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Abstract—Concern about how to aggregate sensitive user data without
compromising individual privacy is a major barrier to greater availability
of data. Differential privacy has emerged as an accepted model to
release sensitive information while giving a statistical guarantee for
privacy. Many different algorithms are possible to address different
target functions. We focus on the core problem of count queries, and
seek to design mechanisms to release data associated with a group of
n individuals.

Prior work has focused on designing mechanisms by raw optimization
of a loss function, without regard to the consequences on the results.
This can leads to mechanisms with undesirable properties, such as
never reporting some outputs (gaps), and overreporting others (spikes).
We tame these pathological behaviors by introducing a set of desir-
able properties that mechanisms can obey. Any combination of these
can be satisfied by solving a linear program (LP) which minimizes a
cost function, with constraints enforcing the properties. We focus on
a particular cost function, and provide explicit constructions that are
optimal for certain combinations of properties, and show a closed form
for their cost. In the end, there are only a handful of distinct optimal
mechanisms to choose between: one is the well-known (truncated)
geometric mechanism; the second a novel mechanism that we introduce
here, and the remainder are found as the solution to particular LPs.
These all avoid the bad behaviors we identify. We demonstrate in a set
of experiments on real and synthetic data which is preferable in practice,
for different combinations of data distributions, constraints, and privacy
parameters.

1 INTRODUCTION

There has been considerable progress on the problem of
how to release sensitive information with privacy guarantees
in recent years. Various formulations have been proposed,
with the model of differential privacy emerging as the most
popular and robust [1]. Differential privacy (DP) lays down
rules on the likelihood on seeing particular outputs given
related inputs. Many different algorithms have been proposed
to meet this guarantee, based on different objectives and input
types [2]. The resulting descriptions of output probabilities
for different inputs are referred to as mechanisms, such as the
Laplace mechanism, Geometric mechanism and Exponential
mechanism described in more detail subsequently.

In this paper, we focus on count queries, a fundamental
problem in private data release that underpins many applica-
tions, from basic statistics of a dataset to complex spatial and
graphical distributions. Count queries are needed to materialize
frequency distributions, instantiate statistical models, and as
the basis of SQL COUNT * queries. Counts can be applied

Fig. 1: Heatmaps of unconstrained mechanisms for α = 0.62

to arbitrary groups, and based on complex predicates; hence
they represent a very general tool. Abstracting, we have a
group of n individuals, who each hold a private bit (encoding,
for example, whether or not they possess a particular sensitive
characteristic). The aim is to release information about the
sum of the bits, while meeting the stringent differential privacy
guarantee. The usual model assumes the existence of a trusted
aggregator, who receives the individual bits, and who aims to
release a noisy representation of their sum. Since the value of
the true answer is in {0 . . .n}, it is natural to restrict the output
of the mechanism to this range also, to ensure downstream
compatibility with subsequent data analysis expecting integer
counts in this range. If we analyze how existing approaches to
differential privacy handle this case, we find there are weak-
nesses. We consider the most relevant example, mechanisms
obtained via a linear programming framework.

Linear Programming Framework [3] (cf. Section 3). Ghosh
et al. considered count queries and proved powerful theorems
about utility-optimal mechanisms. They showed how to design
mechanisms for count queries which minimize a loss function,
via linear programming. The mechanisms obtained by solving
linear programs specify, for each possible input, a probability
distribution over allowable outputs. However, for common
objectives, including to minimize the expected absolute error
(denoted L1) and squared error (L2), we observed that the
“optimal” mechanisms have some anomalous behavior, such
as never reporting some values.

Figure 1 gives some examples of this phenomenon in action.
We show four optimal mechanisms generated by solving linear
program described in Section 3 for different input sizes (n),
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Fig. 2: Heatmaps of constrained mechanisms for α = 0.62

under a privacy guarantee controlled by a parameter α (ex-
plained later, and set to a fixed value here). Each column gives
the probability distribution over the outputs in the range 0 to n,
for a given input count (also 0 to n). The case of optimizing the
squared error (L2) is most striking: the “optimal” thing to do in
this case is to ignore the input and always report ‘2’! But other
cases are also problematic: all these optimal mechanisms never
report some outputs (gaps), and disproportionately report some
others (spikes). For example, minimizing the absolute error for
n = 7 has a chance of reporting the values 2 or 5 with at least
0.7 probability, regardless of the input value. Similarly, if we
try to minimize the probability of reporting an answer that is
more than 1 step away from the true input (denoted as L0 with
d = 1), there is an over 90% chance of reporting 1 or 4.

Clearly, such results are counter-intuitive and show that
blind optimization of simple objective functions can lead to
unexpected and undesirable outcomes. To address this, we
initiate the study of constrained mechanism design: requiring
mechanisms to satisfy additional properties ensuring desired
structure in obtained mechanism and avoiding these patholo-
gies. For example, we define the notion of fairness, which
requires that the probability of reporting the true input is
the same for all inputs; and weak honesty, where we require
that the probability of reporting the true input is at least
uniform (i.e. at least 1

n+1 ). These both ultimately entail that
every output is reported with a non-zero probability. We also
consider various monotonicity properties, which preclude big
spikes in probability for responses that are far from the truth.
In total, we describe seven natural properties that one could
demand of a mechanism. Our first result is to show how to
extend the linear programming framework to incorporate these
properties and eliminate pathological outcomes.

Figure 2 shows the heatmap of constrained mechanisms
satisfying all properties. The anomalies (spikes and gaps)
seen in Figure 1 are now eliminated. Recall that optimizing
in the unconstrained L2 case returns a trivial solution that
outputs 2 irrespective of input. Now, the probability mass in
the corresponding constrained mechanism is more distributed
and with probability at least 2

3 , the mechanism outputs a value
differing from the true answer by at most 1 for all inputs.
Similar observations can be made in the other instances. We
go on to perform a detailed study of constrained mechanism
design for count queries, and show some surprising outcomes:

• Fully constrained mechanisms minimizing L0,L1,L2

are similar. The mechanisms for satisfying all constraints
irrespective of what objective function they are minimizing are
similar. This means analyzing properties on just one of the loss
functions should give us an approximate idea of utility offered
on others. Hence, we focus most of our attention on L0 loss
function.

• No blow up in number of mechanisms for L0. Given 7
different properties, there are 27 = 128 different combinations
that could be requested. Does this mean that there are over a
hundred distinct constrained mechanisms? We show that this
is not the case: there are at most four different behaviours
that can be observed. Two behaviors correspond to explicit
constructions of mechanisms: the (truncated) geometric mech-
anism (GM) proposed in [3], which corresponds to the uncon-
strained optimal solution; and a new “explicit fair mechanism”
(EM) which simultaneously achieves all the properties that
we introduce. In between are two mechanisms which achieve
variations of the weak honesty property above, which are
found by solving an optimization problem.

• No significant loss in utility. The Geometric mechanism
obtains the minimal value of the L0 loss function, for which
we give a closed form in terms of the privacy parameter α .
However, our most constrained mechanism (the explicit fair
mechanism, EM) is only incrementally more expensive: the
loss function value is higher by a factor of approximately 1+
1
n , which becomes negligible for even moderate n. The costs of
the other constrained mechanisms are sandwiched in between.

Consequently, we conclude that the addition of constraints
provides significant structure to the space of mechanism de-
sign, and comes at very low cost. Given these observations,
one may wonder whether there is any material difference in
behavior between the constrained and unconstrained mecha-
nisms? This is indeed the case. For example, Figure 7 shows a
quantitative difference between GM and EM for n= 4 (chosen
to make the results easy to view). The heatmap shows that GM
concentrates the probability mass on the two extreme outputs,
0 and n, while EM achieves a more balanced distribution,
closer to the leading diagonal (corresponding to a truthful
mechanism). If we assume a uniform input distribution, EM
reports the true input with probability 0.224, while GM (which
maximizes this quantity) achieves 0.238, only marginally
higher but with a high skew. A third mechanism with the weak
honesty property, WM, sits between the two.

Our experiments further study the implications of using
constrained mechanisms, and compare their empirical behavior
on a mixture of real and synthetic data. Differences are most
apparent for moderate values of n: as n becomes very large,
these “end effects” become less significant, and off-the-shelf
mechanisms do a good enough job. Thus, we spend most
of our effort studying groups corresponding to a moderate
number of individuals, up to tens. Arguably, such small groups
are most in need of protection, since they have only a few
participants: there is reduced safety in numbers for them.

Outline. We discuss prior work, introduce our model and
define useful notions for differential privacy in Section 2. After
defining the Linear Programming framework (Section 3), in
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Section 4, we present constraints that can be added to avoid
degeneracy. In Section 5, we revisit the one user/one bit
case (Local Differential Privacy), and show that Randomized
Response represents a natural convergence of multiple differ-
ent approaches to privacy. We observe that some existing ap-
proaches yield seemingly undesirable results for small groups
(with 1 or a few members), which motivates our further study
of differentially private mechanisms. Additional properties
which constrain the output can be obtained efficiently via solv-
ing a constrained optimization problem. We also propose an
explicit construction of a mechanism which provably achieves
all our proposed properties, and analyze the additional “cost”
in terms of various measures of accuracy. Section 7 reports on
our experiments on accuracy with synthetic and real data.

2 PRELIMINARIES
2.1 Model And Definitions
Our model assumes a group of n participants, each of whom
has some private information which is encoded as a single bit.
They share their information with a trusted aggregator, whose
aim is to release information about the sum of the values
while protecting the privacy of each participant. Although
simple, this question is at the heart of all complex analysis
and modelling, and demands a comprehensive solution. We
simplify the description of the input to just record the true
sum of values j, so we have 0 ≤ j ≤ n. This captures the
case of a count-query over a table D. Our goal is to design a
randomized mechanism that, given input j produces output i,
subject to certain constraints.

Definition 1 (Randomized Mechanism): A randomized me-
chanism M is a mapping M : D⇒ R, where R = {0, ..,n}=
[n] is the range of the mechanism. We write PrM[i| j] for the
conditional probability that the output M( j) (on input j ∈D)
is i ∈ R. We will drop the subscript M in context.

Our mechanism maps inputs in the range 0 to n to outputs
in the same range. While one could allow a different set of
outputs, it is most natural to restrict to this range. Consider
for example, a downstream analysis step which expects counts
to be integers in the range [n]: we should ensure that this
expectation is met by the result of applying mechanisms.
Rather than attempt to map different outputs to this range, it is
more direct to build mechanisms that cover this output set. It is
therefore natural to representM as an (n+1)×(n+1) square
matrix P , where Pi, j = Pr[M( j) = i] = PrM[i| j]. For brevity,
we abbreviate this probability to Pr[i| j]. Note that therefore P
is a column stochastic matrix: the entries in each column can
be interpreted as probabilities, and sum to 1.

Privacy of a mechanism. Differential privacy imposes con-
straints on the probabilities in our mechanism. Specifically, it
bounds the ratio of probabilities of seeing the same output
for neighboring inputs [1]. In our setting, the notion of
neighboring is simply that they differ by (at most) one, which
happens when an individual changes their response. Hence,
applying the definition, we obtain

Definition 2 (Differentially Private Mechanisms):
Mechanism M is α-differentially private for α ∈ [0,1] if

∀i, j : α ≤ Pr[i| j]
Pr[i| j+1] ≤

1
α
.

Here α close to 1 provides a stronger notion of privacy and
a tighter constraint on the probabilities, while α close to zero
relaxes these constraints. It is common in differential privacy
to write α = exp(−ε)≈ 1− ε , for some ε > 0. We adopt the
α notation for conciseness, and translate results in terms of ε-
differential privacy when appropriate. We say a DP constraint
is tight if the relevant inequality is met with equality.

Utility of a mechanism. The true test of the utility of
a mechanism is the accuracy with which it allows queries
to be answered over real data. However, we aim to design
mechanisms prior to their application to data, and so we seek
a suitable function to evaluate their quality. Since there are
many column stochastic matrices that satisfy DP, the problem
of finding a mechanism that provides the maximal utility can
be framed as an optimization problem. Specifically, we can
encode our notion of utility as a penalty function, where we
seek to penalize the mechanism for reporting results that are
far from the true answer.

Definition 3 (Objective function value): We define the ob-
jective function Ot,⊕(P) of a mechanism P as:

Ot,⊕(P) =⊕ j ∑
i

w j Pr[i| j]|i− j|t

where ⊕ is an operator like ∑ or max, and ∑ j w j = 1.
Observe that the weights w j can be thought of as a prior

distribution on the input values j. Then Ot,∑(P) gives the
expected error of the mechanism, when taking its output as
the true answer, and |i− j|t penalizes the extent by which
the output was incorrect. When not otherwise stated, we take
w j =

1
n+1 , i.e. a uniform prior over the inputs. Common

choices for t in the definition would be t = 2, corresponding
to a squared error (L2 norm), t = 1, corresponding to an
absolute error (L1 norm), and t = 0, corresponding to the
probability of any wrong answer (L0 norm). In what follows,
we devote most of our attention to the case L0. We argue
that this is an important case: (i) maximizing the probability
of reporting the truth is a natural objective in mechanism
design; we aim to ensure that the reported answer is the
maximum likelihood estimator (MLE) for the true answer,
for use in downstream processing (ii) due to the differential
privacy constraints, maximizing the probability of the true
answer has the additional effect of making nearby answers
likely, as our experiments validate. (iii) our internal study
shows that objectives like L1 and L2 often give pathological
results, as seen in Figure 1. Working with L0 gives more
robust behavior. We therefore initiate the study of constrained
mechanism design for L0, and give some initial results for
other objectives. It is convenient to apply a rescaling of the
loss function by a factor of n+1

n : this sets the cost of a trivial
mechanism to 1 (Definition 5). We refer to this rescaled cost
as L0, as this corresponds to a scaled version of O0,∑ that
sums the probabilities of a wrong answer, and so

L0(P) =
n+1

n
− traceP

n
. (1)

Abusing notation slightly, we also define the objective
function, L0,d = n+1

n ∑
n
i, j:|i− j|≥d w j Pr[i| j] which computes a
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rescaled sum of probabilities more than d steps off the main
diagonal, so that L0 = L0,0.

2.2 Prior Work and Existing Mechanisms
We now review the most relevant existing approaches that
apply in our setting. The model of differential privacy [4],
[1], [5] has received a lot of attention in the decade since
it was christened, from a variety of communities including
systems [6], machine learning and signal processing [7] and
data management [8]. For a more thorough overview of the
area, there are several detailed surveys [9], [2], [10].

The most relevant work to our interests is due to Ghosh et
al. [3] who study the problem of designing mechanisms opti-
mizing for expected utility. Their contributions are to introduce
a linear programming formulation of the problem, and to show
that a certain mechanism (denoted GM) emerges as the basis
of other optimal mechanisms, discussed in more detail below.
Gupte and Sunararajan proved a similar universality result for
“minimax” loss functions and uniform weights w j [11]. They
provided a simple test for when a given mechanism can be
obtained by first applying GM and then modifying the result
(e.g. by randomly sampling from a distribution indexed by
the observed output from GM). Subsequent work by Brenner
and Nissim shows that such “universally optimal” mechanisms
are not possible in general for other computations, such
as computing histograms [12]. Other relevant work studies
special cases of differential privacy. An important variant is
the model of local differential privacy (LDP), where users
first perturb their input before passing it to an (untrusted)
aggregator. That is, each user applies a mechanism for a
group of size n = 1. LDP is used in Google’s Chrome via the
RAPPOR tool to collect browser and system statistics [13],
and in Apple’s iOS 10 to collect app usage statistics [14].
In Section 5, we observe that all adaptations of standard DP
methods converge on the same idea: a decades-old statistical
sampling technique called Randomized Response [15].
The most relevant existing approaches to us are the following:

Mechanisms from coin-tossing: Randomized Response.
There are many variations of Randomized Response [15]. A
canonical form for the case n = 1 has the user report the true
value of their input bit with probability p > 1

2 , but report the
negation of their input with probability 1− p. Without loss
of generality, we can assume that p > 1

2 . We can write this as
a randomized mechanism:

R=

[
p 1− p

1− p p

]
(2)

It is immediate that this procedure achieves α-differential
privacy for α = 1−p

p (see Definition 2). Due to its simplicity
and privacy guarantees, randomized response has recently
found use in a number of systems, such as RAPPOR [13],
which applies randomized response in conjunction with a
Bloom filter to accommodate many possible elements. Geng
et al. in [16] give a natural extension of 1 bit randomized
response to n-ary data, which reports its input with probability
p, else another output is chosen uniformly. This gives low
utility for count queries.

Defining sampling probabilities: Exponential Mechanism.
McSherry and Talwar [17] proposed the Exponential Mecha-
nism as a generic approach to designing mechanisms. Let D
be the domain of input dataset and R the range of perturbed
responses. The crux of the exponential mechanism is in
designing a quality function Q : D×R⇒ R so that Q(d,r)
measures the desirability of providing output r for input d.
The mechanism is then defined by setting

Pr[r ∈R|d] = exp
(

εQ(d,r)
2s

)/
∑r′∈R exp

(
εQ(d,r′)

2s

)
(3)

where s captures the amount by which changing an indi-
vidual’s input can alter the output of Q in the worst case.
It is proved that this mechanism obtains at least exp(−ε)-
differential privacy. However, although we can use Q to
indicate that some outputs are more preferred, it is not possible
to modify a given Q to directly enforce the properties that we
desire, such as ensuring that the probability of returning the
true output is at least as good as that of a uniform distribution
(“weak honesty”, (14)).

Rounding numeric outputs: Laplace and Geometric Mech-
anisms. Perhaps the best known differentially private mech-
anism is the Laplace mechanism, which operates by adding
random noise to the true answer from an appropriately scaled
Laplace distribution (a continuous exponential distribution
symmetric around zero). Note that in order to fit our definition
of a mechanism (Definition 1), it will be necessary to round
and truncate the output of the mechanism to the range [n].
Here, the Laplace mechanism does not easily fit the require-
ments. Instead, the appropriate method is the discrete analog
of the Laplace mechanism, which is the (truncated) Geometric
mechanism, introduced by Ghosh et al. [3], who showed that
it is the basis for unconstrained mechanisms.

Definition 4: Range Restricted Geometric Mechanism [3]
(GM) Let q be the true (unperturbed) result of a count query.
The GM responds with min(max(0,q+ δ ),n), where δ is a
noise drawn from a random variable X with a double sided
geometric distribution, Pr[X = δ ] = (1−α)|δ |

1+α
for δ ∈ Z.

That is, GM adds noise from two sided geometric distribu-
tion to the query result and remaps all outputs less than 0 onto
0 and greater than n to n. Though GM does not include any
zero rows, we observe that each column distribution in GM
has spikes at the extreme values, which tend to distort the true
distribution quite dramatically, as the next example shows.

Example 1: Consider the case of n = 2, corresponding to
a group of two individuals, with a moderate setting of the
privacy parameter α = 9

10 . For an input of 1 (i.e. one user has
a 1, and the other has a 0), we obtain that the probability of
seeing an output of 0 is ≈ 0.47, and the same for an output
of 2. Meanwhile, the probably of reporting the true output
is ≈ 0.05 — in other words, the chance of seeing the true
answer is eighteen times lower than seeing an incorrect answer.
Meanwhile, if the input is 0, then output 0 is returned with
probability ≈ 0.53: so the mechanism is much more likely to
report the true answer when it is 0 than when it is 1. As we
increase the privacy parameter α closer to 1 (more privacy),
the probability of outputs other than 0 and n approaches 0.
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As observed in Example 1, an apparent weakness of GM
for interpretability is that it can give quite low probabilities
for reporting accurate answers. In order to allow more sense
to be made of the outputs of the designed mechanisms, we
can specify additional constraints to guide the optimization
to producing the best interpretable result. This prompts us to
define a collection of plausible properties that a mechanism
can obey. We will show analytically and empirically that these
constraints do not significantly affect the obtained objective
function values (i.e. the raw utility), but considerably improve
the interpretability of the resulting mechanism. In particular,
we demonstrate that it is possible to find a mechanism which
achieves all the given properties with only marginal increase
in objective function value, and improved interpretability.

3 UNCONSTRAINED MECHANISM DESIGN
A natural starting point is to use optimization tools to find
optimal mechanisms. Following [3], the key observation is that
the DP requirements can be written as linear constraints over
variables which represent the entries of the mechanism. The
objective function is also a linear function of these variables.
Formally, we define variables ρi, j for Pr[i| j], and write:

minimize:
n

∑
j=0

w j

n

∑
i=0
|i− j|pρi, j (4)

subject to: 0≤ ρi, j ≤ 1 ∀i, j ∈ [n] (5)
n

∑
i=0

ρi, j = 1 ∀ j ∈ [n] (6)

ρi, j ≥ αρi, j+1, and ρi, j+1 ≥ αρi, j ∀i ∈ [n], j ∈ [n−1] (7)

The constraints can be understood as follows: (5), (6) ensure
that the entries of the matrix are probabilities and each column
encodes a probability distribution, i.e. sums to 1. Constraint
(7) encodes the differential privacy constraints. Finally, (4)
encodes a loss function of Definition 4 for the notion of utility
we aim for. We refer to the set of constraints (5), (6) and (7)
as BASICDP. The result is a linear program with a quadratic
number of variables, and a quadratic number of constraints,
each containing at most a linear number of variables. There-
fore, solving the resulting LP obtains a mechanism minimizing
the given objective function with the desired properties, in time
polynomial in n.

Applying this approach yields results like those in Figure 1.
Our studies found that similar undesirable results were found
across a range of choices of n, α and loss function. Simple
attempts to prevent these outcomes are not effective. For
example, we can ensure that no entry is zero by adding a
constraint to the LP enforcing this. However, the consequence
is that rows which were zero are now set to be the smallest
allowable value, which is unsatisfying. Instead, we propose
an additional set of properties to eliminate degeneracy and
provide more structure in our solutions.

4 CONSTRAINED MECHANISM DESIGN
We now propose a set of structural properties that help to
control the objective function in addition to meeting differen-
tial privacy. We believe that these constraints are natural and

intuitive and often observed in other mechanisms satisfying
differential privacy. We present properties of three types: those
which operate on rows of the matrix, those which apply to
columns of the matrix, and those which apply to the diagonal.

Row Honesty (RH): A mechanism is row honest if

∀i, j.Pr[i|i]≥ Pr[i| j] (8)

Row honesty means that a mechanism should have higher
probability of reporting i when the input is i than for any
other input.

Row Monotone (RM): A mechanism is row monotone if

∀1≤ j ≤ i : Pr[i| j−1]≤ Pr[i| j]
∀i≤ j < n : Pr[i| j+1]≤ Pr[i| j] (9)

This property generalizes row honesty: row monotonicity
implies row honesty. It requires that entries in row i are
monotone non-increasing as we move away from the diagonal
element Pr[i|i]. Note that row monotonicity is independent of
differential privacy: we can find mechanisms that achieve DP
but are not row monotone, and vice-versa.

Analogous to the row-wise properties, we define monotonic-
ity and honesty along columns also.

Column Honesty (CH): A mechanism is column honest if

∀i, j : Pr[ j| j]≥ Pr[i| j]. (10)

Column honesty requires that the mechanism be honest
enough to report the true answer more often than any individ-
ual false answer. As demonstrated by Example 1, GM does
not obey column honesty.
Column Monotone (CM): A mechanism is column monotone if

∀1≤ i≤ j : Pr[i−1| j]≤ Pr[i| j]
∀ j ≤ i < n : Pr[i+1| j]≤ Pr[i| j] (11)

As in the row-wise case, column monotonicity implies
column honesty (but not vice-versa). It captures the property
that outputs closer to the true answer should be more likely
than those further away.

Fairness (F): A mechanism is fair when the probability of
reporting the true input is constant, i.e.

∀i, j : Pr[i|i] = Pr[ j| j] := y. (12)

Example 1 shows that GM is not a fair mechanism. If a
mechanism is fair and has row honesty, then all off-diagonal
elements are at most y, so the mechanism also satisfies column
honesty. Symmetrically, a fair and column honest mechanism
is row honest. While this may seem like a restrictive constraint,
we observe that mechanisms proposed in other contexts have
this property, such as the staircase mechanism of [16].

Lemma 1: If a mechanism is required to be fair, then any
mechanism that minimizes the objective O0,∑ is simultane-
ously optimal for all settings of weights w j.

Proof: Let the diagonal element of the fair mechanism be
y. The objective function value is

∑
j∈[n]

∑
i∈[n]

w j Pr[i| j](i− j)0 = ∑
j∈[n]

w j(1− y) = 1− y (13)
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That is, the value is independent of the w js.
Weak Honesty (WH): A mechanism satisfies weak honesty if

∀i : Pr[i|i]≥ 1
n+1

(14)

We can consider this property a weaker version of column
honesty, as CH implies WH: for any column j, summing the
column honesty property over all rows i we obtain

(n+1)Pr[i|i] =
n

∑
i=0

Pr[ j| j]≥
n

∑
i=0

Pr[i| j] = 1

so after rearranging, we have Pr[i|i]≥ 1
n+1 .

Weak honesty ensures that a mechanism reports the true
answer with probability at least that of uniform guessing
(formalized as the uniform mechanism UM in Definition 5). It
also ensures that the mechanism does not have any rows that
are all zero (corresponding to outputs with no probability of
being produced). GM does not always obey weak honesty, as
is shown by Example 1.

The final property we consider is a natural symmetry
property (formally, it is that the matrix P is centrosymmetric):

Symmetry (S): A mechanism is symmetric if

∀i, j : Pr[i| j] = Pr[n− i|n− j] (15)

Since the input and output domains, and the objective func-
tions are symmetric, it is natural to seek mechanisms which
are also symmetric. Our next result shows that symmetry is
always achievable without any loss in objective function.

Theorem 1: Given a mechanism M which meets a subset
of properties P from those defined above, we can construct
a symmetric mechanism M∗ which also satisfies all of P and
achieves the same objective function value as M.

Proof: Our construction to achieve symmetry is simple.
Define a matrix MS from M as (MS)i, j = Mn−i,n− j. Then
set M∗ = 1

2 (M + MS). We first observe that M∗ is indeed
symmetric, since it is equal to

1
2 (Mi, j +Mn−i,n− j) =

1
2 (Mn−i,n− j +Mn−(n−i),n−(n− j)) = M∗n−i,n− j

as required by (15). The (L0) objective function value is
unchanged since (invoking (1))

trace(M∗) = 1
2 (trace(M)+ trace(MS)) = trace(M)

For the other diagonal properties (fairness and weak honesty),
it is immediate that if either of these properties are satisfied by
M, then they are also satisfied by M∗. We prove the claim for
row properties; the case for column properties is symmetric.
(i) Differential privacy: if we have α ≤ Mi, j/Mi, j+1 ≤ 1/α

for all i, j, then this also holds for MS
i, j/MS

i, j+1. Summing both
inequalities, and using that min( a

b ,
c
d )≤

a+c
b+d ≤max( a

b ,
c
d ), this

holds for M∗, hence M∗ satisfies differential privacy.
(ii) Row monotonicity: consider a pair i, j with 1 ≤ i ≤ j.
Then we have M j,i−1 ≤M j,i (from (9)). It is also the case that
n− j ≤ n− i < n, which means that Mn− j,n−i+1 ≤ Mn− j,n−i
(also from (9)). Then MS

j,i−1 ≤ MS
j,i. Combining these two

inequalities, we have that M∗j,i−1 ≤M∗j,i.
(iii) Row honesty: if ∀i, j.Mi,i ≥Mi, j, then MS

i,i ≥MS
i, j also.

Summing both inequalities, we obtain M∗i,i ≥M∗i, j as required.

Consequences of these properties. We first argue that these
properties all contribute to avoiding the degenerate mecha-
nisms shown above. The (column, row) honesty and mono-
tonicity properties work to prevent the “spikes” observed when
a value far from the true input is made excessively likely.
The (column) honesty properties do so by preventing a far
output being more likely than the true input; the (column)
monotonicity properties do so more strongly by ensuring that
any further output is no more likely than one that is nearer
to the true input. Fairness, column honesty and weak honesty
prevent gaps (zero rows): they ensure that the diagonal entry
in each row is non-zero, and then the DP requirement ensures
that all other entries in the same row must also be non-zero.
We next show that there is an efficient procedure to find an
optimal constrained mechanism for any n > 1.

Theorem 2: Given any subset of the structural constraints,
we can find an optimal (constrained) mechanism which re-
spects these constraints in time polynomial in n.

Proof: We break the proof into two pieces. First, we argue
that given any subset of structural constraints we can create a
Linear Program describing it, and second we argue that there
exists a mechanism satisfying them all. Observe that all seven
properties listed above can be encoded as a linear constraints.
For example, symmetry is written as

ρi, j = ρn−i,n− j ∀i, j ∈ [n]

while weak honesty is

ρi,i ≥ 1/(n+1).

Row monotonicity becomes

ρ j,i−1 ≤ ρ j,i ∀ j ∈ [n], i < j
ρ j,i+1 ≤ ρ j,i ∀i ∈ [n−1], j < i

Consequently, we can create a linear program of size poly-
nomial in n, by adding these to the BASICDP constraints (5),
(6) and (7) established in Section 3. This shows the first part
of the proof. Next, we show that any such LP is feasible by
defining a trivial baseline mechanism:

Definition 5 (Uniform Mechanism, UM): The uniform me-
chanism of size n has Pr[i| j] = 1

n+1 , for all i, j ∈ [n].
That is, UM ignores its input and picks an allowable output

uniformly at random. It demonstrates that all our properties are
(simultaneously) achievable, albeit trivially. By observation,
the mechanism is symmetric and fair for any α ′ ≤ 1. It meets
the inequalities specified for row monotonicity, column mono-
tonicity and weak honesty with equality. UM also satisfies
differential privacy for all α ≤ 1.

Clearly, UM is undesirable from the perspective of providing
utility. We easily calculate that the objective function value
O0,∑ achieved by UM is n

n+1 , which is close to the maximum
possible value of 1. Note that we chose our definition of the L0
function to assign this mechanism a (reweighted) score of 1.

5 CONSTRAINED MECHANISMS: n = 1
In this section, we consider an important special case of our
problem: where a single user has a single private bit value.
This is the limiting case of our setting, corresponding to n= 1.
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It turns out to be an important scenario that has been studied
over many decades, as it asks each user to reveal a (noisy)
version of their information for subsequent aggregation. We
briefly revisit this case in the light of the objectives and
properties defined above. The main conclusions we find are
that for n = 1, all approaches to building DP mechanisms
are essentially the same, and trivially obey all our constraints,
making this a starting point for our subsequent study.

5.1 Randomized Response
We prove the following result in the Appendix:

Theorem 3: In the one bit (binary) case, Randomized Re-
sponse is the unique optimal non-trivial α-differentially private
mechanism under any objective function Ot,∑ when α ≤
w1/w0 ≤ 1/α .

Fact 1: For p≥ 1
2 , Randomized Response satisfies all prop-

erties listed in Section 4
The fact follows immediately by inspection: in the 2× 2

case, the mechanism is symmetric (Equation (2)). This entails
fairness. All other properties reduce to the condition that p≥
1− p, i.e. p≥ 1

2 .

5.2 Exponential Mechanism
Theorem 4: In the one bit (binary) case, the Exponential

Mechanism results in an instance of Randomized Response
with p = exp(ε/2)

1+exp(ε/2) .
Proof: In the binary case, we have D = R = {0,1}.

Without loss of generality, we can assume that Q(0,0) =
Q(1,1) := c; Q(1,0) = Q(0,1) := w (if not, this makes the
privacy guarantee loose in one case). We also assume that
c ≥ w, since we should make the true response more likely
than the incorrect response. Then, by definition, s = c−w.
The resulting mechanism has

Pr[0|0] = exp(εc/2s)
exp(εw/2s)+ exp(εc/2s)

=
exp(−wε/2s)
exp(−wε/2s)

exp(εc/2s)
exp(εw/2s)+ exp(εc/2s)

=
exp(ε/2)

1+ exp(ε/2)

Meanwhile, Pr[1|0] = 1 − Pr[0|0] = 1/(1 + exp(ε/2)),
Pr[1|1] = Pr[0|0] and Pr[0|1] = Pr[1|0]. Consequently, the
mechanism is equivalent to R from (2), and the privacy
guarantee is given by Pr[0|0]/Pr[1|0] = exp(−ε/2).

Note that this direct application of the exponential mecha-
nism construction actually yields exp(−ε/2) privacy, stronger
than specified, since it does not take full advantage of the
additional simple structure of this scenario.

5.3 Geometric Mechanism
Lemma 2: In the binary case, the Geometric mechanism

results in an instance of Randomized Response with p = 1
1+α

.
Proof: When n = 1, we can consider each input sepa-

rately. On input 0, the output is 0 if δ ≤ 0. From properties
of the geometric distribution, we obtain

Pr[0|0] = Pr[X ≤ 0] =
1−α

1+α
.(1+α +α

2 +α
3 + . . .) =

1
1+α

.



x xα xα2 xα3 · · · xαn

yα y yα yα2 · · · yαn−1

yα2 yα y yα · · · yαn−2

yα3 yα2 yα y · · · yαn−3

yα4 yα3 yα2 yα · · · yαn−4

...
...

...
...

. . .
...

xαn xαn−1 xαn−2 xαn−3 · · · x


Fig. 3: Structure of GM, where x = 1

1+α
and y = 1−α

1+α

Then, Pr[1|0] = Pr[X > 0] = α

1+α
.

The case for input 1 is symmetric. Hence the claim follows.

6 CONSTRAINED MECHANISMS: n > 1
For n > 1, it is not the case that all mechanisms automatically
achieve all our enumerated properties. In this section, we
consider mechanisms achieving various combinations of the
structural properties.

6.1 The Geometric Mechanism

Next, we revisit the (range restricted) Geometric Mechanism,
GM (Definition 4). In Figure 3, we show the structure of the
mechanism, which can be derived by simple calculation from
Definition 4. Below, we show that it enjoys a number of special
properties. In prior work, Ghosh et al. showed that GM plays
an important role, as it can be transformed into an optimal
mechanism for different objectives. Here, we argue (proof in
the Appendix) a more direct result: that GM is directly optimal
for a uniform objective function1

Theorem 5: GM is the (unique) optimal mechanism satis-
fying BASICDP under the L0 objective function.

Limitations of GM. Since GM is ‘optimal’ for L0, should we
conclude our study here? The answer is no, since GM fails
to satisfy many of the desirable properties we identified in
Section 4, and as illustrated in Example 1. We have already
observed that GM is not fair, and does not in general satisfy
column honesty (or column monotonicity) or weak honesty.
Next, we identify parameter settings for when they do hold.

Lemma 3: GM obeys weak honesty iff n≥ 2α

1−α
.

Proof: Weak honesty requires the diagonal elements to
all exceed 1

n+1 . Since y < x, we focus on y. We require y ≥
1

n+1 i.e 1−α

1+α
≥ 1

n+1 . This reduces to n+ 1 ≥ 1+α

1−α
, giving the

requirement n≥ 2α

1−α
.

GM satisfies the column monotonicity condition for many
i, j pairs. The critical place in the matrix where it can be
violated is between the first and second rows (symmetrically,
between penultimate and final rows). This corresponds to the
problematic behavior of GM to report extreme outputs (0 or
n) overly often in the increased privacy regime (α > 1

2 ).
Lemma 4: GM achieves column monotonicity iff α ≤ 1

2 .

1. Note that, compared to [3], we define mechanisms to enforce differential
privacy along rows of P rather than columns.
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y yα yα2 yα3 yα4 yα4 yα4 yα4

yα y yα yα2 yα3 yα3 yα3 yα3

yα yα y yα yα2 yα3 yα3 yα3

yα2 yα2 yα y yα yα2 yα2 yα2

yα2 yα2 yα2 yα y yα yα2 yα2

yα3 yα3 yα3 yα2 yα y yα yα

yα3 yα3 yα3 yα3 yα2 yα y yα

yα4 yα4 yα4 yα4 yα3 yα2 yα y


Fig. 4: Explicit fair mechanism for n = 7

Proof: We require Pr[1|1]≤ Pr[0|1], i.e. y≤ αx or 1−α

1+α
≤

α

1+α
. This gives the condition α ≤ 1

2 . It is straightforward to
check that this ensures monotonicity in all other columns.

By inspection, GM is always symmetric, and row monotone.
The (L0) objective function value achieved by GM is

n+1
n

(
1− (n−1)y+2x

n+1

)
= n+1

n

(
1− n−1

n+1
1−α

1+α
− 2

(1+α)(n+1)

)
= 2α

1+α

We next design a different explicit mechanism which
achieves more of the desired properties.

6.2 Explicit Fair Mechanism
Although we can achieve any desired combination of proper-
ties by solving an appropriate linear program, it is natural
to ask whether there is any non-trivial explicit mechanism
that achieves properties such as fairness with an objective
function score comparable to that of GM. We answer this
question in the positive. First, we consider the limits of what
can be achieved under fairness. In the case of GM, all DP
inequalities are tight. This is not possible when fairness is
demanded. A fair mechanism M with all DP inequalities tight
would be completely determined: Mi, j = yα |i− j| for some y.
It is easy to calculate for any such mechanism that there
is no setting of y which ensures that all columns sum to
1, a contradiction. Hence, we cannot have a fair mechanism
with all DP inequalities tight. Nevertheless, trying to achieve
tightness provides us with a bound on what can be achieved.

Lemma 5: Let F be a fair mechanism of size (n+1)×(n+
1) with y as the diagonal element. Then y≤ 1−α

1+α−2α
n
2 +1 .

Proof: There are some slight differences depending on
whether we consider odd or even values of n. Without loss
of generality, take n even. We will consider a fixed column
j. For all i, we are required to have Pr[i|i] = y for some y.
Repeatedly applying the DP inequality, we obtain an upper
bound involving y as Pr[i| j]≥ yα i− j when j < i and Pr[i| j]≥
yα j−i when i > j. Summing these for any given column j and
equating to 1 provides an upper bound on y. We get the tightest
bound by picking column j = n

2 . Then y+2y∑

n
2
j=1 α j ≤ 1, so:

y≤ 1

1+2∑

n
2
j=1 α j

=
1−α

1+α−2α
n
2+1 (16)

For n large enough, we can neglect the αn/2+1 term, and
approximate this quantity by 1−α

1+α
.

Note that for optimality under an objective function Ot,∑, we
should make y as large as possible. Hence, any optimal mech-
anism will have y as close to this value as possible. Indeed,

the above proof helps us to design an explicit mechanism EM
that achieves fairness. The proof argues that in column n/2,
the smallest values we can obtain above and below the y entry
are αy, α2y and so on up to αn/2y. Then the sum of these
terms is set to 1. All other columns must also sum to 1; a
simple way to achieve this is to ensure all columns contain a
permutation of the same set of terms. To ensure DP is satisfied,
we should arrange these so that row-adjacent entries differ in
their power of α by at most one.

Our explicit fair mechanism EM is then defined as follows:

Pr[i| j] =

{
yα |i− j| if |i− j|< min( j,n− j)

yαd
|i− j|+min( j,n− j)

2 e otherwise
(17)

Here, y is set to 1−α

1+α−2αn/2+1 , i.e. the value determined
in Equation (16). From the proof of Lemma 1 and (1), we
have that the L0 score of this mechanism is n+1

n (1− y), as it
maximizes y subject to the bound of Lemma 1.

Figure 4 shows the instantiation of this mechanism for
the case n = 7. Comparing to GM, we see that the diagonal
elements are slightly increased, with the exception of the two
corner diagonals, which are decreased. It is tempting to try
to obtain the mechanism via the Exponential Mechanism, by
using a quality function applied to |i− j| similar in form
to (17). Note however, that the constant factors of 2 in
its definition (3) leads to a considerably weaker result than
this explicit construction, equivalent to halving the privacy
parameter ε . It is easy to check that in the n = 7 example,
the mechanism is symmetric, and meets all of the properties
defined in Section 4. In fact, this is the case for all values of
n. The proof (presented in the Appendix) is rather lengthy and
proceeds by considering a number of cases.

Theorem 6: EM is an optimal mechanism under L0 that
satisfies all properties listed in Section 4.

6.3 Comparing mechanisms
In Section 4, we define 7 different properties, denoted as RH,
RM, CH, CM, WH, F, and S. We can seek a mechanism that
satisfies any subset of these, suggesting that there are 128
combinations to explore. However, we are able to dramatically
reduce this design space with the following analysis based on
the L0 score function.

First, we have shown by Theorem 6 that EM has the
optimal L0 score of any fair mechanism and has all other
possible properties “for free”. Therefore, for any desired set
of properties that include F, we can just use EM.

Second, we have shown by Theorem 5 that GM achieves
symmetry and row monotonicity (and hence row honesty) at
a cost which is optimal for any mechanism (i.e. BASICDP).
Hence for any subset of {S, RM, RH}, it suffices to use GM.

In our experiments (Section 7.1), we show that there are
only two remaining behaviors: either we solve the LP for the
WH property alone, or we solve the LP for WH and CM
properties. Both solutions come with symmetry (S) and row
properties RH, RM at no additional cost. However, as noted
in Lemma 3, GM satisfies WH when n≥ 2α

1−α
, so in this case,

we can use GM. Last, from observations in Section 4, we have
that CM ⇒ CH ⇒ WH, so any demand that requires any of
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Want
Fairness?

Fair
Mechanism

Want
Column

Property?

n≥ 2α

1−α
?

Want Weak
Honesty?

Geometric
Mechanism

WH

WH + CM

yes no

no
yes

yes

no

no
yes

Fig. 5: Flowchart of properties for L0 objective (α > 1
2 )

Property GM WM EM UM
Symmetry (S) Y Y Y Y

Row Monotone (RM) Y Y Y Y
Column Monotone (CM) — — Y Y

Fairness (F) N N Y Y
Weak Honesty (WH) — Y Y Y

L0
2α

1+α
≥ 2α

1+α
≈ 2α

1+α
· n+1

n 1

Fig. 6: Properties of named mechanisms

these properties (and not F) can be satisfied by WM also. But
in the weak privacy case that α ≤ 1

2 , GM has these properties,
and so subsumes WM.

To summarize this reasoning, in the case that α ≤ 1
2 ,

there are only two competitive mechanisms: EM if fairness is
required, and GM for all other cases. When α > 1

2 , things are
a little more complicated, so we show a flowchart in Figure 5:
from 128 possibilities, there are only four distinct approaches
to consider (two explicit mechanisms, and two solutions to an
LP with different constraints), and the choice is determined
primarily by whether the mechanism is required to satisfy
fairness, column properties, weak honesty, or none. We also
consider the baseline method UM for comparison. We present
a summary of these four named mechanisms in Figure 6: the
explicit GM, UM and EM, and WM which is found by solving
an LP. We write ‘—’ for a property when this depends on the
setting of the parameters (discussed in the relevant section).
We see that EM has a very similar objective function value
L0 (recalling that we are trying to minimize this value), and
all the properties considered so far. We do not have a closed
form for the L0 score of WM, as it is found by solving the
LP; however it is no less than that for GM (since GM satisfies
a subset of the required properties of WM), and no more than
that of EM (since EM satisfies all properties).

At this point, we might ask how different are these mech-
anisms in practice — perhaps they are all rather similar?
Figure 7 shows this is not the case for a small group size
(n= 4). For a moderate value of the privacy parameter α = 0.9,

it presents the three non-trivial mechanisms using a heatmap to
highlight where the large entries are. We immediately see that
EM concentrates probability mass along a uniform diagonal
(as required by fairness). Both GM and WM tend to favor
extreme outputs (0 or 4 in this example) whatever the input,
although GM is very skewed in this regard while WM is more
uniform in allowing non-extreme outputs.

Last, we check that what we are doing is not a trivial modifi-
cation of known mechanisms. Prior work [3], [11] showed how
optimal unconstrained mechanisms can be derived from GM
by transformations. Gupte and Sundarajrajan give a simple
test: a mechanism P can be derived from GM iff every set of
three adjacent entries in the mechanism satisfy

(Pr[i| j]−α Pr[i| j−1])≥ α(Pr[i| j+1]−α Pr[i| j])
We applied this test to mechanisms WM and verified that this
condition is indeed violated for n > 1. For EM, this condition
is automatically broken for all n> 1: we have Pr[2|0] = Pr[2|1]
= yα , while Pr[2|2] = y. Then the condition is

yα(1−α)≥ yα(1−α2)≡ 1≥ (1+α)

which is always false for α > 0. Hence, these mechanisms are
not derivable from GM.

7 EXPERIMENTAL STUDY

The purpose of our experimental study is two-fold. In Sec-
tion 7.1, we substantiate our earlier claims about properties
of mechanisms satisfying weak honesty (but not fairness). In
what follows, we look at other measures of utility of these
mechanisms, to understand their robustness.

Default Experimental Settings. All experiments in this work
were implemented in Python, making use of the standard
library NumPy to handle the linear algebraic calculations,
and PyLPSolve [18] to solve the generated LPs. Evaluation
was made on a commodity machine running Linux. We omit
detailed timing measurements, as the time to solve the LPs
generated was negligible (sub-second).

Experimental Setting. We considered a variety of settings
of parameter α (typical values chosen are { 1

2 ,
2
3 ,

10
11 ,

99
100} and

group size n (ranging from 2 up to hundreds).

7.1 L0 Objective Function
Our first experiment analyzes the effect of weak honesty com-
bined with other properties drawn from {CH, CM, RH, RM},
including the empty set. There are 9 meaningful combinations
of properties to ask for, which we write as { /0, RH, RM,
CH, CM, RH+CH, RH+CM, RM+CH, RM+CM} — other
combinations reduce to these, since RM implies RH, and CM
implies CH.

As discussed in Section 6.3, there are cases when the
solution found by solving the LP has cost 2α

1+α
and is identical

to GM: these are when n≥ 2α

1−α
and only row-wise properties

are requested, consistent with Figure 5. This is borne out in
Figure 8: we see that when WH alone is requested, or in
combination with only row properties (RH or RM) we get a
lower L0 value than when any column properties (CH or CM)
are requested. Figure 8(a) shows the case for different values
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Fig. 7: Heatmaps for GM, EM, WM with n = 4

(a) Varying group size (b) Varying α

Fig. 8: Combinations Of Properties with Weak Honesty

(a) α = 2
3 (b) α = 10

11 (c) α = 99
100

Fig. 9: Final Groups Of Mechanisms with Distinct Behaviors

of n. When n > 2α

1−α
, which is 6.33 in this example (where

α = 0.76), the cost of WH alone is 2α

1+α
= 0.864, the cost of

GM. For large α (Figure 8(b)), the cost of all combinations
of WH are the same, and identical to the cost of EM; as α

is decreased, we see two behaviors, where the lower L0 cost
is that of GM. We confirmed this behavior for a wide range
of n and α values. From now on, we use WM to refer to the
mechanism with WH, RM and CM properties.

The relationship between the L0 scores for the three mech-
anisms is further clarified in Figure 9. The plots show the L0
scores of GM, WM, EM and UM for different values of α .
In Figure 9(a), α = 2

3 so the threshold 2α

1−α
= 4. Then GM

satisfies WH for the whole range of n values shown, so WM
converges on GM, while EM has a higher (but decreasing)

cost. For Figure 9(b), α = 10/11 so the threshold is 20. Indeed,
we see that the cost of WM converges with GM at n = 20.
Last, in Figure 9(c), the threshold of 198 is far above the range
of n values shown, so WM does not converge on GM here.
Rather, for this high value of α , the y value for EM is above

1
n+1 for all n: so in this case EM has weak honesty, and the
cost of WM remains the same as that of the optimal fair EM.

7.2 Experiments On Real Data

We make use of the UCI Adult dataset, a workhorse for
privacy experiments [19]. Our instance of the dataset contains
demographic information on 32K adults with 15 columns
listing age, job type, education, relationship status, gender, and
(binary) income level. We created three binary targets, treated
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(a) Estimating young population (b) Estimating gender balance (c) Estimating income level

Fig. 10: Empirical Error Probability on Adult Dataset for α = 0.9

Fig. 11: L0,1 score for Binomial data, for n = {4,8,12} and α = {0.91,0.67}

as sensitive: income level (high/low), gender (male/female),
and young (age over/under 30). To form small groups, we
gathered the rows (corresponding to individuals) arbitrarily
into groups of a desired size.

Figure 10 shows results for the L0 objective, that is, where
we focus on the fraction of times the mechanism reports an
incorrect answer, as a function of group size. Specifically, we
count the number of groups whose noisy count for each target
attribute is not equal to their true count. We expect this quan-
tity to be fairly high, as it measures how often our mechanism
is honest, i.e. returns the true input. Other experiments (not
shown) computed the corresponding probability for returning
an answer that is close to the true one, e.g. off by at most
one, and showed similar patterns. The plot includes error bars
from 50 repetitions of this process to show 1 standard error.

Observe first that the performance of UM is essentially
independent of the input data: the chance of it picking the
correct answer is always 1− 1

n+1 for a group of size n, and
indeed we see this behavior (up to random variation). We

would hope that our optimized mechanisms can outperform
this trivial method. Perhaps surprisingly, on this data GM does
appreciably worse. This highlights the limitations of GM. In
this data, the common inputs are around the middle of the
group size (i.e. typically close to n/2). It is on these inputs that
GM does poorly, and only does well for inputs that are 0 or n,
which happen to be rare in this dataset (in other words, the data
distribution does not match the prior for which GM is optimal).
The condition of weak honesty is not sufficient to improve
significantly over random guessing: for this data, we see that
WM tracks UM quite closely. It is only the most constrained
mechanism that fares better on this evaluation metric for this
data: EM which achieves fairness gives the best probability of
returning the unperturbed input. In corresponding experiments
with higher values of α in the range 0.9 to 0.99, corresponding
to the strongest privacy guarantees adopted in prior work
on differential privacy, there is not much to choose between
EM and WM, and it gets even harder to show substantial
improvement over uniform guessing. In order to understand
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Fig. 12: Histograms of L0,d scores for Binomial data

Fig. 13: Root Mean Square Error plots For Binomial data

the behaviors of the mechanisms further, we next consider
synthetic data, where we can directly control the data skewness
within groups.

7.3 Experiments On Synthetic Data

In our experiments with synthetic data we generate a popula-
tion of 10,000 individuals each with a private bit and divide
them into small groups of the same size, n. Each individual
has the same probability p of having their bit be one, so
the distribution within each group is Binomial. Hence, the

expected count for each group is pn. Our experiments vary
the parameters p, n and α .

L0,1 Error. Our experiments so far have used the target
objective function L0 to evaluate the quality of the mechanism.
This is sufficient to distinguish the different mechanisms, but
all mechanisms achieve a score which is still quite close
to 1, obtained by uniform guessing. To better demonstrate
the usefulness of the obtained mechanisms, we use other
functions to evaluate their accuracy. Figure 11 uses the related
measure of L0,1 i.e. the fraction of groups which output a
value differing from their true answer by more than 1, as
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Fig. 14: Error histograms on group size 8 for p = 0.1 and p = 0.7, with α = {0.91,0.67}

we vary data distribution (determined by p), group size n,
and privacy parameter α . We stress that though we use L0,1
for evaluation, we continue to use mechanisms designed for
minimizing the L0 error. Each subplot in the figure represents a
configuration of 〈α,n〉, describing how L0,1 error changes with
input distribution parameter p. Each experiment is repeated 30
times and we observe that the results have very small variance.

It is apparent that the shape of the input distribution has a
pronounced effect on the quality of the output. We confirm
that GM can do well when the input is very biased (p close
to 0 or 1), which generates more instances with extreme input
values. However, when the input is more spread across the
input space, the more constrained mechanisms consistently
give better results. For higher α , the constrained methods have
similar behavior, and improve only slightly over UM (while
GM is often worse than uniform). Enforcing fairness tends to
make EM less sensitive to the input distribution, except when
the input is an extreme value (0 or n). When α is lower (second
row), the overall scale of error decreases and WM and GM
converge, as noted previously.

L0,d Error. In the previous experiment, we fixed d = 1 and
evaluated our mechanisms for variety of input distributions.
Next we vary d while holding input size and input distributions
steady, and compute L0,d error. Figure 12 plots the fraction of
population reporting a value that is more than d steps away
from the true answer for various d values with n = 8. This
captures the probability mass in the tail of each mechanism.

In the top row, we use a more proportionate input distribu-
tion. Here, EM outperforms all other mechanisms, sometimes
by a substantial fraction. Interestingly, the margin between EM
and GM only increases with larger d. Once again we see that
for higher α values, use of GM can yield accuracy worse than

mere random guessing. For lower α’s GM’s accuracy increases
dramatically but still remains worse than EM’s.

In the bottom row, the input distribution is more skewed,
which tends to favor GM. However, EM does not do substan-
tially worse than GM even for this biased input distribution.
The intermediate mechanism found by WM tends to fall
between GM and EM. We observed similar behavior for other
values of n.

Root Mean Square Error (RMSE). Our next set of exper-
iments compute the RMSE error (a measure of variance and
bias of a mechanism) of estimates from small groups. Note
that none of our mechanisms are designed to optimize this
metric, but we can nevertheless use it as a measure of the
overall spread of error. Figure 13 shows plots with error bars
showing one standard deviation from 30 repetitions.

As seen in previous experiments, a more symmetric input
distribution (p closer to 0.5) tends to be easier for most
mechanisms — although we see cases where GM finds this
more difficult. Increasing the group size increases the RMSE,
as there is a wider range of possible outputs, and the con-
straints ensure that there is some probability of producing each
possible. Yet again, we see that increasing α tends to make
GM less competitive and find many cases where GM is worse
than random guessing (UM). The interesting case may be for
fairly high privacy requirements (α = 0.91), where we observe
that EM tends to give lower error across all group sizes and
input distributions.

Error Histograms. As previously discussed, the measure
of error probability gives some insight into the difference
between mechanisms, but holds them to a high standard. This
probability is high for all mechanisms, as we do not expect
them to give the exact correct answer. To see the spread of
error from another perspective, we plot error histograms for
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Fig. 15: Root Mean Square Error plots on Binomial data for L1 objective function mechanisms

Fig. 16: Root Mean Square Error plots for Binomial data for L2 objective function mechanisms

our mechanisms — for a given input distribution, how often is
the response correct, how often is it an overestimate by one,
and so on. For example, when an input of 1 is reported as 0,
the error is −1. Figure 14 shows the error histograms for a
representative group size {8} with p= 0.1 and p= 0.7 for two
extreme α values. For each case, we show error histograms
for the three mechanisms EM, GM, and WM.

In the p = 0.12 case, the input does not permit significant
underestimation (most true answers are small). All mecha-
nisms are more likely to give zero error. This is enforced
by the fairness (for EM) or weak honesty (WM) properties.
For GM, we see that for α = 0.91, there is a second peak
corresponding to an output of n. So it tends to have a larger
error when it does not output the true answer. We observe that
the column monotonicity properties of EM and WM tend to
force a smoother error distribution.

Some similar behavior is observed for p = 0.7. Here, the

2. p is a parameter for producing synthetic input data introduced in 7.3.

support of the input distribution is broader, and hence so is
the support of the error distribution. We still observe that GM
tends to have a bimodal error distribution for high α , with a
dip around zero error. As α decreases, the mechanisms become
more similar, in particular WM tends to look more like GM
(as we have seen, they converge to the same mechanism for
n≥ 2α

1−α
). We have observed similar trends for other n values.

7.4 L1 and L2 objective functions.
We have already seen that unconstrained mechanisms for L1
and L2 can have pathological outcomes. In this section, we
return to these objective functions, and study their behavior
under the imposition of conditions. In contrast to the L0 case,
we observed that the number of distinct mechanisms obtained
under selection of different subsets of conditions was quite
large. In order to constrain the number of mechanisms under
consideration, we restrict our attention to a small number of
options: enforcing Weak Honesty (denoted WM) or Fairness
(denoted FM) only; or requiring either no properties at all (the
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Fig. 17: Line plots for L1,d scores for Binomial data (p = 0.1 and p = 0.6)

Fig. 18: Line plots for L2,d scores for Binomial data (p = 0.1 and p = 0.6)

unconstrained mechanism, UCM), or all properties simultane-
ously (the all properties mechanism, AM). We also compare to
the trivial uniform mechanism (UM) for calibration. Among
these four options, we expect UCM to obtain the lowest error
since it can directly optimize the target function, with the
comensurate disadvantages discussed previously.

Root Mean Square Error (MSE). Figures 15 and 16 show
plots for the root mean square error on binomially distributed
input data, similar to Figure 13. For this measure of accuracy,
UCM provides among the best results. However, for small
groups, we would tend to prefer WM, since it provides a
similar level of accuracy while avoiding the degerate behav-
iors. AM performs well when the input distribution is close
to the symmetric case (p = 0.5), but has weaker results when
the input is more skewed (smaller or larger p values). FM is
observed to do better as the group size increases.

L1,d and L2,d functions. Figures 17 and 18 show plots of the
errors for the functions L1,d and L2,d respectively, similar to
Figure 12 for L0,d . When p = 0.1, most groups have sums
close to 0. For larger α’s and smaller d’s, UCM performs
worst. This situation is reversed as d increases. That is, the
mechanism reduces the probability mass that is far from the
true answer, and the expense of increasing the mass close to
the true answer but not equal to it. It tends to map most
inputs to outputs close to b n

2c. UCM is then the preferred
mechanism for more balanced distributions (p = 0.6). AM,
FM and WM all behave quite similarly to each other, and their

lines almost overlap for smaller α . In summary, AM, FM are
slightly preferable for skewed input distributions and strong
privacy requirements, whereas WM is suitable in general for
distributions with less bias.

8 CONCLUDING REMARKS

Further Applications. While materializing basic count statis-
tics directly supports a number of standard queries, it is natural
to consider more complex analyses of data. For example,
we may wish to materialize machine learning models of the
data. The count-based mechanisms we have described can
naturally be used to instantiate simple predictive Bayesian
models, such as the Naive Bayes classifier or low-degree
Bayesian networks, via the Chow-Liu tree [20]. In more detail,
these models require the creation of marginal distributions on
combinations of attributes in the data. However, these marginal
distributions can be obtained from counts: the (empirical)
probability Pr[Y |X ] can be obtained by estimating the count
of individuals in a group who have the properties of both
Y and X , and dividing by the count who have property
X . The confidence in these estimates can be increased by
averaging over a large number of groups. The procedure meets
differential privacy, since each user locates in exactly one
cell of a joint distribution, and so we can apply the parallel
composition theorem of differential privacy to reason about
the overall privacy guarantee.
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Initial experiments indicate that this direction is feasible.
We observed that the results from GM and WM were similar
in terms of quality, while those for EM were much weaker.
This indicates the weak honest property is a reasonable one
to request, but adding fairness tended to distort the results
too much. The quality of the results were still much weaker
than without privacy, unless the parameter α was set very low,
corresponding to a low level of privacy. This suggests that for
applications like this, novel mechanisms more directly tuned
to the desired application are needed, since the generic count-
based mechanisms we consider do not give good results under
tighter privacy requirements.

Summary and Future Work. We have proposed and studied
several structural properties for privacy preserving mecha-
nisms for count queries. We show how any combination of
desired properties can be provided optimally under L0 by
one of a few distinct mechanisms. Our experiments show that
the “optimal” GM often displays the undesirable property of
tending to output extreme values (0 or n). In practice, this
means it is often not the mechanism of choice, particuarly
when α is large (above 0.7), but can be acceptable for
smaller privacy parameters. EM and WM are quite different
in structure, but are often similar in performance.

It is natural to consider other possible properties—for exam-
ple, one could imagine taking a version of the DP constraint
applied to columns of the mechanism (in addition to the rows):
this would enforce that the ratio of probabilities between
neighboring outputs is bounded, as well as that of neighboring
inputs. The next logical direction is to provide a deeper study
of mechanisms with various properties using L1 or L2 as
objective function, building on our empirical observations. It
will be interesting to study tailor-made linear programming
mechanisms that aim to optimize other queries such as range
queries.
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APPENDIX

Proof of Theorem 3: The objective function is to mini-
mize

w0 Pr[1|0]1p +w1 Pr[0|1]1p = w0 Pr[1|0]+w1 Pr[0|1].

To achieve α-differential privacy, we must have

Pr[0|0]≤ 1
α

Pr[0|1] and Pr[1|1]≤ 1
α

Pr[1|0]. (18)

We can observe that in order to minimize the objective
function (for non-negative w0 and w1), it suffices to maximize
Pr[0|0] and Pr[1|1], and so the inequalities in (18) become
equalities. Thus, our objective function to minimize becomes:

w0(1−Pr[0|0])+w1 Pr[0|1] = w0(1− 1
α

Pr[0|1])+w1 Pr[0|1]
= w0 +(w1− 1

α
w0)Pr[0|1].

In the case that w1/w0 <
1
α

(or, symmetrically, if w0/w1 <
1
α

), the trivial solution is Pr[0|1] = Pr[0|0] = 1, i.e. the mecha-
nism ignores the input and always reports ‘0’ (in the symmetric
case, it always reports ‘1’).

Otherwise α ≤ w1/w0 ≤ 1/α , and we have

Pr[0|0] = 1
α

Pr[0|1] = 1
α
(1−Pr[1|1])

= 1
α
(1− 1

α
Pr[1|0])

= 1
α
(1− 1

α
(1−Pr[0|0]))

Rearranging, we obtain

Pr[0|0](1− 1
α

2
) = 1

α
(1− 1

α
)

and so Pr[0|0] = 1
1+α

, and Pr[1|1] = 1−Pr[0|0]/α = 1
1+α

.
Consequently, we obtain an instance of randomized re-

sponse with p = 1
1+α

.
Proof of Theorem 5: In order to prove the theorem,

we define a modified form of a mechanism which is row
monotone and in which all the DP inequalities are tight. Given
a mechanism P whose leading diagonal is y = [y0,y1, . . .yn],
define P ′ as the unique row monotone matrix where all the
DP inequalities are tight. That is,

P ′ =



y0 y0α y0α2 y0α3 · · · y0αn

y1α y1 y1α y1α2 · · · y1αn−1

y2α2 y2α y2 y2α · · · y2αn−2

y3α3 y3α2 y3α y3 · · · y3αn−3

...
...

...
...

. . .
...

ynαn ynαn−1 ynαn−2 ynαn−3 · · · yn


Note that P ′ is dominated by P , in the sense that P ′i, j ≤Pi, j

for all i and j. This holds because, given yi, the DP constraints
enforce that Pi, j cannot be less than yiα

|i− j|, which is exactly
the value of P ′i, j.

However, P is not strictly a mechanism, since it is not
guaranteed to be column stochastic: columns may sum to less
than one. To address this, we define a ‘slack vector’ s so that
s j = 1−∑

n
i=0P ′i, j. In finding an optimal mechanism P , we seek

to maximize trace(P) (from (1)). Since trace(P) = trace(P ′)
by definition, we can concentrate on P ′ and seek to maximize
its trace.

We interpret the slack variables s as “missed potential”.
Observe that each s j represents probability mass that could
(perhaps) be added to P j, j to increase the trace. Therefore, in
order to maximize the trace, we seek to minimize the slack.
Note that for any given slack vector s and parameter α , there
is at most one mechanism P ′ whose slack vector is s: there
are n+ 1 unknowns y j, and n+ 1 constraints relating these
to s. Specifically, let A(α) be the Toeplitz matrix such that
A(α)i, j = α |i− j|. Then given α and s, we seek the solution
y to A(α)y = 1n+1− s, where 1n+1 is the n+1 length vector
whose every entry is 1.

We now show that there exists a feasible solution to this
system with s = 0, that is with no slack values. In this case,
P =P ′ and is optimal as there is no remaining slack potential
that could increase the trace.

From the first row of A(α), corresponding to the first
column of P ′, we have

y0 + ynα
n +

n−1

∑
i=1

yiα
i = 1 (19)

Similarly, from the second column of P ′,

y0α + ynα
n−1 +

n−1

∑
i=1

yiα
i−1 = 1 (20)

so y0α
2 + ynα

n +
n−1

∑
i=1

yiα
i = α (21)

Then, combining (19) and (21), we obtain

y0α
2 + ynα

n +(1− y0− ynα
n) = α

which yields y0 =
1

1+α
.

Following the same approach for columns n and n+ 1 of
P ′, we similarly obtain yn =

1
1+α

.
We find each remaining yi in turn, starting from y1. Taking

the linear combination which subtracts α times column i+1
of P ′ from column i of P ′ eliminates yi+1 . . .yn−1. We then
obtain

y0α
i(1−α

2)+(1−α
2)

i

∑
j=1

y jα
i− j = 1−α.

Substituting the found value of y0, we obtain

α i

1+α
+

i

∑
j=1

y jα
i− j =

1
1+α

i

∑
j=1

y jα
i− j =

1−α i

1+α
.

The base case i = 1 yields y1 = 1−α

1+α
. Then, inductively,

yi =
1−α

1+α
. Assuming the inductive hypothesis, we have

i−1

∑
j=1

(1−α)α j

1+α
+ yi =

1−α i

1+α
.

Simplifying,
1−α

1+α

i−1

∑
j=0

α
j− 1−α

1+α
+ yi =

1−α i

1+α
.
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Using the standard expression for the sum of a geometric
progression, the summation term becomes 1−α i

1−α
. Substituting

this and cancelling, we find yi =
1−α

1+α
.

To complete the proof, we observe that the resulting mech-
anism P = P ′ defined by the diagonal

y =
[

1
1+α

,
1−α

1+α
,

1−α

1+α
. . . ,

1−α

1+α
,

1
1+α

]
is exactly GM, by comparison to Figure 3. Hence, the optimal
mechanism OPT has a unique form, which is GM.

Proof of Theorem 6: That EM is fair follows by def-
inition: for Pr[i|i], the definition gives yα0 = y in all cases.
Next, we argue that all column sums are 1, i.e. EM is a valid
mechanism. Consider some column j ≤ n.

Observe that fixing j determines which of j and n− j is
smaller. Assume that it is j, i.e. j ≤ n/2 (the other case is
symmetric), and assume n is even. Then we have

n

∑
i=0

Pr[i| j] = ∑
|i− j|< j

yα
|i− j|+ ∑

|i− j|≥ j
yα
d 1

2 (|i− j|+ j)e

=y+
j

∑
i=1

2yα
i +

n

∑
i= j

yα
d 1

2 ie = y+
n/2

∑
i=1

2yα
i

This sums to 1 given our choice of y. For n odd, the
calculation is the same except there is one additional term
of yαdn/2e in the final sum (and we choose y to ensure that
this sum is 1).

The mechanism meets our definition of symmetry (15),
since according to (17), Pr[n− i|n− j] is given by

yα
|(n−i)−(n− j)| if |(n− i)− (n− j)|< min(n− j,n− (n− j))

yα
d |(n−i)−(n− j)|+min(n− j,n−(n− j))

2 e otherwise

Simplifying this expression, we observe that it is identical to
(17).

Column Properties. Consider a fixed column j of the mech-
anism. As we look at neighboring entries i and i+1, we have
four cases:
Case (1): |i− j|< min( j,n− j) and |i+1− j|< min( j,n− j).
Then Pr[i| j] = yα |i− j| and Pr[i + 1| j] = yα |i+1− j|, so the
probability either increases by a factor of α (when j < i) or
increases by a factor of α (when j ≥ i).
Case (2): |i− j| ≥min( j,n− j) and
|i+1− j| ≥min( j,n− j).
Then Pr[i| j] = yαd

|i− j|+min( j,n− j)
2 e, while Pr[i + 1| j] =

yαd
|i+1− j|+min( j,n− j)

2 e.
Depending on the parity of i, the latter probability can only

stay the same; increase by a factor of α (only when i > j); or
decrease by a factor of α (only when j > i).
Case (3): |i− j| ≥min( j,n− j) but |i+1− j|< min( j,n− j).
Then we must have i < j for both conditions to hold. So we
must have (combining the two conditions)

j− i≥min( j,n− j)> j− (i+1)

We have Pr[i+1| j] = yα j−i−1 and

Pr[i| j] = yα
d ( j−i)+min( j,n− j)

2 e ≥ yα
d 2( j−i)

2 e = yα
j−i

Similarly, we can show Pr[i| j]< yα j−i.
Hence we have α Pr[i| j]≤ Pr[i+1| j]≤ Pr[i| j].

Case (4): |i− j|< min( j,n− j) but |i+1− j| ≥min( j,n− j).
Then we have j < i and

i− j < min( j,n− j)≤ i− j+1

We have Pr[i| j] = yα i− j and

Pr[i+1| j] = yα
d 1

2 ((i+1− j)+min( j,n− j))e ≥ yα
d 2(i+1− j)

2 e = yα
i+1− j

Similarly, we can show Pr[i| j]≤ yα i− j.
Hence α Pr[i| j]≤ Pr[i+1| j]≤ Pr[i| j]

Summary of Column Properties. When i < j, the column-wise
adjacent probabilities are either the same or increase by a
factor of 1/α as i increases; and when i ≥ j, then adjacent
probabilities either decrease by a factor of 1/α or stay the
same. From these, we can conclude that EM has column
monotonicity (and hence is column honest).

Row properties. The analysis for the row properties (DP,
and row monotone) follows the pattern set by the column
properties, based on a case analysis. Consider a fixed row i of
the mechanism. As we look at neighboring entries j and j+1
we have four cases:
Case (1): |i− j|<min( j,n− j) and |i−( j+1)|<min( j,n− j).
Then Pr[i| j] = yα |i− j| and Pr[i| j + 1] = yα |i−( j+1)|, so the
probability either increases by a factor of 1/α (when j < i)
or decreases by a factor of 1/α (when j ≥ i).
Case (2): |i− j| ≥min( j,n− j) and
|i− ( j+1)| ≥min( j+1,n− j+1).
Then

Pr[i| j] = yα
d |i− j|+min( j,n− j)

2 e

while
Pr[i| j+1] = yα

d |i−( j+1)|+min( j+1,n−( j+1))
2 e.

The subcases here are
(a) when j ≤ n/2 and j < i. Then

Pr[i| j] = yα
d i− j+ j

2 e = yα
di/2e = Pr[i| j+1] = yα

d i− j−1+ j+1
2 e,

i.e. the probability is unchanged.
(b) when j > n/2 and j > i, then similarly

Pr[i| j] = yα
d 1

2 ( j−i+n− j)e

= yα
d 1

2 ( j+1−i+n− j−1)e

= Pr[i| j+1]

Note that other potential cases, e.g. j < i and j≥ n/2 are ruled
out by the condition |i− j| ≥min( j,n− j).
Case (3): |i− j|<min( j,n− j) but |i−( j+1)| ≥min( j+1,n−
j−1). Working through the subcases eliminates most options:
if j < i we can derive 2( j+1)≤ i≤ 2 j, a contradiction. This
leaves j ≥ i, which leads us to

j− i < n− j

j+1− i≥ n− j−1

Note that it must be that |i− ( j + 1)| ≥ n− j, as the other
possibility leads to i> 2( j+1), contradicting j≥ i. Combining
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these two, we obtain j < n+i
2 ≤ j+1. Subtracting i from both

sides, and applying the d·e operator, we obtain

d j− ie ≤ dn− i
2
e ≤ d j− i+1e

Since j and i are both integral, we conclude

j− i≤ dn− i
2
e ≤ ( j− i)+1 (22)

Then we have Pr[i| j] = yα j−i, while

Pr[i| j+1] = yα
d 1

2 (( j+1−i)+n−( j+1))e = yα
d n−i

2 e.

From (22), we conclude that in this case

α Pr[i| j]≤ Pr[i| j+1]≤ Pr[i| j].

Case (4): |i− j| ≥min( j,n− j) but
|i− ( j+1)|< min( j+1,n− j+1).
This case starts similarly to the previous case. We cannot have
i < j as this leads to a contradiction, so we must have i≥ j,
and j < n− j. Then we deduce

i− j ≥ j

i− j−1 < j+1

These permit only two possibilities: i = 2 j or i = 2 j + 1. In
the first of these, we obtain

Pr[i| j+1] = yα
2 j−( j+1) = yα

j−1

and Pr[i| j] = yα
d 1

2 ( j+ j)e = yα
j.

Else, we obtain

Pr[i| j+1] = yα
2 j+1−( j+1) = yα

j

and Pr[i| j] = yα
d 1

2 ( j+1+ j)e = yα
j+1

In both cases, we have Pr[i| j] = α Pr[i| j+1].
Summary of Row Properties. From the cases analyzed above,
we see that when i < j, then adjacent probabilities are either
the same or there is an increase by a factor of 1/α as j
increases; and when i > j, then adjacent probability either
decreases by a factor of 1/α as j increases, or stays the
same. From these, we can conclude that EM meets differential
privacy, and is row monotone.

These collectively cover all defined properties (due to impli-
cations discussed in Section 4, e.g. row monotonicity implies
row-wise honesty).


