
Time-Decayed Correlated Aggregates over Data Streams∗

Graham Cormode
AT&T Labs–Research

graham@research.att.com

Srikanta Tirthapura Bojian Xu
ECE Dept., Iowa State University

{snt,bojianxu}@iastate.edu

Abstract

Data stream analysis frequently relies on identifying correlations
and posing conditional queries on the data after it has been seen.
Correlated aggregatesform an important example of such queries,
which ask for an aggregation over one dimension of stream ele-
ments which satisfy a predicate on another dimension. Sincerecent
events are typically more important than older ones,time decay
should also be applied to downweight less significant values. We
present space-efficient algorithms as well as space lower bounds
for the time-decayed correlated sum, a problem at the heart of many
related aggregations. By considering different fundamental classes
of decay functions, we separate cases where efficient relative error
or additive error is possible, from other cases where linearspace is
necessary to approximate. In particular, we show that no efficient
algorithms are possible for the popular sliding window and expo-
nential decay models, resolving an open problem. The results are
surprising, since efficient approximations are known for other data
stream problems under these decay models. This is a step towards
better understanding which sophisticated queries can be answered
on massive streams using limited memory and computation.
Keywords: data stream, time decay, correlated, aggregate, sum

1 Introduction

Many applications such as Internet monitoring, information
systems auditing, and phone call quality analysis involve
monitoring massive data streams in real time. These streams
arrive at high rates, and are too large to be stored in sec-
ondary storage, let alone in main memory. An example
stream of VoIP call data records (CDRs) may have the call
start time, end time, packet loss rate, along with identifiers
such as source and destination phone numbers. This stream
can consist of billions of items per day. The challenge is to
collect sufficient summary information about these streams
in a single pass to allow subsequent post hoc analysis.

There has been much research on estimating aggregates
along a single dimension of a stream, such as the median,
frequency moments, entropy, etc. However, most streams
consist of multi-dimensional data. It is imperative to com-
pute more complex multi-dimensional aggregates, especially
those that can “slice and dice” the data across some dimen-

∗The work of Tirthapura and Xu was supported in part by the National
Science Foundation through grants 0520102, 0834743, 0831903.

sions before performing an aggregation, possibly along a dif-
ferent dimension. In this paper, we consider suchcorrelated
aggregates, which are a powerful class of queries for manip-
ulating multi-dimensional data. These were motivated in the
traditional OLAP model [3], and subsequently for stream-
ing data [1, 8]. For example, consider the query on a VoIP
CDR stream: “what is the average packet loss rate for calls
within the last 24 hours that were less than 1 minute long”?
This query involves a selection along the dimensions of call
duration and call start time, and aggregation along the third
dimension of packet loss rate. Queries of this form are use-
ful in identifying the extent to which low call quality (high
packet loss) causes customers to hang up. Another exam-
ple is: “what is the average packet loss rate for calls started
within the last 24 hours with duration greater than the median
call length (within the last 24 hours)?”, which gives a statis-
tic to monitor overall quality for “long” calls. Such queries
cannot be answered by existing streaming systems with guar-
anteed accuracy, unless they explicitly store all data for the
last 24 hours, which is infeasible.

In this work, we present algorithms and lower bounds
for approximating time-decayed correlated aggregates on a
data stream. These queries can be captured by three main
aspects: selection along one dimension (sayx-dimension)
and aggregation along a second dimension (sayy-dimension)
using time-decayed weights defined via a third (time) di-
mension. The time-decay arises from the fact that in most
streams, recent data is naturally more important than older
data, and in computing an aggregate, we should give a
greater weight to more recent data. In the examples above,
the time decay arises in the form of a sliding window of a
certain duration (24 hours) over the data stream. More gen-
erally, we consider arbitrary time-decay functions which re-
turn a weight for each element as a non-increasing function
of its age—the time elapsed since the element was generated.
Importantly, the nature of the time-decay function will deter-
mine the extent to which the aggregate can be approximated.

We focus on thetime-decayed correlated sum(hence-
forth referred to as DCS), which is a fundamental aggregate,
interesting in its own right, and to which other aggregates
can be reduced. An exact computation of the correlated sum
requires multiple passes through the stream, even with no
time-decay where all elements are weighted equally. Since

we can afford only a single pass over the stream, we will aim
for approximate answers with accuracy guarantees. In this
paper, we present the first streaming algorithms for estimat-
ing the DCS of a stream using limited memory, with such
guarantees. Prior work on correlated aggregates either did
not have accuracy guarantees on the results [8] or else did
not allow time-decay [1]. We first define the stream model
and the problem more precisely, and then present our results.

1.1 Problem Formulation. We consider a streamR =
e1,e2, . . . ,en. Each elementei is a (vi ,wi ,ti) tuple, where
vi ∈ [m] is a value or key from an ordered domain; positive
integerwi is the initial weight; andti is the timestamp at
which the element was created or observed, also assumed to
be a positive integer. For example, in a stream of VoIP call
records, there is one stream element per call, whereti is the
time the call was placed,vi is the duration of the call, andwi

the packet loss rate.
In the synchronous model, the arrivals are in timestamp

order:ti ≤ ti+1, for all i. In the strictly synchronous version,
there is exactly one arrival at each time step, so thatti = i.
We also consider the general asynchronous streams model
[12, 2, 5], where the order of receipt of stream elements
is not necessarily the same as the increasing order of their
timestamps. Therefore, it is possible thatti > t j while i <
j. Such asynchrony is inevitable in many applications: in
the VoIP call example, CDRs maybe collected at different
switches, and in sending this data to a central server, the
interleaving of many (possibly synchronous) streams could
result in an asynchronous stream.

The aggregates will be time-decayed, i.e. elements with
earlier timestamps will be weighted lower than elements
with more recent timestamps. The exact model of decay is
specified by the user through atime-decayfunction.

DEFINITION 1.1. A function f(x), x≥ 0, is called atime-
decay function(or just adecay function) if: (1) 0≤ f (x)≤ 1
for all x > 0; (2) if x1≤ x2, then f(x1)≥ f (x2).

At time t ≥ ti the ageof ei = (vi ,wi ,ti) is defined ast − ti ,
and thedecayed weightof ei is wi · f (t− ti).

Time-Decayed Correlated Sum. The query for the time-
decayed correlated sum over streamR under a prespecified
decay-functionf is posed at timet, provides a parameter
τ ≥ 0, and asks forSf

τ , defined as follows:

Sf
τ = ∑ei∈R|vi≥τ wi · f (t− ti)

A correlated aggregate query could be: “What is the average
packet loss rate for all calls which started in the last 24
hours, and were more than 30 minutes in length?”. This
query can be split into two sub-queries: The first sub-query
finds the number of stream elements(vi ,wi ,ti) which satisfy
vi > 30, andti > t−24 wheret is the current time in hours.
The second sub-query finds the sum ofwis for all elements

(vi ,wi ,ti) such thatvi > 30 andti > t− 24. The average is
the ratio of the two answers.
Other correlated aggregates can also be reduced to the sum:

• The time decayedrelative frequencyof a valuev is
given by(Sf

v −Sf
v+1)/Sf

0.
• The sum of decayed weightsof elements in the range

[l , r] is Sf
l −Sf

r+1.

• Thedecayed frequencyof range[l , r] is (Sf
l−Sf

r+1)/Sf
0.

• The time decayedφ -heavy hittersis found by a binary
search over ranges from the universe[m] to find all the
v’s, such that the time decayed relative frequency ofv is
at leastφ .
• The time decayed correlatedφ -quantile is found by a

binary search over the universe[m] to find the largestv,
such that(Sf

0−Sf
v)/Sf

0 ≤ φ .

Time-Decayed Correlated Count. An important special
case of DCS is thetime-decayed correlated count(DCC),
where all the weightswi are assumed to be 1. The correlated
countC f

τ is therefore:C f
τ = ∑i:vi≥τ f (t− ti).

1.2 Decay Functions Classes. We define classes of decay
functions, which cover popular time decays from prior work.

Converging decay. A decay functionf (x) is a converging
decay function if f (x+ 1)/ f (x) is non-decreasing withx.
Intuitively, the relative weights of elements with different
timestamps under a converging decay function get closer
to each other as time goes by. As pointed out by Cohen
and Strauss [4], this is an intuitive property of a time-
decay function in several applications. Many popular decay
functions, such as polynomial decay:f (x) = (x+1)−a

wherea > 0, are converging decay functions.

Exponential decay. Given a constantα > 0, the exponential
decay function is defined asf (x) = 2−αx. Other exponential
decays can be written in this form, sincea−λ x = 2−λ log2(a)x.
As f (x+ 1)/ f (x) is a constant, exponential decay qualifies
as a converging decay function.

Finite decay. A decay functionf is defined to be afinite
decay functionwith age limit N, if there existsN ≥ 0 such
that forx > N, f (x) = 0, and forx≤ N, f (x) > 0. Examples
of finite decay include (1) sliding window decay:f (x) = 1
for x ≤ N and 0 otherwise, where the age limitN is the
window size. (2) Chordal decay [4]:f (x) = 1−x/N for 0≤
x≤N and 0 otherwise, with an age limit ofN−1. Obviously,
no finite decay function is a converging decay function, since
f (N+1)/ f (N) = 0 while f (N)/ f (N−1) > 0.

1.3 Contributions. Our main result is that there exist
small space algorithms for approximating DCS over an
arbitrary decay functionf with a smalladditiveerror. But,

the space cost of approximating DCS with a smallrelative
error depends strongly on the nature of the decay function—
this is possible on some classes of functions using small
space, while for other classes, including sliding window and
exponential decay, this is provably impossible in sublinear
space. More specifically, we show:

1. Foranydecay functionf , there is a randomized algo-
rithm for approximating DCS with additive error which
uses space logarithmic in the size of the stream. This
significantly improves on previous work [8], which pre-
sented heuristics only for sliding window decay. (§3.1)

2. On the other hand, for anyfinite decay function, we
show that approximating DCS with a smallrelative
error needs space linear in the size of the elements
within the sliding window. Because sliding window
decay is a finite decay function, the above two results
resolves the open problem posed in [1], of the space
complexity of approximating the correlated sum under
sliding window decay. (§4.1)

3. For any sub-exponential converging decay function,
there is an algorithm for approximating DCS to within
a small relative error using space logarithmic in the
stream size, and logarithmic in the “rate” of the decay
function. (§3.2)

4. For any exponential decay function, we show that the
space complexity of approximating DCS with a small
relative error is linear in the stream size, in the worst
case. This may be surprising, since there are simple
and efficient solutions for maintaining exponentially
decayed sum exactly in the non-correlated case. (§4.2)

We evaluate our techniques over real and synthetic data
in §5, and observe that they can effectively summarize
massive streams in tens of kilobytes.

2 Prior Work

Concepts of correlated aggregation in the (non-streaming)
OLAP context appear in [3]. The first work to propose cor-
related aggregation for streams was Gehrkeet al. [8]. They
assumed that data was locally uniform to give heuristics for
computing the non-decayed correlated sum where the thresh-
old (τ) is either an extrema (min, max) or the mean of the all
the received values (vi ’s). For the sliding window setting,
they simply partition the window into fixed-length intervals,
and make similar uniformity assumptions for each interval.
None of these approaches provide any strong guarantee on
the answer quality. Subsequently, Ananthakrishnaet al. [1]
presented summaries that estimate the non-decayed corre-
lated sum withadditive errorguarantees. The problem of
tracking sliding window based correlated sums with quality
guarantees was given as an open problem in [1]. We show
that this relative error guarantees are not possible while using
small space, whereas additive guarantees can be obtained.

Xu et al. [12] proposed the concept of asynchronous
streams. They gave a randomized algorithm to approximate
the sum and the median over sliding windows. Busch and
Tirthapura [2] later gave a deterministic algorithm for the
sum. Cormodeet al. [6, 5] gave algorithms for general
time decay based aggregates over asynchronous streams. By
defining timestamps appropriately,non-decayedcorrelated
sum can be reduced to the sum of elements within a sliding
window over an asynchronous stream. As a result, relative
error bounds follow from bounds in [6, 5]. But these methods
do not extend to accurately estimating DCS or DCC.

Datar et al. [7] presented a bucket-based technique
calledexponential histogramsfor sliding windows on syn-
chronous streams. This approximates counts and related ag-
gregates, such as sum andℓp norms. Gibbons and Tirtha-
pura [9] improved the worst-case performance for counts
using a data structure calledwave. Going beyond sliding
windows, Cohen and Strauss [4] formalized time-decayed
data aggregation, and provided strong motivating examples
for non-sliding window decay. All these works emphasized
the time decay issue, but did not consider the problems of
correlated aggregate computation.

3 Upper Bounds

In this section, we present algorithms for approximating
DCS over a streamR. The main results are: (1) For an
arbitrary decay functionf , there is a small space streaming
algorithm to approximateSf

τ with a small additive error. (2)
For anyconvergingdecay functionf , there is a small space
streaming algorithm to approximateSf

τ with relative error.

3.1 Additive Error. A predicateP(v,w) is a 0-1 function
of v andw. The time-decayed selectivityQ of a predicate
P(v,w) on a streamR of (v,w,t) tuples is defined as

Q =
∑(v,w,t)∈RP(v,w) ·w · f (c− t)

∑(v,w,t)∈Rw · f (c− t)

The decayed sumS is defined asS= ∑
(v,w,t)∈R

w · f (c− t)

Note thatS= Sf
0. We use the following results on time-

decayed selectivity estimation from [6] in our algorithm for
approximating DCS with a small additive error.

THEOREM 3.1. (THEOREMS4.1, 4.2, 4.3FROM [6])
Given 0 < ε < 1 and probability0 < δ < 1, there exists
a small space sketch of size O(1

ε2 · log 1
δ · logM) that can

be computed in one pass from stream R, where M is an
upper bound on S. For any decay function f given at query
time: (1) the sketch can return an estimateŜ for S such that
Pr[|Ŝ−S| ≤ εS] ≥ 1− δ . (2) Given predicate P(v,w), the
sketch gives an estimatêQ for the decayed selectivity Q,
such thatPr[|Q̂−Q| ≤ ε]≥ 1− δ .

This result allows DCS to be additively approximated:

THEOREM 3.2. For an arbitrary decay function f , there
exists a small space sketch of R that can be computed in one
pass over the stream. At any time instant, given a threshold
τ, the sketch can return̂Sf

τ , such that|Ŝf
τ −Sf

τ | ≤ εSf
0 with

probability at least1−δ . The space complexity of the sketch
is O(1

ε2 log 1
δ · logM), where M is an upper bound on Sf

0.

Proof. We run the sketch algorithm in [6] on streamR, with
approximation errorε/3 and failure probabilityδ/2. Let this
sketch be denoted byK . To simplify the notation, assume
f is fixed, and let̂Sτ , Sτ denotêSf

τ , Sf
τ respectively.

Given τ at query time, we define a predicateP for the
selectivity estimation as:P(v,w) = 1, if v≥ τ, andP(v,w) =
0 otherwise. The selectivity ofP is Q = Sτ/S. ThenK can
return estimateŝQ of Q andŜof Ssuch that

Pr[|Q̂−Q|> ε/3]≤ 1− δ/2(3.1)

Pr[|Ŝ−S|> εS/3]≤ 1− δ/2(3.2)

Our estimatêSτ is given byŜτ = Ŝ· Q̂. From (3.1) and (3.2),
and using the union bound on probabilities, we get that the
following events are both true, with probability at least 1−δ .

Q− ε/3 ≤ Q̂ ≤Q+ ε/3(3.3)

S(1− ε/3) ≤ Ŝ ≤ S(1+ ε/3)(3.4)

Using the above, and usingQ = Sτ/S, we get

Ŝτ ≤

(
Sτ
S

+ ε/3

)
·S· (1+ ε/3)

= Sτ +
Sτ ε
3

+S

(
ε
3

+
ε2

9

)
≤ Sτ + εS

In the last step of the above inequality, we have used the
factSτ ≤Sandε < 1. Similarly, we get that if (3.3) and (3.4)
are true, then,̂Sτ ≥ Sτ − εS, thus completing the proof that
K can (with high probability) provide an estimatêSf

τ such
that|Ŝf

τ −Sf
τ | ≤ εSf

0

An important feature of this approach, made possible due to
the flexibility of the sketch in Theorem 3.1, is that it allows
the decay functionf to be specified at query time, i.e. after
the streamR has been seen. This allows for a variety of
decay models to be applied in the analysis of the stream
after the fact. Further, since the sketch is designed to handle
asynchronous arrivals, the timestamps can be arbitrary and
arrivals do not need to be in timestamp order.

3.2 Relative Error. In this section, we present a small
space sketch that can be maintained over a streamR with
the following properties. For an arbitraryconvergingdecay
function f which is known beforehand, and a parameterτ
which is provided at query time, the sketch can return an

estimatêSf
τ which is within a small relative error ofSf

τ . The
space complexity of the sketch depends onf .

The idea behind the sketch is to maintain multiple data
structures each of which solves the undecayed correlated
sum, and partition stream elements across different data
structures, depending on their timestamps, following the ap-
proach of the Weight-Based Merging Histogram (WBMH),
due to Cohen and Strauss [4]. In the rest of this section,
we first give high level intuition, followed by a formal de-
scription of the sketch, and a correctness proof. Finally, we
describe enhancements that allow faster insertion of stream
elements into the sketch.

3.2.1 Intuition. We first describe the weight-based merg-
ing histogram. The histogram partitions the stream elements
into buckets based on their age. Given a decay functionf ,
and parameterε1, the sequencebi , i ≥ 0 is defined as follows:
b0 = 0, and fori > 0, bi is defined as the largest integer such
that f (bi−1)≥

f (bi−1)
1+ε1

.
For simplicity, we first describe the algorithm for the

case of a (strictly) synchronous stream, where the timestamp
of a stream element is just its position in the stream. We
later discuss the extension to asynchronous streams. LetGi

denote the interval[bi ,bi+1) so that|Gi | = bi+1− bi. Once
the decay functionf () is given, theGis are fixed and do not
change with time. The elements of the stream are grouped
into regions based on their age. Fori ≥ 0, regioni contains
all stream elements whose age lies in intervalGi .

For any i, we have f (bi) < f (b0)

(1+ε1)
k , and thus we get

i < log1+ε1

(
f (0)
f (bi)

)
. Since the age of an element cannot be

more thann, bi ≤ n. Thus we get that the total number of

regions is no more thanβ = ⌈log1+ε1

(
f (0)
f (n)

)
⌉. From the

definition of thebis, we also have the following fact.

FACT 3.1. Suppose two stream elements have ages a1 and
a2 so that a1 and a2 fall within the same region. Then,

1
1+ ε1

≤
f (a1)

f (a2)
≤ 1+ ε1

The data structure maintains a set ofbuckets. Each bucket
groups together stream elements whose timestamps fall in a
particular range, and maintains a small space summary of
these elements. We say that the bucket is “responsible” for
this range of timestamps (or equivalently, a range of ages).

Suppose that the goal was to maintainSf
0, just the time-

decayed sum of all stream elements. If the current timec
is such thatc modb1 = 0, then a new bucket is created
for handling future elements. The algorithm ensures that
the number of buckets does not grow too large through the
following rule: if two adjacent buckets are such that the
age ranges that they are responsible for are both contained
within the same region, then the two buckets are merged into

b0 b1 b2 b3 b4 age

(a) Regions

merge merge

New

bucket

b0 b1 b2 b3 b4 age

(b) Buckets & Regions

b0 b1 b2 b3 b4 age

(c) Buckets & Regions after Merge

Figure 1: Weight-based merging histograms.

a single bucket. The count within the resulting bucket is
equal to the sum of the counts of the two buckets, and the
resulting bucket is responsible for the union of the ranges
of timestamps the two buckets were responsible for (see
Figures 1(b) and 1(c)).

Due to the merging, there can be at most 2β buckets:
one bucket completely contained within each region, and one
bucket straddling each boundary between two regions. From
Fact 3.1, the weights of all elements contained within a sin-
gle bucket are close to each other, and sincef is a converging
decay function, this remains true as the ages of the elements
increase. Consequently, WBMH can approximateSf

0 with
ε1 relative error by treating all elements in each bucket as if
they shared the smallest timestamp in the range, and scaling
the corresponding weight by the total count.

However, this does not solve the more general DCS
problem, since it does not allow filtering out elements whose
values are smaller thanτ. We extend the above data structure
to the DCS problem by embedding within each bucket a data
structure that can answer the (undecayed) correlated sum of
all elements that were inserted into this bucket. This data
structure can be any of the algorithms that can estimate the
sum of elements within a sliding window on asynchronous
streams, including [12, 5, 2]: values of the elements are
treated as timestamps, and a window sizem− τ is supplied
at query time (wherem is an upper bound on the value).

These observations yield our new algorithm for approx-
imatingSf

τ . We replace the simple count for each bucket in
the WBMH with a small space sketch, from any of [12, 5, 2].
We will not assume a particular sketch for maintaining the in-
formation within a bucket. Instead, our algorithm will work
with any sketch that satisfies the following properties—we
call such a sketch a “bucket sketch”. Letε2 denote the accu-
racy parameter for such a bucket sketch.

1. The bucket sketch must concisely summarize a stream
of positive integers using space polylogarithmic in the
stream size. Given parameterτ ≥ 0 at query time, the
sketch must return an estimate of the number of stream
elements greater than or equal toτ, such that relative
error of the estimate is withinε2.

2. It must be possible to merge two bucket sketches easily
into a single sketch. More precisely, suppose thatS1 is
the sketch for a set of elementsR1 andS2 is the sketch
for a set of elementsR2, then it must be possible to

merge togetherS1 andS2 to get a single sketch denoted
by S= S1∪S2, such thatSretains Property 1 for the set
of elementsR1∪R2.

The analysis of the sketch proposed in [12] explicitly shows
that the above properties hold. Likewise, the sketch designed
in [5] also has the necessary properties, since it is built on
top of the q-digest summary [11] which are themselves mer-
gable. The different sketches have slightly different timeand
space complexities; we state and analyze our algorithm in
terms of a generic bucket sketch, and subsequently describe
the cost depending on the choice of sketch.

3.2.2 Formal Description and Correctness. Recall that
ε is the required bound on the relative error. Our algorithm
combines two data structures: bucket sketches, with accu-
racy parameterε2 = ε/2; and the WBMH with accuracy pa-
rameterε1 = ε/2. The initialization is shown in the SET-
BOUNDARIES procedure (Figure 2), which creates the re-
gionsGi by selectingb0, . . . ,bβ . For simplicity of presenta-
tion, we have assumed that the maximum stream lengthn is
known beforehand, but this is not necessary — thebi ’s can
be generated incrementally, i.e.,bi does not need to be gener-
ated until element ages exceedingbi−1 have been observed.

Figure 3 shows the PROCESSELEMENT procedure for
handling a new stream element. Whenever the current timet
satisfiest modb1 = 0, we create a new bucket to summarize
the elements with timestamps fromt to t +b1−1 and seal the
last bucket which was created at timet−b1. The procedure
FINDREGIONS(t) returns the set of regions that contain
buckets to be merged at timet. In the next section we present
novel methods to implement this requirement efficiently.
Figure 4 shows the procedure RETURNAPPROXIMATION

which generates the answer for a query forSf
τ . For each

bucket, we multiply the common decayed weight with the
sliding windowed count usingτ as the left boundary of the
window, then return the summation of the products over all
the buckets as the estimate forSf

τ .

THEOREM 3.3. If f is a converging decay function, for any
τ given at any time t, the algorithm specified in Figure 2, 3
and 4 can return̂Sf

τ , such that(1− ε)Sf
τ ≤ Ŝf

τ ≤ (1+ ε)Sf
τ .

Proof. For the special converging decay function where
f (x) ≡ 1 (no decay), then WBMH has only one region and
one bucket. So the algorithm reduces to a single bucket

Algorithm 3.1: SETBOUNDARIES(ε)

comment: createG0,G1, . . . ,Gβ usingε1 = ε/2
b0← 0;
for 1≤ i ≤ β

do bi ←maxx{x|(1+ ε
2) f (x−1)≥ f (bi−1)}

j ←−1;
comment: index of the active bucket for new elements

Figure 2: SETBOUNDARIES routine to initialize regions.

sketch. This sketch can directly provide anε2 = ε/2 relative
error guarantee for the estimate ofSf

τ .
The broader case is wheref (x + 1)/ f (x) is non-

decreasing withx. Let {B1, . . . ,Bk} be the set of buckets
at query timet. Let Ri ⊆ R be the substream that is aggre-
gated intoBi , 1≤ i ≤ k. Since every stream element is aggre-
gated into exactly one bucket at any timet, theRis partition
R:

⋃k
i=1Ri = R andRi ∩Rj = /0 if i 6= j. Note that merging

two buckets just creates a new bucket over the union of the
two underlying substreams. LetSf

τ,i = ∑vj∈Ri ,vj≥τ wj f (t− j),
be the time decayed correlated sum over the substreamRi ,
1≤ i ≤ k, soSf

τ = ∑k
i=1Sf

τ,i . Now we consider the accuracy

of the approximation forSf
τ,i using bucket sketchBi , for each

i in turn.
Note that at query timet, the common decayed weight

of Bi is f (t − FBi). Let wv
t be the true decayed weight of

any elementv aggregated inSi , then due to the setting of
the regions in WBMH, we have 1

1+ε1
wv

t ≤ f (t −FSi) ≤ wv
t

(Fact 3.1). Let|{v∈ Ri |v≥ τ}|= Qi , then summing over all
elements in the bucketi we have:

1
1+ ε1

Sf
τ,i =

1
1+ ε1

∑
v∈Ri

wv
t

≤Qi · f (t−FSi)≤ ∑
v∈Ri

wv
t = Sf

τ,i .

Further, bucket sketchSi can returnQ̂i such that [12, 5]

(1− ε2)Qi ≤ Q̂i ≤ (1+ ε2)Qi .

Combined with the above inequality, we have
1− ε2

1+ ε1
Sf

τ,i ≤ Q̂i · f (t−FSi)≤ (1+ ε2)S
f
τ,i .

Adding up all theSt
τ,i overi = 1,2, . . . ,k, we get

1− ε2

1+ ε1

k

∑
i=1

Sf
τ,i ≤

k

∑
i=1

Q̂i · f (t−FSi)≤ (1+ ε2)
k

∑
i=1

Sf
τ,i .

Using the fact that 0< ε < 1 andε1 = ε2 = ε/2, along with

Sf
τ =

k

∑
i=1

Sf
τ,i and Ŝf

τ =
k

∑
i=1

Q̂i · f (t−FSi)

we conclude that(1− ε)Sf
τ ≤ Ŝf

τ ≤ (1+ ε)Sf
τ .

Algorithm 3.2: PROCESSELEMENT((vi ,wi , i))

if i modb1 = 0

then

j ← j +1
Initialize a new bucket sketchB j with accuracyε/2
FB j ← i
LB j ← i +b1−1
comment: Set timestamp range covered byB j

Insert(vi ,wi) into B j

for each g∈ FINDREGIONS(i)
comment: Set of regions with buckets to be merged at timei

do

bmin←mint{t|t ∈Gg}
bmax←maxt{t|t ∈Gg}
Find bucketsB′ andB′′, such that
bmin≤ (t−LB′) < (t−FB′)

< (t−LB′′) < (t−FB′′)≤ bmax

comment: Find buckets covered byGg

B← B′∪B′′

comment: merge two buckets
FB← FB′′

LB← LB′

DropB′ andB′′

Figure 3: PROCESSELEMENT routine to handle updates

3.2.3 Fast Bucket Merging. At every time tick the his-
togram maintenance algorithm needs to merge buckets that
are covered by a single region. In the synchronous stream
case, this occurs with every new element arrival. The naive
solution is to pass over all buckets and merge any pair falling
in the same region on every update. This procedure can
severely reduce the speed of stream processing. In this sec-
tion, we present an algorithm, which directly returns the set
of regions that have buckets to be merged at each timet.

DEFINITION 3.1. (BUCKET B’ S CAPACITY |B|) |B|= LB−
FB +1, where LB and FB are the largest and smallest times-
tamps that are covered by B (see Figure 3).

Recall that no pair of buckets overlap in the time ranges
that they cover. Therefore we have|B′ ∪B′′| = |B′|+ |B′′|,
whereB′ andB′′ are any two buckets in the histogram and∪
is the merging operation on bucketsB′ andB′′. Now consider
the simple case where all boundaries are powers of two (i.e.
b1 = 1,b2 = 2,b3 = 4 and so on). Here, all capacities are
also powers of two, and the merging of buckets has a very
regular structure: whenever two buckets fit exactly into a
region, they are merged. It turns out that the same concept
generalizes to arbitrary patterns of growing regions. With
the help of Figure 1, we can visualize the buckets traveling
through the regions along the age axis, being merged when
necessary. For regionGi , let Ii be the capacity of a bucket
enteringGi . More formally,

Algorithm 3.3: RETURNAPPROXIMATION(τ)

Let the set of buckets be:{B1,B2, . . . ,Bk}
comment: for somek, 1≤ k≤ 2β ;
s← 0;
for 1≤ i ≤ k

do
{

Let Q̂i be result forBi usingτ as window size
s← s+ Q̂i · f (t−FBi);

comment: Approx sum of element weights inBi with vi ≥ τ
return (Ŝf

τ = s);

Figure 4: RETURNAPPROXIMATION routine to estimateSf
τ

DEFINITION 3.2. (REGION i ’ S CAPACITY Ii) Define I0 =
1. For 0 < i < β , let Ii = |S|, where S is any bucket such
that t−FS= bi for some value of t.

In the next lemma, we show that for any specifici, there is a
fixed value ofIi : it does not vary over time, and can be easily
computed as a function of the region sizes.

LEMMA 3.1. For 0 < i < β , Ii = ⌊|Gi−1|/Ii−1⌋ · Ii−1

Proof. The lemma is proved by induction. For the base
case, since the capacity of the new bucket created inG0 is
exactly equal to|G0|, merging cannot happen inG0. Thus
immediatelyI1 = |G0|= ⌊|G0|/I0⌋· I0. For the inductive step,
suppose the claim is true for somei. Then, for regioni, all
buckets enteringGi have the same (constant) sizeIi . Exactly
⌊|Gi |/Ii⌋ such buckets of sizeIi can be merged together
within Gi before the “leading edge” of the merged bucket
crosses intoGi+1. After the bucket of size⌊|Gi |/Ii⌋ · Ii is
formed, no further buckets of sizeIi can be merged with it
in regionGi , so it crosses intoGi+1. This procedure repeats,
and since|Gi | andIi are constants,Ii+1 is fixed as⌊|Gi |/Ii⌋· Ii .
This completes the induction.

In the next lemma, we show that givenIi we can
compute the times at whichGi has buckets to be merged.

LEMMA 3.2. For 0 ≤ i < β , the times at which Gi has
buckets to be merged is given by{bi +(k⌊|Gi |/Ii⌋+ j)Ii} for
integers2≤ j ≤ ⌊|Gi |/Ii⌋ and k≥ 0.

Proof. The new bucket created inG0 has capacity equal to
|G0|, soG0 does not have any buckets to be merged at any
time. For i > 0, if ⌊|Gi |/Ii⌋ < 2, thenGi will not have the
chance to have two buckets of sizeIi to be merged at any
time. Now we consider the case where⌊|Gi |/Ii⌋ ≥ 2 and
i > 0. Gi obtains its first whole incoming bucket at time
t = bi + Ii. Note that withinGi at most⌊|Gi |/Ii⌋ buckets
that enterGi can be merged together. Thus, (1) at time
t = bi + 2Ii,bi + 3Ii , . . . ,bi + ⌊|Gi |/Ii⌋ · Ii , buckets can be

Algorithm 3.4: INITIALIZE FINDREGIONS()

Initialize hash tableT
I0← 1;
for 1≤ i ≤ β −1

do Ii ←⌊|Gi−1|/Ii−1⌋ Ii−1

comment: From Lemma 3.1
for 1≤ i ≤ β −1

do if ⌊|Gi |/Ii⌋ ≥ 2
then Insert(i,bi +2Ii) into hash tableT

comment: Compute whenGi first has mergable buckets

Figure 5: Routine to initialize hash table with merging times

merged withinGi ; (2) This sequence of merging operations
repeat every⌊|Gi |/Ii⌋ · Ii clock ticks, meaningGi has buckets
to be merged at times{bi + (k⌊|Gi |/Ii⌋+ j)Ii} for integers
2≤ j ≤ ⌊|Gi |/Ii⌋ andk≥ 0.

Lemma 3.2 provides a way for any region to directly
compute the sequence of time points at which there are
buckets to be merged. Based on this observation, we present
an algorithm to return the set of regions that have buckets to
be merged at a given timet.

Algorithm for Fast Bucket Merging. The algorithm for
tracking which buckets should be merged makes use of a
hash tableT to store the set of buckets to be merged at
timestampt. More precisely, the table cell corresponding
to time t is a set of(i,t) pairs, such that regionGi has
buckets to be merged at timet. Figure 5 shows procedure
INITIALIZE FINDREGIONS() which first computesIi using
Lemma 3.1. It then uses Lemma 3.2 to fill in the earliest time
at which regionGi will have buckets to be merged. At time
t, FINDREGIONS(t) (Figure 6) retrieves the set of buckets to
merge, and deletes them from the hash table. Then, for each
returned region, we compute its next merging time using
Lemma 3.2 and store the results into the corresponding hash
table cells for the future lookup.

3.2.4 Time and Space Complexity. The space complex-
ity includes the space cost for the buckets in the histogram
and the hash table. The space to represent each bucket de-
pends on the choice of the bucket sketch.

THEOREM 3.4. The space complexity of the algorithm in
Figure 2, 3 and 4 is O(β (Z + logn)) bits, where

1. β =
⌈
log1+ε/2(f (0)/ f (n))

⌉

2. Z = O
(

1
ε2 log β

δ lognlogm
)

using the sketch of [12].

3. Z = O
(

1
ε logmlog

(
εn

logn

))
using the sketch of [5].

Algorithm 3.5: FINDREGIONS(t)

M← /0
for each (i,t) ∈ T
comment: RegionG has buckets to be merged at timet

do

M←M∪{i}
if (t−bi)/Ii mod⌊|Gi |/Ii⌋= 0

then t ′← t +2Ii
else t ′← t + Ii;

comment: Find whenGi next has mergable buckets
Insert(i,t ′) into hash tableT

return (M)
comment: set of regions with buckets to be merged at timet

Figure 6: FINDREGIONS(t) finds mergable regions at timet

Proof. The number of buckets used is at most 2β . For
the randomized sketch designed in [12], in order to have
a δ failure probability bound, by the union bound, we
need to set the failure probability for each bucket to be

δ/β , so we getZ = O
(

1
ε2 log β

δ lognlogm
)

(Lemma 11 in

[12]). For the deterministic sketch designed in [5],Z =

O
(

1
ε logmlog

(
εn

logn

))
(§3.1 in [5]). The size of the hash

table can be set toO(β) cells, because each of theβ regions
occupies at most one cell. Each cell usesO(logn) bits of
space to store the region’s index and merging time. So all
together, the total space cost isO(β (Z + logn)).

THEOREM 3.5. The (amortized) time complexity of the al-
gorithm per update is linear in the size of the bucket sketch
data structure used.

Proof. The cost of the algorithm is dominated by the cost of
merging bucket sketches together when necessary. Inserting
a new element into the sketch takes time sublinear in the size
of the bucket sketch. Updating the hash table has to be done
once for every merge that occurs, and takes constant time.
The merge of two bucket sketches can be carried out in time
linear in the size of the bucket sketch data structure [12, 5].
So the time is determined by the (amortized) number of
merges per clock tick.

The number of merge operations over the course of
algorithm can be bounded in terms of the number of updates
(for synchronous streams, where there is one arrival per
clock tick). Observe that forε < 1, the set of regions
generated will mean that⌊|Gi |/Ii⌋ ≤ 2 for all i. This is
seen by contradiction: suppose that⌊|Gi |/Ii⌋ > 2. Then we
could have merged two of the buckets of capacityIi in the
preceding region: since|Gi−1| > 2|Gi |/3 (by choice ofε),
|Gi |/Ii > 2 implies|Gi−1|/Ii ≥ 2. From this, we see that the
bucket capacities must be powers of two, sinceIi must be
eitherIi−1 or 2Ii−1. By a standard charging argument, each

merge can be charged back to the corresponding insertion of
a new stream element. The consequence is that the amortized
number of merges per clock tick is bounded by a constant.
This implies the stated time bound.

Space dependence on decay function f . As shown in The-
orem 3.4, the space complexity depends crucially on decay
function f , since it determines the number of regions (im-
plicitly the number of buckets). We show the consequence
for various broad classes of decay function:

• For exponential decay functionsf (x) = 2−αx, α > 0,
we haveβ = αnlog1+ε/22 and therefore the space com-

plexity isO
(

n
ε2 log2 n

)
. This means that this algorithm

needs space linear in the input size.

• For polynomial decay functionsf (x) = (x+ 1)−a, a >
0, since β = alog1+ε/2n, we obtain a small space

complexityO
(

1
ε2 log2nlogmlog β

δ

)
using the sketch of

[12], andO(1
ε lognlogmlog(εn/ logn) + log2n) using

the sketch of [5];

• In the case of no decay (f (x) ≡ 1), the regionG0 is
infinitely large, so the algorithm maintains only one
bucket, giving space costO(Z + logn).

Intuitively the algorithm can approximateSf
τ with a rel-

ative error bound using small space iff decays more slowly
than the exponential decay. Further, the space decreases the
“slower” that f decays, the limiting case being that of no de-
cay. We complement this observation with the result that the
DCS problem under exponential decay requires linear space
in order to provide relative error guarantees.

Asynchronous Streams. So far our discussion of the al-
gorithm for relative error has focused on the case of syn-
chronous streams, where the elements arrive in order of
timestamps. In an asynchronous setting, a new element
(v1,w1,t1) may have timestampt1 < t wheret is the cur-
rent time. But this can easily be handled by the algorithm
described above: the new element is just directly inserted
into the earlier bucket which is responsible for timestampt1.
The accuracy and space guarantees do not alter, although the
time cost is affected since the correct bucket must be found
for each new arrival, and buckets to merge determined.

4 Lower Bounds

This section shows large space lower bounds for finite de-
cay or (super) exponential decay for DCC on synchronous
streams. Since DCC is a special case of DCS, these lower
bounds also apply to DCS on asynchronous streams.

4.1 Finite Decay. Finite decay, defined in§ 1.2, captures
the case when after some ageN, the decayed weight is zero.

THEOREM 4.1. For any finite decay function f with age
limit N, any streaming algorithm (deterministic or random-
ized) that can providêC f

τ such that|Ĉ f
τ −C f

τ | < εC f
τ for τ

given at query time must storeΩ(N) bits.

Proof. The bound follows from the hardness of finding the
maximum element within a sliding window on a stream of
integers. Tracking the maximum within a sliding window
of sizeN over a data stream needsΩ(N log(m/N)) bits of
space, wherem is the size of the universe from which the
stream elements are drawn (§7.4 of [7]).

We argue that if we could approximatêC f
τ , wheref has

age limit N, we could also find the maximum of the last
N elements inR. Let α denote the value of the maximum
element in the lastN elements of the stream. By definition,
the decayed weights of theN most recent elements are
positive, while all older elements have weight zero. Note that
C f

τ is a monotonically decreasing function ofτ, soC f
α > 0

(andC f
τ > C f

α for any τ < α) while C f
τ = 0 for τ > α. If

C f
τ can be approximated with relative error, then we can

distinguish the casesC f
τ > 0 andC f

τ = 0. By repeatedly
querying different values ofτ for C f

τ , we find a valueτ∗

such thatC f
τ∗ > 0 andC f

τ∗+1 = 0. Thenτ∗ must beα, the
maximum element of the lastN elements.

Since sliding window is a special case of finite decay, this
shows that approximatingC f

τ (a problem identified in [1])
cannot be solved with relative error in sublinear space.

4.2 Exponential Decay. Exponential decay functions
f (x) = 2−αx, α > 0 are widely used in non-correlated time
decayed steaming data aggregation. It is easy to maintain
simple sums and counts under such decay efficiently [4].
However, in this section we will show that it isnot possible
to approximateC f

τ with relative error guarantees using small
space ifm (the size of the universe) is large andf is expo-
nential decay. This remains true for other classes of decay
that are “faster” than exponential decay. We first present two
natural approaches to approximateC f

τ under an exponential
decay functionf , and analyze their space cost to show that
each stores large amounts of information.

Algorithm I. Since tracking sums under exponential decay
can be performed efficiently using a single counter, we can
just track the decayed count of elements for eachv∈ [m]—
denote this asW f

v . ThenC f
τ can be estimated as∑v≥τ W f

v .

To ensure an accurate answer, eachW f
v must be tracked with

sufficiently many bits of precision. One way to do this is
to maintain the timestamps of the last⌈ 1

α log2
1
ε ⌉ elements

in the substreamRv = {vi ∈ R|vi = v}. From these, one can
computeW f

v with relative errorε, and henceC f
τ with the

same relative error. Each timestamp isO(logn) bits, so the
total space cost isO(mlogn⌈ 1

α log 1
ε ⌉) bits.

Algorithm II. The second algorithm tries to reduce the
dependence onm by observing that for some close values of
τ, the value ofC f

τ may be quite similar, so there is potential
for “compression”. Asf (x) = 2−αx, α > 0, we can write:

C f
τ = ∑

vi≥τ
2α(i−t) = 2−αt ∑

vi≥τ
2α i ,

where t is the query time. We reduce approximatingC f
τ

with a relative error bound to a counting problem over
an asynchronous stream with sliding window queries. We
create a new streamR′ in this model by treating each stream
element as an item with timestamp set to its valuevi and
with weight 2α i . The queryC f

τ at timet can be interpreted
as a sliding window query on the derived streamR′ at timem
with width m− τ. The answer to this query is∑vi≥τ 2α i ; by

the above equation, scaling this by 2αt approximatesC f
τ .

The derived streamR′ can be summarized by sketches
such as those in [12, 2]. These answer the sliding window
query with relative errorε, implying relative error forC f

τ .
But the cost of these sketches applied here isO(αn

ε log2m)
bits: in the reduction, the number of copies of each stream
element increases exponentially, and the space cost of the
sketches depends logarithmically on this quantity.

Hardness of Exponential Decay. Algorithm I is a concep-
tually simple approach, which stores information for each
possible value in the domain. Algorithm II uses summaries
that are compact in their original setting, but when applied
to the DCC problem, their space must increase to give an ac-
curate answer for anyτ. The core reason for the high space
cost of both algorithms is the fact that asτ varies between 0
andm, the value ofC f

τ can vary over an exponentially large
range, and a large data structure is required to track so many
different values. This is made precise by the next theorem,
which shows that the space cost of Algorithm I is close to
optimal. We go on to provide a small space sketch with a
weakened guarantee in§ 4.4, by limiting the range of values
of C f

τ for which an accurate answer is required.

THEOREM 4.2. For an exponential decay function f(x) =
2−αx, α > 0 and ε ≤ 1/2, any algorithm (deterministic or
randomized) that provideŝC f

τ over a stream of size n=
Θ(m), such that|Ĉ f

τ −C f
τ | < εC f

τ for τ given at query time
must storeΩ(mlog n

m) bits, where m is the universe size.

Proof. The proof uses a reduction from the INDEX problem
in two-party communication complexity [10]. In the INDEX

problem, the first player holds a binary stringb of lengthN,
and the second holds an indexi ∈ [N]. The first player is
allowed to send a single message to the second, who must
then output the value ofb[i] (the ith bit of stringb). Since no
communication is allowed from the second player to the first,
the size of the message must beΩ(N) bits, even allowing the
protocol a constant probability of failure [10].

00 00 00 00 00 00 00 00

(a) Setting the Intervals over a Stream

Interval

R:

b = 1 0 0 1 1 …

0 0…0 1 0…00 0…0 1 0…0 2 0…0 0 0…02 0…0 0 0…0 3 0…0 0 0…03 0…0 0 0…0 0 0…0 4 0…00 0…0 4 0…0 … …

(b) Mapping from binary stringb to intervals

Figure 7: Creating a stream for the lower bound proof usingp = 1

We show that a sublinear streaming data structure to
approximate DCC under exponential decay would allow
a sublinear communication protocol for INDEX. Given a
binary stringb of lengthmp, we construct an instance of a
stream. Herem is the size of the domain of the stream values,
and p≥ 1 is an integer parameter set later. Then positions
in streamR are divided intom intervals:I0, I1, . . . , Im−1, as
shown in Figure 7(a). Letℓ = 2⌈ 1

α ⌉; each interval has 2pℓ
positions, so that the length ofR is Ω(m2pℓ).

Every position in the stream is set to 0 by default; the
construction places one non-zero element in each interval
at a position that is a multiple ofℓ (shaded in Figure 7(a)).
We interpret the binary stringb as an integerb. Let bP be
that value represented in baseP = 2p (so b = ∑i P

ibP[i] =

∑ j 2
jb[j]). In intervalIi , we place an element with valuei at

positionbP[i]ℓ, shown in Figure 7(b) forp = 1. We write

C f
τ =

m

∑
i=τ

f ((Pi+bP[i])ℓ)

≤
m

∑
i=τ+1

f (Piℓ)+ f ((Pτ +bP[τ])ℓ)

<
∞

∑
i=1

f (P(τ +1)ℓ+(i−1)ℓ)+ f ((Pτ +bP[τ])ℓ)

≤
1
3

f (P(τ +1)ℓ− ℓ)+ f (Pτℓ+bP[τ]ℓ)

=
1
3

f (Pτℓ+(P−1)ℓ)+ f (Pτℓ+bP[τ]ℓ)

≤
4
3

f (Pτℓ+bP[τ]ℓ)

which follows sincef (x) = 2−αx andℓ = 2⌈ 1
α ⌉. Thus,

(4.5) f (Pτℓ+bP[τ]ℓ) < C f
τ <

4
3

f (Pτℓ+bP[τ]ℓ)

DenotebP[τ] = j, where 0≤ j ≤ P− 1 (j is a digit in
base P). IfC f

τ can be approximated within a relative error
ε = 1

2, then j can be retrieved by the data stream algorithm:

the approximation ofC f
τ , Ĉ, satisfies

1
2 f (Pτℓ+bP[τ]ℓ) < Ĉ < 2 f (Pτℓ+bP[τ]ℓ)

Meanwhile, observe that for any k > j,
f (Pτℓ+ jℓ)/ f (Pτℓ+kℓ) ≥ 4. As a result, we can dis-
tinguish the case ofbP[τ] = j andbP[τ] = k (the casek < j
is symmetrical).

To complete the proof, we observe that if we had an
algorithm to approximateC f

τ using small space, the first
player could execute the algorithm on the stream derived
from their binary string and send the memory contents of
the algorithm as a message to the second player. The
above analysis allows them to determine the value ofC f

τ for
τ = ⌊ i

p⌋, from which they can recoverbP[τ] and henceb[i].
The communication lower bound for INDEX is Ω(mp) bits,
which implies that the data structure must also beΩ(mp)
bits. The stream length isn = O(m2p

α), so fixing n setsp,
and bounds the space byΩ(mlog n

m) for constantα. We
conclude by observing that since the communication lower
bound allows randomization, this space lower bound holds
for randomized stream algorithms.

4.3 Super-exponential Decay. Theorem 4.2 applies to de-
cay functionsf that decay faster than exponential decay. Ex-
amples of such decay functions include: (1)polyexponential
decay[4]: f (x) = (x+ 1)k2−αx/k! wherek > 0, andα > 0

are constants. (2) super-exponential decay:f (x) = 2−αxβ
,

whereα > 0 andβ > 1. We can show:

THEOREM 4.3. A decay function f(x) is (super)-
exponential, if there exist constantsσ > 1 and c≥ 0,
such that for every x≥ c, f(x)/ f (x+1)≥ σ . Any algorithm
that can provideĈ f

τ for super-exponential f over a stream
of size n= Θ(m), such that|Ĉ f

τ −C f
τ |< εC f

τ must useΩ(m)
bits of space.

Proof. The argument is based on the proof of Theorem 4.2.
When n ≥ m· ⌈logσ 2⌉+ c, we divide the substream from
the position(c+1) to the position(4m· ⌈logσ 2⌉+c) into m
intervals based onℓ = 2⌈logσ 2⌉ and p = 1. By using the
construction from Theorem 4.2, the result follows.

4.4 Finite (Super) Exponential Decay. As noted above,
the lower bound proof relies on distinguishing a sequence
of exponentially decreasing possible values of the DCC. In
practical situations, it often suffices to return an answer of
zero when the true answer is less than some specified bound
µ . This creates a “finite” version of exponential decay.

DEFINITION 4.1. A decay function f is a finite exponential

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 1000 10000 100000 1e+06

O
bs

er
ve

d
A

dd
iti

ve
 E

rr
or

Number of Nodes

τ = 5 percentile
τ = 25 percentile
τ = 50 percentile
τ = 75 percentile
τ = 95 percentile

Theory

(a) Accuracy for world cup data set

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 1000 10000 100000 1e+06

O
bs

er
ve

d
A

dd
iti

ve
 E

rr
or

Number of Nodes

τ = 5 percentile
τ = 25 percentile
τ = 50 percentile
τ = 75 percentile
τ = 95 percentile

Theory

(b) Accuracy for synthetic data set

 100000

 200000

 300000

 400000

 500000

 600000

 1000 10000 100000

U
pd

at
es

 p
er

 S
ec

on
d

Number of Nodes

Worldcup Data Set
Synthetic Data Set

(c) Throughput versus space on both data sets

Figure 8: Throughput and accuracy with sliding window decay, additive error.

decay function if f(x) = 2−αx, α > 0 when2−αx ≥ µ for
0 < µ < 1; and f(x) = 0, otherwise.

Since finite exponential decay is a finite decay, the
lower bound of Theorem 4.1 implies thatΩ(1

α log 1
µ) space

is needed to approximateC f
τ for such an f . A simple

algorithm forC f
τ simply stores all stream elements with non-

zero decayed weight. The space used for a synchronous
stream isO(1

α logmlog 1
µ) bits, which is (nearly) optimal

(treating logm as a small constant). This approach extends
to the finite versions of super-exponential decay.

4.5 Sub-exponential decay. For any decay functionf (x),
where f (x) > 0 and limx→∞ f (x) = 0, we can always findm
positions (timestamps) in the stream: 0≤ x1 < x2 < .. . < xm,
such that for everyi, 1 < i ≤m, we havef (t − xi−1)/ f (t−
xi)≤

1
2. Thus, it is natural to analyze what happens when we

apply the construction from the lower bound in Theorem 4.2
to streams under such functions. Certainly, the same style
of argument constructs a stream that forces a large data
structure. But, if we fix somem and setp = 1, the stream
has to be truly enormous to imply a large space lower bound:
e.g., for the polynomial decay functionf (x) = (x+ 1)−a,
a > 0, we needn ≥ 2m/α to force Ω(m) space. This is
in agreement with the upper bounds in§3.2 which gave
algorithms which depend logarithmically onn: for such truly
huge values ofn, this leads to a requirement of log2m/α =
Ω(m), so there is no contradiction.

5 Experiments

We present results from an experimental evaluation of the
algorithms on two data sets. The first was web traffic logs
from the 1998 World Cup on June 19th (the ‘worldcup’ data
set) from http://ita.ee.lbl.gov/. Each stream
element was a tuple(v,w,t), wherev was the client id,w the
packet size modulo 100, andt the timestamp. The dataset
had 33695769 elements. The second was a synthetically
generated data set (the ‘synthetic’ data set). The size of the

synthetic data is the same as the worldcup data set. Here,
the timestamp of an element is a random number chosen
uniformly from the range[1,maxt] where maxt = 898293600
is the maximum timestamp in the world cup data set. The
valuev is chosen uniformly from the range[1,maxv], where
maxv = 1823218 is the maximum value in the worldcup data
set. The weight is chosen similarly, i.e. uniformly from the
range[1,maxw] where maxw = 99 is the maximum weight in
the world cup data.

We implemented our algorithms using C++/STL and all
experiments were performed on a SUSE Linux Laptop with
1GB memory. Both input streams were asynchronous, and
elements do not arrive in timestamp order.

Additive Error. We implemented the algorithm for additive
error (§3.1) using the sketch in [12] as the basis. On the
sketch, queries were made for the correlated sumSf

τ where
f was the sliding decay function with window size 4.5 ·107

for the synthetic data, and 3600 for the worldcup data. We
tried a range of values of the thresholdτ, from the 5 percent
quantile (5th percentile) of the values of stream elements to
the 95 percent quantile. We analyzed the accuracy of the
estimates returned by the sketch, for a given space budget.

Figures 8(a) and 8(b) show the observed additive error
as a function of the space used by the algorithm for different
values ofτ. The space cost is measured in the number of
nodes, where each node is the space required to store a single
stream element(v,w,t), which takes a constant number of
bytes. This cost can be compared to the naive method
which stores all input elements (nearly 34 million nodes).
The observed error is usually significantly smaller than the
guarantee provided by theory. The theoretical guarantee
holds irrespective of the value ofτ or the window size. Note
that the additive error decreased as the square root of the
space cost, as expected. Figure 8(c) shows the throughput,
which is defined as the number of stream elements processed
per second, as a function of the space used. From the results,
the trend is for the throughput to decrease slowly as the space
increases. Across a wide range of values for the space, the

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 500 1000 1500 2000 2500 3000

O
bs

er
ve

d
R

el
at

iv
e

E
rr

or

Number of Nodes

Worldcup
Synthetic

(a) Relative Error versus Space

 10000

 12000

 14000

 16000

 18000

 20000

 500 1000 1500 2000 2500 3000

U
pd

at
es

 p
er

 S
ec

on
d

Number of Nodes

Worldcup Data Set
Synthetic Data Set

(b) Throughput versus Space

Figure 9: Performance of Relative Error Algorithm, with Polynomial Decay.

throughput is between 250K and 350K updates per second.

Relative Error. We performed similar experiments to test
our algorithms for relative error, based on the polynomial
decay function f (x) = 1/(x + 1)1.5. The thresholds are
the same as in the additive error algorithm. The results
are shown in Figure 9. In general, the space cost for a
given error for polynomial decay was much smaller than the
algorithm for sliding windows (Figure 9(a)). This greater
space efficiency comes at some cost: we have to fix the decay
functionapriori—the additive error result allows the decay
function to be specified at query time. The throughput for
the relative error algorithm is also appreciably lower thanthe
additive error algorithm (Figure 9(b)), by over an order of
magnitude. This is partly due to the greater time complexity
of the relative error algorithm caused by the periodic bucket
merging operations which access every node in the merged
buckets, and partly because our implementation is not fully
tuned.

6 Concluding Remarks

Our results shed light on the problem of computing corre-
lated sums over time-decayed streams. The upper bounds
are quite strong, since they apply to asynchronous streams
with arbitrary timestamps. It is also possible to extend these
results to a distributed streaming model, since the summariz-
ing data structures used can naturally be computed over dis-
tributed data, and merged together to give a summary of the
union of the streams. The lower bounds are similarly strong,
since they apply to the most restricted model, for computing
DCC where there is exactly one arrival per time unit.

The correlated sum is at the heart of many correlated ag-
gregates, but there are other natural correlated computations
to consider which do not follow immediately from DCS.
Some we expect to be hard in general: correlated maximum
maxvi>τ wi f (t− ti) has a linear space lower bound under fi-
nite decay functions, since this lower bound follows from
the uncorrelated case. Other analysis tasks seem feasible but

challenging: for example, to output a good set of cluster cen-
ters for those points withvi > τ, weighted bywi f (t− ti). It
will be of interest to understand exactly which such corre-
lated aggregations are possible in a streaming setting.

Acknowledgments. We thank Divesh Srivastava for helpful
discussions, and Kewei Tu for useful pointers on§3.2.3.

References

[1] R. Ananthakrishna, A. Das, J. Gehrke, F. Korn, S. Muthukrish-
nan, and D. Srivastava. Efficient approximation of correlated
sums on data streams.IEEE Transactions on Knowledge and
Data Engineering, 15(3):569–572, 2003.

[2] C. Busch and S. Tirthapura. A deterministic algorithm for
summarizing asynchronous streams over a sliding window. In
STACS, 2007.

[3] D. Chatziantoniou and K. A. Ross. Querying multiple features
of groups in relational databases. InVLDB, 1996.

[4] E. Cohen and M. Strauss. Maintaining time-decaying stream
aggregates. InPODS, 2003.

[5] G. Cormode, F. Korn, and S. Tirthapura. Time-decaying
aggregates in out-of-order streams. InICDE, 2008.

[6] G. Cormode, S. Tirthapura, and B. Xu. Time-decaying
sketches for sensor data aggregation. InPODC, 2007.

[7] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
stream statistics over sliding windows.SIAM Journal on
Computing, 31(6):1794–1813, 2002.

[8] J. Gehrke, F. Korn, and D. Srivastava. On computing corre-
lated aggregates over continual data streams. InSIGMOD,
2001.

[9] P. Gibbons and S. Tirthapura. Distributed streams algorithms
for sliding windows. InSPAA, 2002.

[10] E. Kushilevitz and N. Nisan.Communication Complexity.
Cambridge University Press, 1997.

[11] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: new aggregation techniques for sensor
networks. InSenSys, 2004.

[12] B. Xu, S. Tirthapura, and C. Busch. Sketching asynchronous
data streams over sliding windows.Distributed Computing,
20(5):359–374, 2008.

