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Abstract

Aggregation along hierarchies is a critical
summary technique in a large variety of on-
line applications including decision support,
and network management (e.g., IP cluster-
ing, denial-of-service attack monitoring). De-
spite the amount of recent study that has been
dedicated to online aggregation on sets (e.g.,
quantiles, hot items), surprisingly little atten-
tion has been paid to summarizing hierarchi-
cal structure in stream data.

The problem we study in this paper is that
of finding Hierarchical Heavy Hitters (HHH):
given a hierarchy and a fraction φ, we want
to find all HHH nodes that have a total num-
ber of descendants in the data stream larger
than φ of the total number of elements in the
data stream, after discounting the descendant
nodes that are HHH nodes. The resulting
summary gives a topological “cartogram” of
the hierarchical data. We present determin-
istic and randomized algorithms for finding
HHHs, which builds upon existing techniques
by incorporating the hierarchy into the algo-
rithms. Our experiments demonstrate sev-
eral factors of improvement in accuracy over
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the straightforward approach, which is due to
making algorithms hierarchy-aware.

1 Introduction

Aggregation along hierarchies is a critical summary
technique in a large variety of online applications in-
cluding decision support (e.g., OLAP), network man-
agement (e.g., IP clustering, denial-of-service attack
monitoring), text (i.e., on prefixes of strings occurring
in the text) and XML summarization (i.e., on prefixes
of root-to-leaf paths in the XML data tree). In these
applications, the data is inherently hierarchical and
one needs to maintain aggregates at different levels of
the hierarchy over time in a dynamic fashion. Below
we describe two applications from network manage-
ment that motivate this need.

Network-Aware Clustering: The goal of
network-aware clustering is to identify “groups” (e.g.,
hosts under the same administrative domain) based on
access patterns, in particular, those responsible for a
significant portion of a Web site’s requests (measured
in terms of the number of IP flows). Knowledge of
busy clusters can be very useful for packet forward-
ing in routers, QoS differentiation, proxy positioning,
and server replication [18]. Algorithms for network-
aware clustering are based on longest prefix match of
IP addresses, and have been studied in a dynamic set-
ting [2]. Such busy clusters can occur at multiple levels
of the IP address hierarchy, after discounting descen-
dant busy clusters.

DoS Attack Monitoring: In a (distributed)
denial-of-service SYN-flooding attack, attackers blast
SYN packets (to initiate TCP sessions) at a victim with-
out subsequently acknowledging the victim’s SYN-ACK
packets with ACK packets to complete the “threeway
handshake”, using up the resources of the victim. Such
a DoS attack may be detected when there is a large



disparity between the number of SYN and ACK packets
received by a host, and can be used to monitor both
the destination IP addresses (victims) under attack,
and also the source IP addresses (attackers). This can
be done by maintaining statistics, for IP address pre-
fixes at different levels of aggregation, of the ratio of
the number of ACK and SYN packets. Indeed, auto-
mated aggregate-based congestion control mechanisms
(e.g., based on prefix subnets) have been proposed for
regulating Internet traffic to protect against such DoS
attacks [21].

A heavy hitter (HH) is an element whose frequency
in a data set is no smaller than a user-supplied thresh-
old; the problem of finding HHs in data streams has
been studied extensively [3, 6, 16, 22, 4]. These
algorithms maintain summary structures that allow
element frequencies to be estimated, within a pre-
specified error bound; the algorithms differ in whether
they make deterministic or probabilistic guarantees
on the error bound, and whether they operate over
insert-only streams or streams where elements can be
inserted and also deleted.

The problem we study in this paper is that of find-
ing hierarchical heavy hitters (HHH) in data streams:
given a hierarchy and a fraction φ, we want to find all
nodes in the hierarchy that have a total number of de-
scendant elements in the data stream no smaller than φ
of the total number of elements in the data stream, af-
ter discounting descendant nodes that are HHH nodes
themselves. This is a superset of the heavy hitters
consisting of only data stream elements, but a subset
of the heavy hitters over all prefixes of all elements in
the data stream. It thus provides a topological “car-
togram” of the hierarchical data in the stream.

A naive way of computing HHHs, using existing
techniques for maintaining heavy hitters, would be to
find heavy hitters over all prefixes of all elements in the
data stream; the desired HHHs can be determined in a
post-processing step. We argue that this approach can
be considerably improved in practice (in terms of the
space used, or the answer quality) by incorporating
knowledge of the hierarchy into algorithms for com-
puting heavy hitters.

In this paper, we develop such direct approaches for
two versions of the problem. The first problem deals
with insert-only streams; this is appropriate for the
network-aware clustering application, where each IP
flow contributes to an element in the data stream. The
second problem deals with streams where elements can
be inserted and also deleted; this is appropriate for the
DoS attack monitoring application, where SYN packets
can be treated as insertions of elements in the data
stream, and ACK packets can be treated as deletions.
For the former problem, we present algorithms that
maintain sample-based summary structures, with de-
terministic error guarantees for finding HHHs. For
the latter problem, we present a randomized algorithm

for finding HHHs, with probabilistic guarantees, using
sketch-based summary structures. Our experiments
demonstrate several factors of improvement in space
and accuracy over straightforward approaches, due to
the hierarchy-aware nature of our algorithms.

2 Problem Definition

In this section, we formally define the hierarchical
heavy hitters problem. We then discuss approaches
to solving this problem, under two different models of
data streams.

2.1 The Problem

We first review the definition of heavy hitters.

Definition 1 (Heavy Hitter) Given a (multi)set S
of size N and a threshold φ, a Heavy Hitter (HH) is
an element whose frequency in S is no smaller than
bφNc. Let fe denote the frequency of each element e
in S. Then HH = {e | fe ≥ bφNc}.

The heavy hitters problem is that of finding all
heavy hitters, and their associated frequencies, in a
data set. (In any data set, there are no more than 1/φ
heavy hitters.) This problem is solved exactly over a
stored data set, using the SQL query:

SELECT S.elem, COUNT(*)

FROM S

GROUP BY S.elem

HAVING COUNT(*) >= bφNc

In the data stream model of computation, where
each data element in the stream can be examined only
once, it is not possible to keep exact counts for each
data element without using a large amount of space.
To use only small space, the paradigm of approxima-
tion is adopted, to output only items that occur with a
proportion between (φ−ε) and φ. The problem of find-
ing HHs in data streams has been studied extensively
(see [4] for a brief survey), based on the maintenance
of summary structures that allow element frequencies
to be estimated.

Definition 2 (Hierarchical Heavy Hitter) Given
a (multi)set S of elements from a hierarchical domain
D of height h, let elements(T ) be the union of
elements that are descendants of a set of prefixes T of
the domain hierarchy. Given a threshold φ, we define
the set of Hierarchical Heavy Hitters of S inductively.
HHH0, the hierarchical heavy hitters at level zero,
are simply the heavy hitters of S. Given a prefix p at
level i in the hierarchy, define F (p) as

∑

f(e) : e ∈
elements({p}) ∧ e 6∈ elements(∪i−1

`=0HHH`). HHHi

is the set of Hierarchical Heavy Hitters at level i, that
is, the set {p | F (p) ≥ bφNc}. The set of Hierarchical

Heavy Hitters, HHH, is
⋃h

i=0 HHHi.



Note that, since
∑

p F (p) = N , the number of hierar-

chical heavy hitters is no more than 1/φ.
Consider an example consisting of a multiset

S of 32-bit IP addresses. Such an example might
arise in the network-aware clustering application,
where the IP addresses are the source IP addresses
associated with individual Web requests. Let the
counts of descendants, associated with (some of
the) IP address prefixes in S, with N = 100, 000
elements, be as follows: 135.207.50.250/24(2003),
135.207.50.250/25(1812), 135.207.50.250/26(1666),
135.207.50.250/27(1492), 135.207.50.250/28(1234),
135.207.50.250/29(1001), 135.207.50.250/30(767),
135.207.50.250/31(404) and 135.207.50.250/32(250),
where ipaddr/b(c) indicates that the IP address
prefix obtained by taking the leading b bits of
the IP address ipaddr has a descendant leaf count
of c. Using φ = 0.01, only 135.207.50.250/29
and 135.207.50.250/24 are HHHs, the first be-
cause its descendant count exceeds the threshold
(100, 000 ∗ 0.01 = 1000), and the latter because its
descendant count, after discounting the count associ-
ated with its descendant HHH 135.207.50.250/29 also
exceeds the threshold.

Note that HHHs can include elements in the in-
put, as well as their prefixes, and a prefix may be a
heavy hitter without any of its descendant elements
being a heavy hitter. In the above example, the (leaf)
element 135.207.50.250/32 is not a HHH, but its pre-
fix 135.207.50.250/29 is a HHH. Finding heavy hitters
consisting of only elements would hence return too lit-
tle information. Finding heavy hitters over all prefixes
of all elements would return too much information, of
little value. This would be a superset of the HHHs,
containing not just the HHHs, but also each of its pre-
fixes in the hierarchy. In the above example, this would
return all 29 prefixes of 135.207.50.250/29, not all of
which are of interest.

The hierarchical heavy hitters problem we study in
this paper is that of finding all hierarchical heavy hit-
ters, and their associated frequencies, in a data stream.
The HHH problem cannot be solved exactly over data
streams in general. Hence, we study the following (ap-
proximate) problem in this paper:

Definition 3 (HHH Problem) Given a data
stream S of elements from a hierarchical domain
D, a threshold φ ∈ (0, 1), and an error parameter
ε ∈ (0, φ), the Hierarchical Heavy Hitter Problem
is that of identifying prefixes p ∈ D, and estimates
fp of their associated frequencies, on the first N
consecutive elements SN of S to satisfy the following
conditions (i) accuracy: f∗

p − εN ≤ fp ≤ f∗

p , where
f∗

p is the true frequency of p in SN . (ii) coverage: All
prefixes q not identified as approximate HHHs have
∑

f∗

e : e ∈ elements({q})∧ e 6∈ elements(P ) < bφNc,
for any supplied φ ≥ ε, where P is the subset of p’s
which are descendants of q.

The above definition only pertains to correctness
and does not say anything about the goodness of a
solution to the HHH problem. For example, a set of
heavy hitters would satisfy this definition, as would
the full domain hierarchy, but these are not likely to
be good solutions. Rather, a good solution is one that
satisfies correctness in small space. (We use this met-
ric to evaluate the algorithms in Section 3.) This is
for two reasons. First, for semantics, we want to weed
out superfluous information (e.g., the above example
illustrates how heavy hitters provides too much infor-
mation, of little value). Second, for efficiency, we want
to minimize the amount of space and time required
for processing over a data stream. The above notion
of correctness closely corresponds to our definition of
Hierarchical Heavy Hitters:

Proposition 1 The size of the set of Hierarchical
Heavy Hitters is the size of the smallest set that satis-
fies the correctness conditions of Definition 3.

Note that any data structure that can satisfy the
accuracy constraints for φ = ε will satisfy it for all
φ ≥ ε.

2.2 Solution Approaches

A straightforward way of solving the HHH problem,
using existing techniques for maintaining heavy hit-
ters, would be to find heavy hitters and frequency es-
timates over all prefixes of all elements in the data
stream; the desired HHHs can be determined in a post-
processing step. Such an approach suffers from several
problems. First, it could take a lot of space to maintain
summary information independently for each level in
the hierarchy. (Indeed, this is confirmed by our exper-
iments in Section 3.) Second, the update costs could
be more expensive, partly due to the extra space re-
quired.

We develop direct, hierarchy-aware solutions for the
HHH problem, under two different data stream mod-
els.

• One model is the insert-only model of data
streams, also known as cash-register model [26],
where data stream elements cannot be deleted.
For this data stream model, we propose deter-
ministic algorithms that maintain sample-based
summary structures, with worst-case error guar-
antees for finding HHHs. Some of them can be
shown to have an a priori space bound.

• The second model, the turnstile model [26],
permits both insertions and deletions of ele-
ments in the data stream. For this problem,
we present a randomized algorithm for finding
HHHs, with probabilistic error guarantees, using
a sketch-based summary structure that occupies
a bounded amount of space.



Our algorithms are general, and work on any hi-
erarchy, whether it is provided explicitly or implicitly
(e.g., the hierarchy is a full binary tree). We discuss
these algorithms in more detail in the next few sec-
tions, and experimentally demonstrate several factors
of improvement they achieve in space and accuracy
over the straightforward approaches. For exposition,
we consider the case where the data stream elements
are leaves in the domain hierarchy.

3 Sample-based Approach

In this section, we present deterministic algorithms
for finding HHHs in insert-only data streams. Here
the user supplies error parameter ε in advance and
can supply any threshold φ at runtime to output ε-
approximate HHHs above this threshold.

An indirect way to find HHHs, based on existing
techniques, would be to first find heavy hitters, and
their associated frequency estimates, over all prefixes
of all elements in the data stream. The LossyCount
algorithm from [22] can be used as a “black box” inde-
pendently at each level of the domain hierarchy. This
requires O( 1

ε
log εN) space at each level resulting in

a total of O(h
ε

log εN) space. The desired HHHs can
be extracted in post-processing as follows. The tuples
are scanned in postorder across levels. Let (fp, ∆p) de-
note the auxiliary information associated with prefix
p (see [22] for details). During the scan we maintain
the sum of fe’s among the HHH children {e} of each
prefix p, denoted Fp. If (fp + ∆p − Fp ≥ bφNc), then
we output p as a HHH and reset the Fp summator.

As we shall see, this naive approach is inefficient.
Hence, we propose direct, hierarchy-aware strategies.
We describe these below, prove their correctness, and
present runtime analysis. Our experiments verify that
the direct strategies perform significantly better than
the indirect one.

3.1 Framework and Notation

Our algorithms maintain a trie data structure T con-
sisting of a set of tuples which correspond to samples
from the input stream; initially, T is empty. Each
tuple te consists of a prefix e that corresponds to el-
ements in the data stream. If ta(e) is the parent of
te, then a(e) is an ancestor of e in the domain hierar-
chy, that is, a(e) is a prefix of e. Associated with each
value is a bounded amount of auxiliary information
used for determining lower- and upper-bounds on the
frequencies of elements whose prefix is e (fmin(e) and
fmax(e), respectively). The input stream is conceptu-
ally divided into buckets of width w =

⌈

1
ε

⌉

; we denote
the current bucket number as bcurrent = bεNc. There
are two alternating phases of the algorithms: insertion
and compression. During compression, the space is re-
duced via merging auxiliary values and deleting. The
procedures for insertion and compression vary from

strategy to strategy and are described in more detail
below. At any point, we can extract and output HHHs
given user-supplied φ. Next, we describe the strategies
using this framework and give algorithms for insertion,
compression and output for each.

3.2 The Strategies

We now describe each of our four strategies in turn.

Strategy 1:

We maintain auxiliary information (gp, ∆p) associated
with each item p, where the gp’s are frequency dif-
ferences between p and its children {e} (specifically,
gp = fmin(p) −

∑

e fmin(e)). This allows for fewer
insertions because, unlike the naive approach where
we insert all prefixes for each stream element, here we
only need to insert prefixes until we encounter an ex-
isting node in T corresponding to the inserted prefix.
This is an immediate benefit due to being “hierarchy-
aware”. We can derive fmin(p) by summing up all
ge’s in the subtree of tp in T ; fmax(p) is obtained from
fmin(p) + ∆p.

During compression, we scan through the tuples
in postorder and delete nodes satisfying (ge + ∆e ≤
bcurrent) that have no descendants. Hence, T is a com-
plete trie down to a “fringe”. Figure 1 gives the algo-
rithm. All tq /∈ T must be below the fringe and, for
these, gq ≡ fmin(q). Any pruned nodes tq must have
satisfied (fmax(q) ≤ bcurrent) due to the algorithm,
which gives the criteria for correctness:

f∗

q −
∑

p

f∗

p ≤ fmax(q)−
∑

p

fmin(p) = gq+∆q ≤ bεNc .

Since the values of gp in the fringe nodes of T are the
same as fmin(p), the data structure for Strategy 1 uses
exactly the same amount of space as the naive strategy.
Therefore,

Proposition 2 For a given ε, Strategy 1 finds HHHs
using O(h

ε
log(εN)) space.

The Output function for this strategy takes φ as
a parameter and chooses a subset of the prefixes in T
satisfying correctness. The algorithm is fairly straight-
forward and is described in Figure 1. The same output
function is used for all the strategies proposed in this
section.

Strategy 2:

We now consider another benefit of being hierarchy-
aware. Let {d(e)} denote the deleted descendants of a
node te. We observe that one can improve the bounds
on the ∆e’s by keeping track of the maximum (gd(e) +
∆d(e)) over all d(e)’s; we denote this statistic as me.
Thus, the auxiliary information associated with each
element e is (ge, ∆e, me), where ge and ∆e are defined
as before. Figure 2 presents the algorithm.



Insert (e,c):
01 if te exists then
02 ge+ = c;
03 else
04 Insert (p(e),0);
05 create te;
06 ge = c;
07 ∆e = bcurrent − 1;

Compress:
01 for each te ∈ T in postorder do
02 if ((te has no descendants)

&& (ge + ∆e ≤ bcurrent)) then
03 gp(e)+ = ge;

04 delete te;

Output(e, φ):
/* Ge =

∑

x gx of HHH descendants of e */
01 let Ge = ge for all e;
02 for each te in postorder do
03 if (Ge + ∆e ≥ bφNc) then
04 print(e);
05 else
06 Gp(e)+ = Ge;

Figure 1: Algorithm for Strategy 1

We can show that me < bcurrent as follows. The
statistic me maintains the largest value of (gd(e) +
∆d(e)) over all deleted d(e)’s. Thus, any new stream
element that has e as a prefix could not possibly have
occurred with frequency more than me. Suppose d(e)
was deleted just after block b′ < bcurrent. Hence,
(gd(e)+∆d(e)) must have been less than b′ at the time of
deletion and therefore (gd(e) +∆d(e)) ≤ bcurrent. Since
the only difference between this strategy and Strat-
egy 1 is that ∆e’s are initialized to mp(e) rather than
(bcurrent − 1), Strategy 2 cannot contain more tuples
than Strategy 1. This yields the following result:

Proposition 3 For a given ε, Strategy 2 finds HHHs
in O(h

ε
log(εN)) space.

Strategy 3:

The motivation for this strategy is to allow intermedi-
ate nodes of T , as well as nodes without descendants,
to be deleted. The auxiliary information associated
with each element e is (ge, ∆e), where ge and ∆e are
defined as before. When a new element e is inserted,
its ∆e is initialized using the auxiliary information of
its closest ancestor in T as ga(e)+∆a(e), requiring only
one operation since none of e’s prefixes are inserted.
Figure 3 presents the algorithm.

We can show this algorithm is correct as follows.
First we show that, for any tq /∈ T , f∗

q −
∑

f∗

p ≤
bcurrent, for p’s that are children of q in T .

Insert (e,c):
/* ta(e) is the parent node of te */
01 if te exists then
02 ge+ = c;
03 else if ta(e) exists then

04 Insert (p(e),0);
05 create te;
06 ge = c;
07 ∆e = me = ma(e);

08 else
09 Insert (p(e),0);
10 create te;
11 ge = c;
12 ∆e = me = bcurrent − 1;

Compress:
01 for each te ∈ T in postorder do
02 if ((te has no descendants)

&& (ge + ∆e ≤ bcurrent)) then
03 ga(e)+ = ge;
04 ma(e) = max(ma(e), ge + ∆e);
05 delete te;

Figure 2: Algorithm for Strategy 2

Proposition 4 ∀e fmin(e) ≤ f∗

e ≤ fmax(e), at all
timesteps.

Proof (Sketch). By induction on bcurrent.
Basis: (bcurrent = 1) ∀e ∆e = 0 and, hence, fmin(e) =
fmax(e) = f∗

e .
Induction Step: During compression, there is no
change of values (fmin(e), fmax(e)), for all e ∈ T . Con-
sider a new node te that has been inserted with ge ≡ 1
and ∆e ≡ ga(e) + ∆a(e); the value of ∆e ensures that

fmin(e) ≤ f∗

e ≤ fmax(e).

Proposition 5 If tq /∈ T , then f∗

q −
∑

p f∗

p ≤ bcurrent.

Proof. When an element e is deleted, ge + ∆e ≤
bcurrent. This remains true for items after deletion
(until inserted again). As we showed above, ∀e f ∗

e ≤
fmax(e), at all times. Recall that gq ≡ fmin(q) −
∑

p fmin(p), where fmin(p) ≤ f∗

p and fmin(q) ≤ f∗

q .
Hence,

f∗

q −
∑

p

f∗

p ≤ fmax(q) −
∑

p

fmin(p)

= (fmin(q) + ∆q) −
∑

p

fmin(p)

=

(

fmin(q) −
∑

p

fmin(p)

)

+ ∆q

= gq + ∆q ≤ bcurrent.



Insert (e,c):
/* ta(e) is the parent node of te */
/* p(e) is the immediate prefix of e */
01 if te exists then
02 ge+ = c;
03 else if ta(e) exists then

04 create te;
05 ge = c;
06 ∆e = ga(e) + ∆a(e);

07 else
08 create te;
09 ge = c;
10 ∆e = bcurrent − 1;

Compress:
01 for each te ∈ T in postorder do
02 if (ge + ∆e ≤ bcurrent) then
03 if (|e| > 1) then
04 Insert(p(e), ge);
05 delete te;

Figure 3: Algorithm for Strategy 3

Strategy 4:

This hybrid strategy combines ideas from Strategies
2 and 3 by using the control structure of Strategy 3
as a basis and incorporating the auxiliary statistic me

from Strategy 2 to obtain smaller ∆-values. Figure 4
presents the algorithm.

3.3 Experiments

We ran experiments to compare the proposed strate-
gies on a variety of real and synthetic data sets in terms
of space usage as well as runtime costs. We examined
the effect of the depth of the hierarchy by varying the
granularity of the path strings (e.g., bit- or byte-level);
the “bushiness” of the hierarchy, as determined by the
address space at each node in the paths (e.g., octets
for IP addresses); and the a priori worst-case error ε.

3.3.1 Setup

We used the following real data sets: (1) TCPSRC,
140K source IP addresses for TPC sessions, as cap-
tured using Gigascope [5]; and (2) FLOWDEST, 100K
destination IP addresses for flows passing through an
edge router, as captured using the Cisco NetFlow op-
tion [27].

3.3.2 Comparison of Strategies

In the first set of experiments, we report the a posteri-
ori space utilization in terms of the number of tuples
at each timestep. Figure 5 gives a comparison of the
four strategies on TCPSRC. The left column consid-
ered byte-level prefixes (granularity = 8) and the right
column bit-level prefixes (granularity = 1). The top

Insert (e,c):
/* ta(e) is the parent node of te */
/* p(e) is the immediate prefix of e */
01 if te exists then
02 ge+ = c;
03 else if ta(e) exists then

04 create te;
05 ge = c;
06 ∆e = me = ma(e);

07 else
08 create te;
09 ge = c;
10 ∆e = me = bcurrent − 1;

Compress:
01 for each te ∈ T in postorder do
02 if (ge + ∆e ≤ bcurrent) then
03 if (|e| > 1) then
04 Insert(p(e), ge);
05 mp(e) = max(mp(e), ge + ∆e);
06 delete te;

Figure 4: Algorithm for Strategy 4

row was run with ε = .01; the bottom row was run
with ε = .001. Recall that the naive strategy and
Strategy 1 use the same amount of space; therefore,
we do not report the numbers from the naive strategy
in Figure 5. Figure 6 compares the strategies using the
FLOWDEST data, with ε = .01 and granularity = 8.

The observations are as follows:

• Strategy 2 always does better than Strategy 1;

• Strategy 3 does well when ε is small and does con-
siderably better than Strategy 2 when the hierar-
chy is deep and thin. However, Strategy 3 did
worse than Strategy 2 in Figure 5(b) and in Fig-
ure 6;

• Strategy 4 (Hybrid) did the best in all cases. It is
the strategy of choice.

Figure 7 compares the speed of the strategies by
measuring the total number of insertions, deletions
and updates to the summary structure. The data set
used was TCPSRC and the operations were totaled af-
ter 140K timesteps, with granularity = 8 and ε = 0.1.
It presents this breakdown as histogram bars where
the height gives the sum of all operations. “Strategy
0” represents the naive (blackbox) approach, which re-
quires far more updates than the other strategies be-
cause every prefix of every element is inserted. The
differences between Strategies 1-4 are small. Strategy
2 performs more operations than Strategy 1 due to the
extra pruning. Strategy 4 performs more operations
than Strategy 3 due to the extra pruning.
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FLOWDEST data, with ε = .01 and granularity
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3.4 Extensions

So far we have assumed that data stream elements are
leaves of the domain hierarchy. Our algorithms can be
extended easily to allow prefixes as input elements in
the data stream, by explicitly maintaining additional
counts with each tuple in the summary structure, and
using these counts suitably.

4 Sketch-based Approach

Informally, we use sketch here to refer to a data struc-
ture on a distribution A[1 · · ·U ] where A[i] is the num-
ber of times i is seen in the data stream. It has
the following properties: it uses small space, can be
maintained efficiently as new items are seen in the
data stream, and can be used to estimate parts of
the distribution A to some precision with high prob-
ability. Now, the performance and choice of sketches
depends on (a) whether items are only inserted, or
they are both inserted and deleted, (b) whether one

seeks rangesum
∑k=j

k=i A[k] or only point estimates in
which case i = j, (c) the precision desired and re-
quired probability of success, and (d) whether the data
stream is well-formed or not. A data stream is well-
formed if A[i] ≥ 0 at all times and ill-formed other-
wise. In general one expects data streams to be well
formed because one does not delete an item unless it
was inserted earlier. However, sometimes, as an arti-
fact of subtractions performed by algorithms that use
sketches, the underlying data stream may be inferred
to be ill-formed. Many different sketches are known in
the literature that tradeoff space and update times for
the features above.

Sketches are used to build high level algorithms.
One such procedure that is of interest to us is that to
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Figure 7: Comparing the runtime performance of the
strategies on TCPSRC data.

determine the Heavy Hitters (HHs) on a data stream.
Again there are many such algorithms [3, 13, 4, 7] and
they differ in their performance and applicability based
on the sketches they use.

Our algorithm here will use sketches too. In fact,
one can think of a few different ways to estimate HHHs
using sketches and HH algorithms, but the central
challenge is to find one that is most efficient and is
simple. The sketch method we describe allows the
probabilistic solution to the hierarchical heavy hitter
problem, in the model where the input consists of a
sequence of insertions and deletions of items. Note
that the deterministic algorithms described above do
not solve this problem, and that they will produce in-
correct output on these more general kinds of data
streams.

To motivate the discussion, let us consider a rather
natural algorithm for finding HHHs. It relies on a
bottom-up traversal of the tree. The algorithm first
considers the nodes at depth h denoted Sh, and deter-
mines all HHs, denoted Hh. For each node i ∈ Hh,
we determine its parent j ∈ Sh−1 and subtract (the
estimate for) fi from fj . Following that, we determine
HHs in Sh−1 using these updated frequencies, and re-
curse up the tree. This algorithm will work, but it
needs a powerful sketch function. In particular, the
sketch needs to work not only with insert and delete
of items, but also with a potentially ill-formed data

Insert (e, c):
01 n = n + 1;
02 For each level l of the hierarchy

03 For i = 1 to 3 log(1/δ), j = 1 to 8/ε2

04 If (fi,j(e) = 1)
05 sum[l][i][j] = sum[l][i][j] + 1;
06 e = p(e);

Delete (e, c):
01 n = n − 1;
02 For each level l of the hierarchy

03 For i = 1 to 3 log(1/δ), j = 1 to 8/ε2

04 If (fi,j(e) = 1)
05 sum[l][i][j] = sum[l][i][j] − 1;
06 e = p(e);

Weight (p, l): returns a value
01 for i = 1 to 3 log 1/δ
02 t = 0;
03 for j = 1 to 8/ε2

04 t = t + fi,j(p) ∗ (2 ∗ sum[l][i][j]− n);
05 avg[i] = t ∗ ε2;
06 return median(avg);

Output(φ, e, l): returns a value
01 w = Weight(e,l);
02 if w < bφnc
03 return 0;
04 else for each child c of e
05 W = W + Output(φ, c, l + 1);
06 if (w − W ≥ bφnc)
07 print(e);
08 return(w);
09 else
10 return(W);

Figure 8: Sketch-based Algorithm

stream. This is because when we update frequency of a
node by subtracting an estimate for its child, the result
may well be negative if the child’s frequency was an
overestimate; this effect is likely to be more severe if a
node has several children or descendants that are HHs.
This in turn implies that the HH algorithm must also
work for ill-formed sequences. Sketches with this prop-
erty exist, e.g., in [11]; they use inner products of the
data stream with random vectors generated by 4-wise
independent random variables, and a fairly sophisti-
cated “group testing” procedure atop. The total space
used is Ω(h2) with significantly large constants in the
Ω(). Furthermore, the accuracy of estimating HHHs
decreases dramatically as the algorithm progresses up
the tree. We refer to this approach as the naive sketch
strategy.

In what follows, we will describe an algorithm which
is very simple: it relies on sketches that use only pair-
wise independence and does not need any HH algo-
rithm. As a result, it is quite efficient among such



algorithms.
We will proceed as follows. First we will describe

a procedure to find hierarchical heavy hitters using
sketches as an oracle, in which we assume that we can
recover the exact frequency of a range using sketches.
We will then discuss how to build sketches which have
tunable error parameter, and show how they perform
in practice on real data sets.

4.1 Search Algorithm

We imagine that we have sketches that are able to
return the frequency of a contiguous range of leaf ele-
ments, and describe how to use this primitive in order
to find Hierarchical Heavy Hitters. Let the current
number of items be n. On receiving a new item, we
update the sketches to reflect this, and increment the
total count n. To find the hierarchical heavy hitters,
we perform a top down search of the hierarchy, begin-
ning at the root node. The search proceeds recursively,
and the recursive procedure run on a node returns the
total weight of all hierarchical heavy hitters that are
descendents of that node.

• Compute w the weight of the current node, as the
range sum of all leaf nodes beneath it.

• If w < bφnc then return 0.

• Else, recursively find W : the sum of the weights
of HHHs within any child nodes of current node.

• If w−W ≥ bφnc then the current node is a HHH,
output it, and return w; else, return W .

The above procedure works because of the observation
that if there is a HHH in the hierarchy below a node,
then the range sum of leaf values must be no less than
the threshold of bφnc. We then include any node that
meets the threshold, after the weight of any HHHs
below has been removed. The number of queries made
to sketches depends on the height of the hierarchy, h,
the maximum branching factor of the hierarchy, d, and
the frequency parameter φ as hd/φ, which governs the
running time of this procedure.

4.2 Sketch Construction

The sketch needed for the algorithm above needs only
to work with insert and delete of items, and be able to
estimate the frequency of each node in the tree. This is
a rather simple requirement, and we will use the Ran-
dom Subset Sums introduced in [13]. These work in
the following fashion: we create subsets of the universe
so that for any set, the probability that any member of
the universe is in that set is 1

2 . We keep a counter for
each set, and when a new item arrives, we increment
the counters of every set which includes that item. De-
partures of items can be incorporated by performing
the inverse operation: decrement the counters of every

set which includes the item. We can then very quickly
answer point queries for the frequency of item i with
a pass over the set of counters. We observe that, if i
is included in the set and the counter for the set is c,
then 2c − n is an unbiased estimator for the count of
i; if i is not in the set, then n− 2c is an unbiased esti-
mator for count of i. By taking the average of O(1/ε2)
such estimates, then the resulting value is correct up
to an additive quantity of ±εn, with constant proba-
bility. Taking the median of O(log 1/δ) independent
repetitions amplifies this to probability 1− δ. A more
detailed analysis is given in [13]. If we keep such a
sketch for each of the h levels of the hierarchy, then
range sums can be computed as point queries. An im-
portant detail is how to store the subsets with which
the sketches are created. Clearly, explicitly storing
random subsets will be prohibitively costly in terms
of memory usage. However, for the expectation and
variance calculations, we only require that the sets are
chosen with pairwise independence. It therefore suf-
fices to use functions drawn from a family of pairwise
independent hash functions f mapping from prefixes
onto {−1, 1}, which defines the “random subsets”: for
set j we compute fj(i): if the result is 1, then i is in-
cluded in set j, else it is excluded. Such functions can
easily be computed, as the inner product of the binary
representation of i with a randomly chosen seed [13].
Putting all this together gives us the following result.

Proposition 6 Our algorithm uses Random Subset
Sums as the sketch to find Hierarchical Heavy Hit-
ters. The space required is O( h

ε2
log(1/δ)). Search-

ing for the hierarchical heavy hitters requires time
O( hd

φε2
log(1/δ)). With probability at least 1 − δ, then

the output conforms to the requirements of Defini-
tion 3. The time to process an update to the sketches
is O( h

ε2
log(1/δ)).

The pseudo-code to implement this algorithm is
presented in Figure 8. An important point here is
that the space and running time of this method de-
pends strongly on the space and time of the sketch
procedures. Using different sketch constructions would
impact on these costs. Future work will examine the
benefits and disadvantages of different sketch construc-
tions. We shall compare our methods against the
naive, “bottom-up” strategy described above. This
method had the disadvantage that it is necessary to
keep a heavy hitters data structure for every level of
the hierarchy, in addition to the sketches used to esti-
mate the frequency of prefixes. So our sketch strategy
uses less space than the naive strategy. Similarly, since
the naive strategy has to update the heavy hitter data
structure at each level for every insertion or deletion,
the time cost is also greater. For the naive algorithm,
we make use of the data structure proposed in [4] to
find the Heavy Hitters at each level, and we use the
same sketch structure to compute estimated counts.



Algorithm Naive Naive Aware Aware
Hierarchy Shallow Deep Shallow Deep
ε = 0.1 4143 33144 15 120
ε = 0.01 66033 582264 2673 21384
ε = 0.001 1245033 9960264 389961 3119688

Table 1: Space Usage in machine words for both meth-
ods with varying parameters

Formally then,

Proposition 7 The naive algorithm uses space

O(( h
ε2

+ h2 log d
φ

) log(1/δ)) and time per update O(( h
ε2

+

h2 log d) log(1/δ)). The time to find HHHs is O(( h
ε2

+
h2 log d

φ
) log(1/δ)).

4.3 Experiments on Sketches

We performed a series of experiments on sketch based
methods to evaluate their accuracy, using the same
data sets as before. We implemented the two ver-
sions of sketch based methods: the “hierarchy aware”
sketch methods described in Section 4.1, and the non-
hierarchy aware “naive sketch” method. We tried a
number of experiments, based on a variety of settings
of the sketch parameters, type of hierarchy, and com-
pared how the two methods fared.

We first examined the space usage of the hierarchy
aware method against that of the naive one on the
TCPSRC data. The space usage for various settings
of ε, and both shallow and deep hierarchies is shown
in Table 1. We see that the naive algorithm uses sig-
nificantly more memory than the hierarchy aware ap-
proach. However, we also note that as the parameter ε
decreases, the amount of space increase with O(1/ε2),
so that for values of ε approaching 0.001, the space
overhead becomes significant for both methods, which
may be undesirable in some applications where a fine
grained accuracy is required.

The results of our experiments on real data are
shown in Figure 9. We plot the output size of the
method every thousand items. The methods are imple-
mented to guarantee correctness of the output; there-
fore, the less reliable the estimates, then the more
items have to be output in order to make this guaran-
tee. The better a method is, the fewer items will be
output to make this guarantee. We make the following
observations:

• The hierarchy aware method produces approx-
imately the same amount of output items as
the naive method, despite using significantly less
memory and having faster update times.

• When we reduce ε to being half the value of φ,
then the uncertainty in the estimated values de-
creases and so fewer items are output in order to

guarantee correctness. When we reduced ε fur-
ther, the output size got arbitrarily close to the
‘optimum’ output size found by computing the
number of exact HHHs.

• We also examined the effect of decreasing the pa-
rameter δ (not graphed) to improve the quality
output. While this did consistently bring the size
of the output closer to the optimal size, it did not
seem to make a very large difference, since even
with δ = 0.01, the results were very close to the
optimal size.

We also note that the size of the output is smaller
than the size of the output with deterministic methods
for corresponding values of ε. However, the amount of
space used to achieve this is many, many times larger
than for the sampling based methods, so these sketches
are not really competitive for the insertions only sce-
nario; it is only when deletions are possible and sample
based methods will not work that sketch based solu-
tions are required.

5 Related Work

Finding “heavy hitters” in network measurement data
is an important problem for network management and
has been considered for TCP sessions [9, 7]. The need
for maintaining multilevel heavy hitters on variable-
length IP address prefixes was articulated in [10, 18].

There are several related queries in the area of On-
line Analytical Processing (OLAP). Fang et al. intro-
duced the iceberg query for finding GROUP BY aggre-
gates above a supplied threshold [8]; Beyer et al. gen-
eralized this to CUBE BY (“iceberg cubes”) [1]. Laksh-
manan et al. describe the generalized MDL approach
for characterizing range query results succinctly using
hierarchical regions [19]. Lakshmanan et al. proposed
the quotient cube summary technique, which parti-
tions the data cube into equivalence classes of cells
(at different levels in the hierarchy) with identical ag-
gregate values [20]. The semantics of the summaries
resulting from these queries are different from hierar-
chical heavy hitters.

There has been much recent work on online algo-
rithms for maintaining frequency distributions over
a data stream including histograms [14, 15, 12] and
hot items [22]. However, almost all of this work ap-
plies to sets. For hierarchical data, Kleinberg studied
the problem of maintaining “hierarchical bursts” in
texts [17].

Our deterministic algorithms use sample-based
methods akin to [22, 14, 23, 25, 24] and our ran-
domized algorithms use sketch-based methods akin
to [15, 12, 11]. But we build on them with higher
level algorithms to determine HHHs.
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Figure 9: Results of experiments using sketch based methods

6 Conclusions

Aggregation along hierarchies is a critical summary
technique in a large variety of applications including
OLAP, IP network management, and text or XML
summarization. We formalize the problem of finding
heavy hitters in massive data streams that considers
their hierarchical structure. Such hierarchical heavy
hitters (HHHs) present a “cartogram” summary of the
data stream distribution.

We present a comprehensive set of solutions to
the problem of estimating HHHs on data streams.
In particular, we present both deterministic, sample-
based and randomized, sketch-based algorithms for ef-
ficiently finding HHHs using small space; these respec-
tively work for data streams that allow only insertions,
and those that allow both insertions as well as dele-
tions of items. These solutions build upon known data
stream summarization methods by explicitly incorpo-
rating hierarchy into the algorithms. Our experimen-
tal study shows that such hierarchy-aware algorithms
significantly outperform the straightforward methods.

A cartogram view of hierarchical data streams is
likely to find many applications. We leave it open to
generalize our techniques to data streams that have
multiple attributes with independent hierarchies.
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