
An Improved Data Stream Summary:
The Count-Min Sketch and its Applications

Graham Cormode? and S. Muthukrishnan??

Abstract. We introduce a newsublinear spacedata structure—theCount-Min
Sketch— for summarizing data streams. Our sketch allows fundamental queries
in data stream summarization such as point, range, and inner product queries to
be approximately answered very quickly; in addition, it can be applied to solve
several important problems in data streams such as finding quantiles, frequent
items, etc. The time and space bounds we show for using the CM sketch to solve
these problems significantly improve those previously known — typically from
1/ε2 to 1/ε in factor.

1 Introduction

We consider a vectora, which is presented in an implicit, incremental fashion. This vec-
tor has dimensionn, and its current state at timet isa(t) = [a1(t), . . . ai(t), . . . , an(t)].
Initially, a is the zero vector,ai(0) = 0 for all i. Updates to individual entries of
the vector are presented as a stream of pairs. Thetth update is(it, ct), meaning that
ait

(t) = ait
(t− 1) + ct, andai′(t) = ai′(t− 1) for all i′ 6= it. At any timet, aquery

calls for computing certain functions of interest ona(t).
This setup is thedata streamscenario that has emerged recently. Algorithms

for computing functions within the data stream context need to satisfy the follow-
ing desiderata. First, the space used by the algorithm should be small, at most poly-
logarithmic inn, the space required to representa explicitly. Since the space is sub-
linear in data and input size, the data structures used by the algorithms to represent the
input data stream is merely a summary—aka asketchor synopsis [10])—of it; because
of this compression, almost no function that one needs to compute ona can be done
precisely, so some approximation is provably needed. Second, processing an update
should be fast and simple; likewise, answering queries of a given type should be fast
and have usable accuracy guarantees. Typically, accuracy guarantees will be made in
terms of a pair of user specified parameters,ε andδ, meaning that the error in answer-
ing a query is within a factor ofε with probability δ. The space and update time will
consequently depend onε andδ; our goal will be limit this dependence as much as is
possible.

Many applications that deal with massive data, such as Internet traffic analysis and
monitoring contents of massive databases, motivate this one-pass data stream setup.

? graham@dimacs.rutgers.edu Center for Discrete Mathematics and Computer Science
(DIMACS) Rutgers University, Piscataway NJ. Supported by NSF ITR 0220280 and NSF EIA
02-05116.

?? muthu@cs.rutgers.edu Division of Computer and Information Systems, Rutgers Uni-
versity. Supported by NSF EIA 0087022, NSF ITR 0220280 and NSF EIA 02-05116.



There has been a frenzy of activity recently in the Algorithm, Database and Networking
communities on such data stream problems, with multiple surveys, tutorials, workshops
and research papers. See [7, 3, 16] for detailed description of the motivations driving this
area.

In recent years, several different sketches have been proposed in the data stream
context that allow a number of simple aggregation functions to be approximated. Quan-
tities for which efficient sketches have been designed include theL1 andL2 norms of
vectors [2], the number of distinct items in a sequence (ie number of non-zero entries in
a(t)) [8], join and self-join sizes of relations (representable as inner-products of vectors
a(t), b(t)) [2, 1], item and range sum queries [12, 4]. These sketches are of interest not
simply because they can be used to directly approximate quantities of interest, but also
because they have been used considerably as “black box” devices in order to compute
more sophisticated aggregates and complex quantities: quantiles [13], wavelets [12],
and histograms [11]. Sketches thus far designed are typically linear functions of their
input, and can be represented as projections of an underlying vector representing the
data with certain randomly chosen projection matrices. This means that it is easy to
compute certain functions on data that is distributed over sites, by casting them as com-
putations on their sketches. So, they are suited for distributed applications too.

While sketches have proved powerful, they have the following drawbacks.

– Although sketches use small space, the space used typically has aΩ(1/ε2) multi-
plicative factor. This is discouraging becauseε = 0.1 or 0.01 is quite reasonable
and already, this factor proves expensive in space, and consequently, often, in per-
update processing and function computation times as well.

– Many sketch constructions require time linear in the size of the sketch to process
each update to the underlying data [2, 13]. Sketches are typically a few kilobytes up
to a megabyte or so, and processing this much data for every update severely limits
the update speed.

– Sketches are typically constructed using hash functions with strong independence
guarantees, such asp-wise independence [2], which can be complicated to evaluate,
particularly for a hardware implementation. One of the fundamental questions is to
what extent such sophisticated independence properties are needed.

– Many sketches described in the literature are good for one single, pre-specified ag-
gregate computation. Given that in data stream applications one typically monitors
multiple aggregates on the same stream, this calls for using many different types of
sketches, which is a prohibitive overhead.

– Known analyses of sketches hide large multiplicative constants in big-Oh notation.

Given that the area of data streams is being motivated by extremely high perfor-
mance monitoring applications—eg., see [7] for response time requirements for data
stream algorithms that monitor IP packet streams—these drawbacks ultimately limit
the use of many known data stream algorithms within suitable applications.

We will address all these issues by proposing a new sketch construction, which we
call theCount-Min, or CM, sketch. This sketch has the advantages that: (1) space used
is proportional to1/ε; (2) the update time is significantly sublinear in the size of the
sketch; (3) it requires only pairwise independent hash functions that are simple to con-
struct; (4) this sketch can be used for several different queries and multiple applications;



and (5) all the constants are made explicit and are small. Thus, for the applications we
discuss, our constructions strictly improve the space bounds of previous results from
1/ε2 to 1/ε and the time bounds from1/ε2 to 1, which is significant.

Recently, aΩ(1/ε2) space lower bound was shown for a number of data
stream problems: approximating frequency momentsFk(t) =

∑
k(ai(t))k, estimat-

ing the number of distinct items, and computing the Hamming distance between two
strings [17]. It is an interesting contrast that for a number of similar seeming problems
(finding Heavy Hitters and Quantiles in the most general data stream model) we are
able to give anO( 1

ε ) upper bound. Conceptually, CM Sketch also represents progress
since it shows that pairwise independent hash functions suffice for many of the fun-
damental data stream applications. From a technical point of view, CM Sketch and its
analyses are quite simple. We believe that this approach moves some of the funda-
mental data stream algorithms from the theoretical realm to the practical. Our results
have some technical nuances: (1) The accuracy estimates for individual queries de-
pend on theL1 norm ofa(t) in contrast to the previous works that depend on theL2

norm. (2) Most prior sketch constructions relied on embedding into small dimensions
to estimate norms. Avoiding such embeddings allows our construction to avoidΩ( 1

ε2 )
lower-bounds on these embeddings.

2 Preliminaries

We consider a vectora, which is presented in an implicit, incremental fashion. This vec-
tor has dimensionn, and its current state at timet is a(t) = [a1(t), . . . ai(t), . . . an(t)].
For convenience, we shall usually dropt and refer only to the current state of the vector.
Initially, a is the zero vector,0, soai(0) is 0 for all i. Updates to individual entries of
the vector are presented as a stream of pairs. Thetth update is(it, ct), meaning that

ait
(t) = ait

(t− 1) + ct; ai′(t) = ai′(t− 1) i′ 6= it

In some cases,cts will be strictly positive, meaning that entries only increase; in other
cases,cts are allowed to be negative also. The former is known as thecash register
case and the latter theturnstile case [16]. There are two important variations of the
turnstile case to consider: whetherais may become negative, or whether the application
generating the updates guarantees that this will never be the case. We refer to the first of
these as thegeneralcase, and the second as thenon-negativecase. Many applications
that use sketches to compute queries of interest—such as monitoring database contents,
analyzing IP traffic seen in a network link—guarantee that counts will never be negative.
However, the general case occurs in important scenarios too, for example in distributed
settings where one considers the subtraction of one vector from another, say.

At any timet, aquerycalls for computing certain functions of interest ona(t). We
focus on approximating answers to three types of query based on vectorsa andb.

– A point query, denotedQ(i), is to return an approximation ofai.
– A range queryQ(l, r) is to return an approximation of

∑r
i=l ai.

– An inner product query, denotedQ(a, b) is to approximatea� b =
∑n

i=1 aibi.



These queries are related: a range query is a sum of point queries; both point and
range queries are specific inner product queries. However, in terms of approximations
to these queries, results will vary. These are the queries that are fundamental to many
applications in data stream algorithms, and have been extensively studied. In addition,
they are of interest in non-data stream context. For example, in databases, the point and
range queries are of interest in summarizing the data distribution approximately; and
inner-product queries allow approximation of join size of relations. Fuller discussion of
these aspects can be found in [9, 16].

We will also study use of these queries to compute more complex functions on
data streams. As examples, we will focus on the two following problems. Recall that
||a||1 =

∑n
i=1 |ai(t)|; more generally,||a||p = (

∑n
i=1 |ai(t)|p)1/p.

– (φ-Quantiles) Theφ-quantiles of the cardinality||a||1 multiset of (integer) values
each in the range1 . . . n consist of those items with rankkφ||a||1 for k = 0 . . . 1/φ
after sorting the values. Approximation comes by accepting any integer that is be-
tween the item with rank(kφ − ε)||a||1 and the one with rank(kφ + ε)||a||1 for
some specifiedε < φ.

– (Heavy Hitters) Theφ-heavy hitters of a multiset of||a||1 (integer) values each in
the range1 . . . n, consist of those items whose multiplicity exceeds the fractionφ of
the total cardinality, i.e.,ai ≥ φ||a||1. There can be between 0 and1

φ heavy hitters
in any given sequence of items. Approximation comes by accepting anyi such that
ai ≥ (φ− ε)||a||1 for some specifiedε < φ.

Our goal is to solve the queries and the problems above using a sketch data structure,
that is using space and time significantly sublinear—polylogarithmic—in input sizen
and ||a||1. All our algorithms will be approximate and probabilistic; they need two
parameters,ε andδ, meaning that the error in answering a query is within a factor of
ε with probability δ. Both these parameters will affect the space and time needed by
our solutions. Each of these queries and problems has a rich history of work in the data
stream area. We refer the readers to surveys [16, 3], tutorials [9], as well as the general
literature.

3 Count-Min Sketches

We now introduce our data structure, the Count-Min, or CM, sketch. It is named after
the two basic operations used to answer point queries, counting first and computing the
minimum next. We usee to denote the base of the natural logarithm function,ln.

Data Structure.A Count-Min (CM) sketchwith parameters(ε, δ) is represented by a
two-dimensional array counts with widthw and depthd: count[1, 1] . . . count[d, w].
Given parameters(ε, δ), setw = d e

εe and d = dln 1
δ e. Each entry of the array is

initially zero. Additionally, d hash functionsh1 . . . hd : {1 . . . n} → {1 . . . w} are
chosen uniformly at random from a pairwise-independent family.



Update Procedure.When an update(it, ct) arrives, meaning that itemait
is updated

by a quantity ofct, thenct is added to one count in each row; the counter is determined
by hj . Formally, set∀1 ≤ j ≤ d : count[j, hj(it)]← count[j, hj(it)] + ct The space
used by Count-Min sketches is the array ofwd counts, which takeswd words, andd
hash functions, each of which can be stored using 2 words when using the pairwise
functions described in [15].

4 Approximate Query Answering Using CM Sketches

For each of the three queries introduced in Section 2: Point, Range, and Inner Product
queries, we show how they can be answered using Count-Min sketches.

4.1 Point Query

We first show the analysis for point queries for the non-negative case.

Estimation Procedure.The answer toQ(i) is given byâi = minj count[j, hj(i)].

Theorem 1. The estimatêai has the following guarantees:ai ≤ âi; and, with proba-
bility at least1− δ, âi ≤ ai + ε||a||1.

Proof. We introduce indicator variablesIi,j,k, which are 1 if(i 6= k)∧(hj(i) = hj(k)),
and 0 otherwise. By pairwise independence of the hash functions, then

E(Ii,j,k) = Pr[hj(i) = hj(k)] ≤ 1/ range(hj) = ε
e .

Define the variableXi,j (random over the choices ofhi) to beXi,j =
∑n

k=1 Ii,j,k ak.
Since allai are non-negative in this case,Xi,j is a non-negative variable. By construc-
tion, count[j, hj(i)] = ai + Xi,j . So, clearly,min count[j, hj(i)] ≥ ai. For the other
direction, observe that

E(Xi,j) = E

(
n∑

k=1

Ii,j,kak

)
≤

n∑
k=1

akE(Ii,j,k) ≤ ε

e
||a||1

by pairwise independence ofhj , and linearity of expectation. By the Markov inequality,

Pr[âi > ai + ε||a||1] = Pr[∀j . count[j, hj(i)] > ai + ε||a||1]
= Pr[∀j . ai + Xi,j > ai + ε||a||1]
= Pr[∀j . Xi,j > eE(Xi,j)] < e−d ≤ δ

The time to produce the estimate isO(ln 1
δ ) since finding the minimum count can be

done in linear time; the same time bound holds for updates. The constante is used here
to minimize the space used: more generally, we can setw = ε/b andd = logb

1
δ for any

b > 1 to get the same accuracy guarantee. Choosingb = e minimizes the space used,
since this solvesd(wd)

db = 0, giving a cost of(2 + e
ε ) ln 1

δ words. For implementations,
it may be preferable to use other (integer) values ofb for simpler computations or faster
updates.



The best known previous result using sketches was in [4]: there sketches were used
to approximate point queries. Results were stated in terms of the frequencies of individ-
ual items. For arbitrary distributions, the space used isO( 1

ε2 log 1
δ ), and the dependency

onε is 1
ε2 in every case considered.

In the full version of this paper1 we describe how all existing sketch constructions
can be viewed as variations of a common construction. This emphasizes the importance
of our attempt to find the simplest sketch construction which has the best guarantees
and smallest constants. A similar result holds when entries of the implicit vectora may
be negative, which is the general case. Details of this appear in the full version of this
paper.

4.2 Inner Product Query

Estimation Procedure.Set(â� b)j =
∑w

k=1 counta[j, k] ∗ countb[j, k]. Our estima-

tion ofQ(a, b) for non-negative vectorsa andb is â� b = minj(â� b)j .

Theorem 2. a�b ≤ â� b and, with probability1− δ, â� b ≤ a�b+ ε||a||1||b||1.

Proof.

(â� b)j =
n∑

i=1

aibi +
∑

p6=q,hj(p)=hj(q)

apbq

Clearly,a� b ≤ â� bj for non-negative vectors. By pairwise independence ofh,

E(â� bj − a� b) =
∑
p6=q

Pr[hj(p) = hj(q)]apbq ≤
∑
p6=q

εapbq

e
≤ ε||a||1||b||1

e

So, by the Markov inequality,Pr[â� b− a� b > ε||a||1||b||1] ≤ δ, as required.

The space and time to produce the estimate isO( 1
ε log 1

δ ). Updates are performed
in timeO(log 1

δ ).
Join size estimation is important in database query planners in order to determine

the best order in which to evaluate queries. Thejoin sizeof two database relations on
a particular attribute is the number of items in the cartesian product of the two rela-
tions which agree the value of that attribute. We assume without loss of generality that
attribute values in the relation are integers in the range1 . . . n. We represent the rela-
tions being joined as vectorsa andb so that the valuesai represents the number of
tuples which have valuei in the first relation, andbi similarly for the second relation.
Then clearlya� b is the join size of the two relations. Using sketches allows estimates
to be made in the presence of items being inserted to and deleted from relations. The
following corollary follows from the above theorem.

Corollary 1. The Join size of two relations on a particular attribute can be approxi-
mated up toε||a||1||b||1 with probability1− δ, by keeping spaceO( 1

ε log 1
δ ).

1 To appear in Journal of Algorithms



Previous results have used the “tug-of-war” sketches [1]. However, here some care
is needed in the comparison of the two methods: the prior work gives guarantees in
terms of theL2 norm of the underlying vectors, with additive error ofε||a||2||b||2; here,
the result is in terms of theL1 norm. In some cases, theL2 norm can be quadratically
smaller than theL1 norm. However, when the distribution of items is non-uniform,
for example when certain items contribute a large amount to the join size, then the
two norms are closer, and the guarantees of the CM sketch method is closer to the
existing method. As before, the space cost of previous methods wasΩ( 1

ε2 ), so there is
a significant space saving to be had with CM sketches.

4.3 Range Query

Estimation Procedure.We will adopt the use ofdyadic rangesfrom [13]: a dyadic
range is a range of the form[x2y +1 . . . (x+1)2y] for parametersx andy. Keeplog2 n
CM sketches, in order to answer range queriesQ(l, r) approximately. Any range query
can be reduced to at most2 log2 n dyadic rangequeries, which in turn can each be
reduced to a single point query. Each point in the range[1 . . . n] is a member oflog2 n
dyadic ranges, one for eachy in the range0 . . . log2(n) − 1. A sketch is kept for each
set of dyadic ranges of length2y, and update each of these for every update that arrives.
Then, given a range queryQ(l, r), compute the at most2 log2 n dyadic ranges which
canonically cover the range, and pose that many point queries to the sketches, returning
the sum of the queries as the estimate.

Theorem 3. a[l, r] ≤ â[l, r] and with probability at least1− δ,

â[l, r] ≤ a[l, r] + 2ε log n||a||1.

Proof. Applying the inequality of Theorem 1, thena[l, r] ≤ â[l, r]. Consider each
estimator used to form̂a[l, r]; the expectation of the additive error for any of these is
2 log n ε

e ||a||1, by linearity of expectation of the errors of each point estimate. Applying
the same Markov inequality argument as before, the probability that this additive error
is more than2ε log n||a||1 for any estimator is less than1e ; hence, for all of them the
probability is at mostδ.

The time to compute the estimate or to make an update isO(log(n) log 1
δ ). The

space used isO( log(n)
ε log 1

δ ).
The above theorem states the bound for the standard CM sketch size. The guarantee

will be more useful when stated without terms oflog n in the approximation bound. This
can be changed by increasing the size of the sketch, which is equivalent to rescalingε. In
particular, if we want to estimate a range sum correct up toε′||a||1 with probability1−δ

then setε = ε′

2 log n . The space used isO( log2(n)
ε′ log 1

δ ). An obvious improvement of
this technique in practice is to keep exact counts for the first few levels of the hierarchy,
where there are only a small number of dyadic ranges. This improves the space, time and
accuracy of the algorithm in practice, although the asymptotic bounds are unaffected.

The best previous bounds for this problem in the turnstile model are given
in [13], where range queries are answered by keepingO(log n) sketches, each of size



O( 1
ε′2 log(n) log log n

δ ) to give approximations with additive errorε||a||1 with proba-

bility 1 − δ′. Thus the space used there isO( log2 n
ε′2 log log n

δ ) and the time for updates
is linear in the space used. The CM sketch improves the space and time bounds; it im-
proves the constant factors as well as the asymptotic behavior. The time to process an
update is significantly improved, since only a few entries in the sketch are modified,
rather than a linear number.

5 Applications of Count-Min Sketches

By using CM sketches, we show how to improve best known time and space bounds for
the two problems from Section 2.

5.1 Quantiles in the Turnstile Model

In [13] the authors showed that finding the approximateφ-quantiles of the data subject
to insertions and deletions can be reduced to the problem of computing range sums. Put
simply, the algorithm is to do binary searches for ranges1 . . . r whose range suma[1, r]
is kφ||a||1 for 1 ≤ k ≤ 1

φ − 1. The method of [13] usesRandom Subset Sumsto com-
pute range sums. By replacing this structure with Count-Min sketches, the improved
results follow immediately. By keepinglog n sketches, one for each dyadic range and
setting the accuracy parameter for each to beε/ log n and the probability guarantee to
δφ/ log(n), the overall probability guarantee for all1/φ quantiles is achieved.

Theorem 4. ε-approximateφ-quantiles can be found with probability at least1− δ by
keeping a data structure with spaceO( 1

ε log2(n) log( log n
φδ )). The time for each insert or

delete operation isO(log(n) log( log n
φδ )), and the time to find each quantile on demand

is O(log(n) log( log n
φδ )).

Choosing CM sketches over Random Subset Sums improves both the query time
and the update time fromO( 1

ε2 log2(n) log log n
εδ ), by a factor of more than34ε2 log n.

The space requirements are also improved by a factor of at least34
ε .

It is illustrative to contrast our bounds with those for the problem in the weaker
Cash Register Model where items are only inserted (recall that in our stronger Turnstile
model, items are deleted as well). The previously best known space bounds for finding
approximate quantiles isO( 1

ε (log2 1
ε + log2 log 1

δ )) space for a randomized sampling
and O( 1

ε log(ε||a||1)) space for a deterministic solution [14]. These bounds are not
completely comparable, but our result is the first on the more powerful Turnstile model
to be comparable to the Cash Register model bounds in the leading1/ε term.

5.2 Heavy Hitters in the Turnstile Model

We adopt the solution given in [5], which describes a divide and conquer procedure to
find the heavy hitters. This keeps sketches for computing range sums:log n different
sketches, one for each different dyadic range. When an update(it, ct) arrives, then each
of these is updated as before. In order to find all the heavy hitters, a parallel binary



search is performed, descending one level of the hierarchy at each step. Nodes in the
hierarchy (corresponding to dyadic ranges) whose estimated weight exceeds the thresh-
old of (φ + ε)||a||1 are split into two ranges, and investigated recursively. All single
items found in this way whose approximated count exceeds the threshold are output.

We instead must limit the number of items output whose true frequency is less than
the fractionφ. This is achieved by setting the probability of failure for each sketch to
be δφ

2 log n . This is because, at each level there are at most1/φ items with frequency
more thanφ. At most twice this number of queries are made at each level, for all of the
log n levels. By scalingδ like this and applying the union bound ensures that, over all
the queries, the total probability that any one (or more) of them overestimated by more
than a fractionε is bounded byδ, and so the probability that every query succeeds is
1− δ. It follows that

Theorem 5. The algorithm uses spaceO( 1
ε log(n) log

(
2 log(n)

δφ

)
), and time

O(log(n) log
(

2 log n
δφ

)
) per update. Every item with frequency at least(φ + ε)||a||1

is output, and with probability1 − δ no item whose frequency is less thanφ||a||1 is
output.

The previous best known bound appears in [5], where a non-adaptive group testing
approach was described. Here, the space bounds agree asymptotically but have been
improved in constant factors; a further improvement is in the nature of the guarantee:
previous methods gave probabilistic guarantees about outputting the heavy hitters. Here,
there is absolute certainty that this procedure will find and output every heavy hitter,
because the CM sketches never underestimate counts, and strong guarantees are given
that no non-heavy hitters will be output. This is often desirable.

In some situations in practice, it is vital that updates are as fast as possible, and here
update time can be played off against search time: ranges based on powers of two can
be replaced with an arbitrary branching factork, which reduces the number of levels
to logk n, at the expense of costlier queries and weaker guarantees on outputting non-
heavy hitters.

6 Conclusions

We have introduced the Count-Min sketch, and shown how to estimate fundamental
queries such as point, range or inner product queries as well as solve more sophisti-
cated problems such as quantiles and heavy hitters. The space and/or time bounds of
our solutions improve previously best known bounds for these problems. Typically the
improvement is from1/ε2 factor to1/ε which is significant in real applications. Our
CM sketch is quite simple, and is likely to find many applications, including in hardware
solutions for these problems.

We have recently applied these ideas to the problem of change detection on data
streams [6], and we also believe that it can be applied to improve the time and space
bounds for constructing approximate wavelet and histogram representations of data
streams [11]. Also, the CM Sketch can also be naturally extended to solve problems



on streams that describe multidimensional arrays rather than the unidimensional array
problems we have discussed so far.

Our CM sketch is not effective when one wants to compute the norms of data stream
inputs. These have applications to computing correlations between data streams and
tracking the number of distinct elements in streams, both of which are of great interest.
It is an open problem to design extremely simple, practical sketches such as our CM
Sketch for estimating such correlations and more complex data stream applications.

References

1. N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join sizes in lim-
ited storage. InProceedings of the Eighteenth ACM Symposium on Principles of Database
Systems (PODS ’99), pages 10–20, 1999.

2. N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. InProceedings of the Twenty-Eighth Annual ACM Symposium on the Theory
of Computing, pages 20–29, 1996. Journal version inJournal of Computer and System
Sciences, 58:137–147, 1999.

3. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream
systems. InProceedings of Symposium on Principles of Database Systems (PODS), pages
1–16, 2002.

4. M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In
Procedings of the International Colloquium on Automata, Languages and Programming
(ICALP), pages 693–703, 2002.

5. G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most frequent items
dynamically. InProceedings of ACM Principles of Database Systems, pages 296–306, 2003.

6. G. Cormode and S. Muthukrishnan. What’s new: Finding significant differences in network
data streams. InProceedings of IEEE Infocom, 2004.

7. C. Estan and G. Varghese. Data streaming in computer networks. InProceedings of Work-
shop on Management and Processing of Data Streams, http://www.research.att.
com/conf/mpds2003/schedule/estanV.ps , 2003.

8. P. Flajolet and G. N. Martin. Probabilistic counting. In24th Annual Symposium on Founda-
tions of Computer Science, pages 76–82, 1983. Journal version inJournal of Computer and
System Sciences, 31:182–209, 1985.

9. M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams: You only get
one look. InProceedings of the ACM SIGMOD International Conference on Management
of Data, 2002.

10. P. Gibbons and Y. Matias. Synopsis structures for massive data sets.DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, A, 1999.

11. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Fast, small-
space algorithms for approximate histogram maintenance. InProceedings of the 34th ACM
Symposium on Theory of Computing, pages 389–398, 2002.

12. A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on streams: One-
pass summaries for approximate aggregate queries. InProceedings of 27th International
Conference on Very Large Data Bases, pages 79–88, 2001. Journal version inIEEE Trans-
actions on Knowledge and Data Engineering, 15(3):541–554, 2003.

13. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. How to summarize the universe:
Dynamic maintenance of quantiles. InProceedings of 28th International Conference on Very
Large Data Bases, pages 454–465, 2002.



14. M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries.
SIGMOD Record (ACM Special Interest Group on Management of Data), 30(2):58–66, 2001.

15. R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, 1995.
16. S. Muthukrishnan. Data streams: Algorithms and applications. InACM-SIAM Symposium

on Discrete Algorithms, http://athos.rutgers.edu/˜muthu/stream-1-1.
ps , 2003.

17. D. Woodruff. Optimal space lower bounds for all frequency moments. InACM-SIAM Sym-
posium on Discrete Algorithms, 2004.


