Time-Decayed Correlated Aggregates over Data Stréams

Graham Cormode Srikanta Tirthapura Bojian Xu
AT&T Labs—Research ECE Dept., lowa State University
gr aham@® esearch. att.com {snt, boj i anxu}@ ast at e. edu
Abstract sions before performing an aggregation, possibly aloné-a di

Data stream analysis frequently relies on identifying elations ferent dimenSilon- In this paper, we consider S.UOh'elated _
and posing conditional queries on the data after it has been. s @d9regateswhich are a powerful class of queries for manip-

Correlated aggregateform an important example of such querieéjlati_n_g multi-dimensional data. These were motivated & th
which ask for an aggregation over one dimension of stream digaditional OLAP model [3], and subsequently for stream-

ments which satisfy a predicate on another dimension. Sewent N data [1, 8]‘-‘ For (?xample, consider the query on a VoIP
events are typically more important than older onime decay CDR stream: “what is the average packet loss rate for calls

should also be applied to downweight less significant valiws Wit_hin the |§St 24 hours that_Were less than_ 1 min_Ute long™?
present space-efficient algorithms as well as space lowendso 1DiS query involves a selection along the dimensions of call

for the time-decayed correlated sum, a problem at the heavaoy duration and call start time, and aggregation along thel thir
related aggregations. By considering different fundaalesiasses dimension of packet loss rate. Queries of this form are use-
of decay functions, we separate cases where efficientvelatror Ul in identifying the extent to which low call quality (high

or additive error is possible, from other cases where lispace is Packet loss) causes customers to hang up. Another exam-

necessary to approximate. In particular, we show that noiefii PI€ iS: “what is the average packet loss rate for calls sfarte
algorithms are possible for the popular sliding window argee Within the last 24 hours with duration greater than the media

nential decay models, resolving an open problem. The reantt Call length (within the last 24 hours)?”, which gives a stati

surprising, since efficient approximations are known foreotdata fiC t0 monitor overall quali.ty for “long” (;alls. Such qu.esie
stream problems under these decay models. This is a stepow§@NNot be answered by existing streaming systems with guar-

better understanding which sophisticated queries can beeand anteed accuracy, unless they explicitly store all datalfer t
on massive streams using limited memory and computation. last 24 hours, which is infeasible.

Keywords: data stream, time decay, correlated, aggregate, sum N this work, we present algorithms and lower bounds
for approximating time-decayed correlated aggregates on a

1 Introduction data stream. These queries can be captured by three main

. o . aspects: selection along one dimension (gafmension)
Many applications such as Internet monitoring, informatio ; . . g .
. . o and aggregation along a second dimensionysa@iynension)
systems auditing, and phone call quality analysis involve. . . : : ;) .
i ? : ; using time-decayed weights defined via a third (time) di-
monitoring massive data streams in real time. These streams ~. . . .
. : .~ mension. The time-decay arises from the fact that in most
arrive at high rates, and are too large to be stored in sec- ;)
. . feams, recent data is naturally more important than older
ondary storage, let alone in main memory. An examp : . .
ﬁta, and in computing an aggregate, we should give a

stream of VoIP call data records (CDRs) may have the cg eater weight to more recent data. In the examples above,

.) o - gr
start time, end time, packet loss rate, along with |den9f|eﬁ]e time decay arises in the form of a sliding window of a

such as source and destination phone numbers. This StreaWain duration (24 hours) over the data stream. More gen-

can consist of billions of items per day. The challenge is % : . . . :
- : . erally, we consider arbitrary time-decay functions whieh r
collect sufficient summary information about these streams

) . . turn a weight for each element as a non-increasing function
in a single pass to allow subsequent post hoc analysis.

L of its age—the time elapsed since the element was generated.
There has been much research on estimating aggregates . . -

i ; . Importantly, the nature of the time-decay function will elet
along a single dimension of a stream, such as the median ; .
frequency moments. entroov. etc. However. most streamlzge the extent to which the aggregate can be approximated.

q Y ' Py, €tc. ' We focus on thdime-decayed correlated suthence-

consist of mult dlmens[ongl datg. It is imperative to COMSrth referred to as DCS), which is a fundamental aggregate,
pute more complex multi-dimensional aggregates, espgcia o . .
. . .~ interesting in its own right, and to which other aggregates
those that can “slice and dice” the data across some dimen:- .
can be reduced. An exact computation of the correlated sum

~ *The work of Tirthapura and Xu was supported in part by the dxei r_eqUireS multiple passes through the _Stream’ even With no
Science Foundation through grants 0520102, 0834743, 08319 time-decay where all elements are weighted equally. Since

we can afford only a single pass over the stream, we will aiw,w;,t;) such thaty; > 30 andt; >t — 24. The average is

for approximate answers with accuracy guarantees. In ttiie ratio of the two answers.

paper, we present the first streaming algorithms for estim@ther correlated aggregates can also be reduced to the sum:
ing the DCS of a stream using limited memory, with such , , ,
guarantees. Prior work on correlated aggregates either did '€ time ?ecayedelaftwe frequencyof a valuev is

not have accuracy guarantees on the results [8] or else did 9iven by(S — §41)/S-

not allow time-decay [1]. We first define the stream model ® The sum of decayed weightd elements in the range
and the problem more precisely, and then present our results [I,r] is Sf — Srf+l.

e Thedecayed frequenayf range]l,r] is (Sf—S:H)/S(f).
e Thetime decayed-heavy hitterds found by a binary
search over ranges from the univefsg to find all the

1.1 Problem Formulation. We consider a strearR =
€1,e,...,en. Each elemeng is a (vi,wi,ti) tuple, where
Vi€ [m] is _avalue_ or key f_rom an ord_ered d(_)main; positive v's, such that the time decayed relative frequencyisf
integerw; is the initial weight; and; is the timestamp at at leastp.

which the element was created or observed, also assumed to . -

be a positive integer. For example, in a stream of VoIP call® The time decayed correlqteﬂquantl_le is found by a
records, there is one stream element per call, whésehe binary SearfCh O\fler t?e univerge] to find the largesv,
time the call was placed; is the duration of the call, and suchtha(§ - S/)/S < .

the packet loss rate.

In the synchronous model, the arrivals are in timestampme-Decayed Correlated Count. An important special
order:t; <t 1, for alli. In the strictly synchronous versioncase of DCS is théime-decayed correlated cou(DCC),
there is exactly one arrival at each time step, so thati. Where all the weights; are assumed to be 1. The correlated
We also consider the general asynchronous streams m(mehtcrf is thereforeCTf = Yiv>r F(t—t).

[12, 2, 5], where the order of receipt of stream elements
is not necessarily the same as the increasing order of tHe® Decay Functions Classes. We define classes of decay
timestamps. Therefore, it is possible tiat- t; while i < functions, which cover popular time decays from prior work.

j. Such asynchrony is inevitable in many applications: j , . . .
the VoIP call example, CDRs maybe collected at diﬁeree[onvergmg decay. A decay functionf(x) is a converging

switches, and in sending this data to a central server, seay function iff (x+1)/f(x) is non-decreasing with

;] . uitively, the relative weights of elements with diffeite
interleaving of many (possibly synchronous) streams co . .

. imestamps under a converging decay function get closer
result in an asynchronous stream.

) . . tqg each other as time goes by. As pointed out by Cohen
The aggregates will be time-decayed, i.e. elements w@rqd Strauss [4], this is an intuitive property of a time-

earlier timestamps will be weighted lower than elemengs . o
. X ecay function in several applications. Many popular decay
with more recent timestamps. The exact model of decay]c 1S

: . o —a
specified by the user throughime-decayunction. unctions, such as polynomlal decayf-(x) = (x+1)
wherea > 0, are converging decay functions.

DEFINITION 1.1. A function f(x), x> 0, is called atime- gynonential decay. Given a constant > 0, the exponential
decay functiorfor just adecay functiojif: (1) 0< f(x) <1 gecay function is defined d$x) = 2-9*. Other exponential
forall x > 0; (2) if x3 < xp, then f(x1) > f(x2). decays can be written in this form, singe’* = 2-l0g(a)x,

As f(x+ 1)/f(x) is a constant, exponential decay qualifies

At time t > tj the ageof g = (vi,w;,t;) is defined as —t;, . .
as a converging decay function.

and thedecayed weightf g isw; - f(t —t;).

Time-Decayed Correlated Sum. The query for the time- ginite (?ecay. A.dr:ecay fll,m,Ction_'; ii defingd to be ainit(;
decayed correlated sum over streRmnder a prespecified ecay functiorwith age limitN, if there existsN > 0 suc

decay-functionf is posed at time, provides a parametertNat forx>N, f(x) =0, and forx < N, f(x) > 0. Examples

f .) of finite decay include (1) sliding window decay(x) = 1
72 0, and asks fofy, defined as follows: for x < N and 0 otherwise, where the age linit is the

SE = YaervzrWi- f(t—t) window size. (2) Chordal decay [4]:(x) = 1—x/N for 0 <
A correlated aggregate query could be: “What is the average N and 0 otherwise, with an age limit bf— 1. Obviously,
packet loss rate for all calls which started in the last 2w finite decay function is a converging decay function,sinc
hours, and were more than 30 minutes in length?”. ThigN +1)/f(N) =0 while f(N)/f(N—-1) > 0.
query can be split into two sub-queries: The first sub-query
finds the number of stream elemefNs w;, t;) which satisfy 1.3 Contributions. Our main result is that there exist
vi > 30, andt; >t — 24 wheret is the current time in hours.small space algorithms for approximating DCS over an
The second sub-query finds the sumwg$ for all elements arbitrary decay functiorf with a smalladditiveerror. But,

the space cost of approximating DCS with a snnelative Xu et al. [12] proposed the concept of asynchronous
error depends strongly on the nature of the decay functiorstreams. They gave a randomized algorithm to approximate
this is possible on some classes of functions using sntak sum and the median over sliding windows. Busch and
space, while for other classes, including sliding window airthapura [2] later gave a deterministic algorithm for the
exponential decay, this is provably impossible in sublinesum. Cormodeet al. [6, 5] gave algorithms for general
space. More specifically, we show: time decay based aggregates over asynchronous streams. By
defining timestamps appropriatelypn-decayeaorrelated

1. Foranydecay functionf, there is a randomized ango'sum can be reduced to the sum of elements within a sliding

rithm for approximating DCS with additive error which . .
I . window over an asynchronous stream. As a result, relative
uses space logarithmic in the size of the stream. This .

e . . . efror bounds follow from bounds in [6, 5]. But these methods
5|gn|f|cantly_|m_pr0ves on previous yvork [8], which P40 not extend to accurately estimating DCS or DCC.
sented heuristics only for sliding window deca§8 (1) Datar et al. [7] presented a bucket-based technique

2. On the other hand, for arfinite decay function, we

h h imating DCS with dlati called exponential histogram®r sliding windows on syn-
show that approximating with & smaslative - ., 45 streams. This approximates counts and related ag-

error needs space linear in the size of the eleme gates, such as sum afginorms. Gibbons and Tirtha-
within Fhe s_hdmg window. Because sliding WlndOvﬁura [9] improved the worst-case performance for counts
decay is a finite decay function, th? above two resu §ing a data structure calladave Going beyond sliding
resolves.the open pr_oble.m posed in [1], of the SPaffhdows, Cohen and Strauss [4] formalized time-decayed
cc_)rr.\pIeX|.ty of approximating the correlated sum und(a%\ta aggregation, and provided strong motivating examples
sliding window decay.§4.1) for non-sliding window decay. All these works emphasized

3. For any sub-exponential converging decay functigpe (ime decay issue, but did not consider the problems of
there is an algorithm for approximating DCS to within., . a|ated aggregate computation.

a small relative error using space logarithmic in the

stream size, and logarithmic in the “rate” of the decay Upper Bounds

function. §3.2) _ . . L
4. For any exponential decay function, we show that tIne this section, we present algorithms for approximating

. L . CS over a streanR. The main results are: (1) For an
space complexity of approximating DCS with a small " : . .
. o . N bitrary decay functiori, there is a small space streaming
relative error is linear in the stream size, in the wor

. . foo. ..
case. This may be surprising, since there are simﬁ‘f@or'thm to approxmatsr W|tr_1 a small addmve error. (2)
and efficient solutions for maintaining exponentiall!/:Or anyconverg!ngdecay funct_lonf, thgre 1S a;mall space
decayed sum exactly in the non-correlated cai# 2] streaming algorithm to approxmaSé with relative error.

~ We evaluate our techniques over real and synthetic dgt@ Additive Error. A predicateP(v,w) is a 0-1 function
in §5, and observe that they can effectively summarigey andw. The time-decayed selectivi® of a predicate

massive streams in tens of kilobytes. P(v,w) on a streanR of (v,w;t) tuples is defined as
2 Prior Work Q- > wwt)er PV, W) -w- f(c—t)
Concepts of correlated aggregation in the (non-streaming) 3 wwyerW- fe—1)

OLAP context appear in [3]. The first work to propose cor-
related aggregation for streams was Getekal. [8]. They
assumed that data was locally uniform to give heuristics for

computing the non-decayed correlated sum where the thrdsbte thatS = Sé We use the following results on time-
old (1) is either an extrema (min, max) or the mean of the alecayed selectivity estimation from [6] in our algorithnm fo
the received valuesi(s). For the sliding window setting, approximating DCS with a small additive error.

they simply partition the window into fixed-length intersal

and make similar uniformity assumptions for each intervd[HEOREM 3.1. (THEOREMS4.1, 4.2, 4.3-ROM [6])

None of these approaches provide any strong guaranted>iven 0 < &€ < 1 and probability0 < & < 1, there exists
the answer quality. Subsequently, Ananthakrisahal.[1] a small space sketch of size & -log; - logM) that can
presented summaries that estimate the non-decayed cdreecomputed in one pass from stream R, where M is an
lated sum withadditive errorguarantees. The problem otipper bound on S. For any decay function f given at query
tracking sliding window based correlated sums with qualityne: (1) the sketch can return an estim&dor S such that
guarantees was given as an open problem in [1]. We shBWiS—S < e§ > 1-4. (2) Given predicate f,w), the
that this relative error guarantees are not possible whilegu sketch gives an estimat@ for the decayed selectivity Q,
small space, whereas additive guarantees can be obtaineslich thatPr[|Q—Q| < g] > 1- 9.

The decayed surSis defined aS= z w- f(c—t)
(vwit)eR

This result allows DCS to be additively approximated: estimate’§fr which is within a small relative error cSﬁ The
space complexity of the sketch dependsfon

THEOREM3.2. For an arbitrary decay function f, there The idea behind the sketch is to maintain multiple data

exists a small space sketch of R that can be computed in eff@ctures each of which solves the undecayed correlated

pass over the stream. At any time instant, glven athreshglﬂn and partition stream elements across different data

7, the sketch can returBy, such thatiS} — S{| < e} with structures, depending on their timestamps, following fhe a

probability at leastl — &. The space complexity of the sketcproach of the Weight-Based Merging Histogram (WBMH),

is O(g—lzlog% -logM), where M is an upper bound orés due to Cohen and Strauss [4]. In the rest of this section,
we first give high level intuition, followed by a formal de-

Proof. We run the sketch algorithm in [6] on strednwith scription of the sketch, and a correctness proof. Finally, w

approximation errog /3 and failure probability /2. Letthis describe enhancements that allow faster insertion ofrstrea

sketch be denoted by". To simplify the notation, assumeelements into the sketch.

f is fixed, and Ieé, S denote§[f, S£ respectively.

Givent at query time, we define a predicd®efor the 3.2.1 Intuition. We first describe the weight-based merg-

selectivity estimation a®?(v,w) = 1, if v> 1, andP(v,w) = ing histogram. The histogram partitions the stream element
0 otherwise. The seIectivitX #isQ=S;/S ThenZ can into buckets based on their age. Given a decay fundtion
return estimate® of Q andSof Ssuch that and parametesy, the sequenda,i > 0 is defined as follows:

bp =0, and fori > 0, b; is defined as the largest integer such

(3.1) PiQ-Q >¢e/3 <1-5/2 T 1)
- thatf (b — 1) > 102,
(3.2) Pr|S—§/>¢eS/3|<1-6/2 For simplicity, we first describe the algorithm for the

Our estimatés, is given by§r —3.6. From (3.1) and (3.2), case of a (strictly) synchronous stream, where the timgstam

and using the union bound on probabilities, we get that t ta sétlream etlr(]amerlt IS .JUStt Its p05|tr|]0n n thetstreag..LV;/e
following events are both true, with probability at least &. ater discuss the extension to asynchronous streamsi.€
denote the intervdb;, b 1) so that|Gi| = bj;1 — bi. Once

3.3) Q-¢/3 < Q <Q+ €/3 the decay functiorf() is given, theG;s are fixed and do not
(3.4) S1-¢/3) < 3 < (1+¢/3) change with time. The elements of the stream are grouped
_ - h into regions based on their age. For 0, regioni contains

Using the above, and usif@= S;/S, we get all stream elements whose age lies in inteal

. For anyi, we havef(b) < Bo) and thus we get

S < (§+e/3)-s-(1+e/3) o)< map

S i <logyg, (f((>)) Since the age of an element cannot be
S+ % +S(82) <S +S more thann, by < n. Thus we get that the total number of
3 39 regions is no more thap = [log, ¢, (@)]. From the

f(n)
In the last step of the above inequality, we have used @efinition of theb;s, we also have the following fact.
factS; < Sande < 1. Similarly, we get that if (3.3) and (3.4)
are true, thenS; > S; — €S, thus completing the proof thatPACT 3.1. Suppose two stream elements have agesnal

¢ can (with high probability) provide an estimat such &2 SO thata and & fall within the same region. Then,

that|S| — St| < &S m 1 _fa)
1+g ~ f(ap)

<l+g
An important feature of this approach, made possible due to
the flexibility of the sketch in Theorem 3.1, is that it allow$he data structure maintains a setboickets Each bucket
the decay functiorf to be specified at query time, i.e. aftegroups together stream elements whose timestamps fall in a
the streaR has been seen. This allows for a variety gfarticular range, and maintains a small space summary of
decay models to be applied in the analysis of the stredimese elements. We say that the bucket is “responsible” for
after the fact. Further, since the sketch is designed tolbariftis range of timestamps (or equivalently, a range of ages).
asynchronous arrivals, the timestamps can be arbitrary and Suppose that the goal was to mamtsgnjust the time-
arrivals do not need to be in timestamp order. decayed sum of all stream elements. If the current time

is such thatc modb; = 0, then a new bucket is created
3.2 Relative Error. In this section, we present a smalfor handling future elements. The algorithm ensures that
space sketch that can be maintained over a sti@amith the number of buckets does not grow too large through the
the following properties. For an arbitracpnvergingdecay following rule: if two adjacent buckets are such that the
function f which is known beforehand, and a parameaterage ranges that they are responsible for are both contained
which is provided at query time, the sketch can return anthin the same region, then the two buckets are merged into

New

bu‘cket merge merge
S e =fe e ==

bo b1 b2 b3 b4 age bo b1 bz bs b4 age bo b1 b2 b3 b4 age
(a) Regions (b) Buckets & Regions (c) Buckets & Regions after Merge

Figure 1: Weight-based merging histograms.

a single bucket. The count within the resulting bucket is merge togethe§, andS; to get a single sketch denoted
equal to the sum of the counts of the two buckets, and the by S= S US;,, such thaSretains Property 1 for the set
resulting bucket is responsible for the union of the ranges of elementfR; URy.

of timestamps the two buckets were responsible for (Sﬁ?e analysis of the sketch proposed in [12] explicitly shows

Figures 1(b) and 1(C).)' . that the above properties hold. Likewise, the sketch design
Due to the merging, there can be at mopt uckets: . . : L .

. o . |n€[5] also has the necessary properties, since it is built on

one bucket completely contained within each region, and one” he g-digest summar [11] which are themselves mer-
bucket straddling each boundary between two regions. Frg 9-919 y

Fact 3.1, the weights of all elements contained within a s le. The different sketches have slightly different tanel

gle bucket are close to each other, and sihisea converging space complexities; we state and analyze our algorithm _in
decay function, this remains true :';15 the ages of the elem te%ns ofa generic bucket sket_ch, and subsequently describe
) ' . . the'cost depending on the choice of sketch.

increase. Consequently, WBMH can appromm@éemth

&1 relative error by treating all elements in each bucket as,i

th hared th llest ti : in th d .f2.2 Formal Description and Correctness. Recall that
ey shared (he smallest imestamp in (n€ range, and scayng i, required bound on the relative error. Our algorithm
the corresponding weight by the total count.

. mbines two data structures: bucket sketches, with accu-
However, this does not solve the more general D

. . L cy parametes, = £/2; and the WBMH with accuracy pa-
problem, since it does not allow filtering out elements who yp 2=/ yp

| ller than We extend the above data struct Pgmeterel = g/2. The initialization is shown in the 5~
values are smatler than Ve extend tne above dala Stiuclurg , , nar s procedure (Figure 2), which creates the re-

to the DCS problem by embedding within each bucketad 13 sG; by selectingdy, ... bs. For simplicity of presenta-

structure that can answer the (undecayed) correlated su &N we have assumed that the maximum stream lenggh

a:l elf{ements tgat WereflPhsertled '_TLO th'tsh btucket. Ih'stdﬁown beforehand, but this is not necessary —lifgcan
Structure can be any ot the aigoriinms that can estimate egenerated incrementally, i.b. does not need to be gener-
sum of elements within a sliding window on asynchrono%zfe
streams, including [12, 5, 2]: values of the elements are

d until element ages exceeding; have been observed.
treated as fi ¢ d ind . . lied Figure 3 shows the ROCESELEMENT procedure for
rtea € at?' |meshamp$, anda W'nb ow zrze :hls sulpp € handling a new stream element. Whenever the currentttime
atquery time (w erenis an upperboundon the va ue). satisfies modb; =0, we create a new bucket to summarize
Thesfe observations yield our new algorithm for aPPTO%ie elements with timestamps franot +b; — 1 and seal the
imating S;. We replace the simple count for each bucket [g¢¢ pcket which was created at tie by. The procedure
the WBMH with a small space sketch, from any of [12, 5, 2\ p Reglons(t) returns the set of regions that contain
We W|II_ not assume a particular sketch for mal_ntalnm_g the iR ckets to be merged at tireln the next section we present
formation within a bucket. Instead, our algorithm will work, ;a1 methods to implement this requirement efficiently.
with any sketch that satisfies the following properties—\f‘«_(:;gure 4 shows the procedureERURNAPPROXIMATION
call such a sketch a “bucket sketch”. Lstdenote the accu-, hich generates the answer for a query ﬁr For each
racy parameter for such a bucket sketch. bucket, we multiply the common decayed weight with the

1. The bucket sketch must concisely summarize a stre§ifing windowed count using as the left boundary of the
of positive integers using space polylogarithmic in tpaindow, then return the summation of the products over all
stream size. Given parameter> 0 at query time, the the buckets as the estimate ol

sketch must return an estimate of the number of strez;}rﬂEOREM3 3. If f is a converging decay function, for any

elements greater than or equaltipsuch that relative 7 given at any time t, the algorithm specified in Figure 2, 3

error of the esUr_nate is withigp. and 4 can returlg such tha1— e)§ < §fr < (1+£)§.
2. It must be possible to merge two bucket sketches easily

into a single sketch. More precisely, suppose as Proof. For the special converging decay function where
the sketch for a set of elemerRg andS; is the sketch f(x) =1 (no decay), then WBMH has only one region and
for a set of element®,, then it must be possible toone bucket. So the algorithm reduces to a single bucket

Algorithm 3.1: SETBOUNDARIES(€)

Algorithm 3.2: PROCESELEMENT((Vi, W, i))

comment: createGo, Gy, ...
bo — 0;
for1<i<pB
do by — max{x|(1+5)f(x—1) > f(bi_1)}
j—-1
comment: index of the active bucket for new elements

,Gp usinge, = €/2

Figure 2: $TBOUNDARIES routine to initialize regions.

ifi modb;=0
je—j+1
Initialize a new bucket sketdB; with accuracye/2
then { Fg; —i
Lg, < i+b—1

comment: Set timestamp range covered By
Insert(vi,w;) into B;
for each g € FINDREGIONS(i)
comment: Set of regions with buckets to be merged at time

. . . . Brmin — min {t|t € Gg}
sketch. This sketch can directly providegn= £/2 relative Brnax - Max {t|t € Gg}
error guarantee for the estimateSJf Find bucket<s’ andl??”, such that

The broader case is wherg(x + 1)/f(x) is non- bmin< (t—Lg) < (t—Fg)

decreasing withx. Let {By,...,Bx} be the set of buckets < (t—Lg) < (t—Fg) < bmax
at query timet. LetRj C R be the substream that is aggre- 4o J comment: Find buckets covered B
gated intdB;, 1 <i < k. Since every stream element is aggre- B BUB"
gated into exactly one bucket at any tilehe R;s partition comment: merge two buckets
R U R =RandRNR; = 0if i # j. Note that merging Fg — Fg
two buckets just creates a new bucket over the union of the Lg — Ly
two underlying substreams. Lﬁft‘i =Y vicRy; >t Wj f(t—1j), Drop B’ andB”

be the time decayed correlated sum over the substam

1<i<ksoS =3k 1Srl Now we consider the accuracy gig re 3: RRocESELEMENT routine to handle updates

of the approximation foEr using bucket sketch;, for each

iinturn.

Note that at query timg, the common decayed weig
Let wy be the true decayed weight o
any element aggregated ir§, then due to the setting of

of Bi is f(t —Fg,).

the regions in WBMH, we have-lwy < f(t —Fg) < w}
(Fact3.1). Let{ve Rlv>T1}| =
elements in the buckétve have:

1 o« 1 y
1+€15r,i—1+£1vgmwt

<Q-flt—-Fg) < $ w

VER]

gl

Further, bucket sketc§ can returrﬁi such that [12, 5]
(1-£)Q <Q < (1+5)Q.

Combined with the above inequality, we have
1-&

f _A f
Trg i =@ ft—Fs) <(1+&)S;.
Adding up all theS[i overi=1,2,...,k, we get
& G- f(t—Fs) < (1+&)
1+& lerl Zl i S 2 lerl

Using the fact that & € < 1 ande; = & = €/2, along with
k k
Sﬁ: and §: Q-f(t—Fg)
i;S” i; I S

we conclude thafl — e)SI <8< (1+ S)Sﬁ. [

Qi, then summing over all .

ht’323 Fast Bucket Merging. At every time tick the his-

ogram maintenance algorithm needs to merge buckets that
are covered by a single region. In the synchronous stream
case, this occurs with every new element arrival. The naive
solution is to pass over all buckets and merge any pair gallin

in the same region on every update. This procedure can
severely reduce the speed of stream processing. In this sec-
tion, we present an algorithm, which directly returns thie se
of regions that have buckets to be merged at eachttime

DEFINITION 3.1. (BUCKET B’'S CAPACITY |B|) |B|=Lg—
Fs + 1, where g and kg are the largest and smallest times-
tamps that are covered by B (see Figure 3).

Recall that no pair of buckets overlap in the time ranges
that they cover. Therefore we hal® UB"| = |B'| + |B’|,
whereB’ andB” are any two buckets in the histogram and
is the merging operation on buck&sandB”. Now consider
the simple case where all boundaries are powers of two (i.e.
by = 1,bp = 2,b3 =4 and so on). Here, all capacities are
also powers of two, and the merging of buckets has a very
regular structure: whenever two buckets fit exactly into a
region, they are merged. It turns out that the same concept
generalizes to arbitrary patterns of growing regions. With
the help of Figure 1, we can visualize the buckets traveling
through the regions along the age axis, being merged when
necessary. For regioG;, let|; be the capacity of a bucket
enteringG;. More formally,

Algorithm 3.3: RETURNAPPROXIMATION(T) Algorithm 3.4: INITIALIZE FINDREGIONY()

Let the set of buckets bdB;, By, ...,By} Initialize hash tabld
comment: for somek, 1 <k < 20; lg «— 1;
s—0; fori<i<p-1
for 1<i<k dolj « _|Gifl|/|i71“ifl
Let Q; be result forB; usingT as window size comment: From Lemma 3.1
{S<_S+6i.f(t_|:Bi); for1<i<p-1

doif [|Gi|/li] >2
then Insert(i, b; 4+ 21;) into hash tabld
comment: Compute wherg; first has mergable buckets

comment: Approx sum of element weights B with v; > 1
return (§rf =9);

. . . . f
Figure 4: RETURNAPPROXIMATION routine to estimaté; Figure 5: Routine to initialize hash table with merging tane

1DE'I::I(;\“BION. 3.2 (:QEtGI_KiN ISS C/;PAC';Y. 1) Degnek bt —_merged withinG;; (2) This sequence of merging operations
tH tt ' F<—I b-<fB' ety = || i Wftere IS any bucke Sucr]lepeat every|G;i|/li] - I; clock ticks, meanin@s; has buckets
atl—Fs= D forsome value of t. to be merged at timesb; + (k| |Gi|/li| + j)li} for integers

In the next lemma, we show that for any spedifithere is a 2= 1 < L|Gil/li] andk > 0. u
fixed value ofl;: it does not vary over time, and can be easily

computed as a function of the region sizes. Lemma 3.2 provides a way for any region to directly

compute the sequence of time points at which there are
LEMMA 3.1. ForO<i< B, i =[|Gi_1|/li_1] - li_1 buckets to be merged. Based on this observation, we present

an algorithm to return the set of regions that have buckets to
Proof. The lemma is proved by induction. For the bagse merged at a given tirte

case, since the capacity of the new bucket create@irs

exactly equal tdGg|, merging cannot happen By. Thus Algtl)(r_ithm gpthk?St kBuckert] Mlt(ejr%ing. Thedalgorkithm for ‘
immediatelyl; = |Go| = [|Gol|/lo] - lo- Fortheinductivestep,trac Ing which buckets should be merged makes use of a

suppose the claim is true for someThen, for regior, all hash tableT to store the set of buckets to be merged at

buckets entering; have the same (constant) sizeExactly UMestampt. More precisely, the table cell corresponding
|Gi|/li] such buckets of sizé can be merged togetherm timet is a set of(i,t) pairs, such that regio; has

within G; before the “leading edge” of the merged buck&%\“Ckets to Il:)e mRerged at tirm;_FLg::re 5 shows groce_dure
crosses intd5;; 1. After the bucket of sizd |Gi|/li] - Ii is NITIALIZE FINDREGIONS() which first computes; using

formed, no further buckets of sizecan be merged with it Lemma3.1. It then uses Lemma 3.2 to fill in the earliest time

in regionGi, so it crosses int6; ;1. This procedure repeatsat which regiorG; WiII_have buckgts to be merged. At time
and sinceGi| andl; are constants . 1 is fixed asi [Gi| /1] - . t, FINDREGIONS(t) (Figure 6) retrieves the set of buckets to

This completes the induction m Merge, and deletes them from the hash table. Then, for each
' returned region, we compute its next merging time using
In the next lemma, we show that givdp we can Lemma 3.2 and store the results into the corresponding hash

compute the times at whid®; has buckets to be merged. table cells for the future lookup.

LEMMA 3.2. For 0 < i < B, the times at which Ghas 3.24 Time and Space Complexity. The space complex-

buckets to be merged is given fy + (k| |Gi|/li| + J)Ii} for ity includes the space cost for the buckets in the histogram

integers2 < j < [|G;i|/li] and k> 0. and the hash table. The space to represent each bucket de-
pends on the choice of the bucket sketch.

Proof. The new bucket created iB, has capacity equal to

|Go|, s0Gp does not have any buckets to be merged at ahffEOREM 3.4. The space complexity of the algorithm in

time. Fori > 0, if ||Gi|/li] < 2, thenG; will not have the Figure 2, 3 and 4 is Q3(2 +logn)) bits, where

chance to have two buckets of siketo be merged at any

time. Now we consider the case wheli&;|/I;] > 2 and 1. B= ['091%/2(“(0)/“(”))}

i > 0. Gj obtains its first whole incoming bucket at time

t = b +1i. Note that withinG; at most||G;i|/l;| buckets 2. Z = O(glzlogglognlogm) using the sketch of [12].

that enterG; can be merged together. Thus, (1) at time

t = by + 21i,bi + 3li,...,bi + [|Gi|/li] - i, buckets can be 3. 2= O(%Iogmlog(%)) using the sketch of [5].

Algorithm 3.5: FINDREGIONS(t) merge can be charged back to the corresponding insertion of
a new stream element. The consequence is that the amortized
M—0 number of merges per clock tick is bounded by a constant.
for each (i,t) € T This implies the stated time bound. []

comment: RegionG has buckets to be merged at tiine

M—MU({i} Space dependence on decay function f. As shown in The-
if (t—hi)/li mod||Gi|/li] =0 orem 3.4, the space complexity depends crucially on decay
thent’ —t+ 2l function f, since it determines the number of regions (im-
do dset’ —t+1; plicitly the number of buckets). We show the consequence

comment: Find whenG; next has mergable bucket$or various broad classes of decay function:
Insert(i,t’) into hash tabl&

return (M)

comment: set of regions with buckets to be merged at time

e For exponential decay functiorf§x) = 279, a > 0,
we haveB = anlog, , ., 2 and therefore the space com-

plexity is O (Enf log? n). This means that this algorithm

Figure 6: ANDREGIONS(t) finds mergable regions at tinte needs space linear in the input size.
¢ For polynomial decay function§(x) = (x+1)72, a >

Proof. The number of buckets used is at mog. 2 For 0, sincef = aloglﬁ/zn, we obtain a small space

the randomized sketch designed in [12], in order to have complexityO(s—lzIogznlogmlog%) using the sketch of

a ¢ failure probability bound, by the union bound, we [12], andO(%lognlogmlog(en/ logn) + log?n) using
need to set the failure probability for each bucket to be o sketch O]‘f [5];

_ 1 B ;
6/B, sowe get? = O(?|093 Iognlogm) (Lemmallin o0 ihe case of no decayf (x) = 1), the regionGy is

[12]). For the deterministic sketch designed in [5f, = infinitely large, so the algorithm maintains only one
O(%Iogmlog (%)) (83.1 in [5]). The size of the hash bucket, giving space co§i(Z + logn).

table can be set t8(3) cells, because each of tiieregions
occupies at most one cell. Each cell u§¥sogn) bits of
space to store the region’s index and merging time. So
together, the total space cos¢3(Z + logn)).

Intuitively the algorithm can approximaé with a rel-
aﬁilve error bound using small spacd ilecays more slowly
than the exponential decay. Further, the space decreases th
“slower” that f decays, the limiting case being that of no de-
THEOREM 3.5. The (amortized) time complexity of the alcay. We complement this observation with the result that the
gorithm per update is linear in the size of the bucket sketBlS problem under exponential decay requires linear space
data structure used. in order to provide relative error guarantees.

Proof. The cost of the algorithm is dominated by the cost 4fSynchronous Streams. So far our discussion of the al-

merging bucket sketches together when necessary. |rg;erggr|thm for relative error has focused on th(_a case of syn-

anew element into the sketch takes time sublinear in the sgfg0nous streams, where the elements arrive in order of

of the bucket sketch. Updating the hash table has to be d§Aiestamps. In an asynchronous setting, a new element

once for every merge that occurs, and takes constant tif¥; W1,t1) may have timestamp <t wheret is the cur-

The merge of two bucket sketches can be carried out in tif§@t time. But this can easily be handled by the algorithm

linear in the size of the bucket sketch data structure [12, 8pscribed above: the new element is just directly inserted

So the time is determined by the (amortized) number ipfo the earlier bucket which is responsible for timestamp

merges per clock tick. The accuracy and space guarantees do not alter, although the
The number of merge operations over the course tipe cost is affected since the correct bucket must be found

algorithm can be bounded in terms of the number of updaf@&€ach new arrival, and buckets to merge determined.

(for synchronous streams, where there is one arrival per

clock tick). Observe that foe < 1, the set of regions4 Lower Bounds

generated will mean that|G;|/l;] < 2 for all i. This is This section shows large space lower bounds for finite de-

seen by contradiction: suppose th&gi|/li| > 2. Then we cay or (super) exponential decay for DCC on synchronous

could have merged two of the buckets of capatitin the streams. Since DCC is a special case of DCS, these lower

preceding region: sinckS;i_1| > 2|G;j|/3 (by choice ofg), bounds also apply to DCS on asynchronous streams.

|Gi|/li > 2 implies|Gj_1|/l; > 2. From this, we see that the

bucket capacities must be powers of two, sihceust be 4.1 Finite Decay. Finite decay, defined iff 1.2, captures

eitherlj_; or 2lj_1. By a standard charging argument, eadhe case when after some agethe decayed weight is zero.

THEOREM4.1. For any finite decay function f with ageAlgorithm II. The second algorithm tries to reduce the
limit N, any streaming algorithm (deterministic or randomdependence om by observing that for some close values of
ized) that can provid«é:rf such that|CTf —Crf| < sCTf for T 1, the value OCI may be quite similar, so there is potential

given at query time must stof(N) bits. for “compression”. Asf(x) =2-%%, a > 0, we can write:
Cf — z Za(i—t) — 27(1t z 2(Ii
Proof. The bound follows from the hardness of finding the ' Vst ver ’

maximum element within a sliding window on a stream Qfperet is the query time. We reduce approximatiﬁé
integers. Tracking the maximum within a sliding windowWith a relative error bound to a counting problem over
of sizeN over a data stream nee@Nlog(m/N)) bits of ap asynchronous stream with sliding window queries. We
space, wheren is the size of the universe from which thgyeate a new streaR in this model by treating each stream
stream elements are dravgy (4 of [7])-_ N element as an item with timestamp set to its valuand
We argue that if we could appromme(fté, wheref has it weight 2. The quenyC! at timet can be interpreted
age limitN, we could also find the maximum of the lasks 5 gjiging window query on the derived streBhat timem

N eIeme_nts iR, Let a denote the value of the magimun}lvith width m— 7. The answer to this query [y - 20i- by
element in the lasl elements of the stream. By definition . .) =
he above equation, scaling this b§f 2approximate€; .

the decayed weights of thH most recent elements aré : X

positive, while all older elements have weight zero. No&t th The denvegi strearf can be summarized by sket(_:hes
£ . . . f such as those in [12, 2]. These answer the sliding window

C; is a monotonically decreasing function of soCy > 0

(andcf < cf for any T < a) while cf —0fort> a. If query with relative errog, implying relative error forCTf.
T a T — .

§) i ! But the cost of these sketches applied her@(&" log?m)
Cr can be approximated with relative error, then we “Hits: in the reduction, the number of copies of each stream

e f f
d|st|ngmsh.the case§; >0 andCTf =0. .By repeatedly glement increases exponentially, and the space cost of the
querying different values of for C;, we find a valuer” sketches depends logarithmically on this quantity. m

such thalCTf* >0 andCTf“rl = 0. Thent* must bea, the _ _ _
maximum element of the last elements. m Hardness of Exponential Decay. Algorithm I is a concep-

tually simple approach, which stores information for each
Since sliding window is a special case of finite decay, tH¥ssible value in the domain. Algorithm Il uses summaries
shows that approximatinG! (a problem identified in [1]) that are compact in their original setting, but when applied
cannot be solved with relative error in sublinear space. 0 the DCC problem, their space must increase to give an ac-

curate answer for any. The core reason for the high space
4.2 Exponential Decay. Exponential decay functionscost of both algorithms is the fact that agaries between 0
f(x) = 2-9%, a > 0 are widely used in non-correlated tim@ndm, the value ofC; can vary over an exponentially large
decayed steaming data aggregation. It is easy to maint&ifge, and a large data structure is required to track so many
simple sums and counts under such decay efficiently [djfferent values. This is made precise by the next theorem,
However, in this section we will show that it i®t possible Which shows that the space cost of Algorithm I is close to
to approximat€; with relative error guarantees using smaftPtimal. We go on to provide a small space sketch with a
space ifm (the size of the universe) is large afids expo- Wea][<ened guarantee §.4, by limiting the range of values
nential decay. This remains true for other classes of de@yc; for which an accurate answer is required.
that are “faster” than exponential decay. We first preseat tw _ _
natural approaches to approxim@g under an exponential THEOREM4.2. For an exponential decay function) =

decay functionf, and analyze their space cost to show thdt - » @ >0ande < 1/2, any algorithm (deterministic or
each stores large amounts of information. randomized) that provide€; over a stream of size &

. . . . O(m), such tha Cl —c!| < ec! for 1 given at query time
Algorithm 1. Since tracking sums under exponential decwﬁsi stora)(mlggrﬂ) bi;s| jvhe;e mis tghe unive?se rgize.
can be performed efficiently using a single counter, we can m '

Just track the decayed count of elements for eaeh[m]T Proof. The proof uses a reduction from thedex problem

denote this a¥%'. ThenC;{ can be festlmated &Bv>tW - in two-party communication complexity [10]. In theibEX

To ensure an accurate answer, éaghmust be tracked with problem, the first player holds a binary strib@f lengthN,
sufficiently many bits of precision. One way to do this iand the second holds an index [N]. The first player is

to maintain the timestamps of the lgst log, 2] elements allowed to send a single message to the second, who must
in the substrearR, = {vi € Rlvi = v}. From these, one canthen output the value dffi] (theith bit of stringb). Since no
compute\/\&,f with relative errore, and henceCI with the communicationis allowed from the second player to the first,
same relative error. Each timestampO@8ogn) bits, so the the size of the message must®EN) bits, even allowing the
total space cost i@(mlogn[% log %]) bits. B protocol a constant probability of failure [10].

b=100

11 ..
|R| =n = 4m[1] time // \

) - R:]0/0...0{1]0...0§20...0/00...0} 3 |0..
[o[-[o [o[-To] -~ [ol-To[Mo[-[o] R lol-clafo.oJ2o.clofo.o[3]

1
|[To| = 4[51 [Im—1] = 4[%1 Interval

.0foJo...0]o]o...o[4]o...0f

(a) Setting the Intervals over a Stream (b) Mapping from binary strindp to intervals

Figure 7: Creating a stream for the lower bound proof ugingl

We show that a sublinear streaming data structure to To complete the proof, we observe that if we had an
approximate DCC under exponential decay would allas¥gorithm to approximate:rf using small space, the first
a sublinear communication protocol fokDEX. Given a player could execute the algorithm on the stream derived
binary stringb of lengthmp, we construct an instance of &rom their binary string and send the memory contents of
stream. Herenis the size of the domain of the stream valuethe algorithm as a message to the second player. The
andp > 1is an integer parameter set later. Thpositions apove analysis allows them to determine the valug/ofor

in streamR are divided intam intelrvals:lo, I, .5 Im-1, 88 7= Li—pj, from which they can recovésp[t] and henceéli].
shown in Figure 7(a). Let = 2[21; ea;:h interval has®2 The communication lower bound forbex is Q(mp) bits,
positions, so that the length Bfis Q(m2P). which implies that the data structure must alsoChnp)

Every position in the stream is set to 0 by default; theis The stream length is = O(™), so fixingn setsp
construction places one non-zero element in each interygl phounds the space I§y(mlog M) for constanta. We
oy m .
at a position that is a multiple dof (shaded in Figure 7(a)). conclude by observing that since the communication lower

We interpret the binary string as an integeb. L?t be b hound allows randomization, this space lower bound holds
that value represented in baBe= 2P (sob = 3;P'bp[i] = tor randomized stream algorithms. -
¥ 2'b[j]). Inintervall;, we place an element with valiat

positionbp[i]¢, shown in Figure 7(b) fop = 1. We write 4.3 Super-exponential Decay. Theorem 4.2 applies to de-

m2P
a

- m)) cay functionsf that decay faster than exponential decay. Ex-
Co - F((Pi+be[i])¢) amples of such decay functions include: fbJyexponential
T decay[4]: f(x) = (x+ 1)k2-9%/k! wherek > 0, anda > 0
< z f(Pi¢) + f((PT + bp[1])¢) are constants. (2) super-exponential dechx) = 2~
i=T+1 wherea > 0 andf > 1. We can show:
< FPT+1)e+ (= 1)6) + f((PT+be[1])) THEOREM4.3. A decay function @x) is (super)-
'1: exponential, if there exist constants > 1 and c¢> 0,
< f(P(t+1)¢—¢)+ f(PTL+ bp[T]¢) such that for every ¥ c, f(x)/f(x+1) > 0. Any algorithm
i that can provideCA:; for super-exponential f over a stream
zéf(Pré—k (P—1)0)+ f(PT¢+bp[T]¢) of size n= ©(m), such thalC! — C!| < eC! must used(m)
4 bits of space.
géf(Pré—F bp[T]¢)
Proof. The argument is based on the proof of Theorem 4.2.
which follows sincef (x) = 2~ and/ = 2[£]. Thus, Whenn > m- [log, 2] + ¢, we divide the substream from
. 4 the position(c+ 1) to the position4m- [log, 2] 4 c) intom
(4.5) F(PTe+be[t]¢) <Cp < Zf(PTl+bp[T]() intervals based ofi = 2[log, 2] andp = 1. By using the

. construction from Theorem 4.2, the result follows.]
Denotebp[T] = j, where 0< j <P —1 (j is a digit in
base P). IfCTf can be approximated within a relative eITo 4 Finite (Super) Exponential Decay. As noted above,
£ =3, thenj can be retrieved by the data stream algorithike |ower bound proof relies on distinguishing a sequence
the approximation oe! ¢, satisfies of exponentially decreasing possible values of the DCC. In
$f(PT¢+bp[1]¢) < C < 2f (PTL+ bp[T]!) practical situations, it often suffices to return an answier o
Meanwhile, observe that for anyk > j, zerowhen the true answer is less than some specified bound
f(Pre+jl)/f(Pre+ké) > 4. As a result, we can dis-y. This creates a “finite” version of exponential decay.
tinguish the case dip[1] = j andbp[T] = k (the cas&k < |
is symmetrical). DEFINITION 4.1. A decay function f is a finite exponential

600000

0.11 T

0.1
0.09
0.08
0.07 *
0.06
0.05
0.04
0.03
0.02
0.01

0.11 T

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

T
Worldcup Data Set —+—
Synthetic Data Set ---x---

500000 | 1

T
5 percentile —+—

T
5 percentile —+— =
= 25 percentile ---x---
= 5

25 percentile ---x---
50 percentile ---*---
75 percentile &
95 percentile —-m--
Theory ---o--

0 percentile ---*---
75 percentile &
95 percentile —-m~

Theory ---o--

T T
T T
T T

T

T T

400000 b

300000 - x-o______

Observed Additive Error
Observed Additive Error
Updates per Second

200000 | 1

L

o - 0 S 100000 .

1000 10000 100000 1e+06 1000 10000 100000 1le+06 1000 10000 100000
Number of Nodes Number of Nodes Number of Nodes

(a) Accuracy for world cup data set (b) Accuracy for synthetic data set (c) Throughput versus space on both data sets

Figure 8: Throughput and accuracy with sliding window deealgitive error.

decay function if fx) =279% a > 0 when2 9% > 1 for synthetic data is the same as the worldcup data set. Here,
0< u < 1;and f(x) = 0, otherwise. the timestamp of an element is a random number chosen
uniformly from the rangél, max] where max= 898293600
Since finite exponential decay is a finite decay, thethe maximum timestamp in the world cup data set. The
lower bound of Theorem 4.1 implies th@{(Z Iog%) space valuev is chosen uniformly from the randg&, max,, where
is needed to approximal@; for such anf. A simple max, = 1823_218_'5 the maximum Vall.Je in th_e worldcup data
. £ . set. The weight is chosen similarly, i.e. uniformly from the
algorithm forC; simply stores all stream elements with non- : . L
. range[1l, max,] where may, = 99 is the maximum weight in
zero decayed weight. The space used for a synchron&u
O 1N s o : e world cup data.
stream isO(; logmlog H) bits, which is (nearly) optimal

(treating logn as a small constant). This approach extends We implemented our algorithms using CH/STL and a.‘"
to the finite versions of super-exponential decay. experiments were performed on a SUSE Linux Laptop with

1GB memory. Both input streams were asynchronous, and

45 Sub-exponential decay. For any decay functiof(x), elements do not arrive in timestamp order.

wheref(x) > 0 and limc. f(x) = 0, we can always finth Additive Error. We implemented the algorithm for additive
positions (timestamps) in the streamsGq <Xz <... <Xm, error §3.1) using the sketch in [12] as the basis. On the
such that for every, 1 <i <m, we havef(t —x1)/f(t— sketch, queries were made for the correlated Slirwhere

x) < 3. Thus, itis natural to analyze what happens when Weyas the sliding decay function with window siz&4107
apply the construction from the lower bound in Theorem 4¢gr the synthetic data, and 3600 for the worldcup data. We
to streams under such functions. Certainly, the same sty|gq 5 range of values of the threshaldfrom the 5 percent

of argument constructs a stream that forces a large dg@ntile (5th percentile) of the values of stream elements t
structure. But, if we fix somen and setp = 1, the stream the 95 percent quantile. We analyzed the accuracy of the
has to be truly enormous to imply a large space lower bouidiimates returned by the sketch, for a given space budget.
e.g., for the polynomial decay functioh(x) = (x+1)"?, Figures 8(a) and 8(b) show the observed additive error
a>0, we needn > 2M to force Q(m) space. This is s a function of the space used by the algorithm for different
in agreement with the upper bounds §8.2 which gave yjyes ofr. The space cost is measured in the number of
algorithms which depend logarithmically anfor such truly nodes, where each node is the space required to store a single
huge values o, this leads to a requirement of 0§2 = syream elementv, w.t), which takes a constant number of

Q(m), so there is no contradiction. bytes. This cost can be compared to the naive method
. which stores all input elements (nearly 34 million nodes).
5 Experiments The observed error is usually significantly smaller than the

We present results from an experimental evaluation of thearantee provided by theory. The theoretical guarantee
algorithms on two data sets. The first was web traffic lopslds irrespective of the value ofor the window size. Note
from the 1998 World Cup on June 19th (the ‘worldcup’ dathat the additive error decreased as the square root of the
set) fromhttp://ita.ee.lbl.gov/. Each stream space cost, as expected. Figure 8(c) shows the throughput,
element was a tuplés,w,t), wherev was the client idw the which is defined as the number of stream elements processed
packet size modulo 100, andhe timestamp. The dataseper second, as a function of the space used. From the results,
had 33695769 elements. The second was a synthetictilytrend is for the throughput to decrease slowly as thesspac
generated data set (the ‘synthetic’ data set). The sizeeof ithcreases. Across a wide range of values for the space, the

; : 20000 T T T
0.14 Worldcup —+— Worldcup Data Set —+—
Synthetic ---x--- Synthetic Data Set ---x---
s 012 | B 18000 |- B
g T
LAJ, 0.1 o S
% & 16000 B
5 008 B 5
4 o
- 0
e 006 B 2 14000 N B
2 g X
Q
2 004} X =)
o 12000 E
0.02 - B
Il Il Il Il Il 10000 Il Il Il Il Il
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Number of Nodes Number of Nodes
(a) Relative Error versus Space (b) Throughput versus Space

Figure 9: Performance of Relative Error Algorithm, with fAmbmial Decay.

throughput is between 250K and 350K updates per seconthallenging: for example, to output a good set of cluster cen
ters for those points with; > 1, weighted byw; f (t —t;). It

Relative Error. We performed similar experiments to teqyill be of interest to understand exactly which such corre-
our algorithms for relative error, based on the polynomi@ied aggregations are possible in a streaming setting.

decay functionf(x) = 1/(x+ 1)1, The thresholds areAcknowledgments. We thank Divesh Srivastava for helpful
the same as in the additive error algorithm. The resuttscussions, and Kewei Tu for useful pointers§@m2.3.
are shown in Figure 9. In general, the space cost for a
given error for polynomial decay was much smaller than tfeferences
algorithm for sliding windows (Figure 9(a)). This greater
space efficiency comes at some cost: we have to fix the dedal R- Ananthakrishna, A. Das, J. Gehrke, F. Korn, S. Mutksfr
function apriori—the additive error result allows the decay ~nan. and D. Srivastava. Efficient approximation of coreslat
function to be specified at query time. The throughput for SY4Ms On Qata §treamt§EE Transactions on Knowledge and
the relative error algorithm is also appreciably lower than Data Engmeenng15(3).569—572, 2003. .

. . . 2] C. Busch and S. Tirthapura. A deterministic algorithm fo
additive error algorithm (Figure 9(b)), by over an order o%

: -9) - summarizing asynchronous streams over a sliding window. In
magnitude. This is partly due to the greater time complexity STACS2007.

of the relative error algorithm caused by the periodic buck@] D. Chatziantoniou and K. A. Ross. Querying multiple feas
merging operations which access every node in the merged of groups in relational databases.\hDB, 1996.
buckets, and partly because our implementation is not full¢] E. Cohen and M. Strauss. Maintaining time-decayingastre

tuned. aggregates. IRODS 2003.
[5] G. Cormode, F. Korn, and S. Tirthapura. Time-decaying
6 Concluding Remarks aggregates in out-of-order streamsI@DE, 2008.

o | hed liah h bl f . 46] G. Cormode, S. Tirthapura, and B. Xu. Time-decaying
ur results shed light on the problem of computing corre- sketches for sensor data aggregationP@DC, 2007.

lated sums over time-decayed streams. The upper boungis) patar, A. Gionis, P. Indyk, and R. Motwani. Maintaign

are quite strong, since they apply to asynchronous streams sgream statistics over sliding windowsSIAM Journal on

with arbitrary timestamps. It is also possible to extendséhe Computing 31(6):1794-1813, 2002.

results to a distributed streaming model, since the sunzmaris] J. Gehrke, F. Korn, and D. Srivastava. On computing corre

ing data structures used can naturally be computed over dis- lated aggregates over continual data streamsSIGMOD,

tributed data, and merged together to give a summary of the 2001. . o .

union of the streams. The lower bounds are similarly stronf] P- Gibbons and S. Tirthapura. Distributed streams éigors

since they apply to the most restricted model, for computinl% for sliding windows. INSPAA 2002. o ,

DCC where there is exactly one arrival per time unit. [10] E. Ku§h|IeV|tz .and N. Nisan. Communication Complexity
The correlated sum is at the heart of many correlated ag- Cambn_dge University Press, 1997. _

] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
gregates, but there are other natural correlated compuogat

. .) . Medians and beyond: new aggregation techniques for sensor
to consider which do not follow immediately from DCS. .qvorks. INSenSys2004.

Some we expect to be hard in general: correlated maximy®y . xu, S. Tirthapura, and C. Busch. Sketching asyncbusn
max,~tW; f (t —t;) has a linear space lower bound under fi- ~ data streams over sliding window®istributed Computing
nite decay functions, since this lower bound follows from 20(5):359-374, 2008.

the uncorrelated case. Other analysis tasks seem feasible b

