
Set Cover Algorithms For Very Large Datasets

Graham Cormode
AT&T Labs–Research

graham@research.att.com

Howard Karloff
AT&T Labs–Research

howard@research.att.com

Anthony Wirth
∗

Department of Computer
Science and Software

Engineering
The University of Melbourne
awirth@unimelb.edu.au

ABSTRACT
The problem of Set Cover—to find the smallest subcol-
lection of sets that covers some universe—is at the heart
of many data and analysis tasks. It arises in a wide range
of settings, including operations research, machine learning,
planning, data quality and data mining. Although finding an
optimal solution is NP-hard, the greedy algorithm is widely
used, and typically finds solutions that are close to optimal.

However, a direct implementation of the greedy approach,
which picks the set with the largest number of uncovered
items at each step, does not behave well when the in-
put is very large and disk resident. The greedy algorithm
must make many random accesses to disk, which are unpre-
dictable and costly in comparison to linear scans. In order to
scale Set Cover to large datasets, we provide a new algo-
rithm which finds a solution that is provably close to that of
greedy, but which is much more efficient to implement using
modern disk technology. Our experiments show a ten-fold
improvement in speed on moderately-sized datasets, and an
even greater improvement on larger datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Prob-
lems

General Terms
Algorithms, Experimentation

Keywords
set cover, greedy heuristic, disk friendly

∗Work partially done at AT&T Labs–Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM ’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

1. INTRODUCTION
The problem of Set Cover arises in a surprisingly broad

number of places. Although presented as a somewhat ab-
stract problem, it captures many different scenarios that
arise in the context of data management and knowledge
mining. The basic problem is that we are given a collec-
tion of sets, each of which is drawn from a common universe
of possible items. The goal is to find a subcollection of sets
so that their union includes every item from the universe.
Places where Set Cover occurs include:

• In operations research, the problem of choosing where
to locate a number of facilities so that all sites are
within a certain distance of the closest facility can be
modeled as an instance of Set Cover. Here, each
set corresponds to the sites that are covered by each
possible facility location.

• In machine learning, a classifier may be based on pick-
ing examples to label. Each item is classified based on
the example(s) that cover it; the goal is to ensure that
all items are covered by some example, leading to an
instance of Set Cover.

• In planning, it is necessary to choose how to allocate
resources well even when demands are predicted to
vary over time. Variations of Set Cover have been
used to capture these requirements [13].

• In data mining, it is often necessary to find a “minimal
explanation” for patterns in data. Given data that cor-
respond to a number of positive examples, each with a
number of binary features (such as patients with vari-
ous genetic sequences), the goal is to find a set of fea-
tures so that every example has a positive example of
one of these features. This implies an instance of Set

Cover in which each set corresponds to a feature, and
contains the examples which have that feature.

• In data quality, a set of simple rules which describes
the observed data helps users understand the structure
in their data. Given a set of rules that are consistent
with the observed data, the tableau generation prob-
lem is to find a subset of rules which explains the data
without redundancy. This is captured by applying Set

Cover to the collection of rules [8].

• In information retrieval, each document covers a set of
topics. In response to a query, we wish to retrieve the
smallest set of documents that covers the topics in the
query, i.e., to find a set cover [15].

In these situations, and others too, the goal is to find
a minimum set cover: a cover which contains the smallest
number of sets. This corresponds to the simplest explana-
tion in mining, the cheapest solution to facility location,
etc. Unsurprisingly, the Set Cover problem, finding the
smallest set cover, is NP-hard, and so we must find efficient
approximate techniques which can find a good solution. For-
tunately, there is a simple algorithm that provides a guar-
anteed solution: the natural “greedy” algorithm, which re-
peatedly picks the set with the most uncovered items. The
greedy algorithm is guaranteed to find a cover which is at
most a logarithmic factor (in the number of items in the
universe) larger than the optimal solution. Moreover, no
algorithm can guarantee to improve this approximation by
much [5].

For even moderately-sized instances, one might complain
that this logarithmic factor is too large. However, it has been
observed across a large number of instances that this method
is surprisingly good in practice, especially when compared
with other approximation algorithms [10, 9]. The greedy
approach is often found to choose only a small percentage
(< 10%) more sets than the optimal solution, and is dramat-
ically cheaper to compute. Note that the optimal solution
is usually determined by exhaustive exploration of exponen-
tially many options. Therefore, the greedy method for Set

Cover is widely used to solve instances across the broad set
of applications outlined.

Having said this, a direct implementation of this method
scales surprisingly poorly when the data size grows. As our
ability to record data via sensors, instrumentation and log-
ging increases, the size of the instances of Set Cover to
solve can rapidly become very large: (many) millions of
sets, drawn over universes of (many) millions of items. The
growth of such data is rapidly outstripping that of main
memory (which has traditionally increased at a much slower
rate than computing power or data volumes). It is therefore
increasingly important to deal with instances that do not fit
conveniently into main memory, but which are disk resident.

In these cases, the seemingly simple greedy method be-
comes surprisingly challenging. The basic idea, to repeat-
edly pick the set with the maximum number of uncovered
elements, becomes very costly, due to the need to update all
other sets every time the current “largest” set is selected, to
reflect the items which have just been covered. Our exper-
iments on several natural implementation choices for data
that are disk resident (detailed later) took many hours to ex-
ecute on even moderately-sized instances of only megabytes
to gigabytes. This presents a fundamental problem: how to
scale this important computation to modern data sizes?

Our Contributions. We consider the problem of solving
large instances of Set Cover. In doing so, the contributions
in this paper are:

• We formalize the problem of finding set covers on very
large data sets, and provide detailed discussion of how
to implement the traditional greedy algorithm.

• We introduce, as an alternative to greedy, a new al-
gorithm which is much more appropriate for large
datasets, in particular on datasets which are resident
on disk.

• We show that the new algorithm gives a guarantee sim-
ilar in nature to that of the original greedy heuristic,

but has well-bounded running time. We argue that the
new algorithm is very “disk-friendly.”

• We implement two versions of our method and vari-
ations on the greedy algorithm, to study a selection
of implementation choices. Through experiments on
real datasets spanning several orders of magnitude,
we show that the new method scales very gracefully
to large datasets. With the problem instance stored
on disk, our algorithm is over ten times faster than
the standard greedy algorithm, even for instances with
hundreds of thousands of sets. On the largest instance
on which we tested our algorithm, with over a million
sets and over five million items, our algorithm is over
400 times faster than the standard greedy approach.

Despite this, the quality of the results, measured in
the number of sets needed to find a cover, is as good
as or better than that of the original greedy heuristic.
Intriguingly, the running time of our disk-based algo-
rithm is close to that of its memory-resident version,
suggesting that the new algorithm is not I/O bound;
indeed, the disk-based implementation is appreciably
faster than the memory-resident version of the greedy
heuristic!

Outline of the paper. Section 2 lays down some tech-
nical background, and suggests some natural approaches to
implementing the greedy algorithm. Section 3 describes our
new algorithm and analyzes its worst case behavior, while
Section 4 shows that it is highly efficient in practice and pro-
vides excellent results. We outline some possible extensions
in Section 5, and conclude in Section 6.

1.1 Prior work
Despite the importance of Set Cover, there has been rel-

atively little study of how to find covers efficiently until quite
recently. The oldest study of this question is due to Berger
et al. [1] (15 years after the heuristic was first analyzed).
That work is concerned with parallelizing the heuristic, by
allowing multiple computing entities with shared memory to
choose sets at the same time. There, randomization is nec-
essary to ensure that multiple processors do not pick sets
which cover the same elements redundantly. The algorithm
assumes full random access to memory for all processors, and
so does not seem to apply to the case of disk-based data.

More recently, the ideas of Berger et al. have been applied
to the distributed case, to find (partial) set covers under
the MapReduce paradigm [4]. This approach requires ran-
domization, and requires a number of passes over the data
cubic in the logarithm of the size of the data in the worst
case. Their algorithm used hundreds of invocations of Map-
Reduce on a dataset with about 5M sets to match the quality
of the greedy solution.

Lastly, Saha and Getoor develop an efficient algorithm for
Set Cover in the streaming model [15]. Their approach re-
quires multiple passes, however, and is built on an algorithm
for Max k-Coverage. Their analysis shows that it requires
O(log2 n) passes (at least logarithmically many even in the
best case) to find an approximate set cover. For the large
datasets we consider, this equates to potentially hundreds
of passes. For a gigabyte-sized dataset, a single pass takes
time on the order of a minute, so the total cost can be many
hours. In experiments in [15], the method achieves solutions

S1 ABCDE S2 ABDFG
S3 AFG S4 BCG
S5 GH S6 EH
S7 CI S8 A
S9 E S10 I

Figure 1: Example input of m = 10 sets over the
universe {A,B,C,D,E,F,G,H, I} of size 9.

that are somewhat worse than the greedy (offline) solution,
by around 10%. The absolute time cost of the method is not
described.

2. TECHNICAL BACKGROUND

2.1 TheSet Cover problem
We consider the standard (unweighted) Set Cover prob-

lem. There are a universe X of n items and a collection S
of m subsets of X: S = {S1, S2, . . . , Sm}. We assume that
the union of all of the sets in S is X, with |X| = n. The aim
is to find a subcollection of sets in S, of minimum size, that
covers all of X. An example input is shown in Figure 1.

Set Cover was one of the early problems to have been
identified as NP-hard; Vertex Cover is an important spe-
cial case.

Greedy heuristic. The best-known algorithm for Set

Cover is based on a greedy heuristic [11]. Let Σ be the
set of indices of sets in the solution so far and let C be the
elements covered so far. Initially (see Figure 1) there are no
sets in the solution and every element is uncovered, so that
Σ = ∅ and C = ∅. We repeat the following steps until all
elements are covered, that is, C = X:

Choose (one of) the set(s) with the maximum
value of |Si \ C|; let the index of this set be i∗.
Add i∗ to Σ and update C to C ∪ Si∗ .

Figure 2 shows the effect of this algorithm on the sample
input shown in Figure 1. Initially the largest uncovered set
is of size 5 (there are two such sets, so the algorithm arbi-
trarily picks S1 = ABCDE). After this step, many items
are covered—these are shown as lower case in Figure 2. Now
the largest “uncovered set” is of size 2: there are two sets of
this size, but they both contain the same uncovered items
(FG), and from these the greedy algorithm arbitrarily picks
S2. The next step picks a set containing H, and the final
step covers the last remaining uncovered item, I, and termi-
nates. Note that the optimal solution picks only three sets:
S2, S6, S7 are sufficient to cover all items. In this case, it is
easy to argue that this is indeed optimal: consider elements
D, H and I. Since these never appear in any set together,
the optimal solution must contain at least three sets, one
for each of these elements.

It is an oft-repeated observation that this method hap-
pens to perform well in practice (see, for example, [8]). It
clearly runs in polynomial time, and is also an approxima-
tion algorithm for Set Cover (indeed, it is often one of
the early examples shown in textbooks on Approximation
Algorithms).

Approximating Set Cover.

After step 1:
S2 abdFG S3 aFG S4 bcG
S5 GH S6 eH S7 cI
S8 a S9 e S10 I

After step 2:
S3 afg S4 bcg S5 gH S6 eH
S7 cI S8 a S9 e S10 I

After step 3:
S3 afg S4 bcg S6 eh S7 cI
S8 a S9 e S10 I

Figure 2: Execution of the greedy algorithm on ex-
ample input

Lemma 1. The greedy algorithm in the previous para-
graph produces a solution within a factor 1 + ln n of the
optimum for Set Cover.

It is worth repeating here a short proof of this lemma.

Proof. Let the number of sets in the optimal solution be
σ∗. Let Ct be the set of covered elements after t iterations
of the greedy algorithm. We know at each iteration that
there is some set that covers at least |X \Ct|/σ∗ previously-
uncovered elements, otherwise there would not be an opti-
mum solution of size σ∗. Since the greedy algorithm chooses
the set with the largest number of uncovered elements, it
covers at least |X \ Ct|/σ∗ new elements. Therefore

|X \ Ct+1| ≤ |X \ Ct|(1 −
1

σ∗
) ,

which means that after t iterations

|X \ Ct| ≤ n

„

1 −
1

σ∗

«t

< ne−t/σ∗

.

Consequently, if t is at least σ∗ ln n, the number of uncovered
elements is strictly less than 1, and thus a solution has been
found. We note that σ∗ ln n might not be an integer, and
thus we can only guarantee a solution of size ⌈σ∗ ln n⌉. This
is strictly bounded by 1 + σ∗ ln n ≤ σ∗(1 + ln n).

Interestingly, in an approximation sense, this is essentially
the best that can be achieved for Set Cover. Feige showed
that no (efficient) algorithm can guarantee an approximation
of the problem within a factor of (1− o(1)) ln n unless there
are efficient algorithms for the class NP [5].

A more naive algorithm. Several previous studies of the
quality of the greedy algorithm have compared results to a
so-called naive heuristic [4]. It proceeds as follows:

• Sort the (indices i of the) sets Si into descending order
according to |Si|.

• For each Si in this order, until C = X:

– If |Si \ C| > 0: add i to Σ and update C.

In the worst case this heuristic cannot provide an approxi-
mation with approximation ratio better than n/6. Consider
an instance in which Si = {2i− 1, 2i, . . . , 2k + i} for some k
and all i ≤ k. Now, |Si| = 2k +2− i, so the naive algorithm
will process the sets in the order S1, S2, . . . , Sk, each time
adding the set Si to the solution, because it contains one
uncovered element, 2i + 1. The optimal solution, however,

A 1, 2, 3, 8 B 1, 2, 4 C 1, 4, 7
D 1, 2 E 1, 6, 9 F 2, 3
G 2, 3, 4, 6 H 4, 6 I 7, 10

Figure 3: Inverted index for example data

comprises just S1 and Sk. Therefore the ratio of the sizes of
the naive and optimal solutions is k/2 = n/6.

Nevertheless, we include this heuristic in our experimental
study for comparison with the greedy method and our new
algorithm, and for consistency and comparison with prior
work which has also used this heuristic.

2.2 Memory and disk considerations
The chief problem with efficiently implementing the

greedy algorithm is that it demands picking the set with
the largest number of uncovered items. As each new set
is chosen, because it covers items that might be present in
other sets, it is necessary to find all sets which contain the
covered items, and adjust the count of uncovered items in
each set accordingly. Thus, algorithms for Set Cover must
retrieve information from disk or main memory (depending
on the implementation) in order to calculate the sizes of
sets and to determine which items are in which set and vice
versa. On large problem instances, these frequent calls for
data have a significant effect on the running time of the al-
gorithm. Although modern computers have large amounts
of main memory, there is a memory hierarchy, and effective
use of the cache often relies on locality of reference. This
effect is even more pronounced on disk, since the cost of
processing a single block once in main memory is, in most
circumstances, orders of magnitude less than that of retriev-
ing the block from disk. Hence, random access to data on
disk can be highly expensive. Indeed models for the running
time of disk-based algorithms often essentially ignore the in-
ternal computation costs, since these can be dominated by
the I/O cost. In this paper, we analyze the performance
of algorithms based on this external memory model of the
running time.

2.3 Greedy “cooked” two ways
We assume that the problem instance specifies for each i a

succinct description of the elements that are in set Si. This
consumes O(

Pm
i=1 |Si|) words of memory or disk, assuming

an element can be represented in one word.
There are two canonical approaches to implementing the

greedy heuristic. At each step of the greedy algorithm we
need to find a set that has maximum |Si \ C|. The first
approach involves the use of an inverted index (or file), the
second involves multiple passes over the original data. In
this section, we provide a basic description of each approach.
Further details and optimizations are described in Sections 4
and 5.

Inverted index. We can find the maximum |Si \ C| by
maintaining these values in a large priority queue. In order
to have up-to-date |Si \ C| values, as a set Si∗ is added to
the solution, we need to determine which other sets contain
the items in Si∗ , that is, those items freshly included in C.
This can be done by use of an inverted index, in which for
each item j we have a succinct representation of

Tj = {i : j ∈ Si} .

As a preprocessing step, the algorithm creates the Tj ’s, and
then looks them up as the greedy iterations proceed. Fig-
ure 3 shows the inverted index for the sample dataset shown
in Figure 1. For each element, the index lists the indices of
the sets in which it belongs.

If we assume a cost model in which random accesses to
locations in the memory hierarchy take a constant amount
of time, the use of an inverted index seems to make the
maintenance of the priorities in the priority queue efficient
In this cost model, the running time of this approach is
O((log m)

Pn
j=1 |Tj |). Note this is somewhat of an overes-

timate as the updating of the |Si \ C| in the priority queue
can be done once for each i at each iteration of the algo-
rithm. Generating the inverted index requires examining
the full description of all the sets, which is subsumed by the
expression above.

However, the (pre-)process that generates the inverted in-
dex is very unlikely to observe locality of reference in its
construction of the Tj sets. Moreover, consider retrieving
the Tj ’s as the greedy algorithm proceeds: it seems very
hard to predict which Tj will be needed at which stage in
the algorithm, and the memory accesses are likely to be ar-
bitrary. Hence, in practice, the cost of this algorithm can be
painfully high due to the random accesses to many locations
on disk.

Multiple passes. An alternative approach avoids the pri-
ority queue and the inverted index completely. Instead, we
simply maintain the set C of elements covered so far. At each
iteration, we loop through all of the (previously-unadded)
sets and note the value of |Si \C|, by a (simple) comparison
of the elements in the two sets. The running time depends
on O(σ

P

i |Si|), or equivalently (for comparison with the
inverted index approach) O(σ

P

j |Tj |), where σ is the size
of the solution obtained.

The algorithm makes a linear number of passes over the
data, which seems efficient when data are resident on disk,
since the number of random accesses (seeks of a disk head)
is minimized. However, it will be very slow when σ is large,
since it essentially has to read through the entire dataset
to add a single set to the solution. An optimization can be
applied when the number of items remaining to be covered
becomes small. Once |S∗

i \C| drops below a certain threshold
τ , we might take a different approach. For each value T ≤ τ
we loop through the (remaining) sets and then add a set if
|Si \ C| equals T . Determining the best value of τ requires
some experimentation, but the running time is now O((στ +
τ)

P

j |Tj |), where στ is the number of sets in the solution
whose size is at least τ .

This multiple pass approach has the advantage that it
sweeps through memory sequentially, without needing to
generate, nor access, an inverted index. We later study em-
pirically the tradeoff between the large number of passes in
this algorithm and the cost of the random accesses in the
inverted file approach.

3. OUR NEW APPROACH

3.1 Greed is not good
Reflecting on the two approaches to the greedy algorithm,

there is considerable effort expended to find the set Si∗ with
the maximum value of |Si \ C|. This requires either a pri-
ority queue and an inverted index, or many passes through

At start of step 1:

4–7 ABCDE, ABDFG
2–3 AFG, BCG, GH, EH, CI, AFG

1 A, E, I

At start of step 2:

2–3 aFG, bcG, GH, eH, cI, (abd)FG
1 a, e, I

After the third set has been selected:

2–3 bcg, gH, eH, cI, (abd)fg
1 a, e, I

At start of step 3:

1 a, e, I, (g)H, (e)H, (c)I

Figure 4: The new algorithm executed on the sample
input

the instance description. What if we did not insist on find-
ing the set with the absolute maximum |Si \ C|, but just a
set whose uncovered element count were close to maximal?
Could we do this in a way that not only interacted with disk
(or memory) in a friendly manner, with few passes through
the data, but also had a reasonably good approximation fac-
tor and performed well in practice?

More formally, suppose instead of picking the exact max-
imum, we instead chose a set which is within a very small
constant factor of the largest. We first consider the impact
on the approximation factor:

Lemma 2. If an iterative algorithm always chooses a set
Sc to add to the solution with

|Sc \ C| ≥ α max
i

|Si \ C| , (1)

for α ≤ 1, then it has approximation factor which is at most
1 + (ln n)/α for Set Cover.

Proof. Consider the proof of Lemma 1. The greedy
algorithm guarantees that it chooses a set with at least
|X \ Ct|/σ∗ uncovered elements. In the algorithm at
hand, we can guarantee that the set chosen has at least
α|X \ Ct|/σ∗ uncovered elements. This α factor carries
through the calculations of that proof, so that when t is
at least σ∗(ln n)/α there is fewer than one uncovered ele-
ment. Again this quantity might not be an integer, so the
solution size is strictly less than

1 +
σ∗ ln n

α
≤ σ∗

„

1 +
ln n

α

«

.

Munagala et al. [14] suggest a similar heuristic for the
Pipelined Set Cover problem, but our result in the
Lemma above is novel.

3.2 The algorithm
The approach we use is to partition the sets into sub-

collections based on the sizes of the sets. To that end,
we select a real-valued parameter p > 1, which will gov-
ern both the approximation factor and running time of our
algorithm. Initially, we assign set Si to subcollection S(k)

if pk ≤ |Si| < pk+1; let K be the largest k with non-empty

S(k). The algorithm then proceeds in two loops:

• For k → K down to 1:

– For each set Si in S(k):

∗ If |Si \ C| ≥ pk: add i to Σ and update C.

∗ Else: let set Si ← Si\C and add the updated

set to subcollection S(k′), where the new set

size satisfies pk′

≤ |Si| < pk′+1 (and therefore
k′ < k).

• For each set Si in S(0):

– If |Si \ C| = 1: add i to Σ and update C.

Note that for values of p close to 1, the algorithm
will separately track subcollections of sets whose sizes are
1, 2, 3, . . . , 1/p. Related notions are outlined in Berger et
al. [1] for designing an efficient parallel version of the greedy
algorithm for Set Cover. However, their phases concern
not the sizes of the sets, but the number of sets that the
elements are in, that is, the |Tj | values.

Example. Figure 4 shows an example execution of the al-
gorithm on the sample input of Figure 2, with parameter
p = 2. Thus, we break the sets initially into those of size 1,
2–3 and 4–7. The algorithm first considers the sets of size
4–7, and selects the first set found, ABCDE (indicated via
underlining). The next set now has only 2 uncovered items
(F and G), so the new set is appended to list 2, and the first
step finishes. At the start of the next step, many items are
now covered (indicated in lower case); however, the “uncov-
ered sizes” of the sets are not known to the algorithm until
these sets are inspected. The set FG has been written to the
end of list 2: the original items ABD have been removed, and
are shown in parentheses. In step 2, AFG has two uncov-
ered elements and so is added to the solution. Consequently,
when the algorithm passes through the list of sets supposed
to be of size 2–3, it finds that there are no sets of “uncovered
size” remaining in this range, due to items’ being covered.
In step 3, each of the sets I and GH has one uncovered item
when inspected, and so is selected (and underlined). The
remaining sets in list 1 have no uncovered items. Thus, the
chosen cover is ABCDE, AFG, GH, I. Observe that this is
different from the cover chosen by greedy, but has the same
number of sets (four).

3.3 Analyzing the algorithm

The approximation factor. The key fact is that a set
added to the solution has at least pk uncovered elements.
From the design of the algorithm the following is clear.

Proposition 1. At the time in which subcollection S(k)

is being processed, there is no set that has at least pk+1 un-
covered elements.

Consequently, since pk/pk+1 = 1/p, we know that the set
chosen satisfies (1) with α = 1/p and therefore Lemma 2
implies the following.

Lemma 3. The algorithm described in this section is a
1 + p ln n approximation for Set Cover.

Running time. Consider what happens to some set Si.
Whenever it is processed, each of its elements is checked for
presence in C. It is then either added to the solution and

never accessed again, or it is added to a subcollection of
smaller sets. In the worst case, the set Si is moved to the
next subcollection in each round. Moreover, it is guaran-
teed to shrink by at least factor of p every second time it
is moved. Hence, we can bound the worst case total num-
ber of items in all of the manifestations of Si based on the
following geometric series

|Si| +
|Si|

p
+

|Si|

p2
+ · · · =

|Si|

1 − 1/p
=

„

1 +
1

p − 1

«

|Si| .

Consequently, we can bound the worst case running time
of the algorithm by O([1 + 1/(p − 1)]

P

i |Si|), which is at
most a factor of 1 + 1/(p − 1) as great as the time to scan
the data. In practice, we do not expect to see such worst
case examples: it is more likely that a set, if not picked,
will move down multiple levels, rather than just one. More
importantly, if the subcollections are written to disk, each
in a separate file, then the file accesses are sequential.

Memory/disk considerations. Our algorithm’s main ap-
peal is that it behaves extremely well on external memory,
and reasonably well on main memory. The initial partition-
ing of S can be done with one sweep through S. Subse-
quently, within each subcollection S(k), the sets can be pro-
cessed in two passes. In the first pass, we simply add each
set sequentially, either in the initial phase of partitioning S

or when processing some S(k′) with k′ > k. The second pass
is the step in the for loop in which each set is examined in
turn for its |Si \ C| value. The other benefit of our algo-
rithm is that even when a set is pushed down to a lower
subcollection, it has become smaller.

Referring to the analysis in the paragraph on running
time, if information is read from disk in blocks of size B, then
reading the input requires approximately D = ⌈

P

i |Si|/B⌉

disk reads. Each subcollection S(k) requires at most
‰

2|Si|

BpK−k

ı

disk reads. Summing this over all subcollections, we have
an upper bound of

2D

„

1 +
1

p − 1

«

+ 2K

disk reads, where K ≤ logp max |Si|.

4. EXPERIMENTS

4.1 Datasets and Experimental Environment
The datasets used in our experiments come from the Fre-

quent Itemset Mining Dataset Repository, based on work-
shops in 2003 and 2004 [7]. Each line in one of these files
describes a set in a natural way, as a white space-separated
sequence of integers, where each integer represents an item.

Table 1 describes the properties of the problem instances.
We acknowledge in particular the authors who made avail-
able the accidents.dat [6], retail.dat [2] and webdocs.dat
datasets [12].

System. The system used for conducting the experiments
is a 2.8GHz Intel Core i7 running the Mac OS X operating
system version 10.6.3 under a light load. This system has
4 cores, 256KB L2 cache per core, 8MB L3 cache, 8GB of
main memory and 2TB of hard disk.

4.2 Implementation details
The item and set indices, j and i, were stored as long

integers, requiring eight bytes. For each problem instance,
the values of m, n, max |Tj |, and max |Si| were calculated
in advance, so that only the required resources were used
by the Set Cover algorithms. The sorting of the |Si| in
the naive algorithm was done using the built-in C qsort

function. Maintenance of the |Si \ C| values and selection
of a minimum such value were achieved with an array-based
heap implementation of a priority queue.

The external memory greedy algorithms write out a copy
of the problem instance (in Si form) to disk in a program-
friendly format before doing further processing. Construct-
ing an inverted index on external memory required calculat-
ing the |Tj | values; this was done by a first pass through the
program-friendly disk-stored Si data.

For each algorithm, we recorded the maximum amount of
main memory allocated on the heap at any one time during
the program execution. We also recorded the total number
of bytes written to and read from disk, not including the
initial reading of the problem instance, nor of writing the
solution out to a file. Note that the solution description is a
file of integers, one to a line, in ascending order correspond-
ing to the input file, of the indices i in Σ. The recorded
running time, however, included all steps in the program
execution.

The output of each Set Cover program was verified by
a separate checking program to be a cover.

The threshold τ used in the multiple pass greedy algo-
rithm is 40, and was determined by trial and error.

We found that in practice our algorithm performed better
if a threshold of pk−1, rather than pk, was used to deter-
mine whether a set in S(k) should be added to the solution.
The experimental results that are reported below use the
pk−1 threshold. Note then that approximation bound for
the algorithm, as tested, is 1+p2 ln n, rather than 1+p ln n.

The maximum number of files for the S(k), as used in our
algorithm, allowed by the operating system was 250. When
implemented in main memory, we allowed for up to 20,000
such subcollections. This limit on k imposes a constraint
on the size of p: a very small p would require a very large
number of files. Specifically, if κ is the upper bound on k,
i.e., the maximum number of subcollections, then p must be
at least (max |Si|)

1/κ in order to ensure that (max |Si|) = pκ.

4.3 Results
The results of our experiments are presented in Table 3

and Table 2. The algorithms used are as follows:

greedy The greedy algorithm using an inverted index, as
described in Section 2.3.

multipass The multiple pass greedy algorithm, without an
inverted index, as described in Section 2.3.

naive The naive algorithm mentioned in Section 2.1.

Disk-Friendly Greedy, aka DFG The algorithm pre-
sented in Section 3.2, the main contribution of this
paper.

We first note that we do not show results for the external
memory versions of the greedy and multipass algorithms for
the largest problem instance. They required more than ten
hours of computing time and seemed to place a very heavy

Table 1: Characteristics of the test problem instances.

Name |File| (Kb) Items Sets max |Tj | max |Si|

chess.dat 334 75 3196 3195 37
mushroom.dat 557 119 8124 8124 23
pumsbStar.dat 11027 7116 49046 38749 63
pumsb.dat 16298 7116 49046 48944 74
retail.dat 4069 16469 88162 50675 76
accidents.dat 34677 468 340183 340151 51
kosarak.dat 31278 41270 990002 601374 2498
webdocs.dat 1447158 5267656 1692082 1429525 71472

Table 2: Performance of the disk-based algorithms. The DFG algorithm was run with p = 1.05. For each
dataset, the lowest running time is shown in italics, as is the smallest solution.

File Algorithm RAM (Mb) Disk (Mb) Time (s) |Solution|

chess.dat naive 0 1 0.05 26
multipass 0 37 0.45 9
greedy 0 3 0.37 8
DFG 0 2 1.63 8

mushroom.dat naive 0 2 0.09 44
multipass 0 59 1.09 22
greedy 0 5 0.64 25
DFG 0 6 0.37 23

pumsbStar.dat naive 1 37 0.86 1242
multipass 1 830 7.30 752
greedy 2 75 11.52 747
DFG 0 66 1.08 746

pumsb.dat naive 1 55 1.86 1317
multipass 1 1217 7.66 749
greedy 2 111 19.24 757
DFG 0 98 2.07 751

retail.dat naive 2 13 0.82 7153
multipass 2 461 18.39 5103
greedy 4 28 3.66 5102
DFG 1 24 1.89 5111

accidents.dat naive 8 175 4.64 245
multipass 5 3772 49.24 181
greedy 15 351 44.11 181
DFG 5 329 4.08 182

kosarak.dat naive 24 122 8.51 20664
multipass 17 6571 331.66 17746
greedy 44 247 98.66 17750
DFG 17 164 2.61 17748

webdocs.dat naive 206 4575 91.21 433412
multipass
greedy
DFG 153 5075 86.28 406440

Table 3: Performance of the RAM-based algorithms. The DFG algorithm was run with p = 1.001. For each
dataset, the lowest running time is shown in italics , as is the smallest solution.

File Algorithm RAM (Mb) Time (s) |Solution|

chess.dat naive 1 0.05 26
multipass 0 0.05 9
greedy 1 0.07 8
DFG 1 0.04 8

mushroom.dat naive 3 0.07 44
multipass 1 0.06 22
greedy 3 0.07 25
DFG 3 0.07 22

pumsbStar.dat naive 39 0.58 1242
multipass 19 0.64 752
greedy 39 0.76 747
DFG 27 0.59 753

pumsb.dat naive 56 0.83 1317
multipass 28 0.91 749
greedy 57 1.03 757
DFG 53 0.85 735

retail.dat naive 16 0.25 7153
multipass 8 0.37 5103
greedy 17 0.32 5102
DFG 11 0.26 5129

accidents.dat naive 183 2.27 245
multipass 93 2.74 181
greedy 188 2.76 181
DFG 112 2.37 181

kosarak.dat naive 146 2.20 20664
multipass 78 4.21 17746
greedy 161 2.99 17750
DFG 107 1.97 17741

webdocs.dat naive 4722 100.98 433412
multipass 2440 8049.08 406381
greedy 4727 199.02 406351
DFG 2827 93.38 406338

 65

 70

 75

 80

 85

 90

 95

2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1 1

tim
e

(s
)

(p-1) value

(a) Time cost as p varies

 406

 407

 408

 409

 410

 411

 412

 413

 414

2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1 1

|S
ol

ut
io

n|
 (

x
10

3)

(p-1) value

(b) Solution size as p varies

Figure 5: Effect of varying the p parameter in the RAM-based implementation of the DFG algorithm.

burden on the hard disk. This underlines our main point
in this paper: even on modern hardware, what is currently
considered a moderate- to large-size instance (about a mil-
lion sets, totaling about 1.5GB) is simply beyond the reach
of reasonable implementations of the traditional greedy al-
gorithm.

Disk-based results. Our algorithm was primarily designed
to handle external datasets, and here it shines. Table 2
shows the memory usage, maximum amount of disk used,
running time of each algorithm, along with the size of the
solution produced (|Solution| = σ). Except on the smallest
instances, our algorithm is dramatically faster than previous
greedy methods. The speedup increases as the instance size
increases: ranging from about 10 times faster on medium in-
stances (accidents.dat, pumsb.dat, pumsbStar.dat) to over
37 times faster on kosarak.dat. As noted above, webdocs.dat
took a matter of minutes for our algorithm to process,
whereas greedy had not completed after several hours of run
time. Even on kosarak.dat, multipass was over a hundred
times slower than DFG.

In-memory results. When there is sufficient memory to
run the algorithms in memory, our proposed method com-
pares very favorably to existing methods. Table 3 shows
the results. We observe that in terms of time, there is rel-
atively little to choose between the methods until we reach
the larger instances. Arguably on the medium size instances
(accidents.dat, kosarak.dat), the greedy algorithm is slower,
while our algorithm is about as fast as naive. On the largest
instance (webdocs.dat), the speed advantage is clearer: our
algorithm is over twice as fast as greedy, and even faster
than naive, while multipass is just impractical. In terms of
quality, our algorithm is essentially equivalent to the greedy
algorithm, improving in some cases, and never finding a so-
lution with more than 0.5% more sets than greedy nor mul-
tipass. In contrast, naive is always worse, over 80% worse
in one instance.

Impact of parameter p. To understand better the behav-
ior of the algorithm as p is varied, we show further exper-
iments in Figure 5 for the in-memory case (disk-based was
quite similar). This shows that while the time cost increases
as p is decreased, this is not so significant: increasing the

accuracy guarantee by a factor of 1000 only adds 30s to the
initial cost of around 60s. This is much better than worst
case analysis, which predicts that for p = 1+2−10, the time
overhead is at most 32 times the overhead for p = 1 + 2−5.
Meanwhile, there is a clear benefit of decreasing p closer
to 1: we see that the solution size decreases, although less
dramatically so. Although hard to see in the figure, there
is improvement as p decreases further, although minor: for
the smallest values of p tried, the variation in solution size
is only one or two sets out of 400,000.

Summary. Clearly, implementations of greedy do not scale
to modern data sizes even on modern hardware; our tech-
nique appears to scale well across a variety of settings. Per-
haps most surprising is that the disk-based results for DFG
are very close to those of the memory-based ones—in par-
ticular, for the largest instance, our algorithm took about
90 seconds whether in memory or out (the lower duration in
external memory is due to different choice of the parameter
p). This, and the fact that DFG was slightly faster than the
naive algorithm, indicates that the new algorithm is not I/O
bound, i.e., is not waiting for disk before it can proceed.

In terms of the quality of the results, our algorithm re-
mains almost identical to greedy, whether in memory (Ta-
ble 3) or on disk (Table 2), as discussed above. Note
that while greedy obtains the same solution, our algorithm
was run with different parameters (p = 1.001 in memory,
p = 1.05 on disk), and so obtains slightly different results.
However, in both cases the results are close to those found
by greedy, and better in some cases.

5. EXTENSIONS
Here, we outline some variations to consider for extensions

of this work in the future.

Compact Representation of Covered Items. All our
algorithms assume that it is feasible to store the set of items
that have been covered so far in memory (for example, in
hash table to allow quick search and update). When n, the
size of the universe of items, is truly immense, it may be
infeasible to store even this in memory exactly. Instead, a
more compact representation is needed. If the universe is
structured simply as the integers 1, 2, . . . , n, then a simple

bitmap index will suffice. More generally, when the items
are larger and less well-structured (such as web page URLs),
a Bloom filter can capture the set of covered items efficiently
with a constant number of bits per universe item [3]. The
data structure has a small false positive rate, meaning that
the algorithm may leave a few items uncovered. Empirical
analysis will be needed to determine the significance of this
approximation.

Greedy on external memory. An additional heuristic to
try is to attempt to combine the inverted index and multiple
pass approaches on external memory. First, partition the
sets into two files, based on whether |Si| > τ or not. The file
with the large sets would be traversed relatively efficiently
because each block would have only a small number of sets
and therefore would be read only a small number of times
even if the sets were read in a somewhat arbitrary order.
On the other hand, the blocks with sets of size at most τ
would be read in a sequential manner, because the algorithm
switches to a multiple pass approach. Choosing a good value
of τ to coincide with block size could be done empirically.
We should keep in mind, however, that the inverted index
might be the dominant cost.

Reducing sets. Our DFG algorithm rewrites a set Si to
disk or memory in a “reduced” form, with the covered ele-
ments removed, if it is not immediately added to the solu-
tion. Applying this improvement would potentially be useful
in other cases, such as the greedy algorithm (especially the
multiple pass version), although this might not make enough
of a difference to the general poor performance.

6. CONCLUDING REMARKS
Motivated by the increasing size of datasets compared the

speed of external memory access, we studied the problem
of efficiently finding set covers for large inputs. We ob-
served that previous methods simply do not scale well, but
that a simple algorithm has guaranteed performance and
scales very gracefully to very large instances. It has best-in-
class speed, and best-in-class solution quality, a combination
achieved by none of the other algorithms.

A clear next step is to ask the same questions of other
common large scale mining and optimization scenarios. In
particular, many modern datasets are represented by large
graphs with millions of nodes and edges (such as the web
graph, social networks, communication graphs). It is natural
to ask how to effectively find good quality covers, partitions
and dominating sets within such large, disk-resident, graphs.

7. ACKNOWLEDGMENTS
Anthony Wirth’s visit to AT&T Labs–Research was sup-

ported by the Australian Research Council. We thank David
Johnson for helpful comments and conversations.

8. REFERENCES
[1] B. Berger, J. Rompel, and P. Shor. Efficient NC

algorithms for set cover with applications to learning
and geometry. Journal of Computer and System
Sciences, 49(3):454–77, 1994.

[2] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using
association rules for product assortment decisions: A
case study. In Knowledge Discovery and Data Mining,
pages 254–60, 1999.

[3] A. Broder and M. Mitzenmacher. Survey: Network
applications of bloom filters: A survey. Internet
Mathematics, 1(4), 2003.

[4] F. Chierichetti, R. Kumar, and A. Tomkins.
Max-Cover in Map-Reduce. In Proceedings of the 19th
International Conference on World Wide Web, pages
231–40. ACM, 2010.

[5] U. Feige. A threshold of ln n for approximating set
cover. Journal of the ACM, 45(4):634–52, 1998.

[6] K. Geurts, G. Wets, T. Brijs, and K. Vanhoof.
Profiling high frequency accident locations using
association rules. In Proceedings of the 82nd Annual
Transportation Research Board, page 18pp, January
2003.

[7] B. Goethals. Frequent itemset mining dataset
repository. http://fimi.cs.helsinki.fi/data/.

[8] L. Golab, H. Karloff, F. Korn, D. Srivastava, and
B. Yu. On generating near-optimal tableaux for
conditional functional dependencies. In VLDB, 2008.

[9] F. Gomes, C. Meneses, P. Pardalos, and G. Viana.
Experimental analysis of approximation algorithms for
the vertex cover and set covering problems. Computers
& Operations Research, 33(12):3520–34, 2006.

[10] T. Grossman and A. Wool. Computational experience
with approximation algorithms for the set covering
problem. European Journal of Operational Research,
101(1):81–92, 1997.

[11] D. Johnson. Approximation algorithms for
combinatorial problems. Journal of Computer and
System Sciences, 9(3):256–78, 1974.

[12] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri.
Webdocs: a real-life huge transactional dataset.

[13] M. Mihail. Set cover with requirements and costs
evolving over time. In Proceedings of the Second
International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems:
RANDOM-APPROX, pages 63–72, 1999.

[14] K. Munagala, S. Babu, R. Motwani, and J. Widom.
The pipelined set cover problem. Technical Report
2003-65, Stanford InfoLab, October 2003.

[15] B. Saha and L. Getoor. On Maximum Coverage in the
streaming model & application to multi-topic
blog-watch. In 2009 SIAM International Conference
on Data Mining (SDM09), April 2009.

