
Noname manuscript No.
(will be inserted by the editor)

Conditional Heavy Hitters:
Detecting Interesting Correlations in Data Streams

Katsiaryna Mirylenka · Graham Cormode · Themis Palpanas · Divesh Srivastava

the date of receipt and acceptance should be inserted later

Abstract The notion of heavy hitters—items that make up a
large fraction of the population—has been successfully used
in a variety of applications across sensor and RFID monitor-
ing, network data analysis, event mining, and more. Yet this
notion often fails to capture the semantics we desire when
we observe data in the form of correlated pairs. Here, we
are interested in items that are conditionally frequent: when
a particular item is frequent within the context of its par-
ent item. In this work, we introduce and formalize the no-
tion of Conditional Heavy Hitters to identify such items,
with applications in network monitoring, and Markov chain
modeling. We explore the relationship between Conditional
Heavy Hitters and other related notions in the literature, and
show analytically and experimentally the usefulness of our
approach. We introduce several algorithm variations that al-
low us to efficiently find conditional heavy hitters for input
data with very different characteristics, and provide analyti-
cal results for their performance. Finally, we perform exper-
imental evaluations with several synthetic and real datasets
to demonstrate the efficacy of our methods, and to study the
behavior of the proposed algorithms for different types of
data.

Keywords streaming data, online algorithms, heavy hitters.

K. Mirylenka, kmirylenka@disi.unitn.it
The University of Trento, Trento, Italy

G. Cormode, G.Cormode@warwick.ac.uk
The University of Warwick, Coventry, UK

T. Palpanas, themis@mi.parisdescartes.fr
Paris Descartes University, Paris, France

D. Srivastava, divesh@research.att.com
AT&T Labs, Bedminster, NJ, USA

1 Introduction

Within applications that generate large quantities of data, it
is often important to identify particular entities that are as-
sociated with a large fraction of the data items [10,26]. For
example, in a network setting, we often want to find which
users are responsible for sending or receiving a large frac-
tion of the traffic. In monitoring updates to a large database
table, it is important to know which attribute values predom-
inate, for query planning and approximate query answer-
ing purposes. This notion has been abstracted as the idea
of “heavy hitters” or “frequent items”. There has been much
effort spent in finding algorithms to track these under a va-
riety of scenarios and data arrival models [27,30,28,3,23,9,
13,7].

However, the concept of heavy hitters can on occasion be
quite a blunt one. Consider again the network health moni-
toring scenario. Here, it is well-known that in any measure-
ment, there will be some destinations that are globally popu-
lar (search engines, social networks, video providers); like-
wise, so will be certain users (large organizations behind a
single IP address, heavy downloaders and filesharers). As
a result, tracking the heavy hitters within this data is not
always informative, as they reveal only knowledge which
is relatively slow changing, and not actionable. Rather, we
would like to find which are sources or destinations that are
significantly locally popular. That is, find those (source, des-
tination) pairs where the destination is a heavy hitter amongst
the connections of the same source.

Another application area is in security, in the intrusion
detection domain. Here, a large number of different actions
are observed, and the goal is to sift for unusual patterns of
activity. The canonical approach is based around association
rule and frequent itemset mining. These methods identify
subsets of activities whose joint occurrence frequency ex-
ceeds some given threshold. While popular, this methodol-

2 Katsiaryna Mirylenka et al.

ogy has its limitations. The enormous search space implied
by all possible combinations of actions typically requires a
lengthy off-line search to identify the patterns of interest.
While there are some on-line algorithms, these still require
substantial resources to track sufficient statistics for the po-
tentially frequent subsets. As a result, this kind of mining
tends to be costly, and to deliver results significantly after
the event.

Essentially, these two approaches (frequent items and
frequent itemsets) fall at two ends of the spectrum: the fre-
quent items approach is not rich enough to identify behavior
of interest, while the frequent itemsets are potentially too
rich, and too costly to find. In this work, we propose an in-
termediate goal, which teases out more correlations between
items than simple heavy hitters, but is lightweight enough to
permit efficient streaming algorithms. We dub this concept
“conditional heavy hitters”, and work to provide meaning-
ful definitions and a suite of algorithmic approaches to find
them.

Specifically, we model data that can be abstracted as
pairs of items, which we refer to as parent and child items.
The central concept of conditional heavy hitters is to find
those parent-child pairs that are most frequent, relative to
the frequency of the parent. The reason for referring to this
as “conditional” is by analogy to conditional probabilities:
essentially, we seek children whose probability is high, con-
ditioned on the parent. These should be distinct from the
parent-child pairs which are overall most frequent, since these
can be found by using existing heavy hitter algorithms. While
this is a natural goal, it turns out that there are several ways
to formalize this, which we discuss in more detail in subse-
quent sections.

Equipped with the concept of conditional heavy hitters,
we can now apply it to a variety of settings:

– In a network monitoring setting, we can look for the con-
ditional heavy hitters over packets within the network,
where for each packet the source address is considered
as the parent, and the destination address is the child.
Then the conditional heavy hitters identify those des-
tinations which occur most frequently for their corre-
sponding sources. This can be useful in identifying local
trends, shifts in popularity, and traffic planning, espe-
cially when several sources are seen to share the same
child as a conditional heavy hitter.

– When modeling many real systems and processes, it is
common to use a Markov chain to capture the transi-
tion behavior between states. However, many of the sys-
tems have large numbers of possible states (e.g. model-
ing traffic flow in a large city), and so it can be costly
to maintain complete statistics. Instead it suffices if we
can just measure the most important observed transition
probabilities from state to state from a stream of state
occupancies. That is, we identify the large probabilities

of moving from one state to another—these are exactly
the conditional heavy hitters, with the parent being the
current state, and the child being the transition taken.
Thus, tracking the conditional heavy hitters over a long
sequence of observations of state transitions can capture
the essential parameters of the Markov chain.

– Caching and pre-fetching are widely used in Web-based
systems. Their aim is to reduce the time latencies per-
ceived by users when navigating the Web. Advanced caching
and pre-fetching policies use probability graphs, access
trees and markov-chain models [32], in order to predict
the least/most probable objects to be accessed next, or
in the near future. In this case Conditional Heavy Hitters
can efficiently capture the main transitions from previ-
ous sequence of objects to the next, thus providing ex-
isting policies with the most relevant real-time probabil-
ities to enable them to make better predictions.

– Within a database management system or data warehouse,
there are a large number of transactions which affect the
overall data distribution. Such systems commonly keep
statistics on individual attributes, to capture the number
of distinct values, frequent items, and so on. Given the
large number of columns, it is infeasible to keep de-
tailed statistics on all combinations of columns. How-
ever, a suitable compromise is to keep some summary
statistics on pairs of columns which commonly co-occur
(in join paths, say). Finding the conditional heavy hitters
within such pairs captures information about the correla-
tions between them, and can allow improved selectivity
estimation.

Contributions. The main contributions of our work include:

– We define the concept of Conditional Heavy Hitters, which
can be applied in a variety of settings;

– We compare conditional heavy hitters with other notions
of interesting elements studied in the data stream liter-
ature, such as frequent itemsets, association rules, and
correlated heavy hitters;

– We develop and describe several streaming algorithms
for retrieving conditional heavy hitters and analyze their
applicability for data with varying characteristics;

– The algorithms developed are evaluated on a mixture of
real and synthetic datasets. We observe that certain al-
gorithms can retrieve the conditional heavy hitters with
high accuracy while retaining a compact amount of his-
torical information. We observe that different algorithms
achieve the best results depending on simple characteris-
tics of the data: essentially, whether the number of condi-
tional heavy hitters is comparable to the number of par-
ents, or whether it is much lower.

The rest of the paper is organized as follows: Section 2
describes background and related work for heavy hitters and
frequent itemset mining, and Section 4 discusses the rela-

Conditional Heavy Hitters 3

tionship between Conditional Heavy Hitters and other no-
tions of interesting elements in a data stream. In Section 3
we refine the notion of conditional heavy hitters to obtain
a workable definition. In Section 5 we present and discuss
a sequence of algorithms to find conditional heavy hitters
from a stream of data. Our experimental results are shown
in Section 6, and we conclude our discussion in Section 7.

2 Related Work

The notions of heavy hitters and frequent itemsets have been
heavily studied in the database and data mining literature.
Interest in finding the heavy hitters in streams of data goes
back to the early eighties [30,5], where simple algorithms
based on tracking items and counts were developed. Thanks
to the interest in algorithms for streams of data, improved
methods were developed over the course of the last decade.
These included variants of methods which track items and
corresponding estimated counts [16,27,28], and randomized
“sketch” methods, capable of handling negative weights [9,
13]. These methods can all provide the guarantee that given
a parameter ε , they can find all items in a stream of length n
which occur more than εn times, while maintaining a sum-
mary of size O(1/ε). Equivalently, they estimate the fre-
quency of any given item with additive error εn. For fur-
ther details and empirical comparison of methods, see the
surveys [10,26].

The heavy hitters are a special case of frequent itemsets:
they are the frequent 1-itemsets. Further, all larger frequent
itemsets consist of subsets of the heavy hitters. There has
been much work to find frequent itemsets (and their varia-
tions) in the off-line setting, often starting from the A pri-
ori [1] and FP-Tree algorithms [21]. These concepts have
been adapted to work over streams of data, generating al-
gorithms such as FUP [8], and FP-stream [20]. A limitation
of finding frequent itemsets is that the number of possibly
frequent itemsets can become very large, meaning that the
algorithm either has to track information about many can-
didates, or else aggressively prune the retained data, and
risk missing out on some frequent itemsets. In formaliz-
ing conditional heavy hitters, one aim is to form a com-
promise between heavy hitters (which are simple and for
which space/accuracy tradeoffs can be provided) and fre-
quent itemsets (which are much more complex, for which no
tight space guarantees are provided). Additional background
on itemset mining in streams is given by Yu and Chi [39].

Several other variations of heavy hitters on streams have
been proposed in the literature. Where the stream is time-
varying, it is sometimes of interest to monitor only the heavy
hitters within a recent time window, or with some other time-
decay [24,12,35,15]. The ‘distinct heavy hitters’ are found
over pairs of items (a,b), as those items a associated with

a large number of distinct values b [36]. The notion of hi-
erarchical heavy hitters says that when items fall in a hi-
erarchy (or combination of hierarchies), it is interesting to
find nodes in the hierarchy that are heavy from aggregating
their descendants [11]. Lastly, correlated aggregates con-
sider streams of tuples, and ask for aggregates on some at-
tributes, for the subset of tuples that meet some other condi-
tions [19]. In this regard, our concept of conditional heavy
hitters can be seen as a generalized version of a kind of cor-
related aggregate, albeit one that has not been studied previ-
ously.

Our notion of conditional heavy hitters is related to mod-
els of (temporal) correlation in data, as captured by Markov
chains. That is, given a sequence of items, the kth order tran-
sition probabilities are defined as the (marginal) probability
of seeing each character, given the history of the k prior char-
acters. In our terminology, setting the child as the new char-
acter and the parent as the concatenation of the k previous
characters means that finding the conditional heavy hitters
maps on to finding the high transition probabilities in this
Markov chain. The importance of considering correlations
has been recently motivated within several domains [14,25].
There has been much prior work on capturing correlations
in data via different Markov-style models, such as homoge-
neous Markov chains of high order, hidden Markov Mod-
els [4], Bayesian networks [31] and others [25,37]. How-
ever, fitting these increasingly complex models requires a
lot of CPU and I/O time and multiple passes over the data,
and hence it is infeasible to estimate them in a streaming
setting. For example, the simple Mixture Transition Distri-
bution [33] aims to approximate the transition probabilities
with a smaller number of parameters, but requires multiple
iterations over the data to do so. By focusing on the condi-
tional heavy hitters, we also identify a small number of pa-
rameters to describe the distribution, but can recover these
efficiently in a single pass over the data.

Most related to this paper is the work of Lahiri and Tirtha-
pura [22] which considers the problem of ‘correlated heavy
hitters’ over a stream of tuples (a,b). Here, (a,b) is a cor-
related heavy hitter if a is a simple heavy hitter (frequency
exceeds ψ) in a sequence of single-dimensional records and
b is a heavy hitter in the subset of tuples where a appears.
We discuss the similarity and differences of this definition
to conditional heavy hitters in Sections 3 and 4.

3 Preliminaries

To allow our definition of Conditional Heavy Hitters to be
generally applicable, we assume that the input can be mod-
eled as a stream of pairs of adjacent (parent, child) values
(p,c). A parent p can be a single symbol, or a sequence of
adjacent symbols in the stream, while a child is a single sym-
bol.

4 Katsiaryna Mirylenka et al.

Definition 1 (Frequencies) Given a stream of (parent, child)
pairs whose ith element is (pi,ci), the frequency of a parent
p, fp, is defined as

fp = |{i : pi = p}|.

The frequency of a (parent, child) pair, fp,c, is defined as

fp,c = |{i : pi = p∧ ci = c}|.

From these frequencies, we can define (empirical) prob-
abilities associated with items and pairs.

Definition 2 (Probabilities) Given a stream of n (parent,
child) pairs, the empirical probability of a parent p, Pr[p],
is defined as Pr[p] = fp/n. The joint probability of a parent-
child pair, Pr[p,c], is defined as Pr[p,c] = fp,c/n. The condi-
tional probability of a child given a parent, Pr[c|p], is defined
as

Pr[c|p] = Pr[p,c]
Pr[p]

=
fp,c

fp
.

We can now define a first notion of conditional heavy
hitters.

Definition 3 (Conditional Heavy Hitter) We say that a pair
(p,c) is a conditional heavy hitter with respect to a threshold
0 < φ < 1 if Pr[c|p]≥ φ .

This definition has the advantage of clarity and simplic-
ity. However, on further consideration, there are some draw-
backs associated with this formulation. Firstly, observe that
when a parent is rare, it is more likely to generate condi-
tional heavy hitters. As a clear example, consider the case of
a parent p that occurs only once in the stream. Then we have
fp,c = fp = 1 for the associated child c, and so Pr[c|p] = 1,
making it automatically a conditional heavy hitter. While
this is a valid application of the definition—the (empirical)
conditional probability of this child truly is 1—we might
still object that this is not a particularly significant associ-
ation, due to the limited support of this item. Second, for
related reasons, the total number of conditional heavy hit-
ters meeting this definition can be large. Specifically, in an
extreme case a given parent p can have Θ(1/φ) distinct chil-
dren which are all conditional heavy hitters. So if there are
|P| distinct parents, there can be a total of Θ(|P|/φ) distinct
conditional heavy hitters—a very large amount—many of
which may be infrequent and uninformative.

A natural way to avoid these issues is to place an addi-
tional constraint on the frequency of the parent, thus limiting
the number of parents which can contribute to conditional
heavy hitters. One solution would be to additionally require
that Pr[p] > ψ for (p,c) to form a conditional heavy hit-
ter (similar to [22]). Certainly, this has the desired effect:
the number of conditional heavy hitters can now be at most
Ω(1/φψ), and parents with very small count can no longer

contribute conditional heavy hitters. However, we argue that
this definition is overly restrictive: it restricts attention to
only those parents who are ψ-heavy hitters, and so misses
those pairs which may have a significant correlation despite
a lower total frequency. Other formulations, such as requir-
ing Pr[(p,c)] > φψ have similar drawbacks. Consequently,
we set up a different requirement as our goal.

Definition 4 (Popular conditional heavy hitter) A pair (p,c)
is a popular conditional heavy hitter if it is a conditional
heavy hitter with respect to φ , and it ranks among the top-τ
of the conditional heavy hitters, ordered by fp,c.

This says that we seek parent-child pairs that are con-
ditional heavy hitters, with a preference to those that have
a higher occurrence within the observed data. In realistic
data sets, we may expect that there will be many conditional
heavy hitters with large fp,c values, which will ensure that
we avoid the trivial case of fp,c = fp = 1. Consequently, this
represents a workable definition, that avoids this unwanted
case, while also avoiding ruling out interesting cases.

Given this definition, it is not possible to provide algo-
rithms which guarantee to always find exactly those items
counted as popular conditional heavy hitters while also us-
ing small space, as shown by the following lemma:

Lemma 1 Any (randomized) one-pass algorithm which promises
to find all popular conditional heavy hitters must use Ω(min(n, |P|))
space, where n is the length of the stream, and |P| is the num-
ber of distinct parents.

Proof Consider a stream of items, x1,x2, . . .xn, and suppose
we have an algorithm which finds popular conditional heavy
hitters. From this stream, we generate a new stream of parent-
child pairs, (x1,0),(x2,0), . . .(xn,0). Then each distinct pair
is a conditional heavy hitter: P[0|p] = 1. Thus, the algorithm
must find the top-τ most frequently occurring parents. But
observe that these correspond exactly to the top-τ most fre-
quently occurring items in the original stream. It has been
shown that accurately solving this problem requires space
Ω(min(n,U)) over a set of U possible items, even just to
find the most frequent item [2], which gives the claimed
lower bound.

In some cases, |P| is not so large, and so we can look for
algorithms which use this much space. In other cases, |P|
may be very large, and this amount of space is impractical.
However, this bound should not cause us to abandon hope of
finding methods which are effective in practice. The kinds of
sequences which are used to construct the worst-case exam-
ples in the lower-bounds are very artificial, where all items
occur only once or twice within the data, forcing any correct
algorithm to keep enough information to distinguish which
items occur more than once. Realistic data is more varied,

Conditional Heavy Hitters 5

and so there is more evidence spread throughout the stream
to help identify the conditional heavy hitters.

Our goal will be to design algorithms which allow us
to estimate the conditional probability of parent-child pairs
accurately. That is, the goal is find an estimate P̂r[c|p] that
accurately estimates Pr[c|p]. From this, we will be able to
find candidate conditional heavy hitters. Having the candi-
date conditional heavy hitters we can also extract the popular
conditional heavy hitters. Our experimental study evaluates
the ability of these algorithms to find such conditional heavy
hitters.

4 Notions of elements of interest in a data stream

The problem of detecting “interesting” elements in data streams
has attracted a lot of attention in the recent years. There
can be many different interpretations of what makes an ele-
ment of interest, varying across different applications. Con-
sequently, several different notions have been proposed that
are relevant to our study. In each case, there has been at least
one paper describing algorithms for each of the following
notions

(a) frequent items, or Heavy Hitters [10,26];
(b) Frequent Itemsets [21], which are the foundation of
(c) Association Rules [1];
(d) Correlated Heavy Hitters [22];
(e) elements with the highest Pointwise Mutual Information

(PMI) [18], and
(f) Conditional Heavy Hitters [29].

In this section, we formally consider each notion, or prob-
lem definition and study the relationships among them. For
consistency with the rest of the paper, we consider streams
of pairs p and c.

Notion 1. The Frequent Itemsets (of size two) are the
(p,c)-pairs that occur in the data stream more often than a
given support threshold: fp,c > φ0, φ0 > 0.

Note that Heavy Hitters (HHs) of the stream can be con-
sidered as frequent itemsets of size one. Conceptually, the
frequent itemsets are equivalent to the heavy hitters if every
(p,c)-pair is modeled as a single element.

Notion 2. A (p,c)-pair, or implication p⇒ c, is an Asso-
ciation Rule [1] if fp,c > φ1 (support), φ1 > 0, and Pr[c|p]>
φ2 (confidence), 0 < φ2 < 1.

Notion 3. Correlated Heavy Hitters [22] are the pairs
(p,c), where fp > φ3, φ3 > 0 and Pr[c|p]> φ2, 0 < φ2 < 1.

Notion 4. A pair (p,c) is considered to have the highest
Pointwise Mutual Information [18] if it is among the top-σ
(σ ∈ Z>0) pairs ranked using PMI(p,c) = log Pr[p,c]

Pr[p]Pr[c] .
Notion 5.1 A pair (p,c) is a Conditional Heavy Hit-

ter [29] if Pr[c|p]> φ2, 0 < φ2 < 1.

Association rules
Notion 2

f(p,c) > φ1
Pr(c|p) > φ2

Correlated HH
Notion 3
f(p) > φ3

Pr(c|p) > φ2

Conditional HH
Notion 5.1

Pr(c|p) > φ2

Popular
Conditional HH

Notion 5.2
Pr(c|p) > φ2
top-τ f(p,c)

po
st

pr
oc

es
si

ng
 w

ith
 τ

if φ
3

 0 postprocessing with φ
3

postprocessing with φ1

if φ1 0

if
φ 1

 0

 &
 p

os
tp

ro
ce

ss
ing

 fo
r f

(p
)

if
 φ

3
= φ

2
/φ

1

Fig. 1 Comparison of various notions of interesting data stream ele-
ments.

Notion 5.2 The pair (p,c) is considered to be a Popular
Conditional Heavy Hitter [29] if it is a conditional heavy
hitter and it ranks among the top-τ (τ ∈ Z>0) of the highest
conditional heavy hitters sorted by fp,c.

All the thresholds, φi, i = 0,1,2,3, σ , and τ , are user-
defined.

We note that we consider frequent itemsets and associ-
ation rules only for the case of pairs of items. The general
problem of frequent itemsets is not considered here as it in-
volves additional challenges; mainly that of pruning non-
promising itemsets of varying length, creating an exponen-
tially large search space. Moreover, we point out that No-
tion 1 (frequent itemsets, or heavy hitters) and Notion 4
(pointwise mutual information) are very different from the
others, because both these notions treat the two elements of
the pair equally, thus, not taking into account the sequential
nature of their relationship within the data stream. Notion 1
suffers this limitation due to its simplicity, while Notion 4
treats p and c symmetrically and finds those pairs where
both elements occur together more often than if their oc-
currences were independent. Therefore, in the following we
elaborate on the other three notions, which consider the se-
quential nature of the pair. Figure 1 sketches these notions
and the relations between them.

Association rules (Notion 2) and correlated heavy hitters
(Notion 3) are very similar as they both consider the condi-
tional probability of the child given the parent. Notion 2 has
an additional constraint on the frequency of the parent-child
pair, while Notion 3 has a constraint on the frequency of the
parent. Note that given the output of any algorithm for asso-
ciation rules, where φ1 > ε with ε sufficiently close to zero,

6 Katsiaryna Mirylenka et al.

we can filter out those items where fp > φ3 and obtain the
same results as correlated heavy hitters.

Lemma 2 The output of the correlated heavy hitters algo-
rithm produces the output of the association rules algorithm
if φ3 = φ2/φ1.

Proof If the pair (p,c) is a correlated heavy hitter, it satisfies
the condition Pr[c|p]> φ2. To qualify as an association rule
the pair (p,c) should also satisfy the condition:

fp,c > φ1 (1)

Consider the definition of the conditional probability Pr[c|p] =
Pr[p,c]/Pr[p] = fp,c/ fp. We then have fp,c = Pr[c|p] · fp.
Since (p,c) is a correlated heavy hitter, fp > φ3 and fp,c =

Pr[c|p] · fp > φ3 ·φ2. If φ3 = φ2/φ1 then condition (1) is sat-
isfied.

The transformations needed to derive association rules
from correlated heavy hitters and vice versa are depicted by
the solid (orange) arrows in Figure 1.

Association rules (Notion 2), correlated heavy hitters (No-
tion 3) and conditional heavy hitters (Notions 5.1 and 5.2) all
use a threshold for the conditional probability. (Note that it
is possible to use the same algorithms for conditional heavy
hitters and popular conditional heavy hitters; in the latter
case, additional ordering and pruning by the frequencies of
parent-child pairs is applied.) Conditional heavy hitters do
not have any additional conditions on the frequencies of the
elements, hence by filtering the results based on the frequen-
cies of parents, or the frequencies of parent-child pairs, the
results of conditional heavy hitters may be transformed to
correlated heavy hitters or association rules, respectively.
Likewise, if the thresholds on frequencies φ1 and φ3 are set
to a sufficiently small value ε > 0, the results of association
rules and correlated heavy hitters algorithms can be used to
find the conditional heavy hitters. These relationships are
shown using the dashed (black) and dotted (green) arrows in
Figure 1.

These connections show that a solution set for certain of
the notions identified above can be manipulated to provide
solutions for others also. However, there are overheads in
simply trying to apply an algorithm for one notion to solve
another: there are additional time and space costs, and it may
be necessary to modify the parameters used substantially to
obtain the desired output. Furthermore, the quality guaran-
tees offered by a particular algorithm are specific to the no-
tion and thresholds that it targets. In most cases, these guar-
antees do not translate into guarantees for different notions.
For example, if we use the algorithm of correlated heavy
hitters for conditional heavy hitters by setting φ3 = 0, the
space guarantees of the algorithm (which depend on φ3) no

longer hold. In Section 6.2, we further study the relation-
ships among heavy hitters, conditional heavy hitters, corre-
lated heavy hitters and association rules by experimentally
evaluating their behavior in different settings.

5 Algorithms for Conditional Heavy Hitters

In this section, we describe a variety of algorithms to help us
identify the conditional heavy hitters within a stream of data.
These are summarized in Table 1. We begin with algorithms
for the traditional heavy hitters problem, and adapt these to
identify those which are conditional heavy hitters.

5.1 GlobalHH Algorithm

Our first algorithm aims to identify all parent-child pairs that
occur frequently, so that we can extract the subset that are
conditional heavy hitters. For this task, we make use of ex-
isting algorithms to find the heavy hitters from a stream of
items. The SpaceSaving algorithm by Metwally et al. [28]
has been widely used for this problem. Given an amount of
space s, it guarantees to find all items in a stream of length n
which occur more than n/s times (and, moreover, to provide
an estimate of their frequency which is accurate up to an n/s
additive error). For streams which obey a frequency distri-
bution that follows a long-tail distribution, formalized as a
Zipfian distribution, it further guarantees to provide accu-
rate recovery of the head of the distribution. The algorithm
behaves very well in practice, finding accurate estimates of
frequencies of items across a variety of data sets [10,26]:
it exhibits the most stable behavior among all heavy hitter
algorithms.

The algorithm works as follows: it maintains a collec-
tion SS of k items and associated counts. For simplicity, as-
sume that the structure is initialized with k arbitrary items
with count 0. For each item x seen in the stream, if it is
currently stored in the collection, the associated count f̂x is
incremented. Otherwise, we find the item with the current
smallest count in the collection, and replace it with the new
item, then increment its count. At any time, we can estimate
the frequency of any item x with the associated count in the
collection f̂x if the item is stored, and 0 otherwise.

We formalize the GlobalHHalgorithm in pseudocode in
Algorithm 1. Given each (p,c) pair in the stream, we insert
it into the SS structure (lines 3-13). We also separately main-
tain information on the frequency of each parent (lines 1, 4).
In this first algorithm, we assume that there is sufficient
space to store information on all parents, which means we
have the exact fp values. If the SS structure is full (line 8), we
eliminate the element with the lowest count from the struc-
ture and store its frequency in variable m (line 9). Then, a
new element is inserted in SS with frequency m+1 (line 11).

Conditional Heavy Hitters 7

Table 1 Main characteristics of the proposed algorithms

Algorithm Parents Summary structure Eviction order
GlobalHH all global parent-child frequency
ParentHH all local parent-child frequency
CondHH all global conditional probability
FamilyHH partial global parent-child frequency
SparseHH partial global conditional probability

Algorithm 1 GlobalHH for Conditional Heavy Hitters
Input: Data stream D = {(pi,ci), i = 1,2, ...}.
Output: SS - SpaceSaving structure of length s for parent-child pairs
1: fpi = 0, i = 1,2, ..., |P| - keeps the frequency of each parent
2: m = 0 - highest frequency of a pair removed from SS
3: for each element (pi,ci) of D do
4: fpi = fpi +1
5: if (pi,ci) ∈ SS then
6: SS[(pi,ci)] = SS[(pi,ci)]+1
7: else
8: if |SS| ≥ s then
9: m = SS.deleteMin()

10: end if
11: SS.insert((pi,ci),m+1)
12: end if
13: end for

To identify the conditional heavy hitters and the pop-
ular conditional heavy hitters, we iterate over all items in
the SS structure in decreasing order of their counts. For each
stored (p,c) pair, we compute its estimated f̂p,c value, which
is contained in the SS structure and denoted as SS[(pi,ci)] in
Algorithm 1. Then, we calculate the corresponding condi-
tional probability T [(pi,ci)]= SS[(pi,ci)]/ fpi , and test whether
T [(pi,ci)] > φ . If this condition is true, we output this pair
as a conditional heavy hitter. The top-τ such pairs are the
popular conditional heavy hitters. We refer to this algorithm
as the GlobalHH algorithm, since it is based on finding the
parent-child pairs which are global heavy hitters.

The SS structure is implemented as a min heap. Since its
operations, namely Insert and Delete Minimal element, can
be implemented with O(logs) time complexity, the running
time of the GlobalHH algorithm for processing each new
element of the stream is O(logs).

Lemma 3 Given space O(s+ |P|), the GlobalHH algorithm
guarantees that each candidate (p,c) pair output will have
Pr[c|p]≤ P̂r[c|p]≤ Pr[c|p]+ 1

sPr[p] . When the distribution of
(p,c) pairs follows a Zipfian distribution with parameter z>
1, the error bound is improved to 1

sz Pr[p] .

Proof Since the fp values are found exactly, the uncertainty
in the estimated conditional probability, P̂r[c|p] is due to the
error from the SS algorithm. This guarantees that our es-
timate of fp,c is an overestimate by at most n/s for arbi-
trary streams. We output f̂p,c/ fp, which overestimates by at
most n

s fp
= 1

sPr[p] . Therefore, we have the bound stated. This

guarantees to overestimate the conditional probability, and
so will ensure good recall. Alternately, we could provide
an underestimate of the conditional probability by using a
lower bound on the estimate of fp,c. In this case, we ensure
good precision, but do not guarantee recall. For streams with
Zipfian frequency distribution, the error bound is tightened
to ns−z [28], improving the error bound to 1

sz Pr[p] as claimed.

5.2 ParentHH Algorithm

Our second algorithm takes a parent-centric view of the prob-
lem. Again, making the assumption that it is feasible to re-
tain information about each distinct parent observed, we con-
sider the case of keeping information about the set of chil-
dren associated with each parent. That is, we keep a separate
instance of the SS structure for each distinct parent. Clearly,
this can use a lot of space, but will allow very accurate recov-
ery of conditional heavy hitters. We call this the ParentHH
algorithm, since it retains heavy hitter information for each
parent.

Algorithm 2 describes ParentHH. For each parent p ob-
served in the stream, we maintain an instance of the SSp
structure of size s/|P|, dedicated to the children c that arrive
as part of a pair for this p (line 2). For each pair (p,c) that
arrives, we insert c in the corresponding SSp (line 7).

The output of the ParentHH algorithm, T , which is the
set of the s highest conditional heavy hitters, is calculated
using the SSP structure in the following way: for each parent
pi the corresponding SSpi is retrieved. All the pairs (pi,ci),
where ci ∈ SSpi are placed in the answer set T with the cor-
responding conditional probabilities T [(pi,ci)] are set equal
to SSpi(ci)/ fpi . In order to recover the conditional heavy hit-
ters given a threshold φ , we consider the set T in decreasing
order of the conditional probabilities, and output (p,c) as an
estimated conditional heavy hitter if f̂p,c/ fp ≥ φ . The first τ

such pairs are popular conditional heavy hitters.
The reintroduction strategy in this algorithm is similar to

the GlobalHH algorithm considered above, but in this case,
the SSp structure and reintroduction frequencies mp are spe-
cific for each distinct parent. In our implementation SSp is
realized using a heap, and all heaps are kept in a hash ta-
ble with a parent ID as a key. Since in this case we consider
a fixed amount of parents, the operations on the hash table
take constant time and the time required by the ParentHH

8 Katsiaryna Mirylenka et al.

Algorithm 2 ParentHH for Conditional Heavy Hitters
Input: Data stream D = {(pi,ci), i = 1,2, ...}.
Output: SSpi - SpaceSaving structure of length s/|P| for parent-child

pairs assigned to each parent pi, i = 1,2, ..., |P|.
1: fpi = 0, i = 1,2, ..., |P| - keeps the frequency of each parent
2: mp - highest frequency of a pair removed from SSp
3: mpi = 0, i = 1,2, ..., |P|
4: for each element (pi,ci) of D do
5: fpi = fpi +1
6: if ci ∈ SSpi then
7: SSpi (ci) = SSpi (ci)+1
8: else
9: if |SSpi | ≥ s/|P| then

10: mpi = SSpi .deleteMin()
11: end if
12: SSpi .insert(ci,mpi +1)
13: end if
14: end for

algorithm for processing a new element from the stream is
O(logs).

Lemma 4 Given space O(min(s,n)) (for s > |P|), the Par-
entHH algorithm guarantees that each candidate (p,c) pair
output will have

Pr[c|p]≤ P̂r[c|p]≤ Pr[c|p]+ |P|
s
.

Proof From the SSp structure, we obtain an estimate of fp,c
which has error proportional to the number of items passed
to the structure, which is fp, the number of occurrences of
p. So the amount by which f̂p,c overestimates is at most
fp|P|/s. When we estimate P̂r[c|p], the error is (fp|P|/s)/ fp =

|P|/s. The space bound follows immediately: it is bounded
by n, since each item in the stream can increase the number
of tuples stored by at most a constant amount. Using this
overestimate favors recall, at the cost of precision. It is pos-
sible to instead use an underestimate of fp,c, by subtracting
an appropriate amount. In this case, we obtain good preci-
sion, but without guarantees on recall.

Clearly, this algorithm provides accurate estimated con-
ditional probabilities, but at a cost: we devote up to s/|P|
space for each parent, which seems excessive for parents
that turn out to be relatively infrequent (and hence their chil-
dren are unlikely to appear as true conditional heavy hitters).

5.3 CondHH algorithm

Our third algorithm also keeps a summary structure similar
to the previous algorithms, but with a different goal. Instead
of using the absolute frequency to determine which items to
retain detailed information for, we use their (estimated) con-
ditional probability. Since this aligns with the overall goal, it
may lead to more accurate behavior. We call this algorithm

CondHH since it treats the conditional probability as a first
class citizen.

In the CondHH algorithm (which is written out in pseu-
docode in Algorithm 3), we keep a collection of (p,c) pairs
in the CSS (line 3) structure, along with a count for each pair.
The algorithm proceeds similarly to GlobalHH: for each (p,c)
pair that arrives, it checks if it is stored in CSS, and if so,
it increases its associated count. If it is not stored, then it
evicts some (p,c) pair from CSS, and replaces it with the
new pair. Under the GlobalHH semantics, we would apply
the SS algorithm, and evict the pair with the least frequency.
But in the CondHH algorithm, we find the pair with the low-
est conditional probability, i.e. with the smallest value of
P̂r[c|p] = f̂p,c/ fp, and evict it (line 9). The algorithm also
keeps track of the maximum value of f̂p,c for all children of
parent p that have been deleted so far; this value is stored
in mp (line 2). When we need to remove an old pair (p′,c′)
from the data structure in order to insert a new pair, we up-
date mp′ if needed, and insert the new pair (p,c) with an
estimated count f̂p,c = mp +1 (line 12).

The set of conditional heavy hitters and their probabili-
ties can then be calculated on demand as follows: for each
(pi,ci)∈CSS its conditional probability is T [(pi,ci)]=CSS[(pi,ci)]/ fpi .
The conditional heavy hitters and the popular conditional
heavy hitters are then computed in the same way as in the
algorithms described earlier.

Directly implementing this algorithm could be slow, due
to the need to find the item with the lowest P̂r[c|p] on each
eviction. However, this can be made fast by keeping the data
in an appropriate data structure. Specifically, we can index
the stored parent-child pairs in a two-level data structure. For
each parent, we keep its children stored in sorted ascending
order of f̂p,c. This can be maintained efficiently using data
structures based on doubly-linked lists as described in [28].
Then the parents are stored in sorted order of minc(f̂p,c)/ fp,
i.e. the estimated conditional probability of their least fre-
quent child, via a standard data structure such as a heap or
search tree if we need also fast search. This structure means
that we can quickly find the parent-child pair with the small-
est overall estimated conditional probability, based on the
observation that for each parent we only need to consider
the probability of its least frequent child.

Whenever a child frequency is increased, we can quickly
update the estimated f̂p,c, and ensure that the sortedness con-
dition on the children is maintained. This update also affects
fp, and so may also require us to move the parent around to
restore the heap property on minc(f̂p,c)/ fp. Likewise, when-
ever a child of p is removed from this structure (because it
is chosen for eviction), its successor in the sorted order of
f̂p,c becomes the new least frequent child of p, which may
also require restoring the heap property. At the same time
we can update mp. Thus, implementing this algorithm re-
quires a constant number of pointer operations (O(1)), and a

Conditional Heavy Hitters 9

Algorithm 3 CondHH for Conditional Heavy Hitters
Input: Data stream D = {(pi,ci), i = 1,2, ...}.
Output: CSS - Conditional SpaceSaving structure of length s for

parent-child pairs
1: fpi = 0, i = 1,2, ..., |P| - keeps the frequency of each parent
2: mpi = 0 - highest frequency of a pair removed from CSS per parent

pi, i = 1,2, ..., |P|
3: for each element (pi,ci) of D do
4: fpi = fpi +1
5: if (pi,ci) ∈CSS then
6: CSS[(pi,ci)] =CSS[(pi,ci)]+1
7: else
8: if |CSS| ≥ s then
9: mcandidate

p j
=CSS.deleteMinCondProb()

10: mp j = max(mp j ,m
candidate
p j

)

11: end if
12: CSS.insert((pi,ci),mpi +1)
13: end if
14: end for

constant number of heap or tree operations per update (each
taking time O(logs)), leading to an overall time complexity
of O(logs) per element.

Lemma 5 The CondHH algorithm guarantees that each can-
didate (p,c) pair output will have

Pr[c|p]≤ P̂r[c|p]≤ Pr[c|p]+
mp +1

fp
.

Proof For each parent p, mp is an upper bound on the max-
imum value of f̂p,c of a (p,c) pair that has been deleted.
Inductively, this is also an upper bound on any fp,c deleted
(p,c) pair: this is true initially when mp = fp,c = 0 for all
(p,c) pairs, and is maintained by every operation. There-
fore, we have that whenever any new pair is inserted with
f̂p,c = mp + 1, we have that 0 ≤ fp,c ≤ f̂p,c = mp + 1, and
hence (while it remains in the data structure) 0 ≤ f̂p,c −
fp,c ≤mp+1. Consequently we have 0≤ P̂r[c|p]−Pr[c|p]≤
(mp + 1)/ fp. As with the previous algorithms, this tends
to overestimate the true conditional probability, leading to
higher recall, but weaker precision. This can be reversed by
manipulating the estimate of f̂p,c, by subtracting mp + 1, to
obtain a lower bound on fp,c and hence Pr[c|p].

Note that in general this bound might not be very strong:
we may see cases where mp + 1 = fp, and so we do not
obtain a useful guarantee. However, in practice we expect to
obtain useful guarantees for the popular conditional heavy
hitters.

5.4 FamilyHH Algorithm

All the algorithms proposed above make the assumption that
we can track detailed information for each parent (such as

fp, heavy hitter children for each p, etc.). However, this as-
sumption is not always reasonable. For example, in the net-
work traffic example in Section 1, the number of parents is
equal to the number of possible children (both are equal to
the number of IP addresses, which is 232 under IPv4). In
some cases the number of parents actually observed in the
data will be small enough to track exactly. But in general,
we should also provide algorithms for when this is not so.

Our next algorithm generalizes GlobalHH, and so keeps
sparse information about both parents and children by main-
taining just the heavy hitter parents, and the heavy hitter
parent-child pairs. So instead of tracking fp, we will instead
use f̂p, an approximate version of the frequency.

The resulting algorithm is called FamilyHH as it keeps
track of reintroduction frequencies, one for the parent el-
ements, mp, and one for the parent-child pairs, mc. Fami-
lyHH, shown in Algorithm 4, uses two separate instances of
the SS data structure, namely, SSp for the parents with space
t, and SSc for the parent-child pairs with space s (lines 4–
1). The insertion and eviction mechanisms are similar to the
ones presented in the previous algorithms. When a parent
or a child is evicted from the corresponding structure rein-
troduction frequencies are updated by its current frequency
plus one (lines 9, 11 and 17, 19 correspondingly for a parent
and a child).

In order to identify the candidate conditional heavy hit-
ters on demand, we iterate over the heavy hitter parent-child
pairs in decreasing order of frequency, and from each find
P̂r[c|p] = f̂p,c/ f̂p, or fill in the set T with the corresponding
probabilities T [(pi,ci)] set equal to SSc[(pi,ci)]/SSp[pi].

Both SSp and SSc are implemented as heaps, which leads
to O(log(t + s)) running time complexity for processing ev-
ery element in the data stream.

Lemma 6 The FamilyHH algorithm guarantees that each
candidate (p,c) pair output will have

P̂r[c|p] = Pr[c|p]±1/(min(s, t)Pr[p]).

Proof From the properties of the heavy hitters algorithm,
we have that fp ≤ f̂p ≤ fp+n/t and fp,c ≤ f̂p,c ≤ fp,c+n/s.
Consequently, we have

P̂r[c|p] =
f̂p,c

f̂p
≤

fp,c +n/s
fp

= Pr[c|p]+ 1
sPr[p]

P̂r[c|p] =
f̂p,c

f̂p
≥

fp,c

fp +n/t
=

Pr[c|p]
1+n/(fpt)

≥ Pr[c|p](1− n
fpt

) = Pr[c|p]− Pr[c|p]
t Pr[p]

≥ Pr[c|p]− 1
t Pr[p]

Based on this analysis, we choose to set t = s, so that the
error bound is Pr[c|p]±1/(sPr[p]).

10 Katsiaryna Mirylenka et al.

Algorithm 4 FamilyHH for Conditional Heavy Hitters
Input: Data stream D = {(pi,ci), i = 1,2, ...}.
Output: SSc - SpaceSaving structure of length s for parent-child pairs

1: SSp - SpaceSaving structure of length t for parents
2: mc = 0 - highest frequency of a pair removed from SSc
3: mp = 0 - highest frequency of a parent removed from SSp
4: for each element (pi,ci) of D do
5: if pi ∈ SSp then
6: SSp[pi] = SSp[pi]+1
7: else
8: if |SSp| ≥ t then
9: mp = SSp.deleteMin()

10: end if
11: SSp.insert(pi,++mp)
12: end if
13: if (pi,ci) ∈ SSc then
14: SSc[(pi,ci)] = SSc[(pi,ci)]+1
15: else
16: if |SSc| ≥ s then
17: mc = SSc.deleteMin()
18: end if
19: SSc.insert((pi,ci),++mc)
20: end if
21: end for

This estimate may sometimes overestimate, and some-
times underestimate, depending on the errors of the com-
ponent estimates. We can make it always overestimate or
always underestimate by scaling these values appropriately.

5.5 SparseHH Algorithm

Our final, most involved, algorithm also keeps only approx-
imate information on the set of parents. We call this the
SparseHH algorithm, as it keeps only sparse information on
the parents. For the parent-child pairs, we make use of the
CSS structure from the CondHH algorithm, which attempts
to retain those pairs with the highest conditional probability.
However, now that we are retaining only a subset of the par-
ents, we need to modify this slightly. We will aim to main-
tain frequency information on only those parents that have
an active child in the data structure. Now, when we come
to insert a new parent-child pair p,c into CSS, we must de-
cide what bound on the frequency to use. We suggest some
possibilities for this “reintroduction strategy”:
• Global. Maintain a global value m on the max (estimated)

frequency of any (p,c) pair that has been deleted so far.
• Ancestor. If there is some reason to believe that parents

with similar labels (e.g. in a hierarchy) have similar fre-
quency, then we can maintain a small number g of differ-
ent groups of parents, and retain for each the maximum
frequency of any (p,c) deleted that came from that group.
For example, if the p values are drawn from a hierarchy,
we can choose a high level in the hierarchy, and create
groups based on this.

• Hash Partition. For other cases, we can create a random
partitioning of parents into g groups based on a hash func-
tion, and maintain the maximum frequency of any (p,c)
pair belonging to that group. In the case of a single group,
this becomes equivalent to the global strategy.

• Bloom Filter. We can keep a compact summary of items
deleted with high values of f̂p,c, say, in the form of a
Bloom Filter [6]. That is, when we delete a pair with
frequency f̂p,c, we compute an index from this as i =
dlogb f̂p,ce for a parameter b (for concreteness, consider
b = 2). Then we insert (p,c) into a Bloom Filter indexed
by i. When a new pair (p,c) is inserted into the data struc-
ture, we scan through the Bloom Filters, testing if (p,c) is
present in each. If the test indicates it is in the ith Bloom
Filter, then we instantiate f̂p,c = bi. Note that Bloom Fil-
ters may lead to false positives: in this case, we will result
in an overestimate of the frequency. This may lead to false
positives in the estimated conditional heavy hitters, but
will ensure that we do not underestimate the conditional
probability of any pair.
Depending on the circumstances, any of these reintro-

duction strategies may be better, and indeed, we can run
multiple of these in parallel, and choose the one that gives
the smallest estimated value of f̂p,c each time. SparseHH is
described in Algorithm 5. The reintroduction data structures
for parents (line 2) and parent-child pairs (line 3) follow one
of the strategies listed above, and get updated according to
this strategy every time there is an eviction (lines 10–11),
or an insertion (lines 16–17). As in the previous algorithms
the set of potential heavy hitters is computed on demand and
consists of all the pairs (pi,ci) ∈CSS with their conditional
probabilities T [(pi,ci)] =CSS(pi,ci)]/ fap(pi).

The Rc and Rp structures can be implemented with data
structures that support the search, insert and delete opera-
tions have (average) complexity of O(1), such as those based
on hash tables. The CSS structure, similarly to the CondHH
algorithm, can be implemented using a double linked list
and a heap, or a balanced search tree structure. Therefore,
the overall running time of SparseHH is O(logs) per ele-
ment.

There are several other implementation choices for SparseHH:
• Different reintroduction strategies may offer either upper

or lower bounds on estimated counts; upper bounds favor
recall, while lower bounds favor precision.

• We divide the memory available to the algorithm into two
pieces: the memory used for the main tracking of counts
(which in turn is split into information kept for parents
and for approximate (p,c) frequencies); and the memory
used for estimating counts when an item is introduced into
the structure. We use a parameter ρ to describe this split:
a ρ fraction of the available memory is given to the main
structure, and 1−ρ to the reintroduction structure.
We compare these choices empirically in Section 6.

Conditional Heavy Hitters 11

Algorithm 5 SparseHH for Conditional Heavy Hitters
Input: Data stream D = {(pi,ci), i = 1,2, ...}.
Output: CSS - SpaceSaving structure of length s for parent-child pairs

1: fap - frequencies of parents which are active in CSS structure
2: Rp - reintroduction frequency for a parent
3: Rc - reintroduction frequency for a pair CSS
4: for each element (pi,ci) of D do
5: if (pi,ci) ∈CSS then
6: fap(pi) = fap(pi)+1
7: CSS[(pi,ci)] =CSS[(pi,ci)]+1
8: else
9: if |CSS| ≥ s then

10: CSS.deleteMinCondProb()
11: Update fap, Rc and Rp
12: end if
13: if pi /∈ fap then
14: fap(pi) = Rp(pi)
15: end if
16: CSS.insert((pi,ci),Rc[(pi,ci)]+1)
17: fap(pi) = fap(pi)+1
18: end if
19: end for

5.6 Discussion

We have proposed a variety of algorithms. They fall into two
main classes: those that keep some information about each
parent (GlobalHH, ParentHH, and CondHH); and those that
do not (FamilyHH and SparseHH). Each algorithm aims to
accurately approximate the conditional probability of pairs,
based on different priorities for what information to retain
given limited space. Among these, we are most interested
in the behavior of CondHH and SparseHH, since these most
directly capture the nature of conditional heavy hitters by
focusing on the (estimated) conditional probability of items.
Meanwhile, GlobalHH, ParentHH and FamilyHH are based
on the raw frequencies of items. A priori, it is unclear which
algorithm will perform best for the task of retrieving condi-
tional heavy hitters from a stream, so we will compare them
empirically to determine the relative performance.

6 Experimental Results

All our experiments were conducted on a single 2.67GHz
core of a Linux server with a large total amount of available
memory. In evaluating the quality of our algorithms for re-
covering conditional heavy hitters, we make use of several
measures of accuracy:
• The Precision and Recall of the recovered conditional heavy

hitter pairs relative to the “true” set that are greater than a
threshold Pr[c|p]≥ φ (Definition 3);

• The Precision of the top-τ popular conditional probabili-
ties (Definition 4)1;

1 Note that when restricting output to have size exactly τ , precision
and recall are identical, so we do not duplicate this measurement.

• The Average Precision for the popular conditional prob-
abilities, where the average is taken over all top-r sets of
popular conditional heavy hitters, for r = 1,2, ...,τ .

6.1 Data analysis and Experimental setup

We applied the above algorithms for several real and artifi-
cial datasets, namely (1) simulated Markov chains, to esti-
mate the largest elements of the matrix of transition proba-
bilities; (2) requests made to the World Cup 1998 Web site
to detect conditional heavy hitters between clientID and ob-
jectID of the requests; (3) GPS trajectories of taxis in San
Francisco to detect the most probable position of the ve-
hicle taking into account two previous positions. We de-
scribe the datasets in more detail in the following sections.
φ was chosen in each case according to the characteristics
of the data in order to have reasonable number of condi-
tional heavy hitters. We distinguish between cases where
the data is sparse—few parents have conditional heavy hitter
children—and dense—most parents have conditional heavy
hitter children.

Markov chain artificial data. As discussed in the Intro-
duction, one application of finding the conditional heavy
hitters is to model the transition probabilities of a Markov
chain. The goal is then to estimate the entries in this tran-
sition probability matrix, by finding the large values (and
assuming the rest to be uniform). To model a Markov chain
of order k, we concatenate the k most recent observations
together to form a parent, and take the next observation as
the corresponding child. In general, given an alphabet A, it is
not feasible to track all the |A|k+1 transition probabilities ex-
actly, due to the high resource costs to do so. Hence, we in-
stead use our algorithms to find and estimate the highest and
the most important elements of transition probability ma-
trix. In our experiments we use an alphabet size |A| = 103

and model a Markov chain of order k = 2. This means there
are one million parents and one billion possible parent-child
pairs.

We use two types of generation process for the data.
The first case generates “dense” sequences so that each par-
ent (P) has exactly one “heavy” child (Ch) with conditional
probability chosen (randomly) to be greater than 0.6. The
rest of the probability mass is uniformly distributed among
the other possible edges. More formally, ∀P ∈ A×A, ∃ch ∈
A, such that Pr[ch|p]≥ 0.6 while Pr[ci|p] = 1−Pr[ch|p]

|A|−1 , where
ci ∈ A, ci 6= ch. In this setting, there are 1 million conditional
heavy hitters out of 1 billion possibilities.

The second generation process produces a “sparse” se-
quence with a predefined number of conditional heavy hit-
ters that is smaller than the number of parents. We identify
a subset of parents to have one or more heavy children. We
determine the number of heavy children nc for a “heavy”

12 Katsiaryna Mirylenka et al.
Histogram of P frequences

Occurance of Parent

Fr
eq
ue
nc
y

0 1000 2000 3000 4000

0
50
00

15
00
0

(a) Parent frequencies

Histogram of PC frequences

Occurance of Parent-Child

Fr
eq
ue
nc
y

0 5 10 15 20

0e
+0
0

2e
+0
5

4e
+0
5

(b) Parent-child pair frequencies
0.0 0.2 0.4 0.6 0.8

0
50
00

10
00
0

Histogram of cond probab (20 buckets)

Conditional probability of PC

Fr
eq
ue
nc
y

(c) Conditional heavy hitter probabilities

Fig. 2 Descriptive statistics for WorldCup’98 data.

parent by picking nc from a truncated normal distribution
with mean 3 and standard deviation 2. In our experiments
we created a total of 200K conditional heavy hitters, so on
average, only 1 in 15 parents has conditional heavy hitter
children. Each “heavy” parent shares a total transition prob-
ability equal to 0.8 among its conditional heavy hitter chil-
dren. The rest of the probability mass 0.2 is divided uni-
formly among the other edges. More formally, if a parent p
is chosen to be heavy, then we pick nc children C at random,
and set their transition probabilities Pr[c ∈ C|p] = 0.8/nc,
while for the others Pr[c 6∈C|p] = 0.2/(|A|−nc). We set the
number of conditional heavy hitters to recover as the true
number of conditional heavy hitters, i.e. 200K.

Taxicab GPS data. The Taxicab data consists of about 20
million GPS points for a fleet of taxis, collected over the
course of a month, obtained from cabspotting.org. To go
from the fine-grain GPS locations to streams of values, we
performed pre-processing to clip the data to a bounded re-
gion and coarsen to a grid. The region of the measurements
is restricted to a rectangle in the area of San Francisco, with
latitude in the range [37.6...37.835], which covers 26km and
longitude in the range [−122.52...− 122.35], which covers
15km. This clipping was performed to remove a few incor-
rect readings which were far outside this region.

This space was partitioned into 10,000 rectangles using
a 100× 100 grid. Given the readings within this grid, we
proceeded to define trajectories from the data as a sequence
of grid cells occupied by the same cab. We considered a new
trajectory to begin if there was a gap of more than 30 min-
utes between successive observations. Following this defini-
tion, we extracted 54,308 trajectories. We model the trajec-
tory data as a second order Markov chain, on the grounds
that knowing the previous two steps is likely to be indicative
of where the next step will take us. A first order model would
only have the previous location, and so would not capture in
what direction the vehicle was traveling. This model gener-
ates around 160,000 distinct parents and a million distinct
parent-child pairs; our experiments with finer grids (omitted
for brevity) had even higher dimensionality. With a default φ

value of 0.8, we observed 63,721 conditional heavy hitters.

This means that about 2 out of every 5 parents have con-
ditional heavy hitter children, so we consider this a dense
dataset.

Worldcup’98 data. The Worldcup data2 contains informa-
tion about the requests made to the World Cup Web site dur-
ing the 1998 tournament. Each request contains a ClientID
(a unique integer identifier for the client that issued the re-
quest) and an ObjectID (a unique integer identifier for the
requested URL). We are interested in finding conditional
heavy hitters between ClientID and ObjectID pairs, where
ClientID is treated as the parent, and ObjectID as the child.
That is, we are interested in detecting (ClientID, ObjectID)
pairs where the requested child is particularly popular for
that user.

We used data from day 41 to day 46 of the competition.
The total number of records in this period is around 105 mil-
lion; the number of distinct parent-child pairs is around 59
million; and the number of distinct parents is 540K. In this
data we look for the conditional heavy hitters that have a
probability of occurrence greater then φ = 0.25. The total
number of such conditional heavy hitters is in excess of fifty
thousand. About 1 in 10 parents has a conditional heavy hit-
ter child, making this data relatively sparse.

The frequency distributions are skewed: there are many
parents and parent-child pairs that are found only once or a
small number of times in the dataset (Figure 2(a) and Fig-
ure 2(b)). Although most of the parent-child pairs occur once—
52 million out of the 59 million distinct pairs—still, there are
many pairs that occur a greater number of times. The distri-
bution of probabilities of conditional heavy hitters is shown
in Figure 2(c), and shows that there is sufficient probability
mass associated with higher conditional probabilities.

6.2 Comparison with association rules, simple and
correlated heavy hitters.

In the first set of experiments, we compare conditional heavy
hitters to simple heavy hitters, correlated heavy hitters and

2 http://ita.ee.lbl.gov/html/contrib/WorldCup.html

http://www.cabspotting.org/
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Conditional Heavy Hitters 13

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" (!
"

$!
!"

$(
!"

%!
!"

%(
!"

&!
!"

&(
!"

'!
!"

!"
##
#"
$%
&'
()
*"
+#
,&

-&

-./011"23"11"

-./011"23"-.4411"

-./011"23"
533.6789./:;<=3"

0

1

2

6 5
4
3

(a) τ from 1 to 400.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

10
0	

11
00
	

21
00
	

31
00
	

41
00
	

51
00
	

61
00
	

71
00
	

81
00
	

91
00
	

Ja
cc
ar
d	
D
is
ta
nc
e	

τ	

CondHH	 vs	 HH	

CondHH	 vs	 CorrHH	

CondHH	 vs	
Associa9onRules	

5

7
14 15

28

103 103 103 103 103

(b) τ from 100 to 9100.

Fig. 3 Jaccard distance for top-τ conditional (CondHH) and simple (HH), CondHH and correlated(CorrHH) heavy hitters, and CondHH and
Association Rules with red numbers correspond to r - the number of retrieved frequent item sets which are triples.

association rules, and demonstrate that conditional heavy
hitters constitute a distinct set of elements that cannot be
identified by existing methods. In these experiments, we com-
puted the top-τ heavy hitters, correlated heavy hitters, and
conditional heavy hitters, and then computed the Jaccard
distances between the conditional heavy hitters and the other
three approaches. We recall that the Jaccard distance be-
tween two sets X and Y is defined as 1− |X∩Y |

|X∪Y | . The distance
is 0 if X = Y , and the closer the distance gets to 1, the more
the two sets are different (distance 1 means that the sets are
disjoint).

Since the set of conditional heavy hitters and the set
of association rules cannot be directly compared, we per-
formed the experiment as follows. We first identified the
top-τ frequent itemsets of sizes two and three combined, as
both are needed in order to compute conditional heavy hit-
ters that model a Markov chain of order 2 (i.e., the parent
consists of two elements of the data stream). From these τ

itemsets we were able to compute r conditional heavy hit-
ters, and we compared those to the set of top-r conditional
heavy hitters, which were extracted from the τ results com-
puted by our approach. The results of this comparison on
the WorldCup’98 dataset are shown in Figure 3 (the plot is
broken in two pieces to aid readability: Figure 3(a) shows
the results for small values of τ , while Figure 3(b) plots the
trends as τ increases to large values). The numbers (in red)
marked on the “CondHH vs AssociationRules” curve denote
the value of r for the different experiments.

These graphs show that the set of conditional heavy hit-
ters is very different from the sets produced by the other
approaches. This is especially true when we compare tra-
ditional heavy hitters to conditional heavy hitters, indicating
that the two definitions are truly describing distinct phenom-
ena. Likewise, there is little similarity between the results

found for correlated heavy hitters and conditional heavy hit-
ters. We also observe that the number r of parent-child pairs
discovered by association rules is very low compared to τ

in all cases. Although the most frequent parent-child pairs
are similar to the most popular conditional heavy hitters for
some of the small values of r, in general, the set of associa-
tion rules is very different from that of conditional heavy hit-
ters. Thus, current approaches for finding association rules
cannot help in retrieving conditional heavy hitters, for which
we need new algorithms in order to efficiently identify.

Utility of Conditional HH. We now study the elements that
are found as conditional heavy hitters and interpret them in
a domain where the semantics are known. We compare to
the elements found as conditional heavy hitters, and show
that there is value in both sets discovered. For this experi-
ment we use the taxicab GPS data, and compare the top-25
popular conditional heavy hitters with the top-25 correlated
heavy hitters. Following Notion 3, correlated heavy hitters
are sorted in descending order of the parent frequency. There
is some overlap between these two sets, indicating items that
are reported as significant under both definitions. However,
there are 14 elements found not in the overlap: 7 specific to
each definition. We plot each of these sets of 7 overlaid on
the San Francisco area maps from which they are drawn, in
Figure 5.

The plots represent the San Francisco region, where the
taxicab data was collected from, discretized into a 100 by
100 grid. Here, a parent is defined as two successive posi-
tions (this helps to establish direction of travel, for example),
and the child is the subsequent locations. In some cases, two
out of the three cells intersect. We plot grandparent cells (the
first in a sequence) using a black border, parent cells (the
second in a sequence) using a blue border, and child cells
(the third in a sequence) using a red border. There is a line

14 Katsiaryna Mirylenka et al.

!"
!#$"
!#%"
!#&"
!#'"
!#("
!#)"
!#*"
!#+"
!#,"
$"

(" $!
"

$(
"

%!
"

%(
"

&!
"

&(
"

'!
"

'(
"

(!
"

!"
#$
%#
&
'(

)"
*

+%,'-*&"&%#./01.,"23*

!"
!#$"
!#%"
!#&"
!#'"
!#("
!#)"
!#*"
!#+"
!#,"
$"

'#
+"

,#
("

$'
#&
"

$,
#$
"

%&
#+
"

%+
#)
"

&&
#'
"

&+
#$
"

'%
#,
"

'*
#*
"

!"
#$
%#
&
'(

)"
*

+%,'-*&"&%#./01.,"23*

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

(#-
.!
)"

$#-
.!
*"

%#-
.!
*"

%#-
.!
*"

&#-
.!
*"

&#-
.!
*"

'#-
.!
*"

'#-
.!
*"

(#-
.!
*"

(#-
.!
*"

/01234356"

012788"

95/:97;"/01234356"

7<107=1"/01234356"5>"95/:97;"

(a) Hash Partition strategy

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

5	 10
	

15
	

20
	

25
	

30
	

35
	

40
	

45
	

50
	

Pe
rf
or
m
an

ce
	

Total	 memory(MBytes)	

(b) Ancestor strategy

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

5	 10
	

15
	

20
	

25
	

30
	

35
	

40
	

45
	

50
	

Pe
rf
or
m
an

ce
	

Total	 memory(MBytes)	

(c) Bloom Filter strategy

Fig. 4 SparseHH accuracy for conditional heavy hitter recovery on Worldcup data under different reintroduction strategies.

(a) Correlated HH (b) Conditional HH

Fig. 5 Unique correlated and conditional heavy hitters not detected but
the other technique.

between a grandparent and a parent, and an arrow between a
parent and a child, if they do not overlap. Figure 5(a) shows
the correlated HH that are not found with the conditional
HH definition, while Figure 5(b) shows the conditional HH
that are not detected as correlated HH.

We interpret these results based on our study of features
on the map such as highways and tourist attractions – note
that the algorithms do not posess any such knowledge. We
observe that the unique correlated HH are primarily short
trajectories concentrated around the city center, indicating
slow moving traffic around popular points of interest. Mean-
while, the conditional HH are found around the city center
but also on the highways further outside the city. Of partic-
ular interest are trajectories around the airport (SFO), which
show journeys that turn off the highway to go to the airport.

Although similar, the two definitions emphasise differ-
ent aspects. Correlated heavy hitters are ones which have
high support for the parent. In this instance, they have shown
that it is common to make slow progress in the heart of

the city (parent), in which case it is quite common to con-
tinue making slow progress in the same direction (child).
While helpful in identifying “pinch points” in the traffic,
this does not provide much unexpected information. Con-
ditional heavy hitters place more emphasis on having a high
conditional probability of the child, given the parents. In this
instance, they highlight that traffic travelling south on high-
way 101 is likely to stay on (rather than take an exit), and
also that traffic on the highway close to the airport is very
likely to go to the airport. This highlights the importance of
the airport as a destination from the highway. Such insights
can be of greater use to traffic planners and city architects
in understanding typical journey and behavior around inter-
sections. We obtain similar results when we look at different
sized sets, such as the top-20 and top-30 sets. These results
demonstrate that the conditional HH concept can reveal in-
teresting and meaningful patterns, distinct from those found
by correlated HH.

6.3 Parameter setting for SparseHH

The SparseHH algorithm has several parameters and choices
that affect its performance. Here, we investigate how to set
these parameters before comparing with other algorithms.

Choice of reintroduction strategy. We compare the differ-
ent choices of reintroduction strategy: hash partitioning, an-
cestor, and Bloom Filter. Figure 4 shows the accuracy over
the Worldcup data, where we set τ = 100 and φ = 0.25 to
define the (popular) conditional heavy hitters.

Here, the ratio of memory allocated to the main struc-
ture, ρ , was set to 0.9, with the remainder used to help rein-
troduce items to the data structure. We observe that the hash
partitioning strategy performs the best across all metrics (Fig-
ure 4(a)). The ancestor strategy can obtain good results, but
only when a larger total amount of memory is made avail-
able (Figure 4(b)). The Bloom Filter strategy, while achiev-
ing high recall, always has very poor precision (Figure 4(c)).
Based on this and other results, we adopt the Hash partition-
ing strategy as the method of choice for SparseHH: while

Conditional Heavy Hitters 15

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$'
"

%'
"

&&
"

'&
"

(%
"

)%
"

*%
"

+$
"

,$
"

$!
!"

!"
#$
%#
&
'(

)"
*

+%,'-*&"&%#./01.,"23*

-./012134"

5/0677"

839:86;"9./012134"

6</.6=/"9./012134";4>7"86;"

(a) Favor precision, ρ = 0.9.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$'
"

%'
"

&&
"

'&
"

(%
"

)%
"

*%
"

+$
"

,$
"

$!
!"

!"
#$
%#
&
'(

)"
*

+%,'-*&"&%#./01.,"23*

(b) Favor precision, ρ = 0.95.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$'
"

%'
"

&&
"

'&
"

(%
"

)%
"

*%
"

+$
"

,$
"

$!
!"

!"
#$
%#
&
'(

)"
*

+%,'-*&"&%#./01.,"23*

(c) Favor recall, ρ = 0.5.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$'
"

%'
"

&&
"

'&
"

(%
"

)%
"

*%
"

+$
"

,$
"

$!
!"

!"
#$
%#
&
'(

)"
*

+%,'-*&"&%#./01.,"23*

(d) Favor recall, ρ = 0.9.

Fig. 6 Accuracy on sparse synthetic data using SparseHH.

0.2 0.4 0.6 0.8

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

(a) Favor precision
0.2 0.4 0.6 0.8

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

(b) Favor recall

Fig. 7 Precision (blue diamonds) and Recall (red squares) of
SparseHH variations on sparse synthetic data as ρ varies.

the Ancestor method is sometimes competitive, this can be
seen as a special case of the Hash partition method with a
structured choice of hash function, so we do not further dis-
tinguish these methods.

Choice of memory ratio. As noted in Section 5.5, we can
adjust the estimated counts in the algorithm to give either
upper or lower bounds, and hence to favor precision or to
favor recall. We compared the impacts of this choice in our
experiments, shown in Figure 6 for the sparse synthetic data.
We set φ = 0.05, sufficient to distinguish the conditional
heavy hitters from the other pairs. In the plots, we pick a rep-
resentative selection of parameter settings, as we vary the ra-
tio ρ that governs the division of memory between the main
and reintroduction structures, and whether the algorithm fa-
vors precision or recall. Across these, we first observe that
this choice does indeed behave as advertised: favoring pre-
cision obtains near perfect precision, while favoring recall
allows recall to grow as total memory increases. However,
when we favor precision, recall tends to improve as we al-
locate more memory (Figures 6(a) and 6(b)), while favoring
recall tends to cause precision to drop off as more memory
is used (Figures 6(c) and 6(d)).

To investigate this further, we fix the available memory,
and vary the ratio ρ . The results on the same data are shown
in Figure 7. We observe that when we favor precision, the

0

0.2

0.4

0.6

0.8

1

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

P
re

ci
si

o
n

Total memory (Mbytes)

GlobalHH
FamilyHH
CondHH
SparseHH

(a) Precision

0

0.2

0.4

0.6

0.8

1

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

R
e

ca
ll

Total memory (Mbytes)

(b) Recall

Fig. 8 Precision and Recall on the WorldCup data.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6

P
re
ci
si
o
n

f

CondHH, 30MB
SparseHH, 30MB
CondHH, 5MB
SparseHH, 5MB

(a) Precision

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6

R
e
ca
ll

f

(b) Recall

Fig. 9 Accuracy as φ varies on Worldcup data

precision is always near perfect (Figure 7(a)). The benefit
of giving more memory to the main structure outweighs the
loss from reducing space for the reintroduction strategy, so a
large ρ value gives the best recall. Contrarily, favoring recall
has generally good recall, but gets the best precision when
almost all of the memory is turned over to the reintroduction
strategy (Figure 7(b)). Still, it is hard to obtain both good
recall and good precision from this strategy: although we see
some good behavior for very small values of ρ here, this was
not stable across other datasets. Consequently, we conclude
that it is preferable to favor precision, and adopt this with
ρ = 0.9 as the default in all other experiments.

6.4 Performance on sparse data

We now compare all the proposed algorithms, initially on
sparse data, and subsequently on more dense data.

16 Katsiaryna Mirylenka et al.

World Cup Data. We present results for recovering (Cli-
entID, ObjectID) conditional heavy hitters from the (rela-
tively sparse) Worldcup data. In other experiments, we also
looked for correlations on other attribute combinations, such
as (ServerID, ObjectID). The results there were broadly sim-
ilar, and so are omitted for brevity.

Figure 8 shows results on precision and recall for recov-
ering the conditional heavy hitters for this data. Here, the
CondHH and SparseHH (using Hash partition reintroduc-
tion) methods perform the best for both precision and recall.
These two algorithms both make use of an eviction strategy
that picks the parent-child pair with the lowest (estimated)
conditional probability to be deleted from the main struc-
ture. This observation suggests that such a pruning strat-
egy can be effective at retaining the most promising pairs
in memory. For this data, the number of parents is not so
large, and so it is feasible to retain information on all par-
ents. Thus, CondHH is not penalized for this choice here, al-
though we see examples later where there are too many par-
ent items to track effectively. These methods also achieved
high top-τ precision, over 0.8, indicating over 80% agree-
ment between the top 100 reported conditional heavy hitters
and the true most popular heavy hitters. On this data, we
observe that other approaches suggested—GlobalHH Fam-
ilyHH and ParentHH (omitted from the plots)—are unable
to provide useful results: although they provide accuracy
guarantees as a function of the space available, it turns out
that these guarantees do not become useful until much more
memory is available. In this case, the successful algorithms
(CondHH and SparseHH) are able to achieve near-perfect
precision and recall using less than 10% of the memory re-
quired to represent the data exactly.

Figure 9 shows the accuracy of CondHH and SparseHH
as we vary φ , the threshold for defining a conditional heavy
hitter. We see that for large φ values and moderate memory
(30MB), CondHH is preferable, and achieves near-perfect
precision and recall. As φ is decreased, there are more con-
ditional heavy hitters to recover, and when memory is con-
strained to only 5MB (the dashed lines), recall necessarily
falls: the algorithms are unable to retain information about
all conditional heavy hitters. However, in the low φ , low
memory setting, SparseHH is able to maintain higher pre-
cision, while the precision of CondHH falls off.

Pruning Strategy With Combined Eviction Criteria. We
now evaluate the effect of using a combined eviction criteria,
based on both the conditional probability and the frequency
of the parent-child pairs, for both of which we fix thresholds.
When the memory budget is reached the eviction strategy
works as follows:

1. evict the pair for which both thresholds do not hold;
2. otherwise, evict the pair for which the threshold on the

conditional probability does not hold;

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$'
"

%'
"

&&
"

'&
"

(%
"

)%
"

*%
"

+$
"

,$
"

$!
!"

!"
#$
%&
%'
()

*'+,-).#.'"/)012/+#&3)

-./01.22"

31456722"

819:.;22"

</6=22"

>?14@522"

(a) Precision

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$'
"

%'
"

&&
"

'&
"

(%
"

)%
"

*%
"

+$
"

,$
"

$!
!"

!"
#$
%%&

'()$%&*"*(+,&-./,)"01&

-./01.22"

31456722"

819:.;22"

</6=22"

>?14@522"

(b) Recall

Fig. 10 Accuracy on sparse synthetic data as memory varies

3. otherwise, evict the pair for which the threshold on the
parent-child frequency does not hold;

4. otherwise, evict the pair with the lowest conditional prob-
ability.

This eviction strategy was implemented for both IP (In-
termediate Parent) and Hash reintroduction strategies of SparseHH,
and was tested on the WorldCup data. The experiments were
done using the same settings as for the prior reintroduction
strategies, and for different frequency thresholds to check
their influence on the results. The new strategy does not lead
to significant differences: precision and recall are the same
(and up to 10% smaller for small memory budgets), while
top-τ and average τ precision are 10% higher (and up to
18% for small memory budgets) for the modified versions.
We tried with values 10, 100 and 1000 as the frequency
thresholds used for eviction, and observed little sensitivity
of the results; the reason is that low conditional probabil-
ity is still an important criterion of eviction. The changes in
the Hash version of SparseHH algorithm are even less pro-
nounced, though the general trend is the same: precision and
recall results are a bit lower while top-τ and average top-τ
precisions are higher for the modified algorithm.

Sparse Synthetic Data. We now compare all the algorithms
on the truly sparse synthetic data, for a stream of length
108. This data has a much smaller number of conditional
heavy hitters compared to the number of parent items. Con-
sequently, we expect the algorithms which try to keep infor-
mation on all parents to perform poorly here, since this will
occupy most of their available resources.

This conjecture is confirmed in Figure 10: only SparseHH
is able to obtain both good precision and good recall for
the range of memory provided. It also has accuracy as mea-
sured by top-τ precision and average precision up to τ: both
around 0.9 (plots omitted for space reasons). Among the
other algorithms, CondHH shows the best improvement in
recall as more memory is made available, with GlobalHH
and FamilyHH improving more slowly (Figure 10(b)). The
ParentHH algorithm can only produce results when enough
memory is available to keep a (very small) summary struc-

Conditional Heavy Hitters 17

0.6

0.7

0.8

0.9

1.0

10⁷ 10⁸ 10⁹ 10¹⁰

P
re

ci
si

o
n

Length of data stream

GlobalHH
ParentHH
CondHH
SparseHH

(a) Precision

0.6

0.7

0.8

0.9

1.0

10⁷ 10⁸ 10⁹ 10¹⁰

R
e

ca
ll

Length of data stream

(b) Recall

10¹

10²

10³

10⁴

10⁵

10⁷ 10⁸ 10⁹ 10¹⁰

Ti
m

e
 /

 s

Length of data stream

GlobalHH

ParentHH

CondHH

(c) Time

Fig. 12 Accuracy and timing results for algorithms on dense synthetic data

!"!!!#

!"!!$#

!"!%!#

!"!%$#

!"!&!#

!"!&$#

%'
#

&'
#

((
#

'(
#

$&
#

)&
#

*&
#

+%
#

,%
#

%!
!#

!"
#
$%
&#

'(
%)
$*
%"+
$#

%

!,+-.%#$#,*/%&01/+$'(%

-./01.22#

31456722#

819:.;22#

</6=22#

>?14@522#

Fig. 11 Time cost of algorithms on sparse synthetic data as memory
varies

ture for each parent—in this case, above 72MB. Interest-
ingly, the precision performance of all algorithms apart from
SparseHH is very poor: much more memory is needed be-
fore these can achieve good precision (Figure 10(a)). This is
in part because even the highest amount of memory shown
in Figure 10 represents less than 5% of the space to record
the exact statistics for the given data. In terms of the original
application, of approximating the Markov chain transition
matrix, the results are also strong: the L1 difference between
the distributions is about 0.01, where 0 would be perfect re-
covery, and 1 represents the worst case. We conclude that
over sparse data, the SparseHH algorithm has the best per-
formance and is the method of choice.

In terms of the time cost of the algorithms, Figure 11
shows that there is little systematic variation as a function
of the size of the summary structure. The simpler GlobalHH
and ParentHH algorithms are the faster ones, but all algo-
rithms have performance measured in the hundreds of thou-
sands of updates per second to process 108 items.

6.5 Performance on dense data

Dense synthetic data. In the dense synthetic data, each par-
ent has at least one child that is a conditional heavy hitter.
We generate a stream of data from the 2nd order Markov
chain of different lengths, between 107 and 1010 observa-
tions. We allocate an amount of space equivalent to twice

0

0.2

0.4

0.6

0.8

1

1 2 3 4

P
re

ci
si

o
n

Total memory (Mbytes)

GlobalHH

CondHH

SparseHH

(a) Precision

0

0.2

0.4

0.6

0.8

1

1 2 3 4

R
e

ca
ll

Total memory (Mbytes)

(b) Recall

Fig. 13 Accuracy on Taxicab data as memory varies

the number of possible parent items, and evaluate their ac-
curacy in terms of precision and recall on streams of vary-
ing lengths. With the threshold φ = 0.5, Figure 12 shows the
average time and accuracy achieved over 10 independently
chosen streams. The observed standard deviation over these
repetitions was very low, around 10−3 for all precision and
recall computations.

The results show that the GlobalHH algorithm performs
poorly, with only moderate precision and recall on this rel-
atively “easy” data set (Figures 12(a) and 12(b)). The Par-
entHH algorithm has near perfect recall, and precision im-
proves as the stream gets longer (and so the signal becomes
easier to detect). However, again, the CondHH algorithm has
the best accuracy, getting near perfect precision and recall
throughout. The SparseHH algorithm had identical results to
CondHH on this data. On closer inspection of the data struc-
tures, we observed that this was because SparseHH has suf-
ficient memory to keep frequency information on all parents.
Consequently, it can store the same information as CondHH
and so finds the same estimated frequencies. For similar rea-
sons FamilyHH kept the same information as GlobalHH and
so is omitted from the plots. In terms of scalability, all al-
gorithms are similar. Figure 12(c) shows that the CondHH
algorithm is slightly slower in our implementation, due to
the more involved data structure maintenance process. How-
ever, the difference is not substantial, and could be improved
by a more engineered solution. Even here, the throughput is
nearly half a million updates per second on a single core.

18 Katsiaryna Mirylenka et al.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
o
n

f

CondHH

SparseHH, ρ=0.9

SparseHH, ρ=0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1
R
e
ca
ll

f

Fig. 14 Accuracy as φ varies on Taxicab data

Taxicab data. The Taxicab data is quite dense: many parents
have a conditional heavy hitter child. Figure 13 provides pre-
cision and recall results on this data for φ = 0.8. As in other
experiments, GlobalHH does not provide useful recovery of
conditional heavy hitters with such low memory. SparseHH
achieves good precision, but CondHH has enough memory
to obtain perfect precision (Figure 13(a)). The story is sim-
ilar for recall: SparseHH improves as more memory is avail-
able, but is consistently dominated by CondHH, until SparseHH
is given enough memory to store all parents. Moreover, for
the top-τ precision the results for CondHH were much stronger,
approaching 1, while SparseHH achieved only 0.25.

To better understand the relative behavior of these two
competitive algorithms, Figure 14 shows the case as we vary
φ , the threshold for conditional heavy hitters, while holding
the total memory constant at 4MB. As φ decreases, there
are more pairs passing the threshold, and so the problem be-
comes harder. The precision of SparseHH tends to remain
constant, while there is a more notable dip in the precision
of CondHH. Interestingly, adjusting the memory available
for the reintroduction strategy of SparseHH by adjusting ρ

has a marked effect: putting more memory to this end im-
proves precision, but reduces recall. We conclude that for
dense data, CondHH is the method of choice, provided we
can afford to store all parents.

6.6 Markov Model Estimation

In this section, we experimentally evaluate how well condi-
tional heavy hitters can approximate a Markov chain model.
The premise is that the conditional probabilities we derive
from the conditional heavy hitters can be used to estimate
the largest elements of the transition probability matrix. We
computed the conditional heavy hitters in the TaxiCab dataset
using the CondHH algorithm, using 3MB of total memory
and φ = 0.8 (the corresponding precision and recall values
are shown in Figure 13).

First, we check whether conditional heavy hitters can
adequately describe the generation process of the real tra-
jectories in the Taxicab data. To study this, we compare the
heatmaps of the trajectories generated by the exact Markov
model and by the recovered Markov model, i.e., the model
approximated by the conditional heavy hitters results, de-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Latitude

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Lo
ng
itu
de

(a) Exact Markov Model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Latitude

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Lo
ng
itu
de

(b) Recovered Markov Model based
on Conditional Heavy Hitters

Fig. 15 Heatmaps of trajectories modeled using exact transition prob-
ability matrix and recovered matrix based on conditional heavy hitters.

Table 2 Earth Mover’s Distance between the heatmaps of trajectories.

Heatmaps Exact markov model
Conditional HH 1.98
Supervised Random 4.13
Random 7.40

picted in Figure 15. The heatmap indicates the number of
times different trajectories have passed through a spatial cell.
The ‘hottest’ cells are colored in red, while the ‘coolest’ in
blue. The resulting heatmaps show that the trajectories built
using conditional heavy hitters accurately reflect the hot re-
gions of the trajectories built using the exact transition prob-
ability matrix, which indicates that conditional heavy hitters
indeed capture the highest transition probabilities.

Earth Mover’s Distance comparison. In order to quantify
the distance between the two heatmaps, we employ the Earth
Mover’s distance (EMD)[34]. EMD measures the difference
of probability masses, multiplied by the distance that the
probability mass has to be moved in order to derive one
probability density function from the other. In our setting,
we compute EMD over the probability density functions (or
the corresponding histograms) that are represented by the
heatmaps. We calculated the EMD between the heatmaps of
trajectories generated by the exact markov model and condi-
tional heavy hitters, as well as two baseline models, Random
and Supervised Random. The Random model corresponds
to a random assignment for the next state of a trajectory at
each step. The Supervised Random assigns the next state in
the same way as our approach does when a particular prefix
(i.e., parent) is missing. That is, it distributes the probabil-
ity mass among the neighborhood of this prefix, assigning
slightly more mass in the direction of movement (according
to the previous state). The results, reported in Table 2, show
that conditional heavy hitters are more than two times closer
to the exact markov model than the Supervised Random as-
signment, and more than 3.5 times closer than Random.

Conditional Heavy Hitters 19

Kernel-density comparison. We also conducted a Kernel
density based two-sample comparison (KDE) test [17] to
compare the position distributions of the trajectories gen-
erated by the exact and recovered Markov models. The null
hypothesis of this test was that the distributions were equal.
We set the significance level α = 0.05, and obtained a p-
value for the test equal to 0.51, which means that there is
not enough evidence to reject the hypothesis that these two
distributions are equal.
Prediction accuracy. Besides the heatmaps, we also assess
the prediction errors of the exact and recovered Markov mod-
els. Our goal is to check whether the recovered model can be
used to predict the next state of a taxicab given its two pre-
vious states. We also compare the results with the error of
Random and Supervised Random models described above.
Each model defines a probability distribution for the next
state given two previous states. The prediction is performed
using this probability distribution.

Two kinds of errors are considered:

1. the Mean Euclidean Distance (MED) between the esti-
mated cell ĉi and true cell ci, i = 1,2, ...,T , where T is
the number of predictions over taxicab trajectories, T is
larger than:

MED =
1
T

T

∑
i=1

dist(ĉi,ci)

=
1
T

T

∑
i=1

√
(ĉx

i − cx
i)

2 +(ĉy
i − cy

i)
2,

where cx and cy are spatial coordinated of the cells in the
100× 100 grid that correspond to initial longitude and
latitude of trajectory points;

2. the Misclassification Error (ME), or ratio of cells which
were incorrectly estimated:

ME =
1
T

T

∑
i=1

1{ĉi 6= ci}.

Table 3 summarizes the results, which are averaged over
10 runs. The differences between all pairs of errors are statis-
tically significant according to Welch Two Sample t-test [38],
for which significance level α was set to 0.01. The results
show that the accuracy of the exact model compared to the
accuracy of the recovered model is 1% and 5.6% higher
according to MED and ME correspondingly. This was ex-
pected as the recovered model is just an approximation of
the exact model. At the same time, the performance of the
recovered model is 23% and 6.2% better than the perfor-
mance of Random and Supervised Random models accord-
ing to ME (2521% and 19% better according to MED). The
prediction made with the recovered model for the states with
known prefix behaves even better.

Table 3 Mean Euclidean Distance (MED) and Misclassification Error
(ME) of different prediction models for Taxicab dataset.

Prediction Model MED ME
Exact Model 1.77 0.80
Recovered model 1.87 0.81
Recovered model only with known prefix 1.59 0.74
Random 47.15 1.00
Supervised Random 2.23 0.86

We note that both the heatmaps and the prediction errors
can be improved if we better model the cases where the pre-
fix is not among the conditional heavy hitters. This can be
achieved using domain knowledge, such as the road maps
in the region of the taxicab dataset. Nevertheless, even with-
out domain knowledge, we have shown that the trajectories
built using the conditional heavy hitters are a fairly accurate
representation of the original data.

7 Concluding Remarks

In this paper, we have introduced the notion of conditional
heavy hitters as a useful concept that is distinct from prior
notions of heavy hitters, correlated heavy hitters and fre-
quent itemsets. We introduced a sequence of algorithms that
build on existing techniques, but target the new definition.
Our empirical study demonstrated that among these, it is
those that most directly target the new definition, by pref-
erentially retaining items with high (estimated) conditional
probability and pruning those with low conditional proba-
bility, that perform the best. Specifically, the SparseHH al-
gorithm, which keeps an approximate summary of both the
parent-child pairs as well as the parent items, generally per-
forms the best across a range of sparse datasets and param-
eter settings. In particular, it achieves high precision and re-
call on the set of conditional heavy hitters while retaining
only 5-10% of the space of storing exact statistics. When the
data is more dense and there is sufficient memory, CondHH
is the preferred method. If we do not know the nature of the
data in the advance, we can simply run SparseHH, since it
will keep information on parents exactly while there is room,
and so behave more like CondHH. Future work will identify
further applications for conditional heavy hitters, and eval-
uate their efficacy in those settings. Our algorithms are de-
fined in the streaming model, which captures the challeng-
ing case of high-speed arrival of data. As the scale of data
increases, it will become necessary to adapt these algorithms
to a distributed setting, where multiple streams are observed,
and the collected summaries can be combined to give a sum-
mary of the union of all the input data.

20 Katsiaryna Mirylenka et al.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules
between sets of items in large databases. In: ACM SIGMOD Inter-
national Conference on Management of Data, pp. 207–216 (1993)

2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of ap-
proximating the frequency moments. In: ACM Symposium on
Theory of Computing, pp. 20–29 (1996)

3. Arasu, A., Manku, G.S.: Approximate counts and quantiles over
sliding windows. In: ACM Principles of Database Systems (2004)

4. Baum, L.E., Petrie, T.: Statistical Inference for Probabilistic Func-
tions of Finite State Markov Chains. The Annals of Mathematical
Statistics 37(6), 1554–1563 (1966)

5. Boyer, B., Moore, J.: A fast majority vote algorithm. Tech. Rep.
ICSCA-CMP-32, Institute for Computer Science, University of
Texas (1981)

6. Broder, A., Mitzenmacher, M.: Network applications of bloom fil-
ters: A survey. Internet Mathematics 1(4), 485–509 (2005)

7. Budak, C., Georgiou, T., Agrawal, D., El Abbadi, A.: Geoscope:
Online detection of geo-correlated information trends in social
networks. PVLDB 7(4), 229–240 (2013)

8. Chang, J.H., Lee, W.S.: Finding recent frequent itemsets adap-
tively over online data streams. In: KDD, pp. 487–492 (2003)

9. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items
in data streams. In: Procedings of the International Colloquium on
Automata, Languages and Programming (ICALP) (2002)

10. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data
streams. In: International Conference on Very Large Data Bases
(2008)

11. Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Finding
hierarchical heavy hitters in data streams. In: International Con-
ference on Very Large Data Bases, pp. 464–475 (2003)

12. Cormode, G., Korn, F., Tirthapura, S.: Time decaying aggregates
in out-of-order streams. In: ACM Principles of Database Systems
(2008)

13. Cormode, G., Muthukrishnan, S.: An improved data stream sum-
mary: The count-min sketch and its applications. Journal of Algo-
rithms 55(1), 58–75 (2005)

14. Dallachiesa, M., Nushi, B., Mirylenka, K., Palpanas, T.: Uncertain
time-series similarity: Return to the basics. PVLDB 5(11), 1662–
1673 (2012)

15. Dallachiesa, M., Palpanas, T.: Identifying streaming frequent
items in ad hoc time windows. Data Knowl. Eng. 87, 66–90 (2013)

16. Demaine, E., López-Ortiz, A., Munro, J.I.: Frequency estimation
of internet packet streams with limited space. In: European Sym-
posium on Algorithms (ESA) (2002)

17. Duong, T., Goud, B., Schauer, K.: Closed-form density-based
framework for automatic detection of cellular morphology
changes. Proceedings of the National Academy of Sciences
109(22), 8382–8387 (2012)

18. Durme, B.V., Lall, A.: Streaming pointwise mutual information.
In: NIPS, pp. 1892–1900 (2009)

19. Gehrke, J., Korn, F., Srivastava, D.: On computing correlated ag-
gregates over continual data streams. In: ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 13–24 (2001)

20. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining frequent
patterns in data streams at multiple time granularities. In: Data
Mining: Next Generation Challenges and Future Directions (2004)

21. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. In: SIGMOD Conference, pp. 1–12 (2000)

22. Lahiri, B., Tirthapura, S.: Finding correlated heavy-hitters over
data streams. In: IPCCC, pp. 307–314 (2009)

23. Lee, L., Ting, H.: A simpler and more efficient deterministic
scheme for finding frequent items over sliding windows. In: ACM
Principles of Database Systems (2006)

24. Lee, L., Ting, H.: A simpler and more efficient deterministic
scheme for finding frequent items over sliding windows. In: ACM
Principles of Database Systems (2006)

25. Letchner, J., Re, C., Balazinska, M., Philipose, M.: Approximation
trade-offs in markovian stream processing: An empirical study. In:
ICDE, pp. 936–939 (2010)

26. Manerikar, N., Palpanas, T.: Frequent items in streaming data: An
experimental evaluation of the state-of-the-art. Data Knowl. Eng.
68(4), 415–430 (2009)

27. Manku, G., Motwani, R.: Approximate frequency counts over data
streams. In: International Conference on Very Large Data Bases,
pp. 346–357 (2002)

28. Metwally, A., Agrawal, D., Abbadi, A.E.: Efficient computation
of frequent and top-k elements in data streams. In: International
Conference on Database Theory (2005)

29. Mirylenka, K., Cormode, G., Palpanas, T., Srivastava, D.: Finding
interesting correlations with conditional heavy hitters. In: Interna-
tional Conference on Data Engineering (ICDE) (2013)

30. Misra, J., Gries, D.: Finding repeated elements. Science of Com-
puter Programming 2, 143–152 (1982)

31. Pearl, J.: Probabilistic reasoning in intelligent systems: networks
of plausible inference. Morgan Kaufmann Publishers Inc. (1988)

32. Rabinovich, M., Spatschek, O.: Web caching and replication.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (2002)

33. Raftery, A.E.: A model of high-order markov chains. Journal
of the Royal Statistical Society (Series B Methodological) 47(3),
528–539 (1985)

34. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as
a metric for image retrieval. International Journal of Computer
Vision 40(2), 99–121 (2000)

35. Tantono, F.I., Manerikar, N., Palpanas, T.: Efficiently discovering
recent frequent items in data streams. In: SSDBM, pp. 222–239
(2008)

36. Venkataraman, S., Song, D.X., Gibbons, P.B., Blum, A.: New
streaming algorithms for fast detection of superspreaders. In: Net-
work and Distributed System Security Symposium NDSS (2005)

37. Wang, P., Wang, H., Wang, W.: Finding semantics in time series.
In: ACM SIGMOD International Conference on Management of
Data, pp. 385–396 (2011)

38. Welch, B.L.: The Generalization of ‘Student’s’ Problem when
Several Different Population Variances are Involved. Biometrika
34(1/2), 28–35 (1947)

39. Yu, P.S., Chi, Y.: Association rule mining on streams. In: Encyclo-
pedia of Database Systems, pp. 136–139. Springer-Verlag (2009)

	Introduction
	Related Work
	Preliminaries
	Notions of elements of interest in a data stream
	Algorithms for Conditional Heavy Hitters
	Experimental Results
	Concluding Remarks

