
Noname manuscript No.
(will be inserted by the editor)

Correlation Clustering in Data Streams

Kook Jin Ahn · Graham Cormode · Sudipto
Guha · Andrew McGregor · Anthony Wirth

the date of receipt and acceptance should be inserted later

Abstract Clustering is a fundamental tool for analyzing large data sets. A rich body
of work has been devoted to designing data-stream algorithms for the relevant opti-
mization problems such as k-center, k-median, and k-means. Such algorithms need to
be both time and and space efficient. In this paper, we address the problem of corre-
lation clustering in the dynamic data stream model. The stream consists of updates
to the edge weights of a graph on n nodes and the goal is to find a node-partition
such that the end-points of negative-weight edges are typically in different clusters
whereas the end-points of positive-weight edges are typically in the same cluster. We
present polynomial-time, O(n ·polylogn)-space approximation algorithms for natural
problems that arise.

We first develop data structures based on linear sketches that allow the “quality”
of a given node-partition to be measured. We then combine these data structures with
convex programming and sampling techniques to solve the relevant approximation
problem. Unfortunately, the standard LP and SDP formulations are not obviously
solvable in O(n ·polylogn)-space. Our work presents space-efficient algorithms for

Kook Jin Ahn
University of Pennsylvania. kookjin@cis.upenn.edu. The author is currently at Google,
kookjin@google.com.

Graham Cormode
University of Warwick. Supported in part by European Research Council grant ERC-2014-CoG 647557,
a Royal Society Wolfson Research Merit Award and the Yahoo Faculty Research Engagement Program.
G.Cormode@warwick.ac.uk

Sudipto Guha
This work was done while the author was at University of Pennsylvania, supported by NSF Award CCF-
1546141. sudipto@cis.upenn.edu

Andrew McGregor
University of Massachusetts Amherst. Supported by NSF Award CCF-1637536, CCF-1908849, and CCF-
1934846. mcgregor@cs.umass.edu

Anthony Wirth
School of Computing and Information Systems, The University of Melbourne. Supported by ARC Future
Fellowship FT120100307. awirth@unimelb.edu.au

2 Kook Jin Ahn et al.

the convex programming required, as well as approaches to reduce the adaptivity of
the sampling.

1 Introduction

Correlation Clustering is a widely studied model of clustering within graphs where
edges are marked as positive or negative. The aim is to choose clusters so that most
edges within clusters are positive, while most edges between clusters are negative. The
correlation clustering problem was initially proposed for complete unweighted graphs.
The motivation for this formulation is an intuitive one: there are many scenarios where
some measure of affinity between entities can be quantified (say, in social networks),
and we seek to group entities into clusters of similar objects.

The correlation clustering problem was first formulated as an optimization problem
by Bansal, Blum and Chawla [12]. The input is a complete weighted graph G on
n nodes, where each pair of nodes uv has weight wuv ∈ R. A positive-weight edge
indicates that u and v should be in the same cluster, whereas a negative-weight
edge indicates that u and v should be in different clusters. Given a node-partition
C = {C1,C2, . . .}, we say edge uv agrees with C, denoted by uv ∼ C, if the relevant
soft constraint is observed. The goal is to find the partition C that maximizes

agree(G,C) := ∑
uv∼C
|wuv|

or, equivalently, that minimizes disagree(G,C) := ∑uv |wuv| − agree(G,C). Solving
this problem exactly is known to be NP-hard, but a constant factor approximation
algorithm for the minimization problem was one of the first results on this problem [6].

Since it was first studied, a large body of work [6, 12, 17, 21, 30, 48] has been
devoted to approximating max-agree(G) = maxC agree(G,C) and min-disagree(G) =
minC disagree(G,C), along with variants min-disagreek(G) and max-agreek(G), where
we consider partitions with at most k clusters. In this paper, we focus on multi-
plicative approximation results. If all weights are ±1, there is a polynomial time
approximation scheme (PTAS) for max-agree [12, 30] and a 2.06-approximation for
min-disagree [19]. When there is an upper bound, k, on the number of clusters in C, and
all weights are±1, Guruswami [30] introduced a PTAS for both problems. Even k = 2
is interesting, with an efficient local-search approximation introduced by Coleman,
Saunderson and Wirth [21].

If the weights are arbitrary, there is a 0.7666-approximation for max-agree [17,48]
and an O(logn)-approximation for min-disagree [17, 23]. These methods use convex
programming: as originally described, this cannot be implemented in O(npolylogn)
space, even when the input graph is sparse. This aspect is well known in practice,
and Elsner and Schudy [25], Bagon and Galun [11], and Bonchi, Garcia Sorino and
Liberty [14] discuss the difficulty of scaling the convex programming approach.

Applications. When first formulated, correlation clustering was a theoretical and rig-
orous attempt to answer the co-reference problem in natural language processing [12].
However, that followed a similar formulation, called cluster editing, whose genesis lay

Correlation Clustering in Data Streams 3

in clustering gene expression patterns [45]. The clustering aggregation and consensus
clustering problems build on correlation clustering [29]. Meanwhile, the inconsistent
soft constraints in correlation clustering model problems in duplicate detection [24,37],
record linkage [33] as well as crowdsourcing approaches to entity resolution [49, 50].

Clustering and Graph Analysis in Data Streams. Given the importance of clustering
as a basic tool for analyzing massive data sets, it is unsurprising that considerable
effort has gone into designing clustering algorithms in the relevant computational
models. In particular, in the data-stream model we are permitted a limited number
of passes (ideally just one) over the data while using only limited memory. This
model abstracts the challenges in traditional applications of stream processing such
as network monitoring, and also leads to I/O-efficient external-memory algorithms.
Naturally, in either context, an algorithm should also be fast, both in terms of the time
to process each stream element and in returning the final answer.

Classical clustering problems including k-median [18, 36], k-means [7], and k-
center [16, 34, 42] have all been studied in the data stream model, as surveyed by
Silva et al. [46]. Non-adaptive sampling algorithms for correlation clustering can
be implemented in the data stream model, as applied by Ailon and Karnin [8], to
construct additive approximations. Chierichetti, Dalvi and Kumar [20] presented the
first multiplicative approximation data stream algorithm: a polynomial-time (3+ ε)-
approximation for min-disagree on ±1-weighted graphs using O(ε−1 log2 n) passes
and semi-streaming space — that is, a streaming algorithm using space as a function
of n that is Θ(npolylogn) [26]. Pan et al. [44] and Bonchi et al. [14] discuss faster
non-streaming implementations of related ideas but the work of Chierichetti, Dalvi and
Kumar [20] remained the state of the art data stream algorithm until our work. Using
space roughly proportional to the number of nodes can be shown to be necessary for
solving many natural graph problems including, it will turn out, correlation clustering.
For a recent survey of semi-streaming algorithms and graph sketching see [43].

1.1 Computational Model

In the basic graph stream model, the input is a sequence of edges and their weights.
For semi-streaming algorithms, the available space to process the stream and perform
any necessary post-processing is O(npolylogn) bits, focusing on the dependence on n,
rather than on parameters such as ε . Our results also extend to the dynamic graph
stream model where the stream consists of both insertions and deletions of edges; the
weight of an edge is specified when the edge is inserted and deleted (if it is subsequently
deleted). For simplicity, we assume that all weights are integral. We will consider
three types of weighted graphs: (a) unit weights, where all wuv ∈ {−1,1}; (b) bounded
weights, where all weights are in the range [−w∗,−1]∪ [1,w∗] for some constant
w∗ ≥ 1; and (c) arbitrary weights, where all weights are in the range [−w∗,w∗] and
here w∗ = poly(n). We denote the sets of positive-weight and negative-weight edges
by E+ and E−, respectively, and define G+ = (V,E+) and G− = (V,E−). Within this
streaming model of computation, we are concerned with how much space is required,
and how many passes through the input data are needed.

4 Kook Jin Ahn et al.

We note that many of our algorithms, such as those based on sparsification [3],
can also be implemented in MapReduce.

1.2 Techniques and Results

In Section 2, we present three basic data structures for the agree and disagree query
problems where a partition C is specified at the end of the stream, and the goal is to
return an approximation of agree(G,C) or disagree(G,C). They are based on linear
sketches and incorporate ideas from work on constructing graph sparsifiers via linear
sketches. These data structures can be constructed in the semi-streaming model and
can be queried in Õ(n) time. As the algorithms rely on relatively simple matrix-vector
operations, they can be implemented fairly easily in MapReduce.

In Section 3 and 4, we introduce several new ideas for solving the LP and SDP
for min-disagree and max-agree. In each case, the convex formulation must allow
each candidate solution to be represented, verified, and updated in small space. But
the key point made here is that the formulation plays an outsized role in terms of
space efficiency, both from the perspective of the state required to compute and the
operational perspective of efficiently updating that state. In the future, we expect the
space efficiency of solving convex optimization to be increasingly important.

We discuss multipass for algorithms for min-disagree in Section 5. Our results are
based on adapting existing algorithms that, if implemented in the data stream model,
may appear to take O(n) passes. However, with a more careful analysis we show that
O(log logn) passes are sufficient. Finally, we present space lower bounds in Section 6.
These are proved using reductions from communication complexity and establish that
many of our algorithms are space-optimal.

In more detail, our results on the different formulations of correlation clustering
(whether the weights are unit, bounded or arbitrary; whether to maximize agreements,
or minimize disagreements; and whether the number of clusters is fixed) are as follows.

Max-Agree. For max-agree, we provide the following single-pass streaming algo-
rithms, each needing Õ(npoly(k,ε−1)) space: (i) a polynomial-time (1−ε)-approximation
for bounded weights (Theorem 4), and (ii) an algorithm with approximation factor
0.7666(1− ε) for arbitrary weights in Õ(nε−10) time (Theorem 11).

Min-Disagree. We show that any constant pass algorithm that can test whether
min-disagree(G) = 0 in a single pass, for unit weights, must store Ω(n) bits (Theo-
rem 15). For arbitrary weights, the lower bound increases to Ω(n+ |E−|) (Theorem 16)
and to Ω(n2) in the case the graph of negative edges may be dense (Theorem 14). We
provide a single-pass algorithm that uses s = Õ(nε−2 + |E−|) space and Õ(s2) time
and provides an O(log |E−|) approximation (Theorem 9). Since Demaine et al. [23]
and Charikar et al. [17] provided approximation-preserving reductions from the “min-
imum multicut” problem to min-disagree with arbitrary weights, it is expected to be
difficult to approximate the latter to better than a log |E−| factor in polynomial time.
For unit weights when min-disagree(G) ≤ t, we provide a single-pass polynomial

Correlation Clustering in Data Streams 5

Table 1 Summary of approximation results in this paper.

Section/Theorem Problem Weights Passes Space Bound Approximation Factor
§2.1 Thm 1 disagree unit 1 Õ(ε−2) 1+ ε

§2.1 Thm 2 min-disagree unit 1 Õ(n+ ε−2t) 1+ ε if min-disagree(G)≤ t
§2.2 Thm 4 max-agree bounded 1 O(npoly(k,ε−1)) 1− ε

§2.3 Thm 5 disagree2 arbitrary 1 Õ(nε−2) 1± ε

§2.3 Thm 6 min-disagree2 bounded 1 Õ(npoly(ε−1)) 1+ ε

§3.4 Thm 9 min-disagree arbitrary 1 Õ(nε−2 + |E−|) 3(1+ ε) log |E−|
§4 Thm 11 max-agree arbitrary 1 Õ(nε−2) 0.7666(1− ε)

§5.1 Thm 12 min-disagree unit log logn Õ(n) 3
§5.2 Thm 13 min-disagreek unit log logn Õ(npoly(k,ε−1)) 1+ ε

§6 Thm 15 min-disagree unit p Ω(n/p) Any
§6 Thm 16 min-disagree arbitrary 1 Ω(n+ |E−|) Any
§6 Thm 17 disagree3 arbitrary 1 Ω(n2) Any

time algorithm that uses Õ(n+ε−2t) space (Theorem 2). We provide a Õ(nε−2)-space
PTAS for min-disagree2 for bounded weights (Theorem 6).

We also consider multiple-pass streaming algorithms. For unit weights, we present
an algorithm with O(log logn) passes that mimics the algorithm of Ailon et al. [6],
and provides a 3-approximation in expectation (Theorem 12), improving on the re-
sult of Chierichetti et al. [20]. For min-disagreek(G), on unit-weight graphs with
k ≥ 3, we give a min(k− 1,O(log logn))-pass polynomial-time algorithm using
Õ(npoly(k,ε−1)) space (Theorem 13). This result is based on emulating an algo-
rithm by Giotis and Guruswami [30] in the data stream model.

We summarize all our results in Table 1 in the order that they appear subsequently.
The table shows the various problems (using the notation introduced in Section 1),
based on how many passes are used, and whether edge weights are unit, bounded by a
constant, or arbitrary (see Section 1.1).

2 Basic Data Structures and Applications

We introduce three basic data structures that can be constructed with a single-pass
over the input stream that defines the weighted graph G. Given a query partition C,
these data structures return estimates of agree(G,C) or disagree(G,C). Solving the
correlation clustering optimization problem with these structures directly would re-
quire exponential time or ω(npolylogn) space. Instead, we will need to exploit them
carefully to design more efficient solutions. Meanwhile, in this section, we present a
short application of each data structure that illustrates their utility.

2.1 First Data Structure: Bilinear Sketch

Consider a graph G with unit weights (wi j ∈ {−1,1}) and a clustering C. Our first
data structure allows us to solve the query problem, which is, given G and C, to
report (an approximation of) disagree(G,C). Define the matrices MG and MC where

6 Kook Jin Ahn et al.

MG
i j = max(0,wi j) and

MC
i j =

{
0 if i and j are separated in C
1 if i and j are not separated in C .

Note that if wi j = 1, then

(MG
i j −MC

i j)
2 = (1−MC

i j)
2 = I[i and j are separated in C]

whereas, if wi j =−1 then

(MG
i j −MC

i j)
2 = (MC

i j)
2 = I[i and j are not separated in C] .

Hence, the (squared) matrix distance, induced by the Frobenius norm, gives exactly

disagree(G,C) = ‖MG−MC‖2
F = ∑

i j
(MG

i j −MC
i j)

2 .

To efficiently estimate ‖MG−MC‖2
F when C is not known a priori, we can repurpose

the bilinear sketch approach of Indyk and McGregor [38]. The basic sketch is as
follows:

1. Let α ∈ {−1,1}n and β ∈ {−1,1}n be independent random vectors whose entries
are 4-wise independent; in a single pass over the input, compute

Y = ∑
i j∈E+

αiβ j .

Specifically, we maintain a counter that is initialized to 0 and for each i j ∈ E+ in
the stream we add αiβ j to the counter and if i j ∈ E+ is deleted we subtract αiβ j
from the counter; the final value of the counter equals Y . Note that α and β can
be determined by a hash function that can be stored in Õ(1) space such that each
entry can be constructed in Õ(1) time.

2. Given query partition C= {C1,C2, . . .}, return X =
(
Y −∑`

(
∑i∈C`

αi
)(

∑i∈C`
βi
))2.

To analyze the algorithm we will need the following lemma due to Indyk and
McGregor [38] and Braverman et al. [15].

Lemma 1 Given n2 values { fi j ∈R}i, j∈[n], we have for each fi j, E
[
(∑i, j αiβ j fi j)

2
]
=

∑i, j f 2
i j and V

[
(∑i, j αiβ j fi j)

2
]
≤ 9(∑i, j f 2

i j)
2.

The following theorem will be proved by considering an algorithm that computes
multiple independent copies of the above sketch and combines the estimates from
each.

Theorem 1 For unit weights, there exists an O(ε−2 log(δ−1) log(n))-space algorithm
for the disagree query problem which succeeds, i.e., returns a 1+ ε-approximate
solution, with probability 1−δ . Each positive edge is processed in Õ(ε−2) time, while
the query time is Õ(ε−2n).

Correlation Clustering in Data Streams 7

Proof We first observe that, given Y , the time to compute X is Õ(n). This follows
because for a cluster C` ∈ C, on n` nodes, we can compute ∑i∈C`

αi and ∑i∈C`
βi in

Õ(n`) time. Hence the total query time is Õ(∑` n`) = Õ(n) as claimed.
We next argue that repeating the above scheme a small number of times in parallel

yields a good estimate of disagree(G,C). To do this, note that

X =

(
∑

i j∈E+

αiβ j−∑
`

(
∑

i∈C`

αi

)(
∑

i∈C`

βi

))2

=

(
∑
i j

αiβ j(MG
i j −MC

i j)

)2

.

We then apply Lemma 1 to fi j = MG
i j −MC

i j and deduce that

E [X] = disagree(G,C) and V [X]≤ 9(disagree(G,C))2 .

Hence, running O(ε−2 logδ−1) parallel repetitions of the scheme and averaging the
results appropriately yields a (1± ε)-approximation for disagree(G,C) with proba-
bility at least 1−δ . Following a fairly standard approach, we partition the estimates
into O(logδ−1) groups, each of size O(ε−2) (see [22, Section 1.4.1] for example). We
can ensure that with probability at least 2/3, the mean of each group is within a 1± ε

factor by an application of the Chebyshev bound; we then argue using the Chernoff
bound that the median of the resulting group estimates is a 1± ε approximation with
probability at least 1−δ .

Remark. We note that by setting δ = 1/nn in the above theorem, it follows that we
may estimate disagree(G,C) for all partitions C using Õ(ε−2n) space. Hence, given
exponential time, we can also (1+ ε)-approximate min-disagree(G). While this is
near-optimal in terms of space, in this paper we focus on polynomial-time algorithms.

Application to Cluster Repair. Consider the Cluster Repair problem [32], in which, for
some constant t, we are promised min-disagree(G)≤ t and want to find the clustering
argminC disagree(G,C).

We first argue that, given a spanning forest F of (V,E+) we can limit our attention
to checking a polynomial number of possible clusterings. The spanning forest F can
be constructed in the dynamic graph stream model using an algorithm with space
Õ(n) [4]. Let CF be the clustering corresponding to the connected components of E+.
Let F1,F2, . . . ,Fp be the forests that can be generated by adding t1 and then removing
t2 edges from F where t1 + t2 ≤ t. Let CFi be the node-partition corresponding to the
connected components of Fi.

Lemma 2 The optimal partition of G is CFi for some 1 ≤ i ≤ p. Furthermore, p =
O(n2t).

Proof Let E+
∗ be the set of edges in the optimal clustering that are between nodes in

the same cluster and let E+
∗ = (E+∪A)\D, i.e., A is the set of positive edges that need

to be added and D is the set of edges that need to be deleted to transform E+ into a
collection of node-disjoint clusters. Since min-disagree(G)≤ t, we know |A|+ |D| ≤ t.
It is possible to transform F into a spanning forest F ′ of E+∪A by adding at most |A|

8 Kook Jin Ahn et al.

edges. It is then possible to generate a spanning forest of F ′′ with the same connected
components as E+

∗ = (E+∪A)\D by deleting at most |D| edges from F ′. Hence, one
of the forests Fi considered has the same connected components at E+

∗ .
To bound p, we proceed as follows. There are less than n2t1 different forests that

can result from adding at most t1 edges to F . For each, there are at most nt2 forests
that can be generated by deleting at most t2 edges from the, at most n−1, edges in F ′.
Hence, p < ∑t1,t2:0≤t1+t2≤t n2t1+t2 < t2n2t .

The procedure is then to take advantage of this bounded number of partitions by
computing each CFi in turn, and estimating disagree(G,CFi). We report the CFi that
minimizes the (estimated) repair cost. Consequently, setting δ = 1/(ppoly(n)) in
Theorem 1 yields the following theorem.

Theorem 2 For a unit-weight graph G with min-disagree(G) ≤ t where t = O(1),
there exists a polynomial-time data-stream algorithm using Õ(n+ ε−2t) space that
with high probability 1+ ε approximates min-disagree(G).

2.2 Second Data Structure: Sparsification

The next data structure is based on graph sparsification and works for arbitrarily
weighted graphs. A sparsification of graph G is a weighted graph H such that the
weight of every cut in H is within a 1+ε factor of the weight of the corresponding cut
in G. A celebrated result of Benczúr and Karger [13] shows that it is always possible
to ensure the the number of edges in H is Õ(nε−2). A subsequent result shows that
this can be constructed in the dynamic graph stream model.

Theorem 3 ([5, 31]) There is a single-pass algorithm that returns a sparsification
using space Õ(nε−2) and time Õ(m).

The next lemma establishes that a graph sparsifier can be used to approximate
agree and disagree of a clustering.

Lemma 3 Let H+ and H− be sparsifications of G+ = (V,E+) and G− = (V,E−)
such that all cuts are preserved within factor (1± ε/6), and let H = H+∪H−. For
every clustering C,

agree(G,C) = (1± ε/2)agree(H,C)± εw(E+)/2

and

disagree(G,C) = (1± ε/2)disagree(H,C)± εw(E−)/2 .

Furthermore, max-agree(G) = (1± ε)max-agree(H).

Proof The proofs for agree and disagree are symmetric, so we restrict our attention
to agree. Let ε ′ = ε/6. The weight of edges in E− that are cut is estimated within a

Correlation Clustering in Data Streams 9

1+ ε ′ factor in the sparsifier. For an arbitrary cluster C ∈ C, and letting w′(·) represent
the weight in the sparsifier,

w(uv ∈ E+ : u,v ∈C) = w(uv ∈ E+ : u ∈C,v ∈V)−w(uv ∈ E+ : u ∈C,v 6∈C)

= ∑
u∈C

w(uv ∈ E+ : v ∈V)−∑
u∈C

w(uv ∈ E+ : v 6∈C)

= (1± ε
′) ∑

u∈C
w′(uv ∈ E+ : v ∈V)− (1± ε

′) ∑
u∈C

w′(uv ∈ E+ : v 6∈C)

= w′(uv ∈ E+ : u,v ∈C)±2ε
′w′(uv ∈ E+ : u ∈C,v ∈V) ,

where the third line follows because, for each u ∈ C, the weights of cuts ({u},V \{u})
and (C,V \C) are approximately preserved. The final line simply combines and
rewrites the two error terms, since

ε
′
∑
u∈C

w′(uv∈E+ : v 6∈C)≤ ε
′
∑
u∈C

w′(uv∈E+ : v∈V) = ε
′w′(uv∈E+ : u∈C,v∈V).

Summing over all clusters C ∈ C, the total additive error is

2ε
′w′(E+)≤ 2ε

′(1+ ε
′)w(E+)≤ εw(E+)/2 ,

(assuming ε ≤ 1), as required.
The last part of the lemma follows because w(E+) ≤ max-agree(G), as can be

seen by considering the trivial all-in-one-cluster partition.

Application to max-agree with Bounded Weights. In Section 3, based on the spar-
sification construction, we develop a poly(n)-time streaming algorithm that returns
a 0.7666-approximation for max-agree when G has arbitrary weights. However, in the
case of unit weights, a RAM-model PTAS for max-agree is known [12, 30]. It would
be unfortunate if, by approximating the unit-weight graph by a weighted sparsification,
we lost the ability to return a 1± ε approximation in polynomial time.

We resolve this by emulating an algorithm by Giotis and Guruswami [30] for
max-agreek using a single pass over the stream1. Their algorithm is as follows:

1. Let {V i}i∈[m] be an arbitrary node-partition, where m = d4/εe and bn/mc ≤ |V i| ≤
dn/me.

2. For each j ∈ [m], let S j be a random sample of r = poly(1/ε,k, log1/δ) nodes in
V \Vj.

3. For all possible k-partitions of each of S1, . . . ,Sm :
– For each j, let {S j

i }i∈k be the partition of S j.
– Compute and record the cost of the clustering in which each v ∈V j is assigned

to the ith cluster defined by the (fixed) S j
i as

i = argmax
i

 ∑
s∈S j

i : sv∈E+

wsv + ∑
s 6∈S j

i : sv∈E−
|wsv|

 .

1 Note max-agreek(G)≥ (1− ε)max-agree(G) for k = O(1/ε) [12].

10 Kook Jin Ahn et al.

4. For all the clusterings generated, return the clustering C that maximizes agree(G,C).

Giotis and Guruswami [30] prove that the above algorithm achieves a 1 + ε

approximation factor with high probability if all weights are {−1,+1}. We explain
in Section A that their analysis actually extends to the case of bounded weights. The
more important observation is that we can simulate this algorithm in conjunction with
a graph sparsifier. Specifically, the sets V1, . . . ,Vm and S1, . . . ,Sm can be determined
before the stream is observed. To emulate step 3, we just need to collect the rnm edges
incident on each Si during the stream. If we simultaneously construct a sparsifier
during the stream we can evaluate all of the possible clusterings that arise. With
r and m as set in the algorithm above, the space needed is rmn = O(npoly(k,ε)).
Treating k and ε as constants, Focusing on n, rather than k or ε , and recalling that
a semi-streaming algorithm is one that uses O(npolylogn) space, this leads to the
following theorem.

Theorem 4 For bounded-weight inputs, there exists a polynomial-time semi-streaming
algorithm that, within Õ(npoly(k,1/ε)) space, with high probability, (1−ε)-approximates
max-agree(G).

2.3 Third Data Structure: Node-Based Sketch

In this section, we develop a data structure that supports queries to disagree(G,C) for
arbitrarily weighted graphs when C is restricted to be a 2-partition. For each node i,
define the vector, ai ∈ R(

n
2), indexed over the

(n
2

)
edges, where the only non-zero

entries are:

ai
i j =

wi j/2 if i j ∈ E−

wi j/2 if i j ∈ E+, i < j
−wi j/2 if i j ∈ E+, i > j

Lemma 4 For a two-partition C= {C1,C2}, disagree(G,C)= ‖∑`∈C1
a`−∑`∈C2

a`‖1.

Proof The result follows immediately from consideration of the different possible
values for the {i, j}th coordinate of the vector ∑`∈C1

a`−∑`∈C2
a`. The sum can be

expanded as

∣∣∣∣∣∣
(

∑
`∈C1

a`− ∑
`∈C2

a`
)

i j

∣∣∣∣∣∣=

∣∣wi j/2−wi j/2

∣∣ if i j ∈ E− and i, j in different clusters∣∣wi j/2+wi j/2
∣∣ if i j ∈ E− and i, j in the same cluster∣∣wi j/2+wi j/2
∣∣ if i j ∈ E+ and i, j in different clusters∣∣wi j/2−wi j/2
∣∣ if i j ∈ E+ and i, j in the same cluster

.

Hence
∣∣∣(∑`∈C1

a`−∑`∈C2
a`
)

i j

∣∣∣= |wi j| if and only if the edge is a disagreement.

We apply the `1-sketching result of Kane, Nelson and Woodruff [40] to compute a
random linear sketch of each ai.

Correlation Clustering in Data Streams 11

Theorem 5 For arbitrary weights, and for query partitions that contain two clus-
ters there exists an O(ε−2n logδ−1 logn)-space algorithm which provides a 1± ε

approximation to a disagree2 query with probability at least 1−δ . The query time is
O(ε−2n logδ−1 logn).

Unfortunately, for queries C where |C| > 2, Ω(n2) space is necessary, as shown in
Section 6.

Application to min-disagree2(G) with Bounded Weights. We apply the above node-
based sketch in conjunction with another algorithm by Giotis and Guruswami [30],
this time for min-disagree2. Their algorithm for general k is as follows:

1. Sample r = poly(1/ε,k) · logn nodes S and for every possible k-partition {Si}i∈[k]
of S:
(a) Consider the clustering where v ∈V \S is assigned to the ith cluster where

i = argmax
j

 ∑
s∈S j :sv∈E+

wsv + ∑
s 6∈S j :sv∈E−

|wsv|

2. For all the clusterings generated, return the clustering C that minimizes disagree(G,C).

As with the max-agreement case, Giotis and Gurusawmi [30] prove that the above
algorithm achieves a 1+ ε approximation factor with high probability if all weights
are {−1,+1}. We explain in Section A that their analysis actually extends to the case
of bounded weights. Again note we can easily emulate this algorithm for k = 2 in the
data stream model in conjunction with the third data structure. The sampling of S and
its incident edges can be performed using one pass and O(nr logn) space. We then
find the best of these possible partitions in post-processing using the above node-based
sketches. Focusing on n, rather than k or ε , the space cost is Õ(n), and hence the
algorithm is semi-streaming.

Theorem 6 For bounded-weight inputs, there exists a polynomial-time semi-streaming
algorithm that, within space Õ(npoly(1/ε)), with high probability (1+ε)-approximates
min-disagree2(G).

3 Convex Programming in Small Space: min-disagree

In this section, we present a linear programming-based algorithm for min-disagree. At
a high level, progress arises from new ideas and modifications needed to implement
convex programs in small space. While the time required to solve convex programs
has always been an issue, a relatively recent consideration is the restriction to small
space [2]. In this presentation, we pursue the Multiplicative Weight Update technique
and its derivatives. This method has a rich history across many different communi-
ties [9], and has been extended to semi-definite programs [10]. In this section, we
focus on linear programs in the context of min-disagree; we postpone the discussion
of SDPs to Section 4.

12 Kook Jin Ahn et al.

In all multiplicative weight approaches, the optimization problem is first reduced
to a decision variant, involving a guess, α , of the objective value; we show later how
to instantiate this guess. The LP system is

MWM-LP:
{

cTy≥ α

s.t. Ay≤ b, y≥ 0 ,

where A ∈ RN×M
+ , c,y ∈ RM

+ , and b ∈ RN
+. To solve the MWM-LP approximately, the

multiplicative-weight update algorithm proceeds iteratively. In each iteration, given
the current solution, y, the procedure maintains a set of multipliers (one for each
constraint) and computes a new candidate solution y′ which (approximately) satisfies
the linear combination of the inequalities, as defined in Theorem 7.

Theorem 7 ([9, Theorem 3.3]) Suppose that, δ ≤ 1
2 and in each iteration t, given

a vector of non-negative multipliers u(t), a procedure (termed Oracle) provides a
candidate y′(t) satisfying three admissibility conditions (where ρ, ` are parameters
that describe the Oracle’s guarantees),

(i) cT y′(t)≥ α;
(ii) u(t)T Ay′(t)−u(t)T b≤ δ ∑i ui(t); and

(iii) −ρ ≤−`≤ Aiy′(t)−bi ≤ ρ , for all 1≤ i≤ n.

We set u(t+1)i = (1+δ (Aiy′(t)−bi)/ρ)u(t)i. Assuming we start with u(0) = 1, after
T = O(ρ`δ−2 lnM) iterations the average vector, y = ∑t y′(t)/T , satisfies Aiy−bi ≤
4δ , for all i.

The computation of the new candidate depends on the specific LP being solved.
The parameter ρ is called the width, and controls the speed of convergence. The
parameter ` is bounded by ρ , but a better bound on ` allows a better convergence
estimate. A small-width Oracle is typically a key component of an efficient solution,
for example, to minimize running times, number of rounds, and so forth. However,
the width parameter is inherently tied to the specific formulation chosen. Consider the
standard LP relaxation for min-disagree, where variable xi j indicates edge i j being
cut:

min ∑
i j∈E+

wi jxi j + ∑
i j∈E−

|wi j|(1− xi j)

xi j + x j` ≥ xi` for all i, j, `
xi j ≥ 0 for all i, j

.

The triangle constraints state that if we cut one side of a triangle, we must also cut at
least one of the other two sides. The size of the formulation is in Θ(n3), where n is
the size of the vertex set, irrespective of the number of nonzero entries in E+∪E−. In
what follows, we will make use of sparsifications of the edge sets in order to reduce
the size of problems. However, note that for this LP formulation, since the size is
always Θ(n3), an edge sparsification would not in any way change the size of the
above linear program. To achieve Õ(n) space, we need new formulations, and new
algorithms to solve them.

The first hurdle is the storage requirement. We cannot store all the edges/variables
which can be Ω(n2). This is avoided by using a sparsifier and invoking (the last part

Correlation Clustering in Data Streams 13

of) Lemma 3. Let H+ be the sparsification of E+ with m′ = |H+|. For edge sq ∈ H+

let wh
sq denote its weight after sparsification. For each pair i j ∈ E− and some set of

edges E ′, let Pi j(E ′) denote the set of all paths between i and j involving edges only in
the set E ′. Consider the following LP for min-disagree, similar to that of Wirth [51],
but in this sparsified setting:

min ∑
i j∈E−

|wi j|zi j + ∑
sq∈H+

wh
sq xsq

∀p ∈ Pi j(H+), i j ∈ E− zi j + ∑
sq∈p

xsq ≥ 1 (LP1)

∀i j ∈ E−,sq ∈ H+ zi j,xsq ≥ 0

The intuition of an integral (0/1) solution is that zi j = 1 for all edges i j ∈ E− that are
not cut, and xsq = 1 for all sq ∈ H+ that are cut. Therefore, the relevant variable in the
objective function is 1 whenever the assignment to an edge disagrees with the input.

By Lemma 3, the objective value of LP1 is at most (1+ ε) times the optimum
value of min-disagree. However, LP1 now has exponential size, and it is unclear how
we can maintain the multipliers and update them in small space. To overcome this
major hurdle, we follow the approach below.

3.1 A Dual Primal Approach

Consider a primal minimization problem, for example, min-disagree, in the canonical
form:

Primal LP:
{

min bTx
s.t. ATx≥ c, x≥ 0 .

The dual of the above problem for a guess, α of the optimum solution (to the Primal)
becomes

Dual LP:
{

cTy≥ α

s.t. Ay≤ b, y≥ 0 ,
which is the same as the decision version of MWM-LP as described earlier. We
apply Theorem 7 to the Dual LP, however we still want a solution to the Primal
LP. Note that despite approximately solving the Dual LP, we do not have a Primal
solution. Even if we had some optimal solution to the Dual LP, we might still require
a lot of space or time to find a Primal solution, though we could at least rely on
complementary slackness conditions. Unfortunately, similar general conditions do not
exist for approximately optimum (or feasible) solutions. To circumvent this issue:

(a) We apply the multiplicative-weight framework to the Dual LP and try to find an
approximately feasible solution y such that cT y≥ (1−O(δ))α and Ay≤ b,y≥ 0.

(b) The Oracle is modified to provide a y, subject to conditions (i)–(iii) of Theorem 7,
or an x that, for some f ≥ 1, satisfies

bT x≤ f ·α, AT x≥ c, x≥ 0 .

Intuitively, the Oracle is asked to either make progress towards finding a feasible
dual solution or provide an f -approximate primal solution in a single step.

14 Kook Jin Ahn et al.

(c) If the Oracle returns an x then we know that cT y > (bT x)/ f is not satisfiable. We
can then consider smaller values of α , say α ← α/(1+δ). We eventually find a
sufficiently small α that the Dual LP is (approximately feasible) and we have a x
satisfying

bT x≤ f · (1+δ)α, AT x≥ c, x≥ 0 .

Note that computations for larger α continue to remain valid for smaller α .

This idea, of applying the multiplicative-weight update method to a formulation with
exponentially many variables (the Dual), and modifying the Oracle to provide a
solution to the Primal (that has exponentially many constraints) in a single step, has
also benefited solving MAXIMUM MATCHING in small space [3]. However in Ahn
and Guha [3], the constraint matrix was unchanging across iterations (the objective
function value did vary) – here we will have the constraint matrix vary across iterations
(along with the value of the objective function). Clearly, such a result will not apply
for arbitary constraint matrices and the correct choice of a formulation is key.

One key insight is that the dual, in this case (and as a parallel with matching) has
exponentially many variables, but fewer constraints. Such a constraint matrix is easier
to satisfy approximately in a few iterations because there are many more degrees of
freedom. This reduces the adaptive nature of the solution, and therefore we can make a
lot of progress in satisfying many of the primal constraints in parallel. Other examples
of this same phenomenon are the numerous dynamic connectivity/sparsification results
due to Guha et al. [35], where the algorithm repeatedly finds edges in cuts (dual of
connectivity) to demonstrate connectivity. In that example, the O(logn) seemingly
adaptive iterations collapse into a single iteration.

Parts of the three steps, that is, (a)–(c) outlined above, have been used to speed up
running times of SDP-based approximation algorithms [10]. In such cases, there was no
increase to the number of constraints nor consideration of non-standard formulations.
It is often thought, and as explicitly discussed by Arora and Kale [10], that primal-
dual approximation algorithms use a different set of techniques from the primal-dual
approach of multiplicative-weight update methods. By switching the dual and the
primal, in this paper, we align both sets of techniques and use them interchangeably.

The remainder of Section 3 is organized as follows. We first provide a generic
Oracle construction algorithm for MWM-LP, in Section 3.2. As a first example, we
then apply this algorithm on the multicut problem in Section 3.3 – the multicut problem
is inherently related to min-disagree for arbitrary weights [17, 23]. We then show how
to combine all the ideas to solve min-disagree in Section 3.4.

3.2 From Rounding Algorithms to Oracles

Recall the formulation MWM-LP, and Theorem 7. Algorithm 1 takes an f -approximation
for the Primal LP and produces an Oracle for MWM-LP. This is a generic transfor-
mation that satisfies conditions (i) and (ii) of Theorem 7 for any problem whose dual
matches MWM-LP. As a consequence of the transformation the analysis need only
focus on condition (iii) as discussed in the statement of Theorem 7. The main steps
correspond to (1) producing a (possibly) infeasible primal solution; (2) attempting

Correlation Clustering in Data Streams 15

to round that (possibly) infeasible primal solution; (3) deciding the success/failure
of the rounding step and identifying a set of violated constraints in case of failure;
and (4) the indices of the violated constraints supply the coordinates of an admissible
dual candidate y (as defined by Theorem 7). Each one of these steps has associated
costs that depend on the problem formulation in terms of the number of variables,
constraints (dual variables) and the choice of the rounding algorithm. We revisit these
costs in the specific context of correlation shortly.

Algorithm 1 From a rounding algorithm to an Oracle.
1: Transform vector u(t) (a vector of weights for the constraints of Dual LP) into a vector of scaled primal

variables x, thus: xi = αu(t)i/∑i biu(t)i.
2: Perform a rounding algorithm for the Primal LP with x as the input fractional solution (as described

in (b) previously). Either there is a subset of violated constraints in the Primal LP or (if no violated
constraint exists) there is a solution with objective value at most f ·α , where f is the approximation
factor for the rounding algorithm. In case no violated constraint exists, return x.

3: Let S = {i1, i2, . . . , ik} be (the indexation of) the set of violated constraints in the Primal LP and let
∆ = ∑i∈S ci.

4: Let yi = α/∆ for i ∈ S, and let yi = 0 otherwise. Return y. Note the two return types are different based
on whether progress was made in the primal or dual direction.

The following lemma shows how to satisfy the first two conditions of Theorem 7;
the width parameter has to be bounded separately for a particular problem.

Lemma 5 If c j > 0 for each Primal constraint, and ∑i u(t)i > 0, then Algorithm 1
returns a candidate y that satisfies conditions (i) and (ii) of Theorem 7.

Proof By construction, cTy = α , addressing condition (i). So it remains to prove that
u(t)T Ay−u(t)T b≤ 0. Since u(t) is a scaled version of x,

1
∑i u(t)i

(
u(t)T Ay−u(t)T b

)
=

1
∑i xi

∑
i

xi(Aiy−bi) =
1

∑i xi

(
∑

i
xiAiy−∑

i
xibi

)

=
1

∑i xi

(
∑

j
y j(AT

j x)−∑
i

xibi

)
≤ 1

∑i xi

(
∑

j
y jc j−∑

i
xibi

)
= 0

The inequality in the second line follows from y j only being positive if the corre-
sponding Primal LP constraint is violated. Finally, by construction, ∑ j y jc j = α and
∑i bixi = α; since we also assumed that ∑i u(t)i > 0, the lemma follows.

3.3 Streaming MULTICUT Problem

The MINIMUM MULTICUT problem is defined as follows. Given a weighted undirected
graph and κ pairs of vertices (si, ti), for i = 1, . . . ,κ , the goal is to remove the lowest
weight subset of edges such that every i, si is disconnected from ti.

In the streaming context, suppose that the weights of the edges are in the range [1,W]
and the edges are ordered in an arbitrary order defining a dynamic data stream (with
both insertions and deletions). We present a O(logκ)-approximation algorithm for the

16 Kook Jin Ahn et al.

multicut problem that uses Õ(nε−2 logW +κ) space and Õ(n2ε−7 log2 W) time ex-
cluding the time to construct a sparsifier. The Õ(n2) term dominates the time required
for sparsifier construction. The relevant papers have more details regarding streaming
sparsifiers [35, 41]. The algorithm is defined in terms of a parameter, δ , which will
eventually be set to O(ε).

MC1 Sparsify the graph defined by the dynamic data stream, preserving all cuts,
and thus the optimum multicut, within a 1± δ factor. Let E ′ be the edges in
the sparsification and |E ′|= m′, where m′ = O(nδ−2 logW), from the results
of Ahn et al. [5]. Let (w jq) refer to weights after the sparsification.

MC2 Given an edge set E ′′ ⊆ E ′, let P′(i,E ′′) be the set of all si–ti paths in the
edge set E ′′. The LP that captures MULTICUT is best viewed as relaxation of
a 0/1 assignment. Variable x jq is an indicator of whether edge (j,q) is in the
multicut. If we interpret x jq as an assignment of lengths, then for all i ∈ [κ], all
p ∈ P′(i,E ′) have length at least 1. The relaxation is therefore:

α∗ = min∑(j,q)∈E ′ w jqx jq
s.t. ∑(j,q)∈p x jq ≥ 1 for all i ∈ [κ], p ∈ P′(i,E ′)

x jq ≥ 0 ∀(j,q) ∈ E ′
(LP2)

MC3 Compute an initial upper bound α0 ∈ [(1+4δ)α∗,(1+4δ)n2α∗] (see Lemma 6).
MC4 Following the dual-primal approach in Algorithm 1, as α decreases (note the

initial α0 being high, we cannot hope to even approximately satisfy the dual),
we consider the (slightly modified) dual

∑p yp ≥ α
1

w jq
∑p:(j,q)∈p yp ≤ 1 for all (j,q) ∈ E ′

yp ≥ 0 for all i ∈ [κ], p ∈ P′(i,E ′)
(LP3)

More specifically, we consider the following variation: given α , let E ′(α) be
the set of edges of weight at least δα/m′, and we seek:

∑p yp ≥ α
1

w jq
∑p:(j,q)∈p yp ≤ 1 for all (j,q) ∈ E ′(α)

yp ≥ 0 for all i ∈ [κ], p ∈ P′(i,E ′(α))

(LP4)

MC5 Run the Oracle provided in Algorithm 2.
MC6 If an x is received, set α←α/(1+δ) as in (c) in Section 3.1. This step occurs at

least once (Lemma 7). Note that reducing α corresponds to adding constraints
as well as variables to LP4 due to new edges in E ′(α/(1+δ))−E ′(α). Set
ui′(t + 1) = (1− δ/ρ)t for each new constraint i′ added, assuming that the
Oracle in step (MC5) has been run a total of t times thus far. Lemma 8 shows
that this transformation provides a u and a collection y(t) as if the multiplicative
weight algorithm for LP4 was run for the current value of α = α1.

Correlation Clustering in Data Streams 17

MC7 If the number of iterations required by Theorem 7 have been completed, then
average the y returned. This ensures that we obtain an approximately feasible
solution for LP4. This corresponds to a proof of (near) optimality. We return
the x returned corresponding to the previous value of α (which was α(1+δ))
as the solution. This is an f (1+O(δ)) approximation (Lemma 7). If we have
not completed the number of iterations, we return to (MC5).

Lemma 6 Consider introducing the edges of E ′ from the largest weight to smallest.
Let w be the weight of the first edge whose introduction connects some pair (si, ti). Set
α0 = (1+4δ)n2w. Then α0 ∈ [(1+4δ)α∗,(1+4δ)n2α∗].

Proof Note w is a lower bound on α∗; moreover, if we delete the edge with weight
w and all subsequent edges in the ordering we have a feasible multicut solution.
Therefore α∗ ≤ n2w. The lemma follows.

Naively, this edge-addition process runs in Õ(m′κ) time, since the connectivity
needs to be checked for every pair. However, we can introduce the edges in groups,
corresponding to weights in (2z−1,2z], as z decreases; we check connectivity after
introducing each group. This algorithm runs in time Õ(m′+κ logW) and approxi-
mates w, i.e., overestimates w by a factor of at most 2, since we have a geometric
sequence of group weights. The initial value of α can thus be set to (1+4δ)2zn2.

Lemma 7 α is decreased, as in (MC6), at least once. The solution returned in (MC7)
is an f (1+O(δ)) approximation to α∗.

Proof Using Theorem 7 once we are in (MC7) multiplying the average of the yp by
1/(1+ 4δ) gives a feasible solution for LP4 for the edge set E(α). Moreover, for
all paths p, containing any edge in E ′−E ′(α), we have yp = 0. Therefore this new
solution is a feasible solution of LP3. Therefore α/(1+4δ)≤ α∗ once we reach the
required number of iterations in (MC7). This proves that we must decrease α at least
once, because α0 is larger than (1+4δ)α∗ (Lemma 6).

The solution x corresponds to f α(1+δ). Since α is bounded above by α∗(1+4δ),
the second part of the lemma follows as well.

Corollary 1 We decrease α at most O(δ−1 logn) times in step MC6.

Proof If we decrease α then at some point line (7) of Algorithm 2 provides a solution
� α∗, which is infeasible. Note that the solution would have value f α . But this has
to be at least α∗. Thus α cannot decrease arbitrarily. Combined with the upper bound
in Lemma 6, the result follows.

Lemma 8 Algorithm 2 returns an admissible y (defined in Theorem 7) for LP4 with
(width) ρ = m′/δ and `= 1. Moreover the set of assignments of yp (over the different
iterations) that were admissible for α = α2 remains admissible if α is lowered to α1 <
α2 and u updated as described in (MC6).

18 Kook Jin Ahn et al.

Algorithm 2 Oracle for LP4
1: Given weights ut

jq, for (j,q) ∈ E ′(α), define x jq = αut
jq/∑(j,q)∈E ′(α) w jqut

jq.
2: Define the shortest path metric dx(·, ·) with the x jq representing edge lengths. Define B(ζ ,r) = {ζ ′ |

dx(ζ ,ζ ′) ≤ r}, which corresponds to a family of balls/regions centered at ζ , each of radius r. Let
cut(B(ζ ,r)) be the total weight of edges in E ′(α) that are cut by B(ζ ,r), i.e.,

cut(B(ζ ,r)) = ∑
(ζ ′,ζ ′′)∈E ′(α);dx(ζ ,ζ ′)≤r<dx(ζ ,ζ ′′)

wζ ′ζ ′′ .

3: Find a collection of regions B(ζ1,r1), . . . ,B(ζg,rg), . . . such that every rg ≤ 1
3 and each si (from the

given instance of the multicut problem) belongs to some region, and ∑g cut(B(ug,rg))≤ 3α ln(κ +1).
Lemma 9 shows us how to find {ζ j}.

4: if for some i both si and ti belong to the same region then
5: Find the corresponding path p, which is of length at most 2/3, which violates the constraint.

Return yp = α . Implicitly return yp′ = 0 for all other paths that involve the si–ti pair.
6: else
7: Return the union of the cuts defined by the balls (this corresponds to x). The edges in E ′(α)

contribute at most 3α ln(κ + 1). The edges in E ′ − E ′(α) contribute at most δα . The total is
(3ln(κ +1)+δ)α . Note that the return types are different as outlined in the dual-primal framework
in (a)–(c) earlier.

Proof Using Lemma 5, Algorithm 2 returns a y which satisfies conditions (i) and (ii)
of Theorem 7. By construction, in Algorithm 2 yp = α and only one yp has a non-zero
value. Since we removed all the edges of weight less than δα/m′, the width parameter
is bounded by αm′/(δα) = m′/δ . Observe that `= 1.

If α1 < α2, then E ′(α1) ⊇ E ′(α2), and therefore P(i,E ′(α1)) ⊇ P(i,E ′(α2)).
Therefore, for the formulation LP4, we are adding new variables corresponding to
new variables (paths) as well as new constraints corresponding to the newly added
edges. We can interpret the y for α2 to have 0 values for the new variables. This
would immediately satisfy (i). This would satisfy (iii) for the old constraints as well.
Condition (iii) is satisfied for the newly introduced constraints because the old paths
p with yp > 0 for α2 did not contain an edge in E ′(α1). Thus Aiy(t) = 0 for the new
constraints and b = 1 and −ρ ≤−1≤ ρ .

For (ii), u(t)T Ay(t)−u(t)T b≤ δ ∑i u(t), the first term in the left hand side remains
unchanged. The left hand side decreases for every new constraint, and the right hand
side increases for every new constraint.

The next lemma arises from a result of Garg et al. [28]; in this context, Z = α and
defines the set {ζ j} in Step 3 of Algorithm 2.

Lemma 9 ([28]) Let Z = ∑(u,v) xuvwuv. For r ≥ 0, let B(u,r) = {v | dx(u,v) ≤ r}
where dx is the shortest path distance based on the values xuv. Let vol(B(u,r)) be

Z
κ
+ ∑

(v,v′)
v,v′∈B(u,r)

xvv′wvv′ + ∑
(v,v′)

v∈B(u,r),v′ 6∈B(u,r)

(r−dx(u,v))wvv′

Suppose that for a node ζ , the radius r of the ball around ζ is increased until
cut(B(ζ ,r)) ≤C · vol(B(ζ ,r)). If C = 3ln(κ +1), the ball stops growing before the
radius becomes 1/3. We start this process for ζ1 = s1. Repeatedly, if some s j is

Correlation Clustering in Data Streams 19

not in a ball, then we remove B(ζi,ri) (all edges inside and those being cut) and
continue the process with ζi+1 = s j, on the remainder of the graph. The collec-
tion of B(ζ1,r1), . . . ,B(ζg,rg), . . . satisfy the condition that rg ≤ 1/3 for all g and
∑g cut(B(ζg,rg))≤CZ.

The proof follows from the fact that cut(B(ζ ,r)) is the derivative of vol(B(ζ ,r))
as r increases and the volume cannot increase by more than a factor of κ +1, because
it is at least Z/k and cannot exceed Z/k+Z. For nonnegative x jq the above algorithm
runs in time Õ(m′) using standard shortest-path algorithms.

Using Theorem 7, the total number of iterations needed in MC7, for a particular α

is O(ρδ−2 logN) = O(m′δ−3 logn), since the number of constraints N = O(n2) and
ρ ≤ m′/δ . This dominates the O(1

δ
· logn) times we decrease α .

Observe that the algorithm repeatedly constructs a set of balls with non-negative
weights; which can be performed in O(m′ logn) time. In each of these balls with m̃
edges, we can find the shortest path in O(m̃ logn) time (to find the violated pair si–ti).
Summed over the balls, each iteration can be performed in O(m′ logn) time. Coupled
with the approximation introduced by a sparsifier, setting δ = O(ε) we get:

Theorem 8 There exists a single-pass O(logκ)-approximation algorithm for the
multicut problem in the dynamic semi-streaming model that runs in Õ(n2ε−7 log2 W)
time and Õ(nε−2 logW +κ) space.

3.4 min-disagree with Arbitrary Weights

In this section, we prove the following theorem:

Theorem 9 There is a 3(1+ ε) log |E−|-approximation algorithm for min-disagree
that requires Õ((nε−2 + |E−|)2ε−3) time, Õ(nε−2 + |E−|) space, and a single pass.

Consider the dual of LP1, where P = ∪i j∈E−Pi j(H+).

max∑
p

yp

1
|wi j| ∑

p∈Pi j(H+)

yp ≤ 1 ∀i j ∈ E−

1
wh

sq
∑

p∈P:sq∈p
yp ≤ 1 ∀sq ∈ H+

yp ≥ 0 ∀p ∈ P (LP5)

Recall that LP1 was based on the fact that each path between the two endpoints of
a negative edge had to be of a certain length (or else there is a separation). The dual of
that formulation corresponds to assigning weights to those paths and trying to “pack”
paths such that the total amount of weight (across different paths) does not exceed the
cost (in the primal formulation) of cutting the edge. Note that the dual formulation
in this case corresponds to a lower bound of the primal minimization problem –

20 Kook Jin Ahn et al.

the optimal solution of this packing problem will satisfy some of the constraints
with equality (complementary slackness) and those will precisely correspond to the
edges having nonzero value in an optimum primal formulation in LP1. To reiterate,
the overall idea is to continually increase this lower bound using the multiplicative
weights approach and Algorithm 1 — or fail and have a feasible primal solution. We
apply Theorem 7 (the multiplicative-weight update framework) to the dual of LP1, but
omit the constraints in the dual corresponding to small-weight edges, exactly along the
lines of MC1–MC7. For each α ≥ 0, let H+(α),E−(α) be the set of edges in H+,E−,
respectively, with weight at least δα/(m′+ |E−|). Consider now the decision version
of LP5:

∑
p

yp ≥ α

1
|wi j| ∑

p∈Pi j(H+(α))

yp ≤ 1 ∀i j ∈ E−(α)

1
wh

sq
∑

p∈P:sq∈p
yp ≤ 1 ∀sq ∈ H+(α)

yp ≥ 0 ∀p ∈ P(α) (LP6)

where P(α) =
⋃

i j∈E−(α) Pi j(H+(α)).
We attempt to find an approximate feasible solution to LP6 for a large value of α .

If the Oracle fails to make progress then it provides a solution to LP1 of value f ·α .
In that case we set α ← α/(1+δ) and try the Oracle again. Note that if we lower α

then the Oracle invocations for larger values of α continue to remain valid; if α1 ≤ α2,
then Pi j(H+(α1))⊇ Pi j(H+(α2)) exactly along the lines of Lemma 8.

Eventually we lower α sufficiently that we have a feasible solution to LP6, and
we can claim Theorem 9 exactly along the lines of Theorem 8. The Oracle is provided
in Algorithm 3 and relies on the following lemma:

Lemma 10 Let κ = |E−|, Z = ∑uv∈H+(α) xuvwh
uv. Using the definition of dx() and B()

as in Lemma 9, let

vol(B(u,r)) =
Z
κ
+ ∑

vv′∈H+(α)
v,v′∈B(u,r)

xvv′w
h
vv′ + ∑

vv′∈H+(α)
dx(u,v)≤r<dx(u,v′)

(r−dx(u,v))wh
vv′ .

Suppose that, for a node ζ , the radius r of its ball is increased until cut(B(ζ ,r)) ≤
Cvol(B(ζ ,r)). If C = 3ln(κ+1), the ball stops growing before the radius becomes 1/3.
We start this process setting ζ1 to be an arbitrary endpoint of an edge in E−, and
let the stopping radius be r1. We remove B(ζ1,r1) and continue the process on the
remainder of the graph. The collection of B(ζ1,r1),B(ζ2,r2), . . . satisfy the condition
that each radius is at most 1/3 and ∑g cut(B(ζg,rg))≤CZ.

The above lemma is essentially the same as Lemma 9, applied to the terminal pairs
defined by the endpoints of each edge in E−. Again, for nonnegative xsq, standard
shortest-path algorithms lead to a running time of Õ(m′). We bound the width of the
above oracle as follows :

Correlation Clustering in Data Streams 21

Algorithm 3 Oracle for LP6
1: Given multipliers ut

sq for sq ∈ H+(α) and vt
i j for i j ∈ E−(α), define Qu = ∑sq∈H+(α) wh

squt
sq and

Qv = ∑i j∈E−(α) |wi j|vt
i j .

2: Let xsq = αut
sq/(Qu +Qv), zi j = αvt

i j/(Qu +Qv).
3: Treating the xsq as edge lengths, let dx(·, ·) be the shortest path metric. Define B(ζ ,r)= {ζ ′ | dx(ζ ,ζ ′)≤

r} and the weight of the edges of cut by the ball:

cut(B(ζ ,r)) = ∑
ζ ′ζ ′′∈H+(α)

dx(ζ ,ζ ′)≤r<dx(ζ ,ζ ′′)

wh
ζ ′ζ ′′

4: Find a collection of balls B(ζ1,r1),B(ζ2,r2), . . . such that (i) each radius at most 1/3, (ii) every endpoint
of an edge in E−(α) belongs to some ball, and (iii) ∑g cut(B(ζg,rg))≤ 3αQu/(Qu +Qv) · ln(|E−|+1).
The existence of such balls follows from Lemma 10.

5: if there exists i j ∈ E−(α) with i, j in the same ball and zi j < 1/3. then
6: Find the corresponding path p between i and j. Since the length of this path is at most 2/3 and

zi j < 1/3, the corresponding constraint is violated. Return yp = α and yp′ = 0 for all other paths for
edges in E−.

7: else
8: Return the union of cuts defined by the balls and all edges in H+−H+(α).

Lemma 11 ρ = (m′+ |E−|)/δ , `= 1 for Algorithm 3.

Proof Note that the weights are least δα/(m′+|E−|) in the set of edges H+(α),E−(α).
The admissible candidate (Step 6 of Algorithm 3) corresponds to assigning weight α

to a single path (and 0 weight to all other paths). Therefore the left hand side of any
edge in formulation LP6 is at most α/(δα/(m′+ |E−|)) which is the upper bound
on ρ . The `= 1 arises since each of the constraints in formulation LP6 has 1 in the
right hand side and the left hand side is always nonnegative (based on the assignment
proposed in step 6 of Algorithm 3).

The total weight of positive edges cut by the solution returned in line 8 of Algo-
rithm 3 is at most 3αQu/(Qu +Qv) · ln(|E−|+1). Each negative edge that is not cut
corresponds to setting zi j = 1 but zi j ≥ 1/3; hence the cost of these edges is 3αQv

Qu+Qv
.

Finally, the cost of the edges in neither E−(α) nor H+(α) is at most 2δα . The overall
solution has cost (3ln(|E−|+1)+2δ)α .

Finally, we show how to initialize α along the lines of Lemma 6. Divide the
edges of H+ according to weight, in intervals (2z−1,2z], as we decrease z. For each
group z, we find the largest weight edge i j ∈ E−, call this weight g(z), such that i and j
are connected by H+-edges of group z or higher. Observe that g(z) is an increasing
function of z. Let the smallest z such that g(z) ≥ 2z be z0. Then it follows that the
optimum solution is at least 2z0−1. Again, 2z0n2 serves as an initial value of α , which
is an O(n2) approximation to the optimum solution.

4 Convex Programming in Small Space: max-agree

In this section we discuss an SDP-based algorithm for max-agree. We will build upon
our intuition in Section 3 where we developed a linear program based algorithm for

22 Kook Jin Ahn et al.

min-disagree. However several steps, such as switching of primals and duals, will
not be necessary because we will use a modified version of the multiplicative weight
update algorithm for SDPs as described by Steurer [47]. As will become clear, the
switch of primals and duals is already achieved in the internal working of Steurer’s
technique [47]. Consider:

Definition 1 For matrices X,Z, let X◦Z denote the Frobenius product, ∑i, j Xi jZi j,
let X� 0 denote that X is positive semidefinite, and let X� Z denote X−Z� 0.

A semidefinite decision problem in canonical form is:

MWM SDP:
{

C◦X≥ α

s.t F j ◦X≤ g j, ∀1≤ j ≤ q, X� 0

where C,X∈Rn×n and g∈Rq
+. Denote the set of the feasible solutions byX . Typically

we are interested in the Cholesky decomposition of X, a set of n vectors {xi} such that
Xi j = xT

i x j. Consider the following theorem:

Theorem 10 ([47]) Let D be a fixed diagonal matrix with positive entries, and
assume X is nonempty. Suppose there is an Oracle with parameters ρ and δ , so that
for each positive semidefinite X either (a) tests and declares X to be approximately
feasible — for all 1≤ i≤ q, we have Fi ◦X≤ gi +δ , or (b) provides a real symmetric
matrix A and a scalar b satisfying (i) A◦X ≤ b−δ and for all X′ ∈ X , A◦X′ ≥ b
and (ii) ρD� A−bD�−ρD, then a multiplicative-weight-style algorithm produces
an approximately feasible X, in fact its Cholesky decomposition, in T = O(ρ2δ−2 lnn)
iterations.

The above theorem does not explicitly discuss maintaining a set of multipliers. But
interestingly, the algorithm due to Steurer [47] that proves Theorem 10 can be viewed
as a dual-primal algorithm. This algorithm collects separating hyperplanes to solve
the dual of the SDP: on failure to provide such a hyperplane, the algorithm provides a
primal feasible X. The candidate X generated by the algorithm is an exponential of the
(suitably scaled) averages of the hyperplanes (A,b): this would be the case if we were
applying the multiplicative-weight update paradigm to the dual of the SDP in canonical
form! Therefore, along with maximum matching [3] and min-disagree (Section 3) we
have another example where switching the primal and the dual formulations helps.
However in all of these cases, we need to prove that that we can produce a feasible
primal solution in a space efficient manner, when the Oracle (for the dual) cannot
produce a candidate.

We now prove the following theorem:

Theorem 11 There is a 0.7666(1− ε)-approximation algorithm for max-agree(G)
that uses Õ(nε−2) space, Õ(m+nε−10) time and a single pass.

We use Lemma 3 and edge set H = H+∪H−. Let wh
i j correspond to the weight of

an edge i j ∈ H. Our SDP for max-agree is:

∑
i j∈H+

wh
i jXi j + ∑

i j∈H−

|wh
i j|(Xii +X j j−2Xi j)

2
≥ α

Correlation Clustering in Data Streams 23

Xii ≤ 1 ∀i ∈V
−Xii ≤−1 ∀i ∈V
−Xi j ≤ 0 ∀i, j ∈V

X � 0

(SDP)

If two vertices, i and j, are in the same cluster, their corresponding vectors xi and x j
will coincide, so Xi j = 1; on the other hand, if they are in different clusters, their vectors
should be orthogonal, so Xi j = 0. Observe that under the restriction Xii = X j j = 1, the
contribution of an i j ∈ H− is 1

2 (Xii +X j j−2Xi j) = (1−Xi j), as intended. However,
this formulation helps prove that the width is small.

Definition 2 Define di = ∑ j:i j∈H |wh
i j| and ∑i di = 2W . Let D be the diagonal matrix

with Dii = di/2W .

A random partition of the graph provides a trivial 1/2-approximation for maximiz-
ing agreements. Letting W be the total weight of edges in H, the sparsified graph, we
perform binary search for α ∈ [W/2,W], and stop when the interval is of size δW , for
some suitably small user chosen δ . This increases the running time by a O(logδ−1)
factor.

The diagonal matrix D specified in Definition 2 sets up the update algorithm
of Steurer [47]. The choice of D will be critical to our algorithm: typically, this D
determines the “path” taken by the SDP solver, since D alters the projection to density
matrices. Summarizing, Theorem 11 follows from the Oracle provided in Algorithm 4.
The final solution only guarantees xi ·x j ≥−δ . Even though the standard rounding
algorithm assumes Xi j ≥ 0, the fractional solution with Xi j ≥ −δ can be rounded
efficiently. Ensuring xi · x j ≥ 0 appears to be difficult (or to require a substantially
different oracle).

Algorithm 4 Oracle for SDP.
1: For the separating hyperplane, we only describe non-zero entries in A. Recall that we have a candidate

X where Xi j = xi ·x j .
2: Let S1 = {i : ‖xi‖2 ≥ 1+δ}, ∆1 = ∑i∈S1 di.
3: Let S2 = {i : ‖xi‖2 ≤ 1−δ}, ∆2 = ∑i∈S2 di.
4: Let S3 = {i j : xi ·x j <−δ}, ∆3 = ∑i j∈S3 |wi j|.
5: if ∆1 ≥ δα then
6: Let Aii =−di/∆1 for i ∈ S1 and b =−1.
7: Return (A,b).
8: else if ∆2 ≥ δα then
9: Let Aii = di/∆2 for i ∈ S2 and b = 1.

10: Return (A,b).
11: else if ∆3 ≥ δα then
12: Let Ai j = wh

i j/∆3 for i j ∈ S3 and b = 0.
13: Return (A,b).
14: else
15: Ignore all nodes in S1 and S2 and all edges in S3. Let C′ be the matrix that corresponds to the

objective function of the modified graph G′.
16: if C′ ◦X < (1−4δ)α then
17: Let A = C′/α and b = 1−3δ . Return (A,b).
18: else
19: Round X, and return the rounded solution.

24 Kook Jin Ahn et al.

Lemma 12 Algorithm 4 satisfies criterion (i) of Theorem 10, i.e., for all returned
(A,b), A◦X≤ b−δ and ∀X′ ∈ X ,A◦X′ ≥ b where X is the feasible space of SDP.

Proof For line 7, A ◦X ≤ ∑i∈S1
−di(1+δ)/∆1 = −1− δ , since ‖xi‖2 ≥ 1+ δ for

all i ∈ S1. On the other hand, for a feasible X′, ‖x′i‖2 = 1 for all i. Hence A ◦X′ =
∑i∈S1

−di/∆1 =−1. This proves that the oracle is δ -separating when it returns from
line 7. For lines 10 and 13, the proof is almost identical.

For line 17, we do not use the violated constraints; instead we use C′ to construct A,
and show that C′ ◦X′ ≥ (1−3δ)α . We start from the fact that C◦X′ ≥ α , since X′ is
feasible for SDP. By removing all nodes in S1, we remove all edges incident on the
removed nodes. The total weight of removed edges is bounded by ∆1, which is this
case is less than δα . Similarly, we lose at most δα for each of S2 and S3. Hence, the
difference between C′ ◦X′ and C◦X′ is bounded by 3δα , and so C′ ◦X′ ≥ (1−3δ)α
which implies A ◦X′ ≥ 1− 3δ . Therefore we have δ separation because A ◦X =
C′ ◦X/α < 1−4δ .

Lemma 13 Algorithm 4 satisfies criterion (ii) of Theorem 10, i.e., ρD� A−bD�
−ρD for some ρ = O(1/δ).

Proof Since |b| ≤ 1 it suffices to show that for every positive semidefinite Y, |A◦Y|=
ρD◦Y. For line 7, the proof is straightforward. To start, A is a diagonal matrix where
|Aii|= di/∆1≤ di/(δα). On the other hand, Dii = di/2W , while α ≥W/2, so we have
|Aii| = O(1/δ)Dii which proves that |A◦Y| = O(1/δ)D◦Y. The proof is identical
for line 10.

For lines 13 and 17, consider the decomposition of Y, i.e., {yi} such that Yi j =
yi ·y j. We use the fact that yi ·y j ≤ ‖yi‖2 +‖y j‖2 for every pair of vectors yi and y j.
Therefore for Yi j = yi ·y j, we have at line 13,

|A◦Y|= ∑
i j∈S3

|wh
i j|

∆3
Yi j ≤ ∑

i j∈S3

|wh
i j|

∆3
(‖yi‖2 +‖y j‖2) =

1
∆3

∑
i
‖yi‖2

∑
j:i j∈S3

|wh
i j| ≤

1
∆3

∑
i

di‖yi‖2

=
1

∆3
∑

i
2WDiiYii =

2W
∆3

D◦Y ,

which implies |A◦Y| ≤ O(1/δ)D◦Y given α ≥W/2 and ∆3 ≥ δα . For line 17, let
H+|G′ ,H−|G′ denote H+,H− as modified by line 15, then

A◦Y =
1
α

C′ ◦Y =
1

2α
∑

i j∈H+|G′
2wh

i jYi j +
1

2α
∑

i j∈H−|G′
|wh

i j|(Yii +Y j j−2Yi j)

≤ 1
2α

∑
i j∈G′

2|wh
i j|(Yii +Y j j)≤

1
α

∑
i

diYii =
2W
α

D◦Y

which implies that A◦Y = O(1)D◦Y. Summarizing, Algorithm 4 is O(1/δ)-bounded.

Lemmas 12 and 13, in conjunction with Theorem 10 prove Theorem 11. The
update procedure [47] maintains (and defines) the candidate vector X implicitly. In
particular it uses matrices of dimension n× d, in which every entry is a (scaled)

Correlation Clustering in Data Streams 25

Gaussian random variable. The algorithm also uses a precision parameter (degree of
the polynomial approximation to represent matrix exponentials) r. Assuming that TM
is the time for a multiplication between a returned A and some vector, the update
process computes the tth X in time O(t · r · d · TM), a quadratic dependence on t
in total. We will ensure that any returned A has at most m′ nonzero entries, and
therefore TM = O(m′). The algorithm requires space that is sufficient to represent a
linear combination of the matrices A which are returned in the different iterations.
We can bound ρ = O(1/δ), and therefore the total number of iterations is Õ(δ−4).
For our purposes, in max-agree we will have d = O(δ−2 logn), r = O(log(δ−1), and
TM = O(m′), giving us a Õ(nδ−10) time and Õ(nδ−2) space algorithm. However,
unlike the general X used in Steurer’s approach, in our oracle the X is used in a very
specific way. This leaves open the question of determining the exact space-versus-
running-time tradeoff.

Rounding the Fractional Solution: Note that the solution of the SDP found above is
only approximately feasible. Since the known rounding algorithms can not be applied
in a black box fashion, the following lemma proves the correctness of the rounding
algorithm.

Lemma 14 If Algorithm 4 returns a clustering solution, it has at least 0.7666(1−
O(δ))α agreements.

Proof We show that the rounding algorithm returns a clustering with at least 0.7666(1−
O(δ))C′ ◦X agreements. Combined with the fact that C′ ◦X > (1−4δ)α (line 19),
we obtain the desired result.

We use the rounding algorithm of Swamy [48] (see also [27]), with caveats. The
analysis in [48] starts from a completely feasible solution of SDP, namely −Xi j ≤ 0
and the analysis appears to depend on this non-negativity. Likewise, the analysis of
Swamy [48] requires that Xii = 1. So while the same algorithm is used, a new analysis
is required. The algorithm is as follows: we consider the Cholesky decomposition of
the matrix which gives us vectors {xi} such that Xi j = xi · x j. We rescale every {xi} to
have length 1. We now run the algorithm of Swamy [48] (which refers to an analysis
from Frieze and Jerrum [27] for a different problem). The analysis has three steps:

(1) Changes introduced due to eliminating Xii 6= 1.
(2) We then fix edges (i,j) −2δ ≤ Xi j ≤ 0 by changing the weight of the edge in the

objective function to 0. These could be a holdover from the approximately feasible
solution which have become more violated due to the scaling in step 1.

(3) We now consider the analysis in prior work [27, 48].

For step (1), since the SDP deals with C′ instead of C, we can ignore all nodes and
edges in S1, S2, and S3. Our first step is to rescale the vectors in X to be unit vectors.
Since all vectors that are not ignored (not in S1 nor S2) have length between 1−O(δ)
and 1+O(δ) (since we take the square root), this only changes the objective value by
O(δwi j) for each edge. Hence the total decrease in the objective function is bounded
by O(δW) = O(δα).

For step (2), we then change the objective value of edges (i, j) with−2δ < Xi j < 0
by changing their weight function in the objective function to 0. This step decreases

26 Kook Jin Ahn et al.

the objective value by at most 2δ |wi j| for each negative edge (and does not decrease
the objective for the positive edges). Again, the objective value decreases by at most
O(δα).

For step (3) we observe that the rounding algorithm [27, 48] obtains a 0.7666
approximation factor based on an analysis over pairs of vertices that satisfy the
constraint xi · x j ≥ 0. Note that the analysis is irrelevant for the other pairs because
their weight is 0 due to steps (1) and (2). Therefore, we obtain a clustering that has at
least 0.7666(1−O(δ))C′ ◦X−O(δα) agreements.

5 Multipass Algorithms

In this section, we present O(log logn)-pass algorithms for min-disagree on unit
weight graphs: these apply to both a fixed and unrestricted number of clusters. In
each pass over the data, the algorithm is presented with the same input, although not
necessarily in the same order.

5.1 min-disagree with Unit Weights

Consider the 3-approximation algorithm for min-disagree on unit-weight graphs due
to Ailon et al. [6].

1: Let v1, . . . ,vn be a uniformly random ordering of V . Let U ← V be the set of
“uncovered” nodes.

2: for i = 1 to n do
3: if vi ∈U then
4: Define Ci← {vi}∪{v j ∈U : viv j ∈ E+} and let U ←U \Ci. We say vi is

“chosen”.
5: else
6: Ci← /0.
7: Return the collection of non-empty sets Ci.

It may appear that emulating the above algorithm in the data stream model re-
quires Ω(n) passes, since determining whether vi should be chosen may depend on
whether v j is chosen for each j < i. However, we will show that O(log logn)-passes
suffice. This improves upon a result by Chierichetti et al. [20], who developed a
modification of the algorithm that used O(ε−1 log2 n) streaming passes and returned a
(3+ ε)-approximation, rather than a 3-approximation. Our improvement is based on
the following lemma:

Lemma 15 Let Ut be the set of uncovered nodes after iteration t of the above algo-
rithm, and let

Ft,t ′ = {viv j ∈ E+, i, j ∈Ut , t < i, j ≤ t ′} .

With high probability, |Ft,t ′ | ≤ 5 · lnn · t ′2/t.

Proof Note that the bound holds vacuously for t ≤ 10lnn so in the rest of the proof
we will assume t ≥ 10lnn. Fix the set of t ′ elements in the random permutation and

Correlation Clustering in Data Streams 27

consider the induced graph H on these t ′ elements. Pick an arbitrary node v in H. We
will consider the random process that picks each of the first t entries of the random
permutation by picking a node in H uniformly at random without replacement. We
will argue that at the end of these t steps, with probability at least 1−1/n10, either v is
covered or at most αt ′/t neighbors of v in H are uncovered where α = 10lnn. Hence,
by the union bound, all uncovered nodes have at most αt ′/t uncovered neighbors and
hence the number of edges in H whose both endpoints are uncovered after the first t
steps is at most (αt ′/t) · t ′/2. The lemma follows because Ft,t ′ is exactly the number
of edges in H whose both endpoints are uncovered after the first t steps.

To show that after t steps, either v is covered or it has at most αt ′/t uncovered
neighbors we proceed as follows. Let Bi be the event that after the ith iteration, v is
not covered and it has at least αt ′/t uncovered neighbors. Then, since Bi+1 ⊂ Bi for
each i,

Pr
(
v is covered or it has at most αt ′/t uncovered neighbors

)
= 1−Pr(Br)

= 1−Pr(Br ∩Br−1∩·· ·∩B1)

= 1− pr pr−1 . . . p1

where pi = Pr(Bi | B1∩B2∩·· ·∩Bi−1). Note that

pi≤ 1−Pr(v gets covered at step i | B1∩B2∩·· ·∩Bi−1)≤ 1− αt ′/t +1
t ′− (i−1)

< 1−α/t ,

and hence,

Pr
(
v is covered or it has at most αt ′/t uncovered neighbors

)
≥ 1−(1−α/t)t ≥ 1−exp(−α)= 1−1/n10 ,

as required.

Semi-Streaming Algorithm. As a warm-up, first consider the following two-pass
streaming algorithm that emulates Ailon et al.’s algorithm using O(n1.5 log2 n) space:

1. First pass: Collect all edges in E+ incident on {vi}i∈[
√

n]. This allows us to simulate
the first

√
n iterations of the algorithm.

2. Second pass: Collect all edges in F√n,n. This allows us to simulate the remaining
n−
√

n iterations.

The space bound follows since each pass requires storing only O(n1.5 logn) edges
with high probability. requires storing at most n1.5 edges and, with high probability,
the second pass requires storing |F√n,n|= O(n1.5 logn) edges.

Our semi-streaming algorithm proceeds as follows.

– For j ≥ 1, let t j = (2n)1−1/2 j
: during the (2 j−1)-th pass, we store all edges in

Ft j−1,t j where t0 = 0, and during the (2 j)-th pass we determine Ut j .
– After the (2 j)-th pass we have simulated the first t j iterations of the algorithm

of Ailon et al. [6]’s algorithm. Since t j ≥ n for j = 1+ log logn, our algorithm
terminates after O(log logn) passes.

28 Kook Jin Ahn et al.

Theorem 12 On a unit-weight graph, there exists a O(log logn)-pass semi-streaming
algorithm that, within space O(n logn), returns with high probability a 3-approximation
to min-disagree.

Proof In the first pass, we need to store at most t2
1 = ((2n)1−1/2)2 = 2n edges. For the

odd-numbered passes after the first pass, by Lemma 15, the space is at most

5 · lnn · t2
j /t j−1 = 5 · lnn · (2n)2−2/2 j

/(2n)1−1/2 j−1
= 5 · lnn ·2n = O(n logn) ,

with high probability. The additional space used in the even-numbered passes is
trivially bounded by O(n logn). The approximation factor follows from the analysis
of Ailon et al. [6].

5.2 min-disagreek with Unit Weights

Our result in this section is based the following algorithm of Giotis and Guruswami [30]
that returns a (1+ ε)-approximation for min-disagreek on unit-weight graphs. Their
algorithm is as follows:

1. Sample r = poly(1/ε,k) · logn nodes S and for every possible k-partition {Si}i∈[k]
of S:
(a) Compute the cost of the clustering where v ∈V \S is assigned to the ith cluster

where

i = argmax
j

 ∑
s∈S j :sv∈E+

wsv + ∑
s 6∈S j :sv∈E−

|wsv|

 .

2. Let C′ be the best clustering found. If all clusters in C′ have at least n/(2k) nodes,
return C′. Otherwise, fix all the clusters of size at least n/(2k) and recurse (with
the appropriate number of centers still to be determined) on the set of nodes in
clusters that are smaller than n/(2k).

We first observe the above algorithm can be emulated in min(k−1, logn) passes
in the data stream model. To emulate each recursive step in one pass we simply choose
S at the start of the stream and then collect all incident edges on S. We then use the
disagree oracle developed in Section 2.1 to find the best possible partitions during
post-processing. It is not hard to argue that this algorithm terminates in O(logn)
rounds, independent of k: Call clusters with fewer than n/2k nodes “small”, and those
with at least n/2k nodes “large”. Observe that the number of nodes in small clusters
halves in each round since there are at most k−1 small clusters and each has at most
n/(2k) nodes. This would suggest a min(k−1, logn) pass data stream algorithm, one
pass to emulate each round of the offline algorithm. However, the next theorem shows
that the algorithm can actually be emulated in min(k−1, log logn) passes.

Theorem 13 There exists a min(k−1, log logn)-pass O(poly(k, logn,1/ε)n)-space
algorithm that (1+ ε) approximates min-disagreek(G).

Correlation Clustering in Data Streams 29

Proof To design an O(log logn) pass algorithm, we proceed as follows. At the start
of the i-th pass, suppose we have k′ clusters still to determine and that Vi is the set
of remaining nodes that have not yet been included in large clusters. We will pick k′

random sets of samples S1, . . . ,Sk′ in parallel from Vi each of size

Ni = 2rn2i−1/ logn .

For each sampled node, we extract all edges to unclustered nodes. We will use this
information to emulate one or more rounds of the algorithm. Note that since Ni ≥ n
for i≥ 1+ log logn, the algorithm must terminate in O(log logn) passes since in pass
1+ log logn we are storing all edges in the unclustered graph. What remains is to
establish a bound on the space required in each of the passes. To do this we will first
argue that in each pass, the number of unclustered nodes drops significantly, perhaps
to zero.

Since there are only k′ clusters still to determine, and every round of the algorithm
fixes at least one cluster, it is conceivable that the sets S1, . . . ,Sk′ could each be used
to emulate one of the remaining ≤ k′ rounds of the algorithm; this would suggest it
is possible to completely emulate the algorithm in a single pass. However, this will
not be possible if at some point there are fewer than r unclustered nodes remaining in
all the sets S1, . . . ,Sk′ . At this point, we terminate the current set of samples, and take
a new pass. Observe that in this case we have likely made progress, as the number
of unclustered nodes over which we are working has likely dropped significantly.
Specifically, suppose the number of unclustered nodes is greater than |Vi|n2i−1/ logn

before we attempt to use Sk′ . By the principle of deferred decisions, the expected
number of unclustered nodes in Sk′ is at least

|Vi|n2i−1/ logn

|Vi|
Ni = 2r .

Therefore, by an application of the Chernoff bound, we can deduce that the number of
unclustered nodes when we terminate the current pass is less than |Vi|n2i−1/ logn, i.e.,
the number of unclustered nodes has decreased by a factor of at least n2i−1/ logn since
the start of the pass.

Applying this analysis to all passes and using the fact that |V1|= n, we conclude
that

|Vi+1| ≤
|Vi|

n2i−1/ logn
≤ |V1|

n21−1/ logn ·n22−1/ logn · . . . ·n2i−1/ logn
=

n
n(2i−1)/ logn

.

The space needed by our algorithm for round i is therefore O(|Vi|Nik′)=O(krn1+1/ logn)=
Õ(krn).

6 Lower Bounds

Finally, we consider the extent to which our results can (not) be improved, by showing
lower bounds for variants of problems that we can solve. All our proofs will use the
standard technique of reducing from two-party communication complexity problems,

30 Kook Jin Ahn et al.

i.e., Alice has input x and Bob has input y and they wish to compute some function
f (x,y) such that the number of bits communicated between Alice and Bob is small.
A lower bound on the number of bits communicated can be used to lower bound the
space complexity of a data stream algorithm as follows. Suppose Alice can transform
x into the first part S1 of a data stream and Bob can transform y into the second part
S2 such that the result of the data stream computation on S1 ◦ S2 implies the value
of f (x,y). Then if the data stream algorithm takes p passes and uses s space, this
algorithm can be emulated by Alice and Bob using 2p−1 messages each of size s
bits; Alice starts running the data stream algorithm on S1 and each time a player no
longer has the necessary information to emulate the data stream algorithm they send
the current memory state of the algorithm to the other player. Hence, a lower bound
for the communication complexity problem yields a lower bound for the data stream
problem.

Theorem 14 A one-pass stream algorithm that tests whether min-disagree(G) = 0,
with probability at least 9/10, requires Ω(n2) bits if permitted weights are {−1,0,1}.

Proof The theorem follows from a reduction from the communication problem INDEX.
Alice has a string x ∈ {0,1}(

n
2), indexed as [n]× [n] and unknown to Bob, and Bob

wants to learn xi, j for some i, j ∈ [n] that is unknown to Alice. Any one-way protocol
from Alice to Bob that allows Bob to learn xi, j requires Ω(n2) bits of communica-
tion [1].

Consider the protocol for INDEX where Alice creates a graph G over nodes
V = {v1, . . . ,vn} and adds edges {{vi,v j} : xi, j = 1} each with weight −1. Suppose
there were a data stream algorithm with properties as claimed in the statement of
the Theorem. Alice could run such a data stream algorithm on G and send the state
of the algorithm to Bob who would add positive edges {u,vi} and {u,v j} where u
is a new node. All edges without a specified weight are treated as not present, or
equivalently as having weight zero. Hence the set of weights used in this graph is
{−1,0,+1}. Now, if xi j = 0, then disagree(G) = 0: consider the partition containing
{u,vi,v j}, with each other item comprising a singleton cluster. Alternatively, xi j = 1
implies disagree(G)≥ 1 since a clustering must disagree with one of the three edges
on {u,vi,v j}. It follows that any data stream algorithm returning a multiplicative
estimate of min-disagree(G) requires Ω(n2) space.

When permitted weights are restricted to {−1,1}, the following multi-pass lower
bounds holds:

Theorem 15 A p-pass stream algorithm that tests whether min-disagree(G) = 0, with
probability at least 9/10, requires Ω(n/p) bits when permitted weights are {−1,1}.

Proof The proof uses a reduction from the communication problem of DISJ where
Alice and Bob have strings x,y ∈ {0,1}n and wish to determine where there exists an
i such that xi = yi = 1. Any p round protocol between Alice and Bob requires Ω(n)
bits of communication [39] and hence there must be a message of Ω(n/p) bits.

Consider the protocol for DISJ on a graph G with nodes V = {a1, . . . ,an,b1, . . . ,bn,
c1, . . . ,cn}. For each i ∈ [n], Alice adds an edge {ai,bi} with weight (−1)xi+1. She

Correlation Clustering in Data Streams 31

runs a data stream algorithm with properties as stated in the theorem statement on G
and sends the state of the algorithm to Bob. For each i ∈ [n], Bob adds an edge {bi,ci}
of weight (−1)yi+1 along with negative edges

{{ai,ci} : i ∈ [n]}∪{{u,v} : u ∈ {ai,bi,ci},v ∈ {a j,b j,c j}, i 6= j} .

Note that min-disagree(G)> 0 iff there exists i with xi = yi = 1. Were there no such i,
the positive edges would all be isolated, whereas if xi = yi = 1 then every partition
violates one of the edges on {ai,bi,ci}. It follows that every p-pass data stream
algorithm returning a multiplicative estimate of min-disagree(G) requires Ω(n/p)
space.

Next we show a lower bound that applies when the number of negative weight
edges in bounded. This shows that our upper bound in Theorem 9 is essentially tight.

Theorem 16 A one-pass stream algorithm that tests whether min-disagree(G) = 0,
with probability at least 9/10, requires Ω(n+ |E−|) bits if permitted weights are
{−1,0,1}.

Proof A lower bound of Ω(|E−|) follows by considering the construction in Theo-
rem 14 on

√
|E−| nodes. A lower bound of Ω(n) when n≥ |E−| follows by consid-

ering the construction in Theorem 15 without adding the negative edges {uv : u ∈
{ai,bi,ci},v ∈ {a j,b j,c j}, i 6= j}.

Finally, we show that the data structure for evaluating 2-clusterings of arbitrarily
weighted graphs (Section 2.3) cannot be extended to clusterings with more clusters.

Theorem 17 When |C|= 3, a data structure that returns a multiplicative estimate of
disagree(G,C) (i.e., answers disagree3 queries) with probability at least 9/10, requires
Ω(n2) space.

Proof We show a reduction from the communication problem of INDEX where Alice
has a string x ∈ {0,1}n2

indexed as [n]× [n] and Bob wants to learn xi, j for some
i, j ∈ [n] that is unknown to Alice. A one-way protocol from Alice to Bob that allows
Bob to learn xi, j requires Ω(n2) bits of communication [1]. Consider the protocol
for INDEX where Alice creates a graph G over nodes V = {a1, . . . ,an,b1, . . . ,bn} and
adds edges {aubv : xu,v = 1} each with weight−1. She encodes the graph G into a data
structure with properties as described in the theorem statement, and sends the state of
the structure to Bob who then queries the partition C = {aib j,{a` : ` 6= i},{b` : ` 6= j}}.
Since disagree(G,C) = xi j it follows that every data structure allowing a multiplicative
estimate of disagree(G,C) requires Ω(n2) space.

A Extension to Bounded Weights

In this section, we detail the simple changes that are required in the paper by Gionis and Guruswami [30]
such that their result extends to the case where there are no zero weights and the magnitude of all non-zero
weights is bounded between 1 and w∗ where we will treat w∗ as constant.

32 Kook Jin Ahn et al.

Max-Agreement. See Section 2.2 for a description of the max-agreement algorithm. The proof in the
unweighted case first shows a lower bound for max-agreek(G) of

max(|E+|, |E−|(1−1/k))≥ n2/16 .

In the bounded-weights case, the magnitude of every edge only increases and so the same bound holds.
Hence, for the purpose of returning a (1+O(ε)) multiplicative approximation, it still suffices to find an εn2

additive approximation. Indeed, the argument of Giotis and Guruswami [30] still applies, with small changes
by decreasing ε by a factor w∗ and increasing r by a factor of w2

∗. Rather than retread the full analysis of
Giotis and Guruswami [30], we just identify the places where their argument is altered.

The central result needed is that estimating the cost associated with placing each node in a given cluster
can be done accurately from a sample of the clustered nodes. This is proved via a standard additive Chernoff
bound [30, Lemma 3.3]. It is natural to define the weighted generalization of this estimate based on the
weights of edges in the sample and to rescale accordingly. One can then apply the additive Chernoff bound
over random variables which are constrained to have magnitude in the range {1,2, . . . ,w∗}, rather than
{0,1} as in the unit-weights case. The number of nodes whose estimated relative contribution deviates by
more than (ε/32w∗) from its (actual) contribution to the optimal clustering is then bounded by applying the
Markov inequality. Provided we increase the sample size r by a factor of w2

∗, these bounds all hold with the
necessary probability.

The other steps in the argument are modified in a similar way: we analyze the total weight of edges in
agreement, rather than their number. Specifically, applying this modification to [30, Lemma 3.4], we bound
the impact of misplacing one node in the constructed clustering compared to the optimal clustering. With
the inequality from the above Chernoff bound argument, the impact of this can, as in the orignal argument,
be bounded in the weighted case by (ε/8)n. The number of nodes for which this does not hold is at most a
fraction (ε/8w∗) of each partition, and so contribute to a loss of at most (ε2/8)n2 (weighted) agreements in
each step of the argument, as in the original analysis.

Min-Agreement. See Section 5.2 for a description of the min-agreement algorithm. Again, the central
step is the use of a Chernoff bound on edges incident on sampled nodes. Modifying this to allow for
bounded-weight edges again incurs a factor of w2

∗, but is otherwise straightforward. It then remains to follow
through the steps of the original argument, switching from cardinalities of edgesets to their weights.

References

1. Ablayev, F.M.: Lower bounds for one-way probabilistic communication complexity and their ap-
plication to space complexity. Theoretical Computer Science 157(2), 139–159 (1996). URL
http://dx.doi.org/10.1016/0304-3975(95)00157-3

2. Ahn, K.J., Guha, S.: Linear programming in the semi-streaming model with application to the maximum
matching problem. Information and Computation (ICALP 2011 Special Issue) 222, 59–79 (2013).
DOI 10.1016/j.ic.2012.10.006

3. Ahn, K.J., Guha, S.: Access to data and number of iterations: Dual primal algorithms for maximum
matching under resource constraints. In: Transactions in Parallel Computing (TOPC), special issue
for Symposium on Parallelism in Algorithms and Architectures (SPAA), 2015, vol. 4 (2018). URL
http://dx.doi.org/10.1145/2755573.3154855

4. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. In: Symposium
on Discrete Algorithms: SODA, pp. 459–467 (2012). URL http://epubs.siam.org/doi/pdf/

10.1137/1.9781611973099.40

5. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In:
Principles of Database Systems: PODS, pp. 5–14 (2012). URL http://doi.acm.org/10.1145/

2213556.2213560

6. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Ranking and clustering.
J. ACM 55(5) (2008). URL http://doi.acm.org/10.1145/1411509.1411513

7. Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In: Conference on Neural
Information Processing Systems: NIPS, pp. 10–18 (2009). URL http://books.nips.cc/papers/

files/nips22/NIPS2009_1085.pdf

http://dx.doi.org/10.1016/0304-3975(95)00157-3
http://dx.doi.org/10.1145/2755573.3154855
http://epubs.siam.org/doi/pdf/10.1137/1.9781611973099.40
http://epubs.siam.org/doi/pdf/10.1137/1.9781611973099.40
http://doi.acm.org/10.1145/2213556.2213560
http://doi.acm.org/10.1145/2213556.2213560
http://doi.acm.org/10.1145/1411509.1411513
http://books.nips.cc/papers/files/nips22/NIPS2009_1085.pdf
http://books.nips.cc/papers/files/nips22/NIPS2009_1085.pdf

Correlation Clustering in Data Streams 33

8. Ailon, N., Karnin, Z.S.: A note on: No need to choose: How to get both a PTAS and sublinear query
complexity. CoRR abs/1204.6588 (2012)

9. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta algorithm and
applications. Theory of Computing 8(6), 121–164 (2012). URL http://www.theoryofcomputing.

org/articles/v008a006

10. Arora, S., Kale, S.: A combinatorial, primal-dual approach to semidefinite programs. In: ACM
Symposium on Theory of Computing: STOC, pp. 227–236 (2007). URL http://doi.acm.org/10.

1145/1250790.1250823

11. Bagon, S., Galun, M.: Large scale correlation clustering optimization. arXiv:1112.2903v1 (2011)
12. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1–3), 89–113 (2004).

URL http://dx.doi.org/10.1023/B:MACH.0000033116.57574.95

13. Benczúr, A.A., Karger, D.R.: Approximating s− t minimum cuts in Õ(n2) time. In: Symposium on
Theory of Computing: STOC, pp. 47–55 (1996)

14. Bonchi, F., Garcia-Soriano, D., Liberty, E.: Correlation clustering: From theory to practice. In:
International Conference on Knowledge Discovery and Data Mining: KDD, pp. 1972–1972. ACM,
New York, NY, USA (2014). URL http://doi.acm.org/10.1145/2623330.2630808

15. Braverman, V., Chung, K., Liu, Z., Mitzenmacher, M., Ostrovsky, R.: AMS without 4-wise indepen-
dence on product domains. In: International Symposium on Theoretical Aspects of Computer Science:
STACS, pp. 119–130 (2010). URL http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2449

16. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic informa-
tion retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004). URL http://dx.doi.org/10.1137/

S0097539702418498

17. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci.
71(3), 360–383 (2005). URL http://dx.doi.org/10.1016/j.jcss.2004.10.012

18. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for clustering problems. In:
Symposium on Theory of Computing: STOC, pp. 30–39 (2003). URL http://doi.acm.org/10.

1145/780542.780548

19. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algorithm
for correlation clustering on complete and complete k-partite graphs. In: Symposium on Theory of
Computing: STOC (2015)

20. Chierichetti, F., Dalvi, N.N., Kumar, R.: Correlation clustering in mapreduce. In: International
Conference on Knowledge Discovery and Data Mining: KDD, pp. 641–650 (2014). URL http:

//doi.acm.org/10.1145/2623330.2623743

21. Coleman, T., Saunderson, J., Wirth, A.: A local-search 2-approximation for 2-correlation-clustering.
In: European Symposium on Algorithms: ESA, pp. 308–319 (2008). URL http://dx.doi.org/10.

1007/978-3-540-87744-8_26

22. Cormode, G., Yi, K.: Small Summaries for Big Data. CUP (2020)
23. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs.

Theoretical Computer Science 361(2–3), 172–187 (2006). URL http://dx.doi.org/10.1016/j.

tcs.2006.05.008

24. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Transac-
tions on knowledge and data engineering 19(1), 1–16 (2006)

25. Elsner, M., Schudy, W.: Bounding and comparing methods for correlation clustering beyond ILP. In:
Workshop on Integer Linear Programming for Natural Langauge Processing: ILP, pp. 19–27. Associa-
tion for Computational Linguistics, Stroudsburg, PA, USA (2009). URL http://www.anthology.

aclweb.org/W/W09/W09-1803.pdf

26. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming
model. Theoretical Computer Science 348(2–3), 207–216 (2005). URL http://dx.doi.org/10.

1016/j.tcs.2005.09.013

27. Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-cut and MAX BISECTION.
Algorithmica 18(67) (1997). DOI https://doi.org/10.1007/BF02523688

28. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their
applications. In: ACM Symposium on Theory of Computing: STOC, pp. 698–707 (1993). URL
http://doi.acm.org/10.1145/167088.167266

29. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Transactions on Knowledge
Discovery from Data (TKDD) 1(1), 4 (2007)

30. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory of Computing
2(1), 249–266 (2006). URL http://dx.doi.org/10.4086/toc.2006.v002a013

http://www.theoryofcomputing.org/articles/v008a006
http://www.theoryofcomputing.org/articles/v008a006
http://doi.acm.org/10.1145/1250790.1250823
http://doi.acm.org/10.1145/1250790.1250823
http://dx.doi.org/10.1023/B:MACH.0000033116.57574.95
http://doi.acm.org/10.1145/2623330.2630808
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2449
http://dx.doi.org/10.1137/S0097539702418498
http://dx.doi.org/10.1137/S0097539702418498
http://dx.doi.org/10.1016/j.jcss.2004.10.012
http://doi.acm.org/10.1145/780542.780548
http://doi.acm.org/10.1145/780542.780548
http://doi.acm.org/10.1145/2623330.2623743
http://doi.acm.org/10.1145/2623330.2623743
http://dx.doi.org/10.1007/978-3-540-87744-8_26
http://dx.doi.org/10.1007/978-3-540-87744-8_26
http://dx.doi.org/10.1016/j.tcs.2006.05.008
http://dx.doi.org/10.1016/j.tcs.2006.05.008
http://www.anthology.aclweb.org/W/W09/W09-1803.pdf
http://www.anthology.aclweb.org/W/W09/W09-1803.pdf
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://doi.acm.org/10.1145/167088.167266
http://dx.doi.org/10.4086/toc.2006.v002a013

34 Kook Jin Ahn et al.

31. Goel, A., Kapralov, M., Post, I.: Single pass sparsification in the streaming model with edge deletions.
CoRR abs/1203.4900 (2012). URL http://arxiv.org/abs/1203.4900

32. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms
for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005). URL http://dx.doi.org/10.

1007/s00224-004-1178-y

33. Gruenheid, A., Dong, X.L., Srivastava, D.: Incremental record linkage. Proceedings of the VLDB
Endowment 7(9), 697–708 (2014)

34. Guha, S.: Tight results for clustering and summarizing data streams. In: International Conference
on Database Theory: ICDT, pp. 268–275 (2009). URL http://doi.acm.org/10.1145/1514894.

1514926

35. Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic graph streams.
Proceedings of the 34th ACM Symposium on Principles of Database Systems (PODS) pp. 241–247
(2015)

36. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In: IEEE Foundations of
Computer Science: FOCS, pp. 359–366 (2000). URL http://doi.ieeecomputersociety.org/

10.1109/SFCS.2000.892124

37. Hassanzadeh, O., Chiang, F., Lee, H.C., Miller, R.J.: Framework for evaluating clustering algorithms
in duplicate detection. Proceedings of the VLDB Endowment 2(1), 1282–1293 (2009)

38. Indyk, P., McGregor, A.: Declaring independence via the sketching of sketches. In: Symposium on
Discrete Algorithms: SODA, pp. 737–745 (2008). URL http://dl.acm.org/citation.cfm?id=

1347082.1347163

39. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set intersection.
SIAM J. Discrete Math. 5(4), 545–557 (1992). URL http://dx.doi.org/10.1137/0405044

40. Kane, D.M., Nelson, J., Woodruff, D.P.: On the exact space complexity of sketching and streaming
small norms. In: ACM-SIAM Symposium on Discrete Algorithms: SODA, pp. 1161–1178 (2010).
URL http://dx.doi.org/10.1137/1.9781611973075.93

41. Kapralov, M., Lee, Y.T., Musco, C., Musco, C., Sidford, A.: Single pass spectral sparsification in
dynamic streams. CoRR abs/1407.1289 (2014). URL http://arxiv.org/abs/1407.1289

42. McCutchen, R.M., Khuller, S.: Streaming algorithms for k-center clustering with outliers and with
anonymity. International Workshop on Approximation Algorithms for Combinatorial Optimization:
APPROX pp. 165–178 (2008). DOI 10.1007/978-3-540-85363-3 14

43. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Record 43(1), 9–20 (2014). URL
http://doi.acm.org/10.1145/2627692.2627694

44. Pan, X., Papailiopoulos, D.S., Oymak, S., Recht, B., Ramchandran, K., Jordan, M.I.: Paral-
lel correlation clustering on big graphs. In: Advances in Neural Information Processing Sys-
tems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pp. 82–90 (2015). URL http://papers.nips.cc/paper/

5814-parallel-correlation-clustering-on-big-graphs

45. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics
144(1), 173–182 (2004)

46. Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., Carvalho, A.C.P.L.F.d., Gama, J.a.: Data stream
clustering: A survey. ACM Comput. Surv. 46(1), 13:1–13:31 (2013). URL http://doi.acm.org/

10.1145/2522968.2522981

47. Steurer, D.: Fast SDP algorithms for constraint satisfaction problems. In: Symposium on Discrete
Algorithms: SODA, pp. 684–697 (2010)

48. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite programming. In: Sympo-
sium on Discrete Algorithms: SODA, pp. 526–527 (2004). URL http://doi.acm.org/10.1145/

982792.982866

49. Verroios, V., Garcia-Molina, H.: Entity resolution with crowd errors. In: 2015 IEEE 31st International
Conference on Data Engineering, pp. 219–230. IEEE (2015)

50. Vesdapunt, N., Bellare, K., Dalvi, N.: Crowdsourcing algorithms for entity resolution. Proceedings of
the VLDB Endowment 7(12), 1071–1082 (2014)

51. Wirth, A.I.: Approximation algorithms for clustering. Ph.D. thesis, Princeton University (2004). URL
ftp://ftp.cs.princeton.edu/reports/2004/716.pdf

http://arxiv.org/abs/1203.4900
http://dx.doi.org/10.1007/s00224-004-1178-y
http://dx.doi.org/10.1007/s00224-004-1178-y
http://doi.acm.org/10.1145/1514894.1514926
http://doi.acm.org/10.1145/1514894.1514926
http://doi.ieeecomputersociety.org/10.1109/SFCS.2000.892124
http://doi.ieeecomputersociety.org/10.1109/SFCS.2000.892124
http://dl.acm.org/citation.cfm?id=1347082.1347163
http://dl.acm.org/citation.cfm?id=1347082.1347163
http://dx.doi.org/10.1137/0405044
http://dx.doi.org/10.1137/1.9781611973075.93
http://arxiv.org/abs/1407.1289
http://doi.acm.org/10.1145/2627692.2627694
http://papers.nips.cc/paper/5814-parallel-correlation-clustering-on-big-graphs
http://papers.nips.cc/paper/5814-parallel-correlation-clustering-on-big-graphs
http://doi.acm.org/10.1145/2522968.2522981
http://doi.acm.org/10.1145/2522968.2522981
http://doi.acm.org/10.1145/982792.982866
http://doi.acm.org/10.1145/982792.982866
ftp://ftp.cs.princeton.edu/reports/2004/716.pdf

	Introduction
	Basic Data Structures and Applications
	Convex Programming in Small Space: mindisagree
	Convex Programming in Small Space: maxagree
	Multipass Algorithms
	Lower Bounds
	Extension to Bounded Weights

