing data,
which is warranted by network monitoring scenarios. Analysis
and extraction of information from the data summaries can
then be done off-line but still in a timely fashion. In this
context, there are two key questions.
What are the performance constraints for high speed network
data analysis?Capturing per packet information or netflow

Center for Discrete Mathematics and Computer Science (DIMACS), Rut-
gers University, Piscataway NJ,graham@dimacs.rutgers.edu Sup-
ported by NSF ITR 0220280 and NSF EIA 02-05116.

Division of Computer Science, Rutgers University, Piscataway NJ,
muthu@cs.rutgers.edu . Supported by NSF EIA 0087022, NSF ITR
0220280 and NSF EIA 02-05116.

records for each router and transporting it to data warehouses
is unrealistic, because of the storage costs as well as the
transportation overhead. A back-of-the-envelope calculation
with even 10’s of OC48’s such as those found in a large ISP
backbone will illustrate this fact. Unlike in telephone networks
where billing “per record/call” is (has been) the norm and
is subject to legal requirements, IP network operators have
less motivation to collect or archive packet or flow records
since it does not have a direct and immediate impact on
revenue, and it is not mandated. Instead, a more realistic
scenario is to collect some aggregated information or monitor
specific “queries” of interest on the traffic stream. That entails
performing computations per packet or per netflow record,
at the router itself or at collection boxes associated with
the routers. This in turn presents well known performance
bottlenecks: one needs methods that will (1) use small amount
of memory because memory such as SRAM with access time
commensurate with IP traffic is expensive and it is impractical
to attach large memory of this caliber to each interface card
of typical routers in large ISPs and (2) use very few memory
accesses per packet or flow record.

Both these constraints are well known in networking com-
munity, and have been articulated in the classical context of
packet switching, more recently in packet classification and IP
lookups, and in the emerging context of monitoring high speed
traffic data (see [16] for an overview of these constraints).
Our algorithmic results in this paper are designed with these
performance criteria in mind.
What are specific data analyses of interest to monitoring high
speed traffic data?Typically, the focus is on monitoring a
few simple aggregates that will serve as “signals” for ongoing
phenomenon. For example, one may monitor the number of
distinct “flows”—distinct source IP addresses, or distinct TCP
connections, etc—ongoing in a link: steep increases in this
number may correlate with certain attacks or port scans [17],
[32]. In a similar spirit, one may wish to calculate the number
of “tiny” flows, that is, the ones that involve few packets
only [12]. Another example is to monitor “heavy hitters”, i.e.,
those flows that represent a significantly large proportion of
the ongoing traffic or the capacity of the link [15].

In this paper, we study a somewhat related class of prob-
lems of finding entities—addresses, flows eg., comprising
source/destination IP addresses and port numbers or combina-
tions thereof, etc—thatdiffer significantlyin traffic level from
one time window to another, from one interface to other, or
from one router to another. The traffic level may be counted in
terms of the number of connections, packets, bytes, etc. These
are therefore heavy hitters in thedifferenceof traffic levels
either across time, interface or routes. Currently, network

2

managers tell us that they look for significant differences in the
traffic levels while operating a network; monitoring significant
differences is an intuitively powerful way to summarize the
changes in the network, and therefore, draw human attention
to these across the network over time. What is needed is a
way to highlight the things that are different, that is, to find
“what’s new” between different traffic streams.

Our main results are extremely efficient methods that work
on high speed IP traffic data and detect significantly large
differences in traffic levels across time and network elements.
Our contributions are:

• We formalize intuitive notions of “differences”—deltoids,
as we call them, including absolute, relative or variational
deltoids—and initiate the study of methods for finding
significantly large deltoids between high speed IP net-
work data streams.

• We design efficient algorithms for finding significant
deltoids on high speed data. We analyticallyprove that
they (a) use small space, (b) take small time per packet
or flow record update, and (c) find significant deltoids
within pre-specified accuracy quickly. The algorithms use
group tests in a combinatorial group testing framework
that underlies all the algorithms, and work without any
assumption on the input data source and give the first
solution to these problems.

• We implement and test our algorithms on various real life
network data—netflow and SNMP data from IP networks
as well as telephone records—and show that deltoids
are interesting. Even without engineering our algorithm
using standard techniques of parallelization, hardware
implementation or exploiting the special structure of IP
data, our algorithms can process millions of records per
second on a cheap desktop computer. Thus our solutions
appear well suited for high speed network monitoring
applications.

• We compare our results to recently proposed “sketch
based” methods [25] to find deltoids, extending these
to find the relative and variational differences as well
the absolute deltoids. We show how the group testing
approach is able to find deltoids in one pass over data
that are missed when using sketches.

Our work lies in the intersection of research in many
communities. The networking community has recently started
studying what traffic data analysis problems can be solved
at line speed: finding heavy hitters [11], [15], [24], counting
distinct flows [17], etc. Our work here extends this list by
providing methods to do quite nontrivial analyses such as
what are the significant differences in traffic levels across
network elements and time. The precise problem of looking
for deltoids is implicit in the exploratory approach inherent
in network management. The problem of detecting relative
deltoids for example has been posed as an open problem
in [6], [22], and has been often stated in informal discussions
with researchers and network operators. Finally, our work is
grounded in Algorithms research. The combinatorial group
testing approach for stream computations has been developed
in [10], [20], [21]. Most similar to our approach is [10] for

the problem of finding heavy hitters. Here, we expand previous
work substantially, in particular, by designing novel tests that
work for different deltoids. This not only gives us the first
known theoretical results we derive in this paper, but also
serves to position the combinatorial group testing as a general
framework for detecting significant entities, be they volumes
or differences.

Map. In Section II, we present a discussion of what various
differences of interest are, and formally define the problem
of finding significant deltoids. We also show why standard
methods such as sampling do not work. We discuss related
work in Section III. In Section IV and V we present our group-
testing framework, and present specific results for different
deltoids. Sketch based methods are explained and analyzed in
section VI. In Section VII, we present our experimental results
with real network data. Some extensions are described in
Section VIII and concluding remarks are made in Section IX.

II. PRELIMINARIES

A. Difference Detection Problems: Informal Discussion

We focus on finding items which exhibit large difference.
We call such items “deltoids”, to denote items whose differ-
ence, or delta, is noteworthy. There could be many possible
ways to measure how individual items have changed. We
illustrate these by considering the number packets sent by a
particular IP address through a given interface aggregated by
hour.

1) Absolute Difference:A large difference between the
number of packets sent in one hour and the next.

2) Relative Difference:A large ratio of the number of
packets sent in one hour and the next.

3) Variational Difference:A large variance of the number
of packets taken over multiple time periods.

We must be precise about what is meant by “large”, since
it will depend on the volume of traffic, and whether we
are counting packets, bytes or flows. More than this, it also
depends on the distribution of traffic itself: if we look for
deltoids between traffic going into and coming out of a link,
then a difference of a few packets would be significant,
whereas between the traffic going onto the link in one hour
and the next, the difference would have to be much larger to be
noteworthy. It is therefore vital that the notion of a significant
difference istraffic dependent.

Our solution is to look for differences which are a user-
specified fraction of thetotal difference. That is, items whose
difference is some fraction, say 1% or 5% of the sum of
differences of all items. Given a fractionφ, there can be at
most1/φ deltoids for any notion of difference, although this
bound is unlikely to be reached by realistic traffic, since we
expect much of the difference to be from non-deltoids.

Each of our notions of difference captures a different situ-
ation. A busy web server such as CNN.com will experience a
notable absolute difference in its traffic while an exciting news
story is unfolding. Flash crowds, or “the slashdot effect” will
result in a large relative difference for a server that normally
experiences lower traffic (another relative difference would be

3

10:00am
10:20am

10:40am
11:00am

(a) (b) (c) (d) (e)

Fig. 1. Items displaying different kinds of difference: (b) has the highest
absolute difference between 10am and 11am, (e) has the highest relative
difference, and (d) has the highest variance.

if the server crashes under the increased load and its outbound
traffic falls from high to zero). Meanwhile, high variance
detects items whose traffic is variable over time, such as office
networks, whose traffic will be high during working hours, and
low overnight. These notions can be distinct: Figure 1 depicts
a situation with five different items (a)—(e) and their values
over equal time periods between 10am and 11am. The items
with highest relative and absolute difference between the first
and last reading, and with the highest variance are all distinct
(and distinct from the item with highest overall count).

Because of the potentially high volume of network traffic
and high link speeds, any method devised for finding deltoids
needs to provide truly high performance in order to be con-
sidered for deployment in real network monitoring situations.
See [16] for a nice discussion of the rationale. We summarize
the requirements:

1) Fast Update Speed.Solutions have to be capable of
operating at network line speed on a per packet or per
flow record basis. Thus per packet or per flow record
processing has to be very fast so that data processing
is carried out in real time. This rate varies greatly,
depending on the capacity of the link and the nature
of the traffic. IP traffic on fast backbone links can be
many millions of packets per second but other situations
generate traffic at much lower rates.

2) Low Space Requirement.Although memory and disk is
increasingly cheap and plentiful, storing and processing
traffic data at per packet or per netflow record speed
calls for high speed memory with very small access
times. Such memory (such as SRAMs) can be expensive,
and so it is desirable that solutions use small space
for processing and storing summaries of IP traffic data
streams.

3) Efficient, Accurate Queries.The operation of recover-
ing the deltoids should not be a costly one. Although
this operation can be done offline, and so does not
necessarily have the same time restrictions as the update
operation, still it should be relatively fast to find the
deltoids. It is very important that the operation should
also giveguaranteesabout the accuracy of its output.

B. Standard Approaches

Meeting all these requirements is not straightforward. Many
natural first ideas fail on one or more of these criteria. We
briefly discuss various simple attempts to solve this problem,
and explain their shortcomings.

• Store and Sort. One way to solve the problem exactly
is to store all the traffic information, and then sort
and aggregate it to get traffic per address. Then given
sorted traffic data, these can be scanned to pick out the
deltoids exactly. For small amounts of traffic this may be
acceptable, but for serious traffic analysis problems, the
amount of data quickly becomes too large to deal with
in this way: storing the output of a continuoustcpdump
is not practical, even with compression.

• Sampling. Reducing the storage cost by sampling and
storing, some very small fraction—say 1% or less—has
the disadvantage that we are likely to miss important in-
formation about deltoids. To achieve a reasonable amount
of storage space, the rate of sampling will have to be very
low, thereby missing many packets or netflow records.
In the worst case, deltoids are missed entirely by the
sampling and so cannot be recovered.

• Heavy Hitters. Several methods have been published
recently for finding the “heavy hitter” items, which are
those whose traffic is above some threshold of the total
traffic [10], [15], [27]. This is a related notion to deltoids,
since heavy hitters are a special case of deltoids: the
deltoids found between a traffic stream and an empty
stream are precisely the heavy hitters. So this suggests
the following solution: for each stream, find and store the
heavy hitters which account for more thanφ of the total
traffic. Then given two streams, output as the deltoids all
items which are heavy hitters in one stream but not the
other. Such an approach is unfortunately severely flawed.
For example, the heavy hitters might be identical in both
streams: some items are always popular (such as popular
websites). Because deltoids are defined in relation to the
sum of the differencesinstead of thesum of the traffic,
then it is possible that no deltoids are heavy hitters, and
so this method will not find any of the true deltoids, and
will output items that are not deltoids. In our experiments,
we found that this heuristic performed generally poorly.

• Sketch-based Methods.Sketches are a class of powerful,
small space approximations of distributions [4]. It is
possible to create sketches for each stream so that com-
bining sketches for multiple streams allows the (absolute)
difference for each item to be found [20], [25]. This
method is the most competitive to our approach, and the
one we shall devote most attention to in this work. The
major drawback of the sketch based methods is that in
order to compare two streams, we must somehow know
which items to query in order to find those with large
change. So, either one must query every item (eg all
232 IP addresses), or use a large history of items to test:
for every address that was seen, test whether this has a
large change. We discuss this method in greater detail in
Section VI.

4

C. Problem Formulation

We will consider streamsS1, S2, . . . Sm that represent the
data of interest collected over fixed time periods, e.g. each
stream represents observed traffic flows from a particular hour
or day. These can be thought of as defining vectors, where the
ith entry of the vector forSj represents the quantity associated
with item i after processing the whole of thejth stream. We
shall useSj to refer to both the stream, and also the implicit
vector that it defines, and soSj [i] denotes the total for item
i in the jth stream. The dimension ofSj is n, meaning that
i ∈ {0 . . . n− 1}.

For example, the streams might represent flow volume from
each source IP address on a given link, one stream per hour.
Thenn = 232 andSj [i] represents the total flow volume from
source IP addressi in the jth hour. Streams of IP data are
modeled by thecash registermodel of streams [29]: this means
that the same itemi can be observed multiple times in the
stream, and each contribution adds to the value ofSj [i]. This
naturally describes a stream of IP packets: each packet has an
addressi, and a packet sizep so thatSj [i] ← Sj [i] + p. The
challenges here are multiple: first, to process the streams as
they arrive in real time, at network line speeds; and second, to
obtain a concise, approximate representation of each stream, so
that we use much less fast memory than we would to represent
Sj exactly. Second, queries of the form(j, k), we want to find
particular itemsi which behave differently inSj than inSk.

We can now formalize the idea of deltoids.

• Absolute Difference.The absolute differenceof an itemi
is |Sj [i]− Sk[i]|.

• Relative Difference.The relative differenceof an item i
is Sj [i]/ max{Sk[i], 1}.1

• Variational Difference.The variational difference(vari-
ance) of an item i over ` streams is given by∑`

j=1(Sj [i]−
∑`

k=1 Sk[i]/`)2.2

We shall describe methods to find items whose absolute,
relative or variational difference is high. We use the term
deltoid to refer to an item whose difference is large relative
to the total differences.

Definition 1 (Exact Deltoids):For any itemi, let D[i] de-
note the difference of that item, for one of absolute, relative
or variational difference. Aφ-deltoid is an itemi so that
D[i] > φ

∑
x D[x].

Our solutions rely on a slight relaxation of the problem,
where we talk of approximate deltoids.

Definition 2 (Approximate Deltoids):Given ε ≤ φ, the ε-
approximateφ-deltoid problem is to find all itemsi whose
differenceD[i] satisfiesD[i] > (φ+ε)

∑
x D[x], and to report

no items whereD[i] < (φ− ε)
∑

x D[x]. Items between these
thresholds may or may not be output. We consider the set of
deltoids, denotedDeltoids, defined as

i ∈ Deltoids⇒ D[i] > (φ + ε)
∑

x D[x]
i 6∈ Deltoids⇒ D[i] < (φ− ε)

∑
x D[x].

All our algorithms are probabilistic with user-defined pa-
rameterδ which is the upper bound on the probability of the

1The 1 term makes sure there is no0 in the denominator.
2This captures the statistical variance,σ2[i] of the itemsi

algorithm failing. Our bounds will involve parametersφ, ε and
δ, in addition ton. We will assume eachSj [i] can be stored
in one computer word, as is standard. All the space bounds
we state below are in terms of the number of words.

D. Online and Offline Versions

We now discuss different settings of this problem, depend-
ing on how and when the deltoids are required to be found. In
the Offline model, streams of data are seen separately (perhaps
even in different locations) and are processed to retain only a
small summary of the stream. Then at some point a query is
made of two (or more) streams to find the deltoids between
these streams. This is the basic problem that we address in
this paper, and in some ways it is the most challenging since
the summaries of the stream must include enough information
to efficiently recover the identities of the deltoids—we have
ruled out solutions that rely on enumerating all possible item
identifiers.

In the Online model, first one stream is seen and prepro-
cessed. Then others are observed, and it is required to find
the deltoids between these streams and the previous one. This
differs from the Offline model, since the stream pairs are
known to us in advance, and so it is possible to make use of
the sequence of item identifiers to query our data structures as
the later streams are seen. In this scenario we only require that
the deltoids be output after all streams have been processed;
thus any solution to the Offline problem can also be used
to solve this Online problem. A more general problem is to
continuously maintain a set of deltoids between the previous
stream and the currently observed prefix of the new stream.
We do not directly address this problem here, but observe that
the methods we describe are capable of being adapted to solve
this problem by periodically querying the data structures.

III. R ELATED WORK

There has been some recent work on finding various
deltoids. A significant contribution [25] proposes a set of
methods to find changes in network data, and we discuss this
work in greater detail in Section VI. Much of their work
is complementary to ours, since they propose a variety of
“prediction methods” to compare the observed counts against
predictions based on past observations. When there is a signifi-
cant (absolute) difference between the count and the predicted
count, the item is output. Throughout this work we assume
the simplest prediction model: comparing the value of each
item to its value in another time period or in another location.
But the prediction methods proposed in [25] are based on
linear transformations of previous readings (average, weighted
average, etc.) and so can be applied here by performing the
same transformation on the values stored in the test data
structures. However, a different method is proposed for finding
the items that are changed, based on building sketches of the
data as it is observed. The methods describe here not only
solve the absolute difference problem considered in [25], but
also apply to the relative and variational cases.

Similarly, in [6], the authors considered the problem of
finding absolute deltoids, but their method took two passes

5

over the data. In contrast, our result here finds absolute deltoids
in one pass, making them applicable to live network data. The
authors in [6] explicitly left finding relative deltoids on data
streams as an open question; this problem is also explicitly
stated in the context of web search traffic as an open problem
in [22] where it is called the problem of top gainers and losers.
In this paper, we give the first solution to the problem of
finding relative deltoids.

The problem of finding absolute deltoids was also studied
in a recent paper [14] where the authors consider reporting
“compressed deltas” which may be thought of as “hierarchical
absolute deltoids” from Section VIII.3 The authors propose
algorithms based on finding heavy hitters in each stream and
using that to prune the search space for finding absolute
deltoids. The pruning is done either in multiple passes, or
by using the candidates from one stream to search the other.
These approaches do not give a provable guarantee on the
quality of absolute deltoids that are reported, as we are able to
do. However, [14] highlights the challenges of network traffic
data analyses we address, and a good discussion of the issues
and difficulties.

A number of results are known which are somewhat related
to ours. For example, various norm aggregates of differences
have been studied in the data stream context includingL1

norm [18], Hamming norm [7], etc. These methods provide
estimates of the norm, say sum total of the differences, but do
not explicitly determine the items that have large differences.

Combinatorial group testing (CGT) has a long history [13]
because it has myriad applications. CGT is inherent in small
space algorithms from learning theory [26] as well as data
stream algorithms for finding histograms and wavelets [20].
The problem of finding heavy hitters was addressed in [15]
where an item was a heavy hitter if it exceeds a fixed threshold.
More recently, we used CGT for finding heavy hitters in data
streams [10] for database scenarios where items are inserted
and deleted. Our work here extends this approach substantially
by introducing different group tests to find different deltoids,
thereby deriving powerful new results as well as making it a
general framework with many applications.

The area of data streams—designing algorithms that use
small space, handle updates rapidly, and estimating differ-
ent quantities of interest—has become popular in database
research, networking and algorithms. There have been tutori-
als [19], [31], workshops [2] and surveys [5], [29]. Our results
add to the growing set of techniques in this area.

IV. A LGORITHMIC FRAMEWORK

Our solutions are based on Group Testing. The underlying
principle is to make use oftestswhich, given a subset, orgroup
of items, tell us whether there is a deltoid within the group.
In general, the test may err with some probability, and so we
will need to bound the chance of false positives (including an
item which is not a deltoid in the output) and false negatives
(failing to include a deltoid in the output).

3In the same papers, the authors talk about “relative changes”, however,
this is distinct from our notion of relative deltoids, and corresponds to our
scaling by a factor ofα, as described in Section VIII

Our Non-Adaptive Group Testing Procedure is divided into
two parts: identification, to find a set of “candidates” which
should include all deltoids, andverification, which removes
items from the set of candidate items which are not deltoids.
For each part we keep a data structure, which consists of sets
of “Test” data structures: as items arrive, they are included in
appropriate test data structures, as described below. All our
procedures will use essentially the same structure of groups;
what will vary is the tests that are used. We will first describe
this structure and how it is used. In the next section, we will
describe how to make tests for deltoids.

A. Identification

Group Structure. The groups are subsets of the items, defined
by pairwise independent hash functions [28]. Given approxi-
mation factorε and failure probabilityδ, choosetid = log 1

δ
such hash functionsh1... log 1

δ
: {0 . . . n − 1} → {1 . . . g}.

Here g is the number of groups, to be specified later. Set
Ga,b = {i|ha(i) = b}.

Tests.Within each group keep1+log n data structuresTa,b,c.
This allows us to pose tests on the items in the group. The data
structure will depend on the nature of the difference we are
trying to detect and will be specified later; for now, assume that
each test reports whether there is a deltoid in the group. Let
Bc denote the set of integers whose binary representation has
a 1 in thecth bit position forc = 1 . . . log n; for convenience
of notation, letB0 = {0 . . . n− 1}. ThenTa,b,c applies to all
items in Ga,b ∩ Bc. We will assume that the tests here are
linear: that is, the tests are a linear function4 of the data. Let
T ′

a,b,c denote the complement ofTa,b,c: Ta,b,c reports whether
there is a deltoid inGa,b ∩ Bc, and T ′

a,b,c reports whether
there is a deltoid inGa,b\Bc. By linearity of the test function,
T ′

a,b,c = Ta,b,0−Ta,b,c. Finally, for some testT , let |T | denote
the outcome of the test:|T | = 1 means that the test returned
positive, and|T | = 0 otherwise.

Group Testing for Identification. In order to find the deltoids
betweenSj and Sk, we will need to combine the test data
structures for each stream,Ta,b,c(j) and Ta,b,c(k) to get
Ta,b,c(j, k). How this achieved will vary from test to test; from
now on, we will treat the tests as black box objects which
report whether there is a deltoid within the subset that the test
is operating on. We then apply the following procedure:

• For each groupGa,b, if |Ta,b,0(j, k)| = 0, conclude that
there is no deltoid in the group, and go to the next group.

• Otherwise, use the results of the other tests for that
group to identify the deltoid. For each value ofc, if
|Ta,b,c| = |T ′

a,b,c| then either both are negative, and there
is no deltoid in the group after all, or both are positive,
and there are two or more deltoids in the same group. In
both these cases, reject the groupGa,b.

• Otherwise, if|Ta,b,c| = 1 then the deltoidi ∈ Bc so it has
a 1 in thecth bit position; else|T ′

a.b.c| = 1 and soi has
0 in the c bit position. So the full binary representation
of i can be recovered.

4f is a linear function if it satisfiesf(x+y) = f(x)+f(y) andf(ax) =
af(x) for all x andy in the domain of the function, and for all scalarsa.

6

• If the group is not rejected, then some itemi is found
and so it is added to the set ofcandidate items, which
are believed to beε-approximateφ-deltoids.

B. Verification

In practice, the tests will not be perfect, but will themselves
have some probability of failure, which can lead to false
positives. Some simple checks can be made to avoid this.
Having found an itemi ∈ Ga,b which is believed to be a
deltoid, a first “sanity check” is to check thatha(i) = b; if not,
then clearly the tests erred, and the item should be rejected. To
give good guarantees about the items that are found, we will
additionally keep a Verification data structure. This closely
resembles the Identification structure, but is constructed with
different parameters.

Groups and Tests.Using the same parametersε and δ, we
choosetver = 4 log 1

δ new hash functionsf1 . . . f4 log 1/δ :
{1 . . . n} → {1 . . . v} from a family of pairwise independent
hash functions This time we keep just a single test data
structure for each group,Va,b. The tests and number of groups
are chosen so the probability that each test errs is at most1

8 .

Group Testing for Verification. For each candidate item,
compute the groups that it falls into in the verification data
structure. For each of these groups, compute the test outcome,
and take the majority vote of these tests (positive or negative)
as the overall result for the item. If the item is positive, include
it in the output as anε-approximateφ-deltoid.

Theorem 1: If the probability that each testVa,b gives the
wrong answer is at most18 , then

i ∈ Deltoids⇒ Pr[(
∑4 log 1

δ
a=1 |Va,f(i)|) < 2 log 1

δ] < δ

i 6∈ Deltoids⇒ Pr[(
∑4 log 1

δ
a=1 |Va,f(i)|) ≥ 2 log 1

δ] < δ
Proof:

i 6∈ Deltoids⇒ E((
∑4 log 1

δ
a=1 |Va,f(i)|) = 1

2 log 1
δ . So

2 log 1
δ = 4E((

∑4 log 1
δ

a=1 |Va,f(i)|). By Chernoff bounds [28],

Pr[(
∑4 log 1

δ
a=1 |Va,f(i)|) ≥ 2 log 1

δ] < δ. The other case is
symmetric.

Consequently, given this set up we can be sure that each
item passed by the identification and verification stages has
probability at mostδ of not being a deltoid. Similarly, every
deltoid has probabilityδ of not being passed by the verification
stage. We are free to setδ to be arbitrarily small, and the
dependence onδ is fairly weak.

C. Update Procedure

The full update procedure for the Combinatorial Group
Testing is

• Read new itemi with traffic p (bytes, packets or flows).
• For a = 1 to tid do

– For c = 0 to log n do

∗ If i ∈ Bc, updateTa,ha(i),c with p

• For a = 1 to tver do

– UpdateVa,fa(i) with p

The running time is thereforeO(tver + tid log(n)) test
updates per item in the stream. For tests which take constant
time to update (as is the case for all tests we consider here),
then this cost isO(log(n) log 1

δ). This meets our requirement
of being fast to update. For each kind of deltoid, we will
additionally show that the overall space requirements are also
low.

Choosing a Threshold.We must choose the threshold for
an item being a deltoid. Each of the tests that will introduce
will involve comparing a numeric quantity toφ

∑
i D[i], a

fraction of the total difference. So in particular we need to
know

∑
i D[i] to be able to make the test. For each test, we

will show how to find this quantity exactly, or give a good
approximation.

V. FINDING DELTOIDS

A. Absolute Deltoids

For absolute deltoids, each test data structure is simply a
single variable, summing the total count of all items covered
by the test:

Ta,b,c =
∑

i∈Ga,b∩Bc
Sj [i].

This data structure is clearly linear and straightforward to
maintain under updates: when an update to itemi of p arrives,
just addp to all countersTa,ha(i),c. We define the combination
of test for streamsj andk as:

Ta,b,c(j, k) = |Ta,b,c(j)− Ta,b,c(k)|

|Ta,b,c(j, k)| = 1 ⇐⇒ Ta,b,c(j, k) > φ||Sj − Sk||1

We set the number of groups in the identification procedure
to be g = 2

ε and for the verificationv = 8
ε . The following

lemma shows that we have constant probability of finding each
deltoid in each group that it is counted in.

Lemma 1: i ∈ Deltoids⇒

∀a : Pr[∀c : (|Ta,ha(i),c(j, k)| = 1 ⇐⇒ i ∈ Bc)
∧ (|T ′

a,ha(i),c(j, k)| = 1 ⇐⇒ i 6∈ Bc)] ≥ 1
2

Proof: If i ∈ Deltoids, suppose for somea
|Ta,b,0(j, k)| = 0 (a false negative), then (by definition)

|D[i]| > (φ + ε)||Sj − Sk||1 ∧ |
∑

x∈Ga,b

D[x]| < φ||Sj − Sk||1

So |Ta,b,0(j, k)| = 0⇒ |
∑

x6=i,x∈Ga,b

D[x]| > ε||Sj − Sk||1.

Let the random variable5 Xi =
∑

x6=i,x∈Ga,b
|D[x]|. For all c,

i ∈ Deltoids ∧Xi < ε||Sj − Sk||1 ⇒

(i ∈ Bc ⇒ Ta,b,c(j, k) ≥ D[i]−Xi > φ||Sj − Sk||1) ∧
(i 6∈ Bc ⇒ Ta,b,c(j, k) ≤ Xi < φ||Sj − Sk||1)

⇒ |Ta,b,c(j, k)| = 1 ⇐⇒ i ∈ Bc;

5This is random variable depending on the random choice of the hash
function h from the set of pairwise independent hash functions.

7

the case fori 6∈ Bc is symmetric withT ′ replacingT . Since
|
∑

x∈Ga,b
D[x]| ≤ Xi:

Pr[|
∑

x∈Ga,b

D[x]| < ε||Sj − Sk||1] ≥ Pr[Xi < ε||Sj − Sk||1].

By the pairwise independence of the hash functions,
E(Xi) = ε

2 ||Sj − Sk||1, and by the Markov inequality,

Pr[Xi < ε||Sj − Sk||1] = Pr[Xi < 2E(Xi)] >
1
2
.

This means that for each Identification group that each
deltoid falls in, there is a constant probability that all tests
give the correct output, and so consequently we can identify
it. Since each deltoid falls inlog 1

δ groups, then the probability
that it is not detected in any of them is less than2

1
δ = δ, so

the probability that itis found is at least1− δ.
Lemma 2: i ∈ Deltoids ⇒ Pr[|Va,fa(i) = 0] < 1

8∧ i 6∈
Deltoids⇒ Pr[|Va,fa(i) = 1] < 1

8
Proof: The proof is similar to the previous lemma:

i ∈ Deltoids⇒ Pr[|Va,fa(i)(j, k)| = 0]
≤ Pr[

∑
x6=i,x∈Ga,fa(i)

|D[x]| > ε||Sj − Sk||1]
< 1

8 by the same argument as above.

i 6∈ Deltoids⇒ |D[i]| < (φ− ε)||Sj − Sk||1
⇒ Pr[|Va,fa(i)(j, k)| = 1]
≤ Pr[

∑
x6=i,x∈Ga,fa(i)

|D[x]| > ε||Sj − Sk||1]
< 1

8

So the probability of each test erring is at most1
8 , and

applying Theorem 1 gives the result that each deltoid is passed
by the Verification stage with probability1 − δ while non-
deltoids are rejected with probability1− δ.

Setting a Threshold. To set the threshold for searching for
absolute difference deltoids, we need to compute||Sj − Sk||1.
This can be accomplished by keeping an additional “sketch”
structure for each stream and combining them to make a good
quality approximation of theL1 difference of the two streams.
Such techniques are well documented in the literature for
example in [18], [23].

Theorem 2: Eachε-approximate absolute deltoid is found
by the above algorithm with probability at least1 − δ.
The space required for finding absolute difference del-
toids is O(1

ε log(n) log 1
δ). The time to update the tests is

O(log(n) log 1
δ) per item in the stream, and the expected time

to find deltoids isO(1
ε log(n) log 1

δ).

B. Variational Deltoids

To find items with the highest variational difference, we first
describe how to build a test for finding items which are large
in their squares, and then show how to adapt this to finding
high variance items. The test construction for variations is
more complex, and is based on the “sketch” described by
Alon, Matias and Szegedy [4]. Naively, we could keep a
full sketch for each test, but this would blow up the space
and time to process each item. Here, we show that keeping
a single counter for each test is sufficient to find deltoids.

We also crucially rely on the linearity properties of the tests
derived from these sketches. For each hash functionha :
{0 . . . n − 1} → {1 . . . d

ε2 } which divides items into groups
(with d to be specified later), we additionally keep a second
hash functionza which is drawn from a family of 4-wise
independent hash functions mapping the items{0 . . . n − 1}
uniformly onto{+1,−1}. For each group, compute

Ta,b,c =
∑

i∈Ga,b∩Bc

Sj [i]za(i).

Again, this is easy to maintain this whenSj is presented as
an unaggregated stream of values (ie, the cash register model
described in Section II-C), since for each update we just have
to add the update multiplied byza(i) onto Ta,hai,c for all
values ofa andc.

Lemma 3: For each group that itemi falls in, T 2
a,b,c is a

good estimate forSj [i]2: with probability at least 2d
(d−1)2 , then

|T 2
a,b,c − Sj [i]2| < ε||Sj ||2.

Proof: The analysis proceeds in a similar way to that
given in [4]. Let Ii,x be an indicator variable so thatIi,x =
1 ⇐⇒ (ha(x) = ha(i)), and 0 otherwise. By the indepen-
dence properties ofza, the expectationE(za(i)za(x)) = 0 for
i 6= x, and is always 1 otherwise. The expectation ofT 2

a,b,c is

E(T 2
a,b,c) = (Sj [i]za(i) +

∑
x6=i Ii,xSj [x]za(x))2

= Sj [i]2 +
∑

x6=i E(2Sj [i]za(i)Ii,xSj [x]za(x))+∑
x,y 6=i E(za(x)za(y)Ii,xIi,ySj [x]Sj [y])

≤ Sj [i]2 + 0 + ε2

d ||Sj ||22
= Sj [i]2 + ε2

d ||Sj ||22

Similarly, the variance,Var(T 2
a,b,c) is at most 2ε2

d ||Sj ||42.
Consider the probability thatT 2

a,b,c is not a good estimate of
Sj [i]2: then the difference between the two quantities is more
than ε||Sj ||22. By applying the Chebyshev inequality, and the
fact thatε < 1:

Pr[|T 2
a,b,c − Sj [i]2| > ε||Sj ||22]

≤ Pr[|T 2
a,b,c − Sj [i]2 − ε2

d |Sj ||22| > ε(1− ε
d)||Sj ||22|]

< Pr[|T 2
a,b,c − E(T 2

a,b,c)| >
(d−1)ε

d ||Sj ||22]

<
d2Var(T 2

a,b,0)

(d−1)2ε2||Sj [i]||42
= 2d

(d−1)2

The condition for Variational Deltoids can be re-written in
terms of sums of squares. The contribution to the variance of
item i from the ` streams is given by

σ2[i] =
∑̀
j=1

(Sj [i]− µ[i])2; µ[i] =
∑̀
k=1

Sk[i]
`

By the linearity of the test function we can compute a single
estimate for thejth term in this sum,σ2(j)[i] as(Ta,b,c(j)−∑`

k=1 Ta,b,c(k)/`)2. Denote the total variance of all items,∑
i σ2[i] asσ2(`).
For the test for variational deltoids, setg = 6

ε2 , v = 18
ε2 , and

Ta,b,c(`) =
∑̀
j=1

(
Ta,b,c(j)−

∑̀
k=1

Ta,b,c(k)
`

)2

|Ta,b,c(`)| = 1 ⇐⇒ Ta,b,c(`) > φσ2(`).

8

Lemma 4: i ∈ Deltoids⇒
∀a, c : Pr[(|Ta,ha(i),c(j, k)| = 1 ⇐⇒ i ∈ Bc)

∧ (|T ′
a,ha(i),c(j, k)| = 1 ⇐⇒ i 6∈ Bc)] > 1

2

Proof: For i ∈ Deltoids and anya andc, let b = ha(i).
Assume thati ∈ Bc (the other case is symmetric). Hence, by
Lemma 3 withd = 6 and using linearity of expectation with
the fact the variance of the estimator is bounded by the sum
of the variances, then

Pr[|Ta,b,c(`)− σ2[i]| > εσ2(`)] <
12
25

<
1
2
.

Sincei ∈ Deltoids⇒ σ2[i] ≥ (φ + ε)σ2(`), then

i ∈ Bc ⇒ Pr[|Ta,b,c(`)| = 1] = Pr[Ta,b,c(`) ≥ φσ2(`)]
≤ Pr[|Ta,b,c(`)− (φ + ε)σ2(`)| ≥ εσ2(`)] < 1

2

using the above. For the other direction, assumei 6∈ Bc. Since
i is not in this group, then effectivelyσ2[i] = 0 for this group.
Then by Lemma 3 again, and using the fact thatε ≤ φ, it
follows that

i 6∈ Bc ⇒ Pr[|Ta,b,c(`)| = 1] = Pr[Ta,b,c(`) ≥ φσ2(`)]
≤ Pr[|Ta,b,c(`)− 0| ≥ εσ2(`)] < 1

2

Hence, amplifying the probability bylog 1
δ repetitions, there

is probability at least1− δ that each deltoid will be found.
The probability of failure of the Verification tests is less than

1
8 , by again observing that the expectation of each verification
test is a function of the variance of the itemi, σ2[i], and by
substitutingd = 18 into Lemma 3, giving the probability of a
good estimate to be36172 < 1

8 . So deltoids passall Verification
tests with probability at least1 − δ, while non-deltoids are
passed with probability at mostδ.

Computing a Threshold. In order to set the threshold based
on φσ2, we need to knowσ2 itself. This can be done by
making an appropriate sketch data structure, but it turns out
that the data structure that we want to make is precisely that
of the Verification tests: an unbiased estimator forσ2 is

mediana

∑
b

∑̀
j=1

(
Va,b(j)−

∑̀
k=1

Va,b(k)
`

)2
 .

Theorem 3: Each ε-approximate variational deltoid is
found by the above algorithm with probability at least
1 − δ. The space required for finding variational del-
toids is O(1

ε2 log(n) log 1
δ). The time to update the tests is

O(log(n) log 1
δ) per item in the stream, and the expected time

to find deltoids isO(1
ε2 log(n)` log 1

δ).

C. Relative Deltoids

Finding relative deltoids gives an extra challenge, since it
entails approximating the ratio of values from large vectors,
which is known to require a large amount of space to do
accurately [9]. Instead, we use a slightly weaker notion of
approximate deltoids to make our guarantees, and in our
experimental work we will show that this approach is still
highly accurate. In order to find items with large relative
difference, we need to transform one of the streams. Thus

this method does not work in the general cash register model,
but requires that one of the streams be aggregated. This still
permits the tests for one of the streams to be computed on live
data as it arrives, and deltoids found between this stream and
any one for which the tests have been pre-computed. LetS1/k

be the (aggregated) stream whoseith entry isS1/k[i] = 1
Sk[i] .

Finding items with large relative difference means finding an
item i so thatD[i] = Sj [i]∗S1/k[i] is large, relative to

∑
i D[i].

We shall refer to this “inverted” stream byS1/k or just 1/k.
We chooseg = 2

ε and v = 4
ε as for absolute differences and

set

Ta,b,c(j) =
∑

i∈Ga,b∩Bc

Sj [i] ; Ta,b,c(1/k) =
∑

i∈Ga,b∩Bc

S1/k[i].

Tests are combined byTa,b,c(j, 1/k) = Ta,b,c(j)∗Ta,b,c(1/k)

|Ta,b,c(j, 1/k)| = 1 ⇐⇒ Ta,b,c(j, 1/k) > φ
∑

i

Sj [i]
Sk[i]

.

Ta,b,c(j) is the same as in the absolute deltoid case, and so
is easy to compute and maintain as new values are seen in the
stream. Here, our notion of deltoids is slightly weaker: we set
i to be anε-approximateφ-deltoid by the rules:

D[i] ≥ φ(
∑

i D[i]) + ε||Sj ||1||S1/k||1 ⇒ i ∈ Deltoids
D[i] ≤ φ(

∑
i D[i])− ε||Sj ||1||S1/k||1 ⇒ i 6∈ Deltoids

Lemma 5: i ∈ Deltoids⇒
∀a, c : Pr[(|Ta,ha(i),c(j, 1/k) = 1 ⇐⇒ i ∈ Bc)]

∧ (|T ′
a,ha(i),c(j, 1/k) = 1 ⇐⇒ i 6∈ Bc)] ≥ 1

2

Proof: For any a, c and i ∈ Deltoids, let b = ha(i).
Again, assumei ∈ Bc, since the other case is symmetric.
With absolute certainty,

i ∈ Bc ⇒ Ta,b,c(j) ∗ Ta,b,c(1/k)
= (

∑
x∈Ga,b

Sj [x])(
∑

x∈Ga,b

1
Sk[x])

≥ Sj [i]
Sk[i] = D[i] ≥ φ

∑
i D[i]⇒ |Ta,b,c(j, 1/k)| = 1

However, we also need to show that with constant proba-
bility |T ′

a,b,c(j, 1/k)| = 0, which is a little more involved.

i ∈ Bc∧(Ta,b,0(j, 1/k)−Sj [i]/Sk[i]) < ε||Sj ||1||S1/k||1 (1)

⇒ T ′
a,b,c(j, 1/k) = (

∑
x∈Ga,b/Bc

Sj [x])(
∑

x∈Ga,b/Bc
S1/k[x])

≤ (
∑

x∈Ga,b
Sj [x])(

∑
x∈Ga,b

S1/k[x])− Sj [i]/Sk[i]
< ε||Sj ||1||S1/k||1 ⇒ |T ′

a,b,c| = 0

So, we show that the probability of (1) is at least a constant.
As before, we define some derived random variables:

Ii,x = 1 ⇐⇒ ha(i) = ha(x); Ii,x = 0 ⇐⇒ ha(i) 6= ha(x)
Yi = Ta,b,0(j, 1/k)− Sj [i]/Sk[i]

Then E(Yi) = E((Sj [i] +
∑

x Ii,xSj [x]) ∗ (1/Sk[i] +∑
y Ii,y1/Sk[y])− Sj [i]/Sk[i]) ≤ 1

g ||Sj ||1||S1/k||1.
Then the probability of (1) is given by

Pr[Yi < ε||Sj ||1||S1/k||1)] >
E(Yi)

ε
||Sj ||1||S1/k||1 =

1
εg

.

Sinceεg = 2, the result follows.
As in previous cases, the fact that each deltoid is inlog 1

δ
groups, the overall probability of finding it is1− δ.

9

Lemma 6:(i ∈ Deltoids⇒ |Va,b| = 1)∧(i 6∈ Deltoids⇒
Pr[|Va,b| = 1] ≤ 1

8).
Proof: The first part follows immediately from the proof

of the previous lemma. For the second part, we use the same
variableYi from the above proof. Then

i 6∈ Deltoids⇒ Pr[|Va,b| = 1]
= Pr[Yi + Sj [i]/Sk[i] > φ

∑
i D[i]]

≤ Pr[Yi > ε||Sj ||1||S1/k||1] ≤ 1
εv = 1

8

using the Markov argument above.

Computing a Threshold. The threshold isφ
∑

i D[i], which
can also be approximated using sketch computations [3], [11].

Theorem 4: Eachε-approximate relative deltoid is found by
the above algorithm with probability at least1− δ. The space
required for finding absolute deltoids isO(1

ε log(n) log 1
δ).

The time to update the tests isO(log(n) log 1
δ) per item

in the stream, and the expected time to find deltoids is
O(1

ε log(n) log 1
δ).

VI. SKETCH BASED METHODS

Recent work in [25] addresses the question of finding
significant differences between streams by use ofsketches.
This is essentially the problem of finding (absolute) deltoids
between a new stream and a linear combination of previous
streams based on a variety of prediction models. The use
of sketch data structures is functionally equivalent to our
Verification tests: the sketch summarizes the streams that have
been seen so far, and answers the question given an itemi, is
i a deltoid?6

As discussed in [25] an issue arises of how to extract
the identies of the deltoids. The method requires a stream
of item identifiers—“keys” in the terminology of [25]—to
probe the data structure. But all streams must have been seen
already to build the data structure before it is possible to
get accurate answers from it. In particular, computing the
threshold accurately requires that all the streams have been
seen. We reject the approach of exhaustively listing every item
identifier as too time consuming even for query time. Similarly,
storing all observed item identifiers and querying just these is
too costly in space terms. A solution suggested in [25] is to
use subsequent items in the stream, after the data structure
has been built, to query it and test whether those items are
deltoids. This approach can therefore only work in our online
model—that is, deltoids can only be found between a ‘live’
stream and previously seen ones—since we rely on having the
live stream to generate item identifiers to query.

It is not possible to give any guarantees about the perfor-
mance of this algorithm, unlike the group testing approach.
This is because there are some cases where the algorithm
simply will not be able to find certain deltoids, even with
the correct threshold. Consider a very active client that goes
offline between readings. Then no traffic will be seen from
that client in the new stream, compared to many from the

6In fact, it gives a stronger result, and approximatesD[i], so that the
significance of the deltoid is also captured. This is a useful property of
both approaches, but one we do not focus on in this work on identifying
the deltoids.

old stream, and so it should be considered a (relative or
absolute) deltoid. However, since no traffic is observed from
that client, then no queries are made for its identifier, and
so it is not included in the output. One could attempt to
“define the problem away”—choose a definition of deltoids
so that these instances are not included in the count. For
example, the situation described above constitutes a large
relative decrease in the traffic of the client. If we only sought
relative increases, then by definition the identity of any item
with a large relative increase would appear in the live stream,
and so it would be detected. However, in many situations these
decreases are of significant interest, and cannot be ignored.
It is not immediately clear how significant an omission these
constitute. As we observe in our experiments on real data sets,
a significant fraction of deltoids are of this form, thus sketch
based methods face a strong limit on their overall accuracy in
many realistic situations.

With these caveats in mind, we give the sketch-based
algorithm for finding absolute deltoids:

• Read new itemi from first stream with trafficp
• For a = 1 to tver do

– UpdateVa,fa(i) with +p

to process the first stream and then

• Read new itemi from second stream with trafficp
• For a = 1 to tver do

– UpdateVa,fa(i) with −p

to process the second stream. Finally, to extract the deltoids,
we read items from the continuation of the streams:

• Read new itemi from the live stream
• UseVa,fa(i) to test if D[i] > φ

∑
i D[i], if so, keepi in

a heap of potential deltoids.
• After sufficient items have been seen, output eachi in

the heap

Note that the above approach economizes on space by
keeping a single verification data structure for both streams
instead of one for each. In [25], the authors considered large
absolute differences between observed and predicted behavior.
Here, we extend this (through the use of the verification data
structures defined in the previous section) to relative and
variational changes: replace the data structure for verifying
absolute deltoids with one for variational or relative deltoids
as required, and update the data structure in accordance with
its definition in the previous section.

Theorem 5:The sketch based approach usesO(1
ε log 1

δ)
space for absolute and relative deltoids, andO(1

ε2 log 1
δ) space

for variational deltoids in the offline case. Updates take time
O(log 1

δ) in all cases.

The guarantees we can give are the same as those for the
verification data structures, using Lemmas 2, 4 and 6:if an
(approximate) deltoid is queried, then we will include it in
the output with probability at least1 − δ, if a non-deltoid is
queried, then with the same probability we will not include it.
Therefore, the effectiveness of this method depends crucially
on whether the deltoids are queried.

10

VII. PRACTICAL IMPLEMENTATION AND STUDY

We implemented our methods in C and conducted a set
of experiments on a number of data sets, varying the param-
eters ε and δ. We compared to the sketch based approach
described above, using our verification functions to implement
the sketches. We computed the space used by the group testing
methods, and allocated the same space for the sketches. In
order to test the accuracy of the methods in as fair a way
as possible, we computed the exact threshold, and queried
the sketch methods by “replaying” the second stream to
generate a sequence of identifiers with which to probe the
data structure. The idea is that this simulates the continuation
of a traffic pattern with the same distribution from which keys
are drawn to query the sketches. This seemed as optimistic
a set of conditions as possible for the sketch methods. In
the experiments in [25], the authors took two passes over all
input data streams, the first to build the data structure and
compute the threshold, and the second to query it using the
item identifiers. This seems too generous in our scenario when
we expect the later streams to have different distributions to
the earlier streams.

We also implemented two of the alternate “naive” solutions
described in Section II-A, the sampling solution, and the
heuristic of storing the heavy hitters (most frequent items)
from each stream, and computing deltoids based on the
difference between the heavy hitters for each stream. For
our experiments we also exhaustively computed the “exact”
deltoids for each data set, so that the output of our approximate
methods could be compared to this and evaluated. To make an
evaluation of the results, we computed the standard measures
of precision and recall of exact φ-deltoids: precision is the
fraction of the items returned that were correct, giving a
measure of the number of false positives, and recall is the
fraction of the exact deltoids that were found, giving a measure
of the number of false negatives. These measures range from
0 to 1, and ideally they should both be 1. The experiments
were conducted on a lightly loaded Wintel 2.4GHz machine
with 512Mb of RAM.

The data sets we analyzed were drawn from a variety of
network scenarios:

• lbl-conn7 is a data set obtained from the Internet Traffic
Archive [1], [30]. It consists of a record of wide-area
connections taken over a thirty day period, totaling three-
quarters of a million records. To study absolute and
relative differences, we split the trace into two pieces
covering the first and second halves of the time period.
For variations, we split it into seven equal sized periods.
We looked at differences in the number of bytes going to
destination IP addresses.

• phone is a stream of 2.2 million phone calls which were
captured during a single afternoon. We also split this
stream in the middle to examine the difference in calling
patterns in the first half compared to the second. In order
to partially anonymize the data, only the area code and
local exchange of the caller and destination (eg 212-555)
were retained. This has the effect of aggregating over
local areas. We looked at differences in the number and

duration of calls between pairs of exchanges.
• snmp consists of two streams of SNMP data recording all

traffic over two related links in an eight day period. We
compared the absolute and relative differences between
the traffic sent on the links, and the variational differences
within each link over the same time periods on each of
the eight days. Even though the rate of generation of
SNMP data is much smaller than packet or flow records,
nevertheless, it is useful to see the deltoids in this data
source over time.

A. Experiments with Standard Approaches

When we tested the quality of sampling and then computing
on the sampled data, we found that if the sampling rate was
large, say sampling and storing each update with probability
1
5 to 1

10 , then sampling gave a good approximation of the
correct answer. However, the group testing method stores an
amount of space that is essentially constant—it depends only
on the parametersε andδ, and not on the size of the stream.
In order to make a fair comparison between our method and
sampling, we computed the space used by our method, and set
the sampling frequency to be such that the space used by the
sample was the same as our method. So we have plotted the
precision and recall of our method for varyingε, and plotted
the results for sampling with the same space at corresponding
x values. In each step, we multiplyε by a constant factor. By
doing this, we see that sampling is generally inferior to group
testing given equivalent space.

B. Absolute Deltoids Experiments

We conducted several experiments to determine the right
settings of parametersε and δ to balance accuracy with time
and space consumption. We discovered that our group testing
method significantly outperformed thea priori worst case
guarantees given in Section V. In particular, we found that
the system output very few false positives even with the
Verification stage bypassed. We also found that we could set
ε and δ to quite high values and still achieve near perfect
precision and recall.

Figures 2 (a) and (b) show the precision and recall on
lbl-conn7. In our experiments on all data sources we found
that there were almost no items whose difference consumed
a very large fraction of the total difference (say, 10%). The
largest few deltoids have difference around 5%, and there are
typically around twenty in the range 1% to 0.5%. For our
experiments, we set the thresholdφ to be0.1%, meaning there
were between 100 and 200 deltoids. Interestingly, many of the
absolute difference deltoids, the largest few included, were
items whose difference was between a moderately large item
in the first stream and a larger value in the second, meaning
that they were distinct from the relative difference deltoids.
As in most of our experiments, group testing achieved near
perfect precision throughout, with little variation.

Our experiments with sketches also achieved high precision
(throughout, we settver for the sketches to be 5, equivalent
to δ = 0.03). However, recall does not improve beyond 0.8.
This is because nearly 20% of the deltoids do not appear in

11

Precision of Absolute Deltoids
 on lbl-conn7 data, phi=0.1%, delta=0.5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.310% 0.180% 0.100% 0.056% 0.031% 0.018% 0.010%
Epsilon

Pr
ec

is
io

n

Group Testing

Sampling

Sketch Based

Recall of Absolute Deltoids
 on lbl-conn7 data, phi=0.1%, delta=0.5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.310% 0.100% 0.031% 0.010% 0.003%
Epsilon

R
ec

al
l

Group Testing

Sampling

Sketch Based

Recall of Absolute Deltoids on phone data,
phi=0.1%, varying delta

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.310% 0.100% 0.031% 0.010% 0.003%
Epsilon

R
ec

al
l

Delta

0.063

0.125

0.250

0.500

(a) (b) (c)

Fig. 2. Experiments on finding Absolute Deltoids

Precision of Relative Deltoids on phone data,
phi=0.1%, delta=0.25

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.100% 0.063% 0.040% 0.025% 0.016% 0.010%
Epsilon

Pr
ec

is
io

n

Group Testing

Sampling

Sketch based

Recall of Relative Deltoids on phone data,
phi=0.1%, delta=0.25

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.100% 0.063% 0.040% 0.025% 0.016% 0.010%
Epsilon

R
ec

al
l Group Testing

Sampling
Sketch Increasing
Sketch Decreasing

Recall of Relative Deltoids from SNMP data,
phi=0.05%, varying delta

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1000% 0.0631% 0.0398% 0.0251% 0.0158% 0.0100%

Epsilon

R
ec

al
l

Delta

0.063

0.125

0.250

0.500

(a) (b) (c)

Fig. 3. Experiments on finding Relative Deltoids

the second stream which is used to query the data structure.
No amount of extra space allocated to the sketch will allow
these deltoids to be found, since there is no information that
allows their identifiers to be recalled.

Meanwhile, for the group testing approach, recall improves
as ε is shrunk, and reaches the optimal value aroundε =
φ
10 . Figure 2 (c) shows the effect of varyingδ on recall for
phone data (precision was 1 throughout). We see that although
decreasingδ always improves recall, beyondδ = 0.25 the
effect is very small, meaning that it suffices to setδ = 0.25,
corresponding to two copies of the identification test.

C. Relative Deltoids Experiments

Finding relative difference deltoids turned out to be the most
challenging problem. Setting the right value ofφ is important
here: setφ too low and everything is a deltoid, set it too
high and there are no deltoids. It is therefore an important
feature of our method thatφ can be specified at query time:
only ε needs to be chosen in advance. The relative difference
deltoids were items which were moderately large in the first
stream, but whose count had dropped to zero or single digit
figures in the second stream. This makes them small signals
to find. In Figure 3 (a) and (b) we see that Group Testing
outperforms sampling over most settings ofε. Acceptable
results are obtained whenε = φ

3 , and perfect results by the
time ε = φ

10 .
Again, we see failings of the sketch based approach. When

searching for relative increases (meaning that the item iden-
tifiers of the deltoids must be present in the second stream)
then almost all of these deltoids are recalled correctly. But
in the relative decreases case, then a majority of the deltoids

do not occur at all in the second stream, meaning that again
the sketch method does not query these items, and so fails to
identify them as deltoids. This is precisely the case discussed
in Section VI, and shows that on realistic data sets such bad
cases can occur very frequently.

Figure 3 (c) shows the importance of choosing the right
parameters for group testing on certain data sets: on SNMP
data, if ε is not set low enough, then the recall is highly
variable, meaning that many deltoids are missed. A lowerδ
helps somewhat, and the phenomenon disappears whenε < φ

2 ,
meaning that it is vital to know approximate upper bounds on
φ for the traffic source of interest in order to choose a suitable
value ofε. In all our experiments, we found thatφ = 0.1% or
0.05% covered the top two hundred deltoids; more than this
is unlikely to be informative, and already this is stretching the
amount of information a network manager will want to see.

D. Variational Deltoids Experiments

The results for variational deltoids are shown in Figure 4.
Here, group testing performed very well: good results were
achieved even when settingε > φ. We conjecture that this is
partly due to the way in which variational deltoids are defined:
because they are based on the square of the deviation from
the mean, this means that deltoids have a significantly larger
difference than non-deltoids (as contrasted with the relational
case, where we found that the difference of deltoids was not
much different to the difference of non-deltoids, contributing
to the difficulty of getting perfect precision). Meanwhile, the
sketch based approach had near perfect precision throughout,
but lost out on recall once more because of items not present
in the later streams with which to query the data structure.

12

Precision of Variance Deltoids on lbl-conn7
data, phi=0.1%, delta=0.25

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1.00% 0.63% 0.40% 0.25% 0.16% 0.10%

Epsilon

Pr
ec

is
io

n

Group Testing

Sampling

Sketch based

Recall of Variance Deltoids on lbl-conn7 data,
phi=0.1%, delta=0.25

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1.00% 0.63% 0.40% 0.25% 0.16% 0.10%
Epsilon

R
ec

al
l

Group Testing

Sampling

Sketch based

Recall of Variance deltoids on SNMP data,
phi = 0.05%, varying delta

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.100% 0.040% 0.016% 0.006% 0.003% 0.001%
Epsilon

R
ec

al
l

Delta

0.063

0.125

0.250

0.500

(a) (b) (c)

Fig. 4. Experiments on finding Variational Deltoids

Timing Comparison for Detecting Different
Changes with Group Testing

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

0.500 0.250 0.125 0.063 0.031 0.016 0.008 0.004 0.002 0.001Delta

Items /
Second

Relative Change

Absolute Change

Variance

Fig. 5. Processing Rate of different methods asδ varies

Optimal results were achieved on the lbl-conn7 data set even
when settingε = φ. Figure 4 (c) shows that for variational
deltoids too, recall is improved by decreasingδ, but that even
for δ = 0.25 then optimal recall is achieved for a modest value
of ε relative toφ.

E. Space and Time Costs

We ran speed trials to determine whether our methods
were capable of operating at network line speeds. The results
were very encouraging. Our code was not fully optimized,
and included several routines for checking and supporting
output for the experiments, so we believe that an optimized
implementation running on dedicated hardware could improve
the throughput further. For each method, we computed how
many items per second the method could process (here, the
items were taken to be 32 bit IP addresses and packet sizes of
traffic from each address). The results are shown in Figure 5.
We study the effect of varyingδ on the item processing cost:
note thatε does not factor in the update time, only in the space
and query costs.

As expected, absolute and relative differences take about the
same time, since the update algorithms are almost identical.
For variational deltoids, we need to compute an additional
4-wise independent hash function; however, this additional
computation does not seem to have a disastrous impact in
the processing speed, and reduces the packet processing
throughput by an average of about a third. Since in our
earlier experiments, we saw that settingδ = 0.5 gives high
output quality, then we benchmark our system as capable of

Space Usage for Varying Epsilon and Delta

0.01

0.1

1

10

100

1.000% 0.316% 0.100% 0.032% 0.010% 0.003%

Epsilon

Sp
ac

e
/ M

B

Delta

0.063

0.125

0.250

0.500

Fig. 6. Space Usage asε Varies for Different Values ofδ

processing around 2 million items per second. This means
that it is easily capable of processing traffic rates on multiple
100Mbs links, and with some work then 1Gbps and higher
are within reach. According to our analysis, the sketch based
methods should be faster; in fact, in our experiments we found
that they ran at almost identical speeds. This is because the
group testing method computes a hash function to determine
which group an item belongs to, and then updatesO(log n)
counters based on this. However, these counters are clustered
in memory around the location of the first, so these can be
very quick to update once the first entry is bought into cache.
Meanwhile, the sketches compute a similar number of hash
functions, and so pay the same price per hash function to
evaluate it and access memory locations; the fact that only
a single location per hash function is accessed instead of
O(log n) seems not to affect the running time significantly.

The space usage was also reasonable. Figure 6 shows how
the space needed varies as a function ofε and δ. In our
previous experiments, we determined that the very highest
difference deltoids occur aroundφ = 5%, and so can be
found with very small space—say, around 10KB. For the
top ten or twenty deltoids, then settingφ = 0.5% sufficed,
meaning we need around 100KB to find them. To find the top
one hundred to two hundred deltoids, this corresponds to a
space requirement of between 500KB and at most 2 or 3MB
per stream (depending on the data distribution). In practice,
a network manager will only want to see the very highest
deltoids, or those which consume more than a small fraction
of the total bandwidth. The sketch based methods require less

13

space given the same values ofε and δ, by a factor oflog n,
and so can give a more compact solution at the expense of
omitting some of the deltoids.

VIII. E XTENSIONS

We consider a number of ways in which our work can be
extended.

• Comparing Different Time Windows, Speeds, Gran-
ularity and Prediction Models. Throughout this work,
we have assumed that pairs of streams represent the same
traffic volume, so that values for each item are compa-
rable. But we would also like to be able to compare,
say, the traffic in the last hour to the traffic in the last
week, or the traffic on a fast link to the traffic on a much
slower link. The solution is toscale all traffic linearly
so that the two streams have the same scaled traffic.
An important consequence of the linearity of the tests
in our algorithms is that such scaling byα can be done
by scaling all values stored in the tests byα. Similarly,
one can take our data structure for the interfaces and add
them to consider the total traffic per router or take that
for each hour and add them up to consider total traffic
per day, etc. because of this linearity; hence, our methods
work for different granularities. This also allows a wide
variety of predictive models to be tested. Comparing
the last hour to the current hour can be thought of a
prediction that subsequent hours should look similar. The
deltoids are the items which are behaving differently to
how they are predicted. Other prediction models—say, an
average of the last 24 hours, or an exponentially weighted
average—can be made by making the appropriate linear
combination of tests for the past data.

• Faster Implementation. Our current implementation is
fairly fast, but there are some improvements that may
speed up the stream processing for very high speed links.
First, we observed in the course of our experiments
that sampling at a sufficiently high rate (say, 10—20%)
preserves most of the deltoids. (The same is not true when
we sampled to1% or lower.) This suggests that if we first
sample the stream as it arrives, and pass only the sampled
items to the group testing, then this should still find most
deltoids, while increasing the capacity of the system by
a factor of 5–10. Another direction is to try to speed up
the update procedure itself. One reason that it could be
slow is that it considers a bit at a time of the index of the
item. At the cost of increasing the space used, we could
consider larger divisions: say, consider the index a byte at
a time, and keep 256 tests—one for each byte value. This
increases the space needed by a large factor—we need
256 tests per byte of the index, instead of 8—but results
in a theoretical speed up of a factor of 8. (Depending
on the environment, memory access issues mean that a
lesser speed up may be seen in practice).

• Multidimensional and Hierarchical Differences. We
have focused on solving the fundamental question of how
to find and detect single items which exhibit difference.
Our methods extend naturally to when the items are

multidimensional (so consider source and destination
address, instead of source or destination)—in fact, we
have already done this with the phone call data set in our
experiments when we combined source and destination
dimensions. Buthierarchicaldata such as the IP universe
presents a new challenge: here, the aim is to findprefix
deltoids which consumeφ of the total difference after the
contribution of any deltoids that share this prefix have
been discounted. This problem is described in greater
detail in [14]. We outline a solution to this problem, based
on the ideas inherent in [8]. We maintain a group testing
data structure for each of theh levels in the hierarchy.
When an item is inserted, its contribution is included in
the leaf level of the hierarchy, as before, but additionally
at every ancestor of it is inserted to the data structure
for that level. The search procedure then proceeds level
by level: first find all deltoids from the leaf level. These
should not be counted towards their ancestors, so using
the estimated count of the item from the Verification
data structure, we remove their contribution from the
structures of all ancestors, and iterate on the next level.
Full experimental evaluation of this approach is yet to
be carried out, and extended to hierarchies on multiple
dimensions.

IX. CONCLUDING REMARKS

We initiated the study of finding significant differences in
network data streams in one pass, so that network managers
can be kept up to date with “what’s new”. Our methods
require small amounts of memory and operate very quickly,
able to process millions of records per second on a stan-
dard desktop computer. Our solutions are all based on a
structure of Combinatorial Group Testing, which gives a
flexible framework for detecting any kind of difference, given
a suitable test definition. The structure can be used to find
absolute, relative and variational differences, between traffic
in different time periods, interfaces or routers. Different link
speeds can be compensated for, different prediction models
used, multidimensional data can be analyzed and there are
prospects for pushing the data rate to hundreds of millions of
packets per second. The result is a scalable, effective method
for monitoring and analyzing traffic usage patterns as part of
an ongoing network management task.

REFERENCES

[1] Internet traffic archive.http://ita.ee.lbl.gov/ .
[2] Workshop on management and processing of data streams (MPDS),

2003.
[3] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and

self-join sizes in limited storage. InProceedings of the Eighteenth ACM
Symposium on Principles of Database Systems, pages 10–20, 1999.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. InProceedings of the Twenty-
Eighth Annual ACM Symposium on the Theory of Computing, pages 20–
29, 1996. Journal version inJournal of Computer and System Sciences,
58:137–147, 1999.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. InProceedings of Symposium on
Principles of Database Systems, pages 1–16, 2002.

[6] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. InProcedings of the International Colloquium on
Automata, Languages and Programming (ICALP), pages 693–703, 2002.

14

[7] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data
streams using Hamming norms. InProceedings of 28th International
Conference on Very Large Data Bases, pages 335–345, 2002. Journal
version in IEEE Transactions on Knowledge and Data Engineering
15(3):529–541, 2003.

[8] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding
hierarchical heavy hitters in data streams. InInternational Conference
on Very Large Databases, pages 464–475, 2003.

[9] G. Cormode and S. Muthukrishnan. Estimating dominance norms of
multiple data streams. InProceedings of the 11th European Symposium
on Algorithms (ESA), volume 2838 ofLNCS, 2003.

[10] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking
most frequent items dynamically. InProceedings of ACM Principles of
Database Systems, pages 296–306, 2003.

[11] G. Cormode and S. Muthukrishnan. An improved data stream summary:
The count-min sketch and its applications.Journal of Algorithms, 2004.
in press.

[12] M. Datar and S. Muthukrishnan. Estimating rarity and similarity
over data stream windows. InProceedings of 10th Annual European
Symposium on Algorithms, volume 2461 ofLecture Notes in Computer
Science, pages 323–334, 2002.

[13] D-Z Du and F.K. Hwang. Combinatorial Group Testing and Its
Applications, volume 3 of Series on Applied Mathematics. World
Scientific, 1993.

[14] C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns
of resource consumption in network traffic. InProceedings of ACM
SIGCOMM, 2003.

[15] C. Estan and G. Varghese. New directions in traffic measurement
and accounting. InProceedings of ACM SIGCOMM, volume 32, 4 of
Computer Communication Review, pages 323–338, 2002.

[16] C. Estan and G. Varghese. Data streaming in computer networks.
In Proceedings of Workshop on Management and Processing of Data
Streams, http://www.research.att.com/conf/mpds2003/
schedule/estanV.ps , 2003.

[17] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for counting
active flows on high speed links. InProceedings of the Internet
Measurement Conference, pages 153–166, 2003.

[18] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An
approximateL1-difference algorithm for massive data streams. In
Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, pages 501–511, 1999.

[19] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data
streams: You only get one look. InProceedings of ACM SIGMOD
International Conference on Management of Data, 2002.

[20] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Fast, small-space algorithms for approximate histogram
maintenance. InProceedings of the 34th ACM Symposium on Theory
of Computing, pages 389–398, 2002.

[21] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. QuickSAND:
Quick summary and analysis of network data. Technical Report 2001-
43, DIMACS, 2001.

[22] M. Henzinger. Algorithmic challenges in search engines.Internet
Mathematics, 1(1):115–126, 2003.

[23] P. Indyk. Stable distributions, pseudorandom generators, embeddings
and data stream computation. InProceedings of the 40th Symposium on
Foundations of Computer Science, pages 189–197, 2000.

[24] R. Karp, C. Papadimitriou, and S. Shenker. A simple algorithm for
finding frequent elements in sets and bags.ACM Transactions on
Database Systems, 2003.

[25] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change
detection: Methods, evaluation and applications, 2003. manuscript.

[26] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier
spectrum.SIAM Journal on Computing, 22(6):1331–1348, 1993.

[27] G.S. Manku and R. Motwani. Approximate frequency counts over data
streams. InProceedings of 28th International Conference on Very Large
Data Bases, pages 346–357, 2002.

[28] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge
University Press, 1995.

[29] S. Muthukrishnan. Data streams: Algorithms and applications. InPro-
ceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, http://athos.rutgers.edu/˜muthu/stream-1-1.
ps , 2003.

[30] V. Paxson. Empirically derived analytic models of wide-area tcp
connections. IEEE ACM Transactions on Networking, 2(4):316–336,
1994.

[31] G. Varghese. Detecting packet patterns at high speeds. Tutorial at
SIGCOMM 2002.

[32] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: global
characteristics and prevalence. InProceedings of the 2003 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS-03), volume 31, 1 ofPerformance
Evaluation Review, pages 138–147, 2003.

