
Learning Graphical Models from a Distributed
Stream

Yu Zhang #1, Srikanta Tirthapura #2, Graham Cormode ∗

Electrical and Computer Engineering Department, Iowa State University
1 yuz1988@iastate.edu 2 snt@iastate.edu

∗ University of Warwick, g.cormode@warwick.ac.uk

Abstract—A current challenge for data management systems is
to support the construction and maintenance of machine learning
models over data that is large, multi-dimensional, and evolving.
While systems that could support these tasks are emerging,
the need to scale to distributed, streaming data requires new
models and algorithms. In this setting, as well as computational
scalability and model accuracy, we also need to minimize the
amount of communication between distributed processors, which
is the chief component of latency.

We study Bayesian Networks, the workhorse of graphical
models, and present a communication-efficient method for contin-
uously learning and maintaining a Bayesian network model over
data that is arriving as a distributed stream partitioned across
multiple processors. We show a strategy for maintaining model
parameters that leads to an exponential reduction in commu-
nication when compared with baseline approaches to maintain
the exact MLE (maximum likelihood estimation). Meanwhile,
our strategy provides similar prediction errors for the target
distribution and for classification tasks.

I. INTRODUCTION

With the increasing need for large scale data analysis,
distributed machine learning [1] has grown in importance in
recent years, leading to the development of platforms such
as Spark MLlib [2], Tensorflow [3] and Graphlab [4]. Raw
data is described by a large number of interrelated variables,
and an important task is to describe the joint distribution
over these variables, allowing inferences and predictions to
be made. For example, consider a large-scale sensor network
where each sensor is observing events in its local area (say,
vehicles across a highway network; or pollution levels within
a city). There can be many factors associated with each event,
such as duration, scale, surrounding environmental conditions
and many other features collected by the sensor. However,
directly modeling the full joint distribution of all these features
may be infeasible, since the complexity of such a model grows
exponentially with the number of variables. For instance, the
complexity of a model with n variables, each taking one of J
values is O(Jn) parameters. The most common way to tame
this complexity has to use a graphical model to compactly
encode conditional dependencies among variables in the data,
and so reduce the number of parameters.

We focus on Bayesian Networks, a general and widely
used class of graphical models. A Bayesian network can be
represented as a directed acyclic graph (DAG), where each
node represents a variable and an edge directed from one node

to another represents a conditional dependency between the
corresponding variables. Bayesian networks have found appli-
cations in numerous domains, such as decision making [5],
[6] and cybersecurity [7], [8]. In these domains, new training
examples can arrive online, and it is important to incorporate
new data into the model as it arrives. For instance, in malware
classification, as more data observed, the Bayesian network
can be adjusted in an online manner to better classify future
inputs as either benign or malicious.

While a graphical model can help in reducing complexity,
the number of parameters in such a model can still be quite
high, and tracking each parameter independently is expensive,
especially in a distributed system that sends a message for
each update. The key insight in our work is that it is not
necessary to log every event in real time; rather, we can
aggregate information, and only update the model when there
is a substantial change in the inferred model. This still allows
us to continuously maintain the model, but with substantially
reduced communication. In order to give strong approxima-
tion guarantees for this approach, we delve deeper into the
construction of Bayesian Networks.

The fundamental task in building a Bayesian Network is
to estimate the conditional probability distribution (CPD) of
a variable given the values assigned to its parents. Once the
CPDs of different variables are known, the joint distribution
can be derived over any subset of variables using the chain
rule [9]. To estimate the CPDs from empirical data, we use
the maximum likelihood estimation (MLE) principle. The CPD
of each event can be obtained by the ratio of the prevalence of
that event versus the parent event (for independent variables,
we obtain the single variable distribution). Thus the central
task is to obtain accurate counts of different subsets of events.
Following the above discussion, the problem has a tanta-
lizingly clear solution: to materialize the needed frequency
counts in order to estimate the CPDs accurately.

Modern data analysis systems deal with massive, dynamic,
and distributed data sources, such as network traffic monitors
and large-scale sensor networks. On such sources, the simple
solution of centralizing all data would incur a very high
network communication cost. As observed in prior work on
distributed stream monitoring [10], [11], it is important to
minimize network communication in order to scale to streams
of higher velocity and variety. Our technical challenge is to

design a scheme that can accurately maintain the Bayesian
Network model, while minimizing the communication in-
curred.

We formalize the problem using the continuous distributed
stream monitoring model [12]. There are many sites, each
receiving an individual stream of observations i.e. we assume
the data is horizontally partitioned. A separate coordinator
node, which receives no input itself, interacts with the sites
to collaboratively maintain a model over the union of all data
seen so far, and also answers queries. This model captures
many of the difficulties that arise in learning tasks in big data
systems – data is large, streaming in, and distributed over many
sites; and models need to be maintained in a timely manner
allowing for real-time responses.

Our work makes extensive use of a primitive called a
distributed counter, which enables accurate event counting
without triggering a message for each event. We first show
a basic monitoring scheme that uses distributed counters
independently for each variable in the model. However, our
strongest results arise when we provide a deeper technical
analysis of how the counts combine, to give tighter accuracy
guarantees with a lower communication cost. The resulting
exponential improvements in the worst-case cost for this task
are matched by dramatic reductions observed in practice. In
more detail, our contributions are as follows:
Contributions. We present the first communication-efficient
algorithms that continuously maintain a graphical model over
distributed data streams.
— Our algorithms maintain an accurate approximation of the
Maximum Likelihood Estimate (MLE) using communication
cost that is only logarithmic in the number of distributed obser-
vations. This is in contrast with the approach that maintains an
exact MLE using a communication cost linear in the number
of observations.
— Our communication-efficient algorithms provide a provable
guarantee that the model maintained is close to the MLE model
given current observations, in a precise sense (Sections III, IV).
— We present three algorithms, in increasing order of ability
to capture model parameters, BASELINE, UNIFORM, and
NONUNIFORM in Section IV. All three follow a similar
outline, and differ in how they allocate internal parameters that
control the accuracy of approximation of different quantities.
NONUNIFORM has the most involved analysis (but is straight-
forward to implement) to handle the case when the sizes of
the CPDs of different random variables may be very different
from each other. Section V shows how these algorithms apply
to typical machine learning tasks such as classification.
— We present an evaluation, both using simulations as well
as implementation over a cluster, in showing that on a stream
of a few million distributed training examples, our methods
resulted in an improvement of 100-1000x in communication
cost over the maintenance of exact MLEs, while providing
estimates of joint probability with nearly the same accuracy
as obtained by exact MLEs.

This provides a method for communication-efficient main-
tenance of a graphical model over distributed, streaming data.

Prior works on maintaining a graphical model have considered
efficiency in terms of space (memory) and time, but these costs
tend to be secondary when compared to the communication
cost in a distributed system. Our method is built on the
careful combination of multiple technical pieces. Since the
overall joint distribution is formed by composing many CPDs,
we divide the maximum “error budget” among the different
parameters within the different CPDs so that (a) the error
of the joint distribution is within the desired budget, and
(b) the communication cost is as small as possible. We pose
this as a convex optimization problem and use its solution
to parameterize the algorithms for distributed counters. The
next advance is to leverage concentration bounds to argue that
the aggregate behavior of the approximate model consisting
of multiple random variables (each estimating a parameter
of a CPD) is concentrated within a small range. As a result,
the dependence of the communication cost on the number of
variables n can be brought down from O(n) to O(

√
n).

II. PRIOR AND RELATED WORK

Many recent works are devoted to designing algorithms
with efficient communication in distributed machine learning.
Balcan et al. [13] were perhaps the first to give formal consid-
eration to this problem, based on the model of PAC (Probably
Approximately Correct) learning. They showed lower bounds
and algorithms for the non-streaming case, where k parties
each hold parts of the input, and want to collaborate to
compute a model. We call this “the static distributed model”.
Daumé et al. [14] considered a distributed version of the
classification problem: training data points are assigned labels,
and the goal is to build a model to predict labels for new ex-
amples. Algorithms are also proposed in the static distributed
model, where the classifiers are linear separators (hyperplanes)
allowing either no or small error. Most recently, Chen et al.
[15] considered spectral graph clustering, and showed that the
trivial approach of centralizing all data can only be beaten
when a broadcast model of communication is allowed.

In the direction of lower bounds, Zhang et al. [16] con-
sidered the computation of statistical estimators in the static
distributed model, and show communication lower bounds
for minimizing the expected squared error, based on infor-
mation theory. Phillips et al. [17] show lower bounds using
communication complexity arguments via the “number in
hand” model. Various functions related to machine learning
models are shown to be “hard” i.e., require large amounts of
communication in the distributed model .

Some previous works have extended sketching techniques
to the problem of streaming estimation of parameters of a
Bayesian network. McGregor and Vu [18] gave sketch-based
algorithms to measure whether given data was “consistent”
with a prescribed model i.e. they compare the empirical prob-
abilities in the full joint distribution with those that arise from
fitting the same data into a particular Bayesian network. They
also provide a streaming algorithm that finds a good degree-
one Bayesian network (i.e. when the graph is a tree). Kveton
et al. [19] adapt sketches to allow estimation of parameters

for models that have very high-cardinality variables. However,
neither of these methods consider the distributed setting.

The continuous distributed monitoring model has been well
studied in the data management and algorithms communities,
but there has been limited work on machine learning problems
in this model. A survey of the model and basic results is
given in [20]. Efficient distributed counting is one of the
first problems studied in this model [21], and subsequently
refined [22], [12]. The strongest theoretical results on this
problem are randomized algorithms due to Huang et al. [23].
Generic techniques are introduced and studied by Sharfman et
al. [10]. Some problems studied in this model include clus-
tering [24], anomaly detection [25], entropy computation [26]
and sampling [27].

III. PRELIMINARIES

Let P [E] denote the probability of event E. For random
variable X , let dom(X) denote the domain of X . We use
P [x] as a shorthand for P [X = x] when the random variable
is clear from the context. For a set of random variables X =
{X1, . . . , Xn} let P [X1, . . . , Xn] or P [X] denote the joint
distribution over X . Let dom(X) denote the set of all possible
assignments to X .

Definition 1: A Bayesian network G = (X , E) is a directed
acyclic graph with a set of nodes X = {X1, . . . , Xn}
and edges E . Each Xi represents a random variable. For
i ∈ [1, n], let par (Xi) denote the set of parents of Xi

and NonDescendants (Xi) denote the variables that are not
descendants of Xi. The random variables obey the following
condition: for each i ∈ [1, n], Xi is conditionally independent
of NonDescendants (Xi), given par (Xi).
For i = 1 . . . n, let Ji denote the size of dom(Xi) and Ki the
size of dom(par (Xi)).

Conditional Probability Distribution. Given a Bayesian Net-
work on X , the joint distribution can be factorized as:

P [X] =
∏n
i=1 P [Xi | par (Xi)] (1)

For each i, P [Xi | par (Xi)] is called the conditional proba-
bility distribution (CPD) of Xi. Let θi denote the CPD of Xi

and θ = {θ1, . . . , θn} the set of CPDs of all variables.

Given training data D, we are interested in obtaining the
maximum likelihood estimate (MLE) of θ. Suppose that
D contains m instances ξ[1], . . . , ξ[m]. Let L(θ | D), the
likelihood function of θ given the dataset D, be equal to the
probability for dataset observed given those parameters.

L(θ | D) = P [D | θ]

Let Li(θi | D) denote the likelihood function for θi. The
likelihood function of θ can be decomposed as a product of
independent local likelihood functions.

L(θ | D) =
∏n
i=1 Li(θi | D)

Let θ̂ denote the value of θ that maximizes the likelihood
function, θ̂ is also known as the Maximum Likelihoood

Estimation (MLE) of θ. Similarly, let θ̂i denote the value of
θi that maximizes Li(θi | D).

Lemma 1 ([9, proposition 17.1]): Consider a Bayesian
Network with given structure G and training dataset D.
Suppose for all i 6= j, θi and θj are independent. For each
i ∈ [1, n], if θ̂i maximizes the likelihood function Li(θi : D),
then θ̂ = {θ̂1, . . . , θ̂n} maximizes L(θ : D).

Local CPD Estimation. In this work, we consider categorical
random variables, so that the CPD of each variable Xi

can be represented as a table, each entry is the probability
Pi [xi | xpari] where xi is the value of Xi and xi ∈ dom(Xi),
xpari is the vector of values on the dimensions corresponding
to par (Xi) and xpari ∈ dom(par (Xi)).

We can handle continuous valued variables by appropriate
discretization, for example through applying a histogram, with
bucket boundaries determined by domain knowledge, or found
by estimation on a random sample.

Lemma 2 ([9, Section 17.2.3]): Given a training dataset D,
the maximum likelihood estimation (MLE) for θi is θ̂i(xi |
xpari) =

Fi(xi,x
par
i)

Fi(x
par
i)

where Fi(xi,x
par
i) is the number of

events (Xi = xi, par (Xi) = xpari) in D, Fi(x
par
i) is the

number of events (par (Xi) = xpari) in D.
From Lemma 1, a solution that maximizes the local likeli-

hood functions also maximizes the joint likelihood function.
We further have that the MLE is an accurate estimate of the
ground truth when the training dataset is sufficiently large.

Lemma 3 ([9, Corollary 17.3]): Given a Bayesian Net-
work G on X , let P ∗ denote the ground truth joint distribution
consistent with G and P̂ the joint distribution using MLE.
Suppose Pi [xi | xpari] ≥ λ for all i, xi,x

par
i . If m ≥

(1+ε)2

2λ2(d+1)ε2
log nJd+1

δ then P
[
e−nε ≤ P̂

P∗ ≤ enε
]
> 1−δ, where

J = maxni=1 Ji, and d = maxni=1 |par (Xi) |.
Approximate Distributed Counters. We make use of a
randomized algorithm to continuously track counter values in
the distributed monitoring model, due to [23].

Lemma 4 ([23]): Consider a distributed system with k
sites. Given 0 < ε < 1, for k ≤ 1

ε2 , there is a randomized
distributed algorithm DISTCOUNTER (ε, δ) that continuously
maintains a distributed counter A with the property that
E [A] = C and Var [A] ≤ (εC)2, where C is the exact value
being counted. The communication cost is O

(√
k
ε · log T

)
messages, where T is the maximum value of C. The algorithm
uses O(log T) space at each site and O(1) processing time per
instance received.

Our Objective: Approximation to the MLE. Given a con-
tinuously changing data stream, exact maintenance of the
MLE of the joint distribution is expensive communication-
wise, since it requires the exact maintenance of multiple
distributed counters, each of which may be incremented by
many distributed processors. Hence, we consider the following
notion of approximation to the MLE.

Definition 2: Consider a Bayesian Network G on X . Let
P̂ [·] denote the MLE of the joint distribution of X . Given
approximation factor 0 < ε < 1, an ε-approximation to the

MLE is a joint probability distribution P̃ [·] such that, for any
assignment of values x to X , e−ε ≤ P̃ (x)

P̂ (x)
≤ eε. Given an

additional parameter 0 < δ < 1, a distribution P̃ is an (ε, δ)-
approximation to MLE if it is an ε-approximation to the MLE
with probability at least 1− δ.

Our goal is to maintain a distribution P̃ that is an (ε, δ)-
approximation to the MLE, given all data observed so far, in
the distributed continuous model.

The task of choosing the graph G with which to model the
data (i.e. which edges are present in the network and which
are not) is also an important one, but one that we treat as
orthogonal to our focus in this work. For data of moderate
dimensionality, we may assume that the graph structure is
provided by a domain expert, based on known structure and
independence within the data. Otherwise, the graph structure
can be learned offline based on a suitable sample of the data.
The question of learning graph models “live” as data arrives,
is a challenging one that we postpone to future work.

IV. DISTRIBUTED STREAMING MLE APPROXIMATION

Continuous maintenance of the MLE requires continuous
maintenance of a number of counters, to track the different
(empirical) conditional probability distributions.

For each xi ∈ dom(Xi) and xpari ∈ dom(par (Xi)), let
Ci(xpari) be the counter that tracks the number of events
(par (Xi) = xpari), and let Ci(xi,xpari) be the counter that
tracks the number of events (Xi = xi, par (Xi) = xpari).
When clear from the context, we use the counter to also
denote its value when queried. Consider any input vector
x = 〈x1, . . . , xn〉. For 1 ≤ i ≤ n, let xpari denote the
projection of vector x on the dimensions corresponding to
par (Xi). Based on Equation 1 and Lemma 1, the empirical
joint probability P̂ [x] can be factorized as:

P̂ [x] =
∏n
i=1

Ci(xi,xpari)

Ci(xpari)
(2)

A. Strawman: Using Exact Counters

A simple solution to maintain parameters is to maintain each
counter Ci(·) and Ci(·, ·) exactly at all times, at the coordinator.
With this approach, the coordinator always has the MLE of the
joint distribution, but the communication cost quickly becomes
the bottleneck of the whole system. Each time an event is
received at a site, the site tells the coordinator to update the
centralizing parameters θ immediately, essentially losing any
benefit of distributed processing.

Lemma 5: If exact counters are used to maintain the MLE
of a Bayesian network on n variables in the distributed mon-
itoring model, the total communication cost to continuously
maintain the model over m event observations is O(mn),
spread across m messages of size n.

B. Master Algorithms Using Approximate Counters

The major issue with using exact counters to maintain the
MLE is the communication cost, which increases linearly with
the number of events received from the stream. We describe
a set of “master” algorithms that we use to approximately

Algorithm 1: INIT(n, epsfnA, epsfnB)

/* Initialization of Distributed Counters. */
Input: n is the number of variables. epsfnA and epsfnB

are parameters of initialization functions provided
by specific algorithms.

1 foreach i from 1 to n do
2 foreach xi ∈ dom(Xi), xpari ∈ dom(par (Xi)) do
3 Ai(xi,xpari)← DistCounter(epsfnA(i), δ)

4 foreach xpari ∈ dom(par (Xi)) do
5 Ai(xpari)← DistCounter(epsfnB(i), δ)

Algorithm 2: UPDATE(x)

/* Called by a site upon receiving a new event */
Input: x = 〈x1, . . . , xd〉 is an observation.

1 foreach i from 1 to n do
2 Increment Ai(xi,xpari)
3 Increment Ai(xpari)

track statistics, leading to a reduced communication cost,
yet maintaining an approximation of the MLE. In successive
sections we tune their parameters and analysis to improve
their behavior. In Section IV-C, we describe the BASELINE
algorithm which divides the error budget uniformly and pes-
simistically across all variables. Section IV-D gives the UNI-
FORM approach, which keeps the uniform allocation, but uses
an improved randomized analysis. Finally, the NONUNIFORM
algorithm in Section IV-E adjusts the error budget allocation
to account for the cardinalities of different variables.

These algorithms build on top of approximate distributed
counters (Lemma 4), denoted by A. At any point, the coordi-
nator can answer a query over the joint distribution by using
the outputs of the approximate counters, rather than the exact
values of the counters (which it no longer has access to). We
have the following objective:

Definition 3 (MLE Tracking Problem): Given 0 < ε < 1,
for i ∈ [1, n], we seek to maintain distributed counters
Ai(xi,xpari) and Ai(xpari) such that for any data input vector
x = 〈x1, x2, . . . , xn〉, we have

e−ε ≤ P̃ (x)

P̂ (x)
=
∏n
i=1

(
Ai(xi,xpari)

Ci(xi,xpari)
· Ci(xi)
Ai(xpari)

)
≤ eε

Our general approach is as follows. Each algorithm ini-
tializes a set of distributed counters (DistCounter in Al-
gorithm 1). Once a new event is received, we update the
two counters associated with the CPD for each variable
(Algorithm 2). A query is processed as in Algorithm 3 by
probing the approximate CPDs. The different algorithms are
specified based on how they set the error parameters for the
distributed counters, captured in the functions epsfnA and
epsfnB.

Algorithm 3: QUERY(x)

/* Used to query the joint probability distribution. */
Input: x = 〈x1, . . . , xd〉 is an input vector
Output: Estimated Probability P̃ [x]

1 foreach i from 1 to n do
2 pi ←

Ai(xi,xpari)

Ai(xpari)

3 Return
∏n
i=1 pi

C. BASELINE Algorithm Using Approximate Counters

Our first approach BASELINE, sets the error parameter of
each counter A(·) and A(·, ·) to a value ε

3n , which is small
enough so that the overall error in estimating the MLE is
within desired bounds. In other words, BASELINE configures
Algorithm 1 with epsfnA(i) = epsfnB(i) = ε

3n . Our analysis
makes use of the following standard fact.

Fact 1: For 0 < ε < 1 and n ∈ Z+, when α ≤ ε
3n ,(

1+α
1−α

)n
≤ eε and

(
1−α
1+α

)n
≥ e−ε

Lemma 6: Given 0 < ε, δ < 1 and a Bayesian Net-
work with n variables, the BASELINE algorithm maintains
the parameters of the Bayesian Network such that at any
point, it is an (ε, δ)-approximation to the MLE. The to-
tal communication cost across m training observations is
O
(
n2Jd+1

√
k

ε · log 1
δ · logm

)
messages, where J is the max-

imum domain cardinality for any variable Xi, d is the maxi-
mum number of parents for any variable and k is the number
of sites.

Proof: We analyze the ratio

P̃ (x)

P̂ (x)
=
∏n
i=1

Ai(xi,xpari)

Ai(xpari)
· Ci(x

par
i)

Ci(xi,xpari)

We provide a probabilistic analysis based on applying Cheby-
shev’s inequality to the variance of each counter (Lemma 4).
We first choose a particular value of the counter’s parameter
ε′, which is proportional to ε/n. By appealing to the union
bound, we have that each counter Ai() is in the range
(1 ± ε

3n) · Ci() with probability at least 1 − δ. The worst
case is when Ai(xi,xpari) =

(
1− ε

3n

)
· Ci(xi,xpari) and

Ai(xpari) = (1 + ε
3n) · Ci(xpari), i.e each counter takes on

an extreme value within its confidence interval. In this case,
P̃ (x)

P̂ (x)
takes on the minimum value. Using Fact 1, we get

P̃ (x)

P̂ (x)
≥
(

1− ε
3n

1+ ε
3n

)n
≥ e−ε. Symmetrically, we have P̃ (x)

P̂ (x)
≤ eε

when we make pessimistic assumptions in the other direction.
Using Lemma 4, the communication cost for each dis-

tributed counter is O
(
n
√
k
ε · log 1

δ · logm
)

messages. For
each i ∈ [1, n], there are at most Jd+1 counters Ai(xi,xpari)
and at most Jd counters Ai(xpari) for all xi ∈ dom(Xi) and
xpari ∈ dom(par (Xi)). So the total communication cost is
O
(
n2Jd+1

√
k

ε · log 1
δ · logm

)
messages.

D. UNIFORM: Improved Uniform Approximate Counters

The approach in BASELINE is overly pessimistic: it assumes
that all errors may fall in precisely the worst possible direction.

Since the counter algorithms are unbiased and random, we can
provide a more refined statistical analysis and still obtain our
desired guarantee with less communication.

Recall that the randomized counter algorithm in Lemma 4
can be shown to have the following properties:

• Each distributed counter is unbiased, E [A] = C.
• The variance of counter is bounded, Var [A] ≤ (ε′C)2,

where ε′ is the error parameter used in A.

Hence the product of multiple distributed counters is also
unbiased, and we can also bound the variance of the product.

Our UNIFORM algorithm initializes its state using Algo-
rithm 1 with epsfnA(i) = epsfnB(i) = ε

16
√
n

. We prove its
properties after first stating a useful fact.

Fact 2: When 0 < x < 0.3, ex < 1+2x and e−2x < 1−x.
Lemma 7: Given input vector x = 〈x1, . . . , xd〉, let F =∏n
i=1Ai(xi,x

par
i) and f =

∏n
i=1 Ci(xi,x

par
i). With Algo-

rithm UNIFORM, E [F] = f and Var [F] ≤ ε2

128 · f
2.

Proof: From Lemma 4, for i ∈ [1, n] we have

E [Ai(xi,xpari)] = Ci(xi,xpari).

Since all the distributed counters Ai(·, ·) are independent, we
have:

E

[
n∏
i=1

Ai(xi,xpari)

]
=

n∏
i=1

Ci(xi,xpari)

This proves E [F] = f . We next compute E
[
A2
i (xi,x

par
i)

]
,

E
[
A2
i (xi,x

par
i)

]
= Var [Ai(xi,xpari)] + (E [Ai(xi,xpari)])

2

≤ (epsfnA(i) · Ci(xi,xpari))
2

+ C2i (xi,x
par
i)

≤
(

1 +
ε2

256n

)
· C2i (xi,x

par
i)

By noting that different termsA2
i (xi,x

par
i) are independent:

E
[
F 2
]

= E

[(n∏
i=1

Ai(xi,xpari)
)2]

=

n∏
i=1

E
[
A2
i (xi,x

par
i)

]
≤
(

1 +
ε2

256n

)n
·
n∏
i=1

C2i (xi,x
par
i) ≤ eε

2/256 · f2

Using Fact 2, E
[
F 2
]
≤ eε

2/256 · f2 ≤
(

1 +
ε2

128

)
· f2

Since E [F] = f , we calculate Var [F]:

Var [F] = E
[
F 2
]
−(E [F])

2 ≤
(

1 +
ε2

128

)
·f2−f2 =

ε2

128
·f2

Using Chebyshev’s inequality, we can bound F .
Lemma 8: For i ∈ [1, n], maintaining distributed counters

Ai(xi,xpari) with approximation factor ε
16
√
n

, gives e−
ε
2 ≤∏n

i=1
Ai(xi,xpari)

Ci(xi,xpari)
≤ e ε2 with probability at least 7/8.

Proof: Using the Chebyshev inequality, with E [F] = f

P
[
|F − f | ≤

√
8Var [F]

]
≥ 7

8

From Lemma 7, Var [F] ≤ ε2

128 · f
2, hence

P
[
|F − f | ≤ εf

4

]
≥ 7

8

and so (via Fact 2), e−
ε
2 ≤

(
1− ε

4

)
≤ F

f
≤
(

1 +
ε

4

)
≤ e ε2

with probability at least 7/8.
For the term Ci(xpari)

Ai(xpari)
, we maintain distributed counters

Ai(xpari) with approximation factor ε
16
√
n

. One subtlety here
is that different variables, say Xi and Xj , i 6= j can have
par (Xi) = par (Xj), so that

∏n
i=1

Ci(xpari)

Ai(xpari)
can have duplicate

terms, arising from different i. This leads to terms in the
product that are not independent of each other. To simplify
such cases, for each i ∈ [1, n], we maintain separate distributed
counters Ai(xpari), so that when par (Xi) = par (Xj), the
counters Ai(xpari) and Aj(xparj) are independent of each
other. Then, we can show the following lemma for counters
A(xpari), which is derived in a manner similar to Lemma 7
and 8. The proof is omitted.

Lemma 9: For i ∈ [1, n], when we maintain distributed
counters Ai(xpari) with approximation factor ε

16
√
n

, we have

e−
ε
2 ≤

∏n
i=1

Ci(xpari)

Ai(xpari)
≤ e ε2 with probability at least 7/8.

Combining these results, we obtain the following result
about UNIFORM.

Theorem 1: Given 0 < ε, δ < 1, UNIFORM algorithm con-
tinuously maintains an (ε, δ)-approximation to the MLE over
the course of m observations. The communication cost over
all observations is O

(
n3/2Jd+1

√
k

ε · log 1
δ · logm

)
messages,

where J is the maximum domain cardinality for any variable
Xi, d is the maximum number of parents for a variable in the
Bayesian network, and k is the number of sites.

Proof: Recall that our approximation ratio is given by

P̃ (x)

P̂ (x)
=

n∏
i=1

Ai(xi,xpari)

Ai(xpari)
· Ci(x

par
i)

Ci(xi,xpari)

Combining Lemmas 8 and 9, we have

e−ε ≤
n∏
i=1

Ai(xi,xpari)

Ci(xi,xpari)
· Ci(x

par
i)

Ai(xpari)
≤ eε

with probability at least 3/4, showing that the model that
is maintained is an (ε, 1/4) approximation to the MLE. By
taking the median of O(log 1

δ) independent instances of the
UNIFORM algorithm, we improve the error probability to δ.

The communication cost for each distributed counter is
O
(√

nk
ε · log 1

δ · logm
)

messages. For each i ∈ [1, n], there
are at most Jd+1 counters Ai(xi,xpari) for all xi ∈ dom(Xi)
and xpari ∈ dom(par (Xi)), and at most Jd counters Ai(xpari)
for all xpari ∈ dom(par (Xi)). So the total communication cost
is O

(
n3/2Jd+1

√
k

ε · log 1
δ · logm

)
messages.

E. Non-uniform Approximate Counters

In computing the communication cost of UNIFORM, we
made the simplifying assumption that the domains of different
variables are of the same size J , and each variable has

the same number of parents d 1. While this streamlines
the analysis, it misses a chance to more tightly bound the
communication by better adapting to the cost of parameter
estimation. Our third algorithm, NONUNIFORM, has a more
involved analysis by making more use of the information about
the Bayesian Network.

We set the approximation parameters of distributed counters
Ai(xi,xpari) and Ai(xpari) as a function of the values Ji
(the cardinality of dom(Xi)) and Ki (the cardinality of
dom (par (Xi))). To find the settings that yield the best trade-
offs, we express the total communication cost as a function
of different Jis and Kis. Consider first the maintenance of
the CPD for variable Xi, this uses counters of the form
Ai(·, ·). Using an approximation error of νi for these counters
leads to a communication cost proportional to JiKi

νi
, since the

number of such counters needed at Xi is JiKi. Thus, the
total cost across all variables is

∑n
i=1

JiKi
νi

. In order to ensure
correctness (approximation to the MLE), we consider the
variance of our estimate of the joint probability distribution.
Let F =

∏n
i=1Ai(xi,x

par
i) and f =

∏n
i=1 Ci(xi,x

par
i).

E
[
F 2
]

=
∏n
i=1

(
1 + ν2i

)
· f2 ≤

∏n
i=1 e

ν2
i · f2

= e(
∑n
i=1 ν

2
i) · f2 ≤

(
1 + 2

∑n
i=1 ν

2
i

)
· f2 (3)

From Lemma 7, to bound the error of the joint distribution,
we want that E

[
F 2
]
≤
(
1 + ε2

128

)
· f2 which can be ensured

by providing the following condition is satisfied,∑n
i=1 ν

2
i ≤ ε2/256 (4)

Thus, the problem is to find values of ν1, . . . , νn to minimize
communication while satisfying this constraint. That is,

Minimize
∑n
i=1

JiKi
νi

subject to
∑n
i=1 ν

2
i = ε2

256 (5)

Using the Lagrange Multiplier Method, let L =∑n
i=1

JiKi
νi

+ λ
(
ν2i − ε2

256

)
, we must satisfy:

∂L
∂ν1

= −J1K1

ν2
1

+ 2λν1 = 0
∂L
∂ν2

= −J2K2

ν2
2

+ 2λν2 = 0

...
∂L
∂νn

= −JnKnν2
n

+ 2λνn = 0∑n
i=1 ν

2
i = ε2

256

(6)

Solving the above equations, the optimal parameters are:

νi = (JiKi)
1/3ε

16α , where α =
(∑n

i=1(JiKi)
2/3
)1/2

(7)

Next we consider the distributed counters A(·). For each
i ∈ [1, n] and each xpari ∈ dom(par (Xi)), we maintain
Ai(xpari) independently and ignore the shared parents as we
did in the Section IV-D. Let µi denote the approximation factor
for Ai(xpari), the communication cost for counter Ai(xpari) is
proportional to

∑n
i=1

Ki
µi

and the restriction due to bounding
the error of joint distribution is

∑n
i=1 µ

2
i ≤ ε2

256 . Similarly to

1Note that these assumptions were only used to determine the communi-
cation cost, and do not affect the correctness of the algorithm.

above, the solution via the Lagrange multiplier method is

µi =
K

1/3
i ε

16β
, where β =

(n∑
i=1

K
2/3
i

)1/2
(8)

Setting epsfnA(i) = νi as in (7) and epsfnB(i) = µi as in (8)
in Algorithm 1 gives our NONUNIFORM algorithm.

Theorem 2: Given 0 < ε, δ < 1, NONUNIFORM contin-
uously maintains an (ε, δ)-approximation to the MLE given
m training observations. The communication cost over all
observations is O

(
Γ ·
√
k
ε · log 1

δ · logm
)

messages, where

Γ =
(∑n

i=1(JiKi)
2/3
)3/2

+
(∑n

i=1K
2/3
i

)3/2
The correctness of NONUNIFORM follows from Condi-

tions 3 and 4 which together constrain the variance of the vari-
able F . The communication cost is obtained by substituting
the values of νi and µi into expressions for the communication
cost, as in the proof of Theorem 1. We omit the detailed proof
due to space constraints.

Comparison between UNIFORM and NONUNIFORM. It is
clear that NONUNIFORM should be at least as good as UNI-
FORM (in the limit), since it optimizes over more information.
We now show cases where they separate. First, note that
UNIFORM and NONUNIFORM have the same dependence on
k, ε, δ, and m. So to compare the two algorithms, we focus
on their dependence on the Jis and Kis. Consider a case
when all but one of the n variables are binary valued, and
variable X1 can take one of J different values, for some
J � 1. Further, suppose that (1) the network was a tree
so that d, the maximum number of parents of a node is
1, and (2) X1 was a leaf in the tree, so that Ki = 1 for
all nodes Xi. The communication bound for UNIFORM by
Theorem 1 is O(n1.5J2), while the bound for NONUNIFORM

by Theorem 2 is O((n+ J2/3)
1.5

) = O(max{n1.5, J}). In
this case, our analysis argues that NONUNIFORM provides a
much smaller communication cost than UNIFORM. However,
such ‘unbalanced’ models may be uncommon in practice; our
experimental study (Section VI) shows that while the cost of
NONUNIFORM is often lower, the margin is not large.

V. SPECIAL CASES AND EXTENSIONS

Section IV showed that NONUNIFORM has the tightest
bounds on communication cost to maintain an approximation
to the MLE. In this section, we apply NONUNIFORM to net-
works with special structure, such as Tree-Structured Network
and Naı̈ve Bayes, as well as to a classification problem.

Tree Structured Network. When the Bayesian Network is
structured as a tree, each node has exactly one parent, except
for the single root2. The following result is a consequence
of Theorem 2 specialized to a tree, by noting that each set
par (Xi) is of size 1, we let Jpar(i) denote Ki, the cardinality
of par (Xi).

2We assume that the graph is connected, but this can be easily generalized
for the case of a forest.

Lemma 10: Given 0 < ε, δ < 1 and a tree-structured net-
work with n variables, Algorithm NONUNIFORM can contin-
uously maintain an (ε, δ)-approximation to the MLE incurring
communication cost O(Γ ·

√
k
ε · log 1

δ · logm) messages. where
Γ = (

∑n
i=1(JiJpar(i))

2/3)3/2+(
∑n
i=1 J

2/3
par(i))

3/2. For the case
when Ji = J for all i, this reduces to Γ = O(n1.5J2).

Naı̈ve Bayes: The Naı̈ve Bayes model is perhaps the
most commonly used graphical model, especially in tasks such
as classification. The graphical model of Naı̈ve Bayes is a
two-layer tree where we assume the root is node 1.

Specializing the NONUNIFORM algorithm for the case of
Naı̈ve Bayes, we use results (7) and (8). For each node Xi

with i ∈ [2, n], Ki = J1. Hence, we have the approximation
factors epsfnA(i) = νi and epsfnB(i) = µi as follows.

νi = ε
16J

1/3
i

/(∑n
i=2 J

2/3
i

)1/2
, µi = ε

16
√
n

(9)

Due to space constraints, we omit further details of this
case, which can be found in the long version of the paper.

Lemma 11: Given 0 < ε, δ < 1 and a Naı̈ve
Bayes model with n variables, there is an algorithm
that continuously maintains an (ε, δ)-approximation
to the MLE, incurring a communication cost

O

(√
k
ε · J1 ·

(∑n
i=2 J

2/3
i

)3/2
· log 1

δ · logm

)
messages

over m distributed observations. In the case when all Ji are
equal to J , this expression is O

(
n3/2
√
k

ε · J2 · log 1
δ · logm

)
.

Classification: Thus far, our goal has been to estimate
probabilities of joint distributions of random variables. We
now present an application of these techniques to the task of
classification. In classification, we are given some evidence e,
the objective is to find an assignment to a subset of random
variables Y , given e. The usual way to do this is to find the
assignment that maximizes the probability, given e. That is,
Class(Y | e) = arg maxy P [y | e]. We are interested in an
approximate version of the above formulation, given by:

Definition 4: Given a Bayesian Network G, let Y denote
the set of variables whose values need to be assigned, and ε
denote an error parameter. For any evidence e, we say that b
solves the approximate Bayesian Classification with ε error if

P̂ [Y = b | e] ≥ (1− ε) ·maxy P̂ [Y = y | e] .

In other words, we want to find the assignment to the set of
variables Y with conditional probability close to the maxi-
mum, if not equal to the maximum.

Lemma 12: Given evidence e and set of variables Y , if
e−ε/4 ≤ P̃ [X]

P̂ [X]
≤ eε/4, then we can find assignment b that

solves the approximate Bayesian Classification problem with
ε error.
We defer the proof to the full version of the paper [28].

Theorem 3: There is an algorithm for Bayesian
Classification (Definition 4), with communication
O
(

Γ ·
√
k
ε · log 1

δ · logm
)

messages over m distributed obser-

vations, where Γ =
(∑n

i=1(JiKi)
2/3
)3/2

+
(∑n

i=1K
2/3
i

)3/2
.

Proof: We use NONUNIFORM to maintain distributed

TABLE I
BAYESIAN NETWORKS USED IN THE EXPERIMENTS.

Dataset Number Number Number of
of Nodes of Edges Parameters

ALARM [30] 37 46 509
HEPAR II [31] 70 123 1453

LINK [32] 724 1125 14211
MUNIN [33] 1041 1397 80592

counters with error factor ε
4 . From Theorem 2, we have

e−ε/4 ≤ P̃ [X]

P̂ [X]
≤ eε/4 where X denote all the variables. Then

from Lemma 12, we achieve our goal of approximate Bayesian
Classification with ε error.

VI. EXPERIMENTAL EVALUATION

A. Setup and Implementation Details

We evaluate our algorithms via a simulated stream mon-
itoring system, and a live implementation on a cluster. The
distributed learning algorithm was implemented on a cluster
on Amazon Web Services, where each machine in the cluster is
an EC2 t2.micro instance. All the machines are located in the
region: us-east-2a. Events (training data) arrive at sites,
where each event is sent to a site chosen uniformly at random.
Queries are posed at the coordinator.
Data: We use real-world Bayesian Networks from the reposi-
tory at [29]. All have been used in prior studies [30], [31], [32],
[33]. In our experiments, we assume the network topology
prescribed, but learn model parameters from the training data.
The size of the network size ranges from small (20−60 nodes)
to large (> 1000 nodes). Table I provides an overview of the
networks that we use. Here, the number of edges corresponds
to the total number of conditional dependency relationship.
Training Data: For each network, we generate training data
based on the ground truth for the parameters. To do this,
we first generate a topological ordering of all vertices in the
Bayesian Network (which is guaranteed to be acyclic), and
then assign values to nodes (random variables) in this order,
based on the known conditional probability distributions.
Testing Data: Our testing data consists of a number of queries,
each one for the probability of a specific event. We measure
the accuracy according to the ability of the trained network
to accurately estimate the probabilities of different events.
To do this, we generate 1000 events on the joint probability
space represented by the Bayesian network, and estimate the
probability of each event using the parameters that have been
learnt by the distributed algorithm. Each event is chosen so
that its ground truth probability is at least 0.01 – this is to
rule out events that are highly unlikely, for which not enough
data may be available to estimate the probabilities accurately.
Algorithms: We implemented four algorithms: EXACTMLE,
BASELINE, UNIFORM, and NONUNIFORM. EXACTMLE is
the strawman algorithm that uses exact counters so that
each site informs the coordinator whenever it receives a new
observation. This algorithm sends a message for each counter,
so that the length of each message exchanged is approximately
the same. The other three algorithms, BASELINE, UNIFORM,

and NONUNIFORM, are as described in Sections IV-C, IV-D,
and IV-E respectively. For each of these algorithms, a mes-
sage contains an update to the value of a single counter.

For our implementation on the cluster, we optimized the
message transmission by merging multiple updates into a
single message as follows. Upon receiving an event, we merge
the resulting updates for all counters into a single message
to be sent out to the coordinator. For algorithms using the
randomized counters, if there were no updates to any counter,
then there is no message sent. This optimization was applied
to all algorithms, and they benefit the less efficient algorithms,
such as EXACTMLE and BASELINE the most.
Metrics: We compute the probability for each testing event
using the approximate model maintained by the distributed
algorithm. We compare this with the ground truth probability
for the testing event, derived from the ground truth model. For
BASELINE, UNIFORM, and NONUNIFORM, we compare their
results with those obtained by EXACTMLE, and report the
median value from five independent runs. Unless otherwise
specified, we set ε = 0.1 and the number of sites to k = 30.

B. Results and Discussion

The error relative to the ground truth is the average error
of the probability estimate returned by the model learnt by the
algorithm, relative to the ground truth probability. Figures 1
and 2 respectively show this error as a function of the number
of training instances, for the HEPAR II and LINK datasets
respectively. As expected, for each algorithm, the median error
decreases with an increase in the number of training instances,
as can be seen by the middle quantile in the boxplot. The
interquartile ranges also shrink with more training instances,
showing that the variance of the error is also decreasing.

Figure 3 shows the mean relative error to the ground truth
for each algorithm. We observe all the algorithms have similar
performance when the number of training instances is small,
say 5K and 50K. When the number of training instances
is large, EXACTMLE has the best accuracy, which is to be
expected, since it computes the model parameters based on
exact counters. BASELINE has the next best accuracy, closely
followed by UNIFORM and NONUNIFORM, that show similar
accuracy. Finally, all these algorithms achieve good accuracy
results. For instance, after 5M examples, the error in estimated
event probabilities is always less than one percent, for every
algorithm.
The error relative to the MLE is the error of the probability
estimate returned by the model learnt by the algorithm, relative
to the model learnt using exact counters. The distribution of
this error is shown to compare the UNIFORM and NONUNI-
FORM algorithms that use approximate counters, in Figures 4.
We observe that the difference between these algorithms does
not appear particularly large in these plots. The mean error for
different algorithms is compared in Figure 5. We can consider
the measured error as having two sources: (1) Statistical
error, which is inherent due to training examples seen so
far – this is captured by the error of the model learnt by
the exact counter, that is MLE relative to the ground truth,

5K 50K 500K 5M
training instances

0.00

0.02

0.04

0.06

0.08

0.10

0.12
re

la
tiv

e
er

ro
r t

o
tru

th

(a) Exact

5K 50K 500K 5M
training instances

0.00

0.02

0.04

0.06

0.08

0.10

0.12

re
la

tiv
e

er
ro

r t
o

tru
th

(b) Baseline

5K 50K 500K 5M
training instances

0.00

0.02

0.04

0.06

0.08

0.10

0.12

re
la

tiv
e

er
ro

r t
o

tru
th

(c) Uniform

5K 50K 500K 5M
training instances

0.00

0.02

0.04

0.06

0.08

0.10

0.12

re
la

tiv
e

er
ro

r t
o

tru
th

(d) Non-uniform

Fig. 1. Testing error (relative to the ground truth) vs. number of training instances. The dataset is HEPAR II.

5K 50K 500K 5M
training instances

0.00

0.01

0.02

0.03

0.04

0.05

re
la

tiv
e

er
ro

r t
o

tru
th

(a) Exact

5K 50K 500K 5M
training instances

0.00

0.01

0.02

0.03

0.04

0.05

re
la

tiv
e

er
ro

r t
o

tru
th

(b) Baseline

5K 50K 500K 5M
training instances

0.00

0.01

0.02

0.03

0.04

0.05

re
la

tiv
e

er
ro

r t
o

tru
th

(c) Uniform

5K 50K 500K 5M
training instances

0.00

0.01

0.02

0.03

0.04

0.05

re
la

tiv
e

er
ro

r t
o

tru
th

(d) Non-uniform

Fig. 2. Testing error (relative to the ground truth) vs. number of training points. The dataset is LINK.

5K 50K 500K 5M
training instances

0.00

0.01

0.02

0.03

0.04

m
ea

n
er

ro
r t

o
tru

th exact
baseline
uniform
non-uniform

(a) ALARM

5K 50K 500K 5M
training instances

0.00

0.01

0.02

0.03

m
ea

n
er

ro
r t

o
tru

th

(b) HEPAR II

5K 50K 500K 5M
training instances

0.000

0.005

0.010

0.015

m
ea

n
er

ro
r t

o
tru

th

(c) LINK

5K 50K 500K 5M
training instances

0.00

0.01

0.02

0.03

0.04

m
ea

n
er

ro
r t

o
tru

th
(d) MUNIN

Fig. 3. Mean testing error (relative to the ground truth) vs. number of training points.

and (2) Approximation error, which is the difference between
the model that we are tracking and the model learnt by
using exact counters – this error arises due to our desire
for efficiency of communication (i.e., trying to send fewer
messages for counter maintenance). Our algorithms aim to
control the approximation error, and this error is captured by
the error relative to exact counter. We note from the plots that
the error relative to exact counter remains approximately the
same with increasing number of training points, for all three
algorithms, BASELINE, UNIFORM, and NONUNIFORM. This
is consistent with theoretical predictions since our algorithms
only guarantee that these errors are less than a threshold
(relative error ε), which does not decrease with increasing
number of points. The error of NONUNIFORM is usually
better than that of UNIFORM, by around 10% on average,
varying based on the network used. We conclude that for the
“typical” networks evaluated here, we do not observe dramatic
differences between UNIFORM and NONUNIFORM. However,
since NONUNIFORM is no more difficult to implement that
UNIFORM then it is reasonable to prefer it.

Communication Cost vs. Stream Size for different algo-
rithms is shown in Figure 6. Note that the y-axis is in loga-
rithmic scale. From this graph, we can observe that NONUNI-
FORM has the smallest communication cost in general, fol-
lowed by UNIFORM. These two have a significantly smaller
cost than BASELINE and EXACTMLE. The gap between
EXACTMLE and NONUNIFORM increases as more training
data arrives. For 5M training points, NONUNIFORM sends
approximately 100 times fewer messages than EXACTMLE,
while having almost the same accuracy when compared with
the ground truth. This also shows that there is a concrete and
tangible benefit using the improved analysis in UNIFORM and
NONUNIFORM, in reducing the communication cost.

Performance on a Cluster: We measured the performance
of the algorithm on a cluster of computers. The number of
training instances is set to 500K and the number of sites
(not including the coordinator) is varied from 2 to 10. We
measure the total runtime as the (wallclock) time from the
first to the last message received by the coordinator. Figure 7
shows the runtime of different algorithms. The UNIFORM

5K 50K 500K 5M
training instances

0.00

0.01

0.02

0.03
re

la
tiv

e
er

ro
r t

o
M

LE

(a) ALARM UNIFORM

5K 50K 500K 5M
training instances

0.00

0.01

0.02

0.03

re
la

tiv
e

er
ro

r t
o

M
LE

(b) ALARM NONUNIFORM

5K 50K 500K 5M
training instances

0.000

0.004

0.008

0.012

0.016

re
la

tiv
e

er
ro

r t
o

M
LE

(c) HEPAR II UNIFORM

5K 50K 500K 5M
training instances

0.000

0.004

0.008

0.012

0.016

re
la

tiv
e

er
ro

r t
o

M
LE

(d) HEPAR II NONUNIFORM

5K 50K 500K 5M
training instances

0.000

0.002

0.004

0.006

re
la

tiv
e

er
ro

r t
o

M
LE

(e) LINK UNIFORM

5K 50K 500K 5M
training instances

0.000

0.002

0.004

0.006

re
la

tiv
e

er
ro

r t
o

M
LE

(f) LINK NONUNIFORM

5K 50K 500K 5M
training instances

0.000

0.002

0.004

0.006

0.008

re
la

tiv
e

er
ro

r t
o

M
LE

(g) MUNIN UNIFORM

5K 50K 500K 5M
training instances

0.000

0.002

0.004

0.006

0.008

re
la

tiv
e

er
ro

r t
o

M
LE

(h) MUNIN NONUNIFORM

Fig. 4. Testing error (relative to EXACTMLE) vs. number of training instances. The algorithm is UNIFORM and NONUNIFORM.

5K 50K 500K 5M
training instances

0.000

0.005

0.010

0.015

0.020

m
ea

n
er

ro
r t

o
M

LE baseline
uniform
non-uniform

(a) ALARM

5K 50K 500K 5M
training instances

0.000

0.001

0.002

0.003

0.004

m
ea

n
er

ro
r t

o
M

LE

(b) HEPAR II

5K 50K 500K 5M
training instances

0.0000

0.0005

0.0010

0.0015

m
ea

n
er

ro
r t

o
M

LE

(c) LINK

5K 50K 500K 5M
training instances

0.0000

0.0005

0.0010

0.0015

0.0020

m
ea

n
er

ro
r t

o
M

LE

(d) MUNIN

Fig. 5. Mean testing error (relative to EXACTMLE) vs. number of training points.

5K 50K 500K 5M
training instances

10
6

10
7

10
8

10
9

nu
m

be
r o

f m
es

sa
ge

s

exact
baseline
uniform
non-uniform

(a) ALARM

5K 50K 500K 5M
training instances

10
6

10
7

10
8

10
9

nu
m

be
r o

f m
es

sa
ge

s

(b) HEPAR II

5K 50K 500K 5M
training instances

10
7

10
8

10
9

10
10

nu
m

be
r o

f m
es

sa
ge

s

(c) LINK

5K 50K 500K 5M
training instances

10
7

10
8

10
9

10
10

nu
m

be
r o

f m
es

sa
ge

s

(d) MUNIN

Fig. 6. Communication cost vs. number of training instances.

2 4 6 8 10
number of sites

0

100

200

300

400

ru
nt

im
e

(s
ec

) exact
baseline

uniform
non-uniform

(a) ALARM

2 4 6 8 10
number of sites

0

200

400

600

ru
nt

im
e

(s
ec

)

(b) HEPAR II

Fig. 7. Training Runtime (on cluster) vs. the number of sites.

2 4 6 8 10
number of sites

0

2000

4000

6000

th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c)

(a) ALARM

2 4 6 8 10
number of sites

0

1000

2000

3000

4000

th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c)

(b) HEPAR II

Fig. 8. Throughput (on cluster) vs. the number of sites.

24 124 224 324 424 524 624 724
number of variables

0.0

0.2

0.4

0.6

0.8

1.0
nu

m
be

r o
f m

es
sa

ge
s 1e9

exact
baseline
uniform
non-uniform

(a) varies on number of variables

75 225 375 525 675 826 976 1125
number of edges

0

2

4

6

8

nu
m

be
r o

f m
es

sa
ge

s 1e8

(b) varies on number of edges

Fig. 9. Sensitivity test as network scales (extending the LINK network).

and NONUNIFORM algorithms have a significantly shorter
runtime, about a half to a third that of EXACTMLE, showing
that they can accelerate the Bayesian Network training process.
We note the following: (1) the difference between the runtime
of NONUNIFORM and EXACTMLE over a network is not as
large as the difference in the number of messages, since we are
optimizing the number of messages by bundling many updates
within a single message. (2) We can expect UNIFORM and
NONUNIFORM to perform even better relative to EXACTMLE
for streams with more training instances, since the number of
messages sent increases only logarithmically for NONUNI-
FORM, while it increases linearly for EXACTMLE. We also
plot the network throughput, defined as the average number
of training points that the system can handle per second in
Fig 8. With more sites in the cluster, the network throughput
increases, more so for the algorithms built on randomized
counters.
Communication vs. Network Size: We test the communica-
tion cost under different sizes of networks, from small to large.
To build realistic networks of different sizes, we start with the
LINK network (which has 724 nodes and 1125 edges), and
iteratively remove the sink nodes (outdegree of zero) one after
another. This procedure generates eight different networks
with {24, 124, 224, 324, 424, 524, 624, 724} variables respec-
tively. The communication cost for all the algorithms with
500K training instances is shown in Figure 9(a). We observe
that the number of messages of the EXACTMLE algorithm
increases linearly with the number of variables, as expected
from our analysis. For the UNIFORM algorithm, even though
the worst case bound on the number of messages is O(n3/2)),
we see that the behavior appears closer to linear here. The
number of messages sent is never more than a quarter that of
the EXACTMLE and BASELINE algorithms. The NONUNI-
FORM algorithm has slightly smaller communication cost than
UNIFORM. Our experiments on varying the number of edges
in the network shows a similar trend (Figure 9(b)).
Accuracy vs. Approximation Factor: Figure 10 shows the
testing error as a function of the parameter ε, and shows that
the testing error increases with an increase in ε. For small
values of ε, the testing error does not change significantly
as ε changes. This is due to the fact that ε only controls
the “approximation error”, and in cases when the statistical
error is large (i.e. small numbers of training instances), the

0.02 0.04 0.06 0.08 0.10
approximation factor

0.000

0.002

0.004

0.006

0.008

0.010

m
ea

n
er

ro
r t

o
tru

th 100K
500K

1M
5M

(a) Baseline

0.02 0.04 0.06 0.08 0.10
approximation factor

0.000

0.002

0.004

0.006

0.008

m
ea

n
er

ro
r t

o
tru

th

(b) Non-uniform

Fig. 10. HEPAR II mean error against ground truth vs. ε.

20 40 60 80 100
number of sites

0.0

0.5

1.0

1.5

2.0

2.5

3.0

nu
m

be
r o

f m
es

sa
ge

s 1e7

baseline
uniform
non-uniform

Fig. 11. Communication cost vs. number of sites, dataset is ALARM

approximation error is dwarfed by the statistical error, and the
overall error is not sensitive to changes in ε.
Communication Cost vs. Number of Sites: Figure 11 shows
the communication cost as the number of sites is varied, for the
ALARM dataset. The plot shows that the number of messages
increases sub-linearly with number of sites k.
Communication Cost of UNIFORM vs. NONUNIFORM: Our
results do not yet show a large difference in the communication
cost of UNIFORM and NONUNIFORM. The reason is that in the
networks that we used, the cardinalities of all random variables
were quite similar. In other words, for different i ∈ [1, n], the
Jis in Equation 7 and 8 have similar values, and so did the
Kis, which makes the theoretical bounds for UNIFORM and
NONUNIFORM quite similar. To observe the communication
efficiency of the non-uniform approximate counter, we gener-
ated a semi-synthetic Bayesian network NEW-ALARM based on
the ALARM network (https://github.com/yuz1988/new-alarm).
We keep the structure of the graph, but randomly choose 6
variables in the graph and increased the domain size of these to
20 (originally each variable took between 2−4 distinct values).
For this network, the communication cost of NONUNIFORM
was about 35 percent smaller than that of UNIFORM.
Classification: Finally, we show results on learning a Bayesian
classifier for our data sets. For each testing instance, we first
generate the values for all the variables (using the underlying
model), then randomly select one variable to predict, given

TABLE II
ERROR RATE FOR BAYESIAN CLASSIFICATION, 50K TRAINING INSTANCES

Dataset EXACTMLE BASELINE UNIFORM NONUNIFORM
ALARM 0.056 0.055 0.053 0.066

HEPAR II 0.191 0.187 0.198 0.212
LINK 0.109 0.110 0.111 0.110
MUNIN 0.091 0.091 0.093 0.091

TABLE III
COMMUNICATION COST (MESSAGES) TO LEARN A BAYESIAN CLASSIFIER

Dataset EXACTMLE BASELINE UNIFORM NONUNIFORM

ALARM 3.70 · 106 4.07 · 105 3.24 · 105 3.23 · 105
HEPAR II 7.00 · 106 1.08 · 106 7.59 · 105 7.54 · 105

LINK 7.24 · 107 2.98 · 107 8.22 · 106 8.06 · 106
MUNIN 1.04 · 108 3.44 · 107 1.13 · 107 1.13 · 107

the values of the remaining variables. We compare the true
value and predicted value of the select variable and compute
the error rate. Prediction error and communication cost for
50K examples and 1000 tests are shown in Tables II and III
respectively. We note that even the EXACTMLE algorithm
has some prediction error relative to the ground truth, due
to the statistical nature of the model. The error of the other
algorithms, such as UNIFORM and NONUNIFORM is very
close to that of EXACTMLE, but their communication cost
is much smaller.

VII. CONCLUSION

We presented new distributed streaming algorithm to esti-
mate the parameters of a Bayesian Network in the distributed
monitoring model. Compared to approaches that maintain the
exact MLE, our algorithms significantly reduce communica-
tion, while offering provable guarantees on the estimates of
joint probability. Our experiments show that these algorithms
indeed reduce communication and provide similar prediction
errors as the MLE for estimation and classification tasks.

Directions for future work include: (1) to adapt our analysis
when there is a more skewed distribution across different sites,
(2) to consider time-decay models which gives higher weight
to more recent stream instances, and (3) to learn the underlying
graph “live” in an online fashion, as more data arrives.

ACKNOWLEDGEMENT

The work of GC is supported in part by European Research
Council grant ERC-2014-CoG 647557 and a Royal Society
Wolfson Research Merit Award, and of YZ and ST are
supported in part by the National Science Foundation through
grants 1527541 and 1725702.

REFERENCES

[1] R. Bekkerman, M. Bilenko, and J. Langford, Scaling Up Machine
Learning: Parallel and Distributed Approaches. Cambridge University
Press, 2011.

[2] X. Meng, J. Bradley, B. Yavuz, E. Sparks, and et. al., “MLlib: Machine
Learning in Apache Spark,” JMLR, vol. 17, no. 1, pp. 1235–1241, 2016.

[3] M. A. et al., “Tensorflow: A system for large-scale machine learning,”
in OSDI, 2016, pp. 265–283.

[4] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
and data mining in the cloud,” PVLDB, vol. 5, no. 8, pp. 716–727, Apr.
2012.

[5] Y. Wang and P. M. Djuric, “Sequential bayesian learning in linear
networks with random decision making,” in ICASSP, 2014, pp. 6404–
6408.

[6] J. Aguilar, J. Torres, and K. Aguilar, “Autonomie decision making based
on bayesian networks and ontologies,” in IJCNN, 2016, pp. 3825–3832.

[7] P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy, “Using bayesian networks
for cyber security analysis,” in IEEE/IFIP International Conference on
Dependable Systems Networks, 2010, pp. 211–220.

[8] D. Oyen, B. Anderson, and C. M. Anderson-Cook, “Bayesian networks
with prior knowledge for malware phylogenetics,” in Artificial Intelli-
gence for Cyber Security, AAAI Workshop, 2016, pp. 185–192.

[9] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[10] I. Sharfman, A. Schuster, and D. Keren, “A geometric approach to
monitoring threshold functions over distributed data streams,” ACM
Trans. Database Syst., vol. 32, no. 4, p. 23, 2007.

[11] A. Shukla and Y. Simmhan, “Benchmarking distributed stream pro-
cessing platforms for iot applications,” in Performance Evaluation and
Benchmarking. Traditional - Big Data - Interest of Things TPCTC,
Revised Selected Papers, 2016, pp. 90–106.

[12] G. Cormode, S. Muthukrishnan, and K. Yi, “Algorithms for distributed
functional monitoring,” in SODA, 2008, pp. 21:1–21:20.

[13] M. Balcan, A. Blum, S. Fine, and Y. Mansour, “Distributed learning,
communication complexity and privacy,” in PMLR, 2012, pp. 26.1–
26.22.

[14] H. D. III, J. M. Phillips, A. Saha, and S. Venkatasubramanian, “Protocols
for learning classifiers on distributed data,” in AISTATS, 2012, pp. 292–
290.

[15] J. Chen, H. Sun, D. P. Woodruff, and Q. Zhang, “Communication-
optimal distributed clustering,” in NIPS, 2016, pp. 3720–3728.

[16] Y. Zhang, J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Information-
theoretic lower bounds for distributed statistical estimation with com-
munication constraints,” in NIPS, 2013, pp. 2328–2336.

[17] J. M. Phillips, E. Verbin, and Q. Zhang, “Lower bounds for number-
in-hand multiparty communication complexity, made easy,” in SODA,
2012, pp. 486–501.

[18] A. McGregor and H. T. Vu, “Evaluating bayesian networks via data
streams,” in COCOON, 2015, pp. 731–743.

[19] B. Kveton, H. Bui, M. Ghavamzadeh, G. Theocharous, S. Muthukrish-
nan, and S. Sun, “Graphical model sketch,” in ECML PKDD, 2016, pp.
81–97.

[20] G. Cormode, “The continuous distributed monitoring model,” SIGMOD
Record, vol. 42, no. 1, pp. 5–14, Mar. 2013.

[21] M. Dilman and D. Raz, “Efficient reactive monitoring,” in INFOCOM,
2001, pp. 1012–1019 vol.2.

[22] R. Keralapura, G. Cormode, and J. Ramamirtham, “Communication-
efficient distributed monitoring of thresholded counts,” in SIGMOD,
2006, pp. 289–300.

[23] Z. Huang, K. Yi, and Q. Zhang, “Randomized algorithms for tracking
distributed count, frequencies, and ranks,” in PODS, 2012, pp. 295–306.

[24] G. Cormode, S. Muthukrishnan, and W. Zhuang, “Conquering the divide:
Continuous clustering of distributed data streams,” in ICDE, 2007, pp.
1036–1045.

[25] L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, A. D. Joseph,
M. Jordan, and N. Taft, “Communication-efficient online detection of
network-wide anomalies,” in INFOCOM, 2007, pp. 134–142.

[26] C. Arackaparambil, J. Brody, and A. Chakrabarti, “Functional monitor-
ing without monotonicity,” in ICALP, 2009, pp. 95–106.

[27] Y.-Y. Chung, S. Tirthapura, and D. P. Woodruff, “A simple message-
optimal algorithm for random sampling from a distributed stream,” IEEE
TKDE, vol. 28, no. 6, pp. 1356–1368, Jun. 2016.

[28] Y. Zhang, S. Tirthapura, and G. Cormode, “Learning graphical models
from a distributed stream,” CoRR, vol. abs/1710.02103, 2017. [Online].
Available: http://arxiv.org/abs/1710.02103

[29] M. Scutari, “Bayesian network repository,” http://www.bnlearn.com/
bnrepository/, [Online; accessed May-01-2017].

[30] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper, “The
alarm monitoring system: A case study with two probabilistic inference
techniques for belief networks,” in Second European Conference on
Artificial Intelligence in Medicine, 1989, pp. 247–256.

[31] A. Onisko, “Probabilistic causal models in medicine: Application to
diagnosis of liver disorders,” Ph.D. dissertation, Polish Academy of
Science, Mar. 2003.

[32] C. S. Jensen and A. Kong, “Blocking gibbs sampling for linkage analysis
in large pedigrees with many loops,” The American Journal of Human
Genetics, vol. 65, no. 3, pp. 885 – 901, 1999.

[33] S. Andreassen, F. V. Jensen, S. K. Andersen, B. Falck, U. Kjærulff,
M. Woldbye, A. R. Sørensen, A. Rosenfalck, and F. Jensen, “MUNIN
— an expert EMG assistant,” in Computer-Aided Electromyography and
Expert Systems, 1989.

