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Abstract

We address the problem of minimizing the communication involved in the exchange
of similar documents. We consider two users, A and B, who hold documents x and
y respectively. Neither of the users has any information about the other’s document.
They exchange messages so that B computes x; it may be required that A compute
y as well. Our goal is to design communication protocols with the main objective of
minimizing the total number of bits they exchange; other objectives are minimizing the
number of rounds and the complexity of internal computations. An important notion
which determines the efficiency of the protocols is how one measures the distance
between x and y. We consider several metrics for measuring this distance, namely
the Hamming metric, the Levenshtein metric (edit distance), and a new LZ metric,
which is introduced in this paper. We show how to estimate the distance between x
and y using a single message of logarithmic size. For each metric, we present the first
communication-efficient protocols, which often match the corresponding lower bounds.
In consequence, we obtain error-correcting codes for these error models which correct
up to d errors in n characters using O(d·polylog(n)) bits. Our most interesting methods
use a new transformation from LZ distance to Hamming distance.

1 Introduction

This paper focuses on the communication issues related to managing documents shared by
physically separated users. Suppose that two users each have a different version of what was
at some unknown point of time in the past the same document. Each version was perhaps
obtained by a series of updates to that original document (e.g., by a series of transmissions
on the internet and updates along the way). Therefore, it would be reasonable to expect
that many parts are similar if not identical. The challenge that this paper addresses is how
to let one user know the other version and save transmitting redundant information as much
as possible. What makes our approach more interesting is that we need not assume that
the updates themselves, or any logs of them, are available; the original document is also not
assumed to be available; each user has only their current version.
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Formally, let A and B be two such users holding documents x and y respectively. Neither
A nor B has any information about the document held by the other. Their goal is to exchange
messages so that B computes x; it may also be required for A to compute y as well. Our
objective is to design efficient communication protocols to achieve this goal. We measure the
efficiency of a protocol in terms of the total number of bits communicated, as per Yao’s model
of communication complexity (described in [KN97]). We are also interested in minimizing
the number of rounds (changes of direction in communication) as well as minimizing the
running time of the internal computations performed by A and B.

A trivial but inefficient way of exchanging documents is for A and B to send x and y to
each other in full. On the other hand, if A knew y (in addition to x), A could communicate
x to B more efficiently by sending a sequence of operations for converting y to x. In this
paper we consider protocols in which the set of operations to convert one string into another
is pre-determined between the users. Given the set of operations, the minimum number of
operations required to convert x into y defines a corresponding distance (in most cases a
metric) between x and y. This distance between x and y imposes a lower bound on the
length of the message that A sends to B.

We consider three different distance measures, namely, the Hamming metric, the
Levenshtein metric (edit distance), and a new LZ metric that we introduce in this paper.
Computing the Hamming differences between two binary strings x and y is equivalent to
computing the binary string z, where z[i], the ith bit of z, is equal to x[i]⊕y[i], and ⊕ denotes
the exclusive-or operation. An obvious deterministic lower bound on the communication
complexity of computing the bitwise exclusive-or of two binary vectors of size n is n bits.
Hence, any protocol that computes the Hamming distance correctly for all pairs of strings
x and y will need to communicate Ω(n) bits. In fact, this lower bound holds even if the
protocol computes the Hamming distance with any constant probability, as shown by Pang
and El Gamal [PG86].

For more general, “balanced” measures 1 of string distance d(x, y), the first protocols
for exchanging documents are explored by Orlitsky [Orl91]. These protocols assume a
fixed upper bound f on d(x, y) and they require the transmission of Ω(f log n) bits for
the Hamming distance. If d(x, y) > f , then the protocols result in an error; if d(x, y) = o(f)
then we show in this paper that too many bits are transmitted. Metzner [Met83, Met91],
Abdel-Ghaffar and El Abbadi [AGE94] and Barbará and Lipton [BL91] consider the concrete
problem of identifying different pages between two copies of an updated file. It is assumed
that the differences between pages are aligned with the page boundaries, effectively resulting
in Hamming differences. They also assume a known upper bound f on the number of pages
that are different, as per the framework in [Orl91]. In particular [AGE94] describes a protocol
based on error-correcting codes; this protocol sends a single message of O(f log n) bits to
correct up to f differences.
Contributions. Our most interesting protocols involve only two rounds of communication.
The first round involves estimating d(x, y). Here B computes and sends A a (log |y|)-bit
random signature of y. This signature enables A to compute an estimate d̂(x, y) for d(x, y).
For the Hamming metric this signature is computed by hashing a sequence of random bit

1Balanced measures include the ones which are symmetric, such as the edit distance.
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samples from y of increasing size (see Section 4.1). For the LZ metric (and the Levenshtein
metric) we introduce a new transformation, which B applies on y before computing its
signature (see Section 4.2). The most interesting property of this transformation is that it
converts the LZ metric to Hamming metric; hence it may be helpful in nearest neighbor
search problems for sequences [Ind99]. The second round involves the actual exchange of
documents via correcting the differences (see Section 5). Here A computes and sends B a
deterministic ID for x which is unique among all strings that are in the d̂(x, y)-neighborhood
of x. By the use of known techniques in graph coloring or error-correcting codes, the size of
this ID can be bounded above by c log |y| · d̂(x, y) bits, where c is a small constant. These
protocols work correctly with probability (1− ε), a user specified confidence parameter. For
Hamming distance, the communication complexity is c′d(x, y) log |x|, where c′ is a constant
determined by ε only. For the LZ metric or the Levenshtein metric, the communication cost
becomes c′d(x, y) log3 |x|.

It is possible to save a factor of log2 |x/d| in the communication complexity of the above
protocols by spreading the distance estimation over O(log d(x, y)) rounds. In a given round
r, A again computes and transmits to B a unique ID for x in its 2r-neighborhood, consisting
of 2r bits. B computes a candidate x̂, which is identical to x if d(x, y) ≤ 2r, and sends A a
fingerprint of x̂ for verification.

We also provide simpler protocols that locate the differences between x and y in divide-
and-conquer fashion (see Section 6). These protocols make extensive use of fingerprints
for searching and comparing substrings of x and y. They require O(log |x|) rounds and
have a communication complexity of O(d(x, y) · log2 |x|); their main advantage is that the
computations involved are faster.

2 Preliminaries

The Hamming distance between two strings x and y, denoted h(x, y), is of interest when only
single characters are altered. This distance is insufficient to capture more general scenarios.
If we are comparing an edited document to an earlier version, a better measure is the edit
(or Levenshtein [Lev66]) distance, denoted e(x, y). Here, three basic operations, namely
inserting, deleting, and replacing single characters, are each assigned unit cost. The distance
between two strings is then the minimal number of edit operations required to transform
one into the other. Clearly, e(x, y) ≤ h(x, y). Edit distance still does not fully capture the
appropriate measure of distance for many circumstances; e.g. a paragraph may be moved
within a document, or a long sequence of DNA may be copied. Motivated by analogy with
Lempel-Ziv data-compression algorithms, we define a new measure between strings below.

Definition 2.1. The LZ distance between strings x and y, denoted lzD(x, y) is the minimum
number of single characters or substrings of y or of the partially built string which are required
to produce x from left to right.

Example. Suppose x = aabcdefgabc and y = aaaaaaaaaaaaaaaa. Then lzD(x, y) = 8 and
lzD(y, x) = 4. This can be seen by forming appropriate parsings of the strings: x =
(aa)(b)(c)(d)(e)(f)(g)(abc), and y = (aa)(aa)(aaaa)(aaaaaaaa). As lzD(x, y) 6= lzD(y, x),
the LZ distance does not provide a metric.
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We now describe a companion distance measure which is similar to LZ distance but
provides a metric.

Definition 2.2. The LZ metric distance between two strings x and y, denoted lzM(x, y),
is defined as the minimum number of operations of copying a substring, deleting a repeated
substring, or inserting, deleting or changing a single character required to transform x into
y.

Lemma 2.1. The LZ metric distance provides a metric on finite strings from any constant
size alphabet.

Proof. The lemma follows from the observation that any distance defined by assigning
unit cost to a number of reversible operations and counting the shortest sequence of such
operations as the distance will necessarily define be metric. 2

Intuitively, the LZ metric measures the amount of information that must be exchanged
for two parties to know each other’s string. If an oracle knows both x and y and wishes to
broadcast a single message so that someone with y could calculate x and vice-versa, a good
bound on the size of this message is O(lzM(x, y) log(|x|+ |y|)). Exact computation of this
metric is hard. This does not deter us; we are interested in considering the success of our
protocols in terms of this measure, and approximating distances.

Lemma 2.2. lzM(x, y) ≤ lzD(x, y) + lzD(y, x).

Proof. Consider a particular transformation of x into y which extends x to the string xy by
successive ‘copy’ operations at the right hand end, and then removes x using ‘deletes’ from
right to left through x. This transformation can be performed using no more than lzD(x, y)
copy operations and lzD(y, x) deletions. 2

Lemma 2.3. lzD(x, y) ≤ 2e(x, y) + 1 and
lzM(x, y) ≤ e(x, y).

Proof. If e(x, y) = k then y can be parsed into k+ 1 substrings from x separated by at most
k single characters. The first inequality follows. The second is trivial. 2

Remark. Lemma 2.3 shows that any protocol that is communication-efficient in terms of
LZ metric distance is also communication-efficient in terms of the edit distance. For the
purposes of distance estimation we do not treat the protocols for edit distance separately
from the protocols for LZ metric distance.

3 Bounds on communication

To examine the performance of the proposed protocols, we need a lower bound on the amount
of communication required. The obvious lower bound is the number of bits that would be
required for B to compute x given y. If A already knew y in addition to x, A could send a
single message containing sufficient information to derive x from y. If, for any y, there are
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at most m strings that x could possibly be, then dlogme bits are necessary. 2 The number
of such possible strings is determined by the distance between x and y. We shall denote by
k the quantity |Ξ| − 1, where Ξ is the alphabet from which our strings are drawn.

Lemma 3.1. The amount S of communication needed to correct h Hamming errors between
strings x and y (|x| = |y| = n) is bounded as: h log(nk/h) ≤ S ≤ dh(log(nk/h)+2 log log n)e,
provided h ≤ n/2.

Proof. The number of strings which satisfy d(x, y) = h given x is precisely (nh)kh ≥
(
nk
h

)h
(shown by induction in h). We take the logarithm of this quantity to get the lower bound.

For the upper bound, we consider a method to encode the location of each Hamming
error, and the correct character to go there. This can be accomplished using h(log(kn/h) +
log log n+ 3) bits. 2

Lemma 3.2. The amount S of communication needed to correct e edit operations is bounded
as: e(1 + log(n(|Ξ− 1|/e)) ≤ S ≤ de(1 + log(|Ξ|(n + 1)/e) + 2 log log n)e, where, n denotes
the length of the longer string.

Proof. The lower bound follows by considering strings generated by only reversals or
insertions. The number of such strings which satisfy e(x, y) = e given x is at least∑e
i=0(ni )ki( n

e−i)k
e−i. Using the methods of Lemma 3.1 bounds this quantity from below with

(2kn
e

)e. Taking the logarithm of this expression gives the required lower bound.
For the upper bound, we again consider a bitwise encoding of the operations. It is possible

to use a bit flag to denote whether each edit is an insertion or a change, and use log |Ξ| bits
to code the character concerned. In the case of a deletion, this is represented as a ‘change’,
but using the code of the existing character at that location. Using a similar location coding
as above gives this scheme an overall cost of e log(|Ξ|(n+ 1)/e). 2

Lemma 3.3. The amount S of communication needed to correct strings such that lzM(x, y) =
l is bounded by S ≤ 3l log n

Proof. We show a bitwise encoding of the lzM operations to give the upper bound. A ‘copy’
operation can use log n bits to specify each of the start, length of substring and destination.
Provided n is more than |Ξ| we require no more than l log n3 bits.3 2

4 Distance estimation

In this section we show how to estimate the distance between two strings using a sublinear
amount of communication.

2All logarithms will be taken to base 2
3This follows from observing that there is no need for the length of any intermediate string to contain more than one copy

of any substring of x or y. The total length of such substrings is O(n3).
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4.1 Hamming metric. In this section we show how one of the communicating parties,
say B, can compute an estimate of the Hamming distance between its binary string y
and the string x of the other party, A. At the core of this process is a simple hash
function which is more likely to collide for strings that are closer together; it is also used
for different purposes in [AMRT96] and [KOR98]. Estimating Hamming distance in the
context of communication complexity has not been addressed before, although the closely
related problem of approximate nearest neighbor search in Hamming space has been studied
independently in [IM98] and [KOR98].

Denote by n the length of x (and y), and denote by ĥ(x, y) the estimate of h(x, y)
computed by B. We will need only a single round of communication during which B receives
an O(log n)-bit signature of x from A. In Section 5 we describe how this distance estimate
is used by B to compute and send A a unique ID for y, which can be decoded by A. This
ID will consist of O(ĥ(x, y) log n) bits hence it is important not to over-estimate h(x, y).

The protocol is randomized and can result in an under-estimation of h(x, y) with
probability no more than a user-specified confidence parameter ε. Because an under-
estimation will result in A computing y erroneously, we would like to choose ε to be small.
We show that the probability of over-estimating h(x, y) by more than a constant factor
(which we will specify later) is small as well.

The signature of x is computed in O(log n) iterations as follows. We assume that
two identical random number generators are accessible to both parties A and B. In the
ith iteration, A uses its random number generator to uniformly and independently pick a
sequence of βi integers from the range {1, . . . , n}, denoted by r1, . . . , rβi for some β > 1 which
will be specified later. This sequence (which is available to B as well) is used to obtain the
sample x̂i = x[r1], . . . , x[rβi ] from x, which is then hashed to mi(x) =

⊕
j=1,...,βi x[rj] as per

Lemma 13 of [AMRT96]. (This is similar to the β-test in [KOR98]. The difference is that
each bit of the signature is used as a binary test on estimating the Hamming distance rather
than as a test to decide which string among two strings A and B is closer to a query string.)
The message of A will be m(x) = m1(x), . . . ,mlogβ n(x) and hence will include a total of
logβ n bits.

At the same time B computes m(y) = m1(y), . . . ,mlogβ n(y) by using the same procedure.
After receiving m(x), B computes m(x)⊕m(y) = m1(x)⊕m1(y), . . . ,mlogβ n(x)⊕mlogβ n(y).

Then, B uses the smallest i for which mi(x) ⊕ mi(y) = 1 to compute an estimate ĥ(x, y)
for h(x, y). Below we describe how B computes its estimate based on the distribution of
m(x)⊕m(y).

Observe that mi(x)⊕mi(y) =
⊕

j=1,...,βi x[rj]⊕ y[rj]. Therefore Pr[mi(x)⊕mi(y) = 1] is
equal to the probability of getting an odd parity out of βi random i.i.d. bits, each of which is
1 with probability p = h(x, y)/n. This can easily be computed by the following well known
lemma, a short proof of which is given in the appendix.

Lemma 4.1. Let b1, . . . , bk be independent Boolean random variables with expectation p.
Pr[
∑
bi is even ] = (1 + (1− 2p)k)/2.

Let C(k, p) = (1 + (1 − 2p)k)/2. C(k, p) can be tightly bounded above and below as
follows (see appendix for a proof).
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Lemma 4.2. For all k ≥ 2, and 0 ≤ p ≤ 1:
(i) e−kp ≤ C(k, p) ≤ (1 + e−2kp)/2;

(ii) if e−
2
3
kp ≥

√
5−1
2

, i.e. kp ≤ 0.7218 . . ., then C(k, p) ≤ e−
2
3
kp.

Consider the process of taking the parity of geometrically increasing sequences of random
samples of bits. The ratio between successive sample sizes is β > 1. Suppose we have such a
sequence increasing up to size k. Define Z(k, p, β), the probability that all parities are zero,
to be

∏u
i≥0 C(k/βi, p), where u = logβ k.

Lemma 4.3. Z(k, p, β) ≥ e−kp/(1−1/β);

and Z(k, p, β) ≤ e−
2
3
kp(1−1/β) provided e−

2
3
kp ≥

√
5−1
2

.

The proof is immediate from the definition of Z(k, p, β) by using the preceding lemma.
The nature of our protocol is such that it fails if B underestimates p, i.e., if this first

sample of odd parity (at k) occurs later than we would expect. For any ε > 0, B will
make a cautious estimate p̂ (= ĥ(x, y)/n) by choosing p̂ such that Z(k/β, p̂, β) ≤ ε, since
the probability of not getting odd parity before k is at most ε if p ≥ p̂. We will satisfy

Z(k/β, p̂, β) ≤ ε by taking e
−2kp̂

3(β−1) = ε, i.e. p̂ = 3(β−1) ln 1/ε
2k

, and ensuring e
−2kp̂

3 ≥
√

5−1
2

. The

latter holds if we choose β so that 1 < β ≤ 1 + 1
ln 1/ε

ln(
√

5−1
2

).

As a result, the protocol estimates h(x, y) to be ĥ(x, y) = p̂ · n = n · 3(β−1) ln 1/ε
2k

, and
ensures that the probability of an underestimation is at most ε. The proof of the following
lemma is given in the appendix.

Lemma 4.4. In the protocol Pr[p̂ ≥ αp] ≤ 1/2, i.e., the probability of overestimation of p by

a factor of α is bounded by a constant, for α ≥ 3β ln 1/ε
2 ln 2

≥ 1.

The communication complexity of the distance estimation protocol is O(logβ n), which is
O(log(1/ε) log n), and involves a single round of communication. By increasing the number
of rounds to logβ ĥ(x, y), the communication complexity of this protocol can be reduced to

logβ ĥ(x, y) which is bounded above by logβ(αh(x, y)) with probability greater than 1/2.

4.2 Converting “limited” LZ distance to Hamming distance. Our protocol for
estimating lzM(x, y) is based on a transformation we introduce, which converts the LZ metric
to Hamming metric. Before we give the details of the transformation, we first focus on a
simpler metric that we call the limited LZ metric and provide a transformation to convert
the limited LZ distance to Hamming distance. This will provide the intuition behind the
more general transformation which we describe later.

Definition 4.1. Let x and y be two binary strings of length n = 2k. Define the limited
LZ distance between x and y, denoted ltd(x, y), as the minimum number of the following
“edit” operations applied on x to obtain y: (1) changing any given bit of x, (2) swapping
any two non-overlapping substrings in the form x[i2l + m : i2l + p] and x[j2l + m : j2l + p]
where 0 < m < p < 2l (we call these substrings aligned), and (3) replacing any substring of
the form x[i2l + m : i2l + p] which has an identical non-overlapping copy in x, by a copy of
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any non-overlapping substring of the form x[j2l + m : j2k + p] (again, 0 < m < p < 2l).
Notice that if we apply on y the reversal of the operations applied on x, we obtain x back; so
ltd(x, y) = ltd(y, x), and hence ltd(·, ·) is a metric.

Given a binary string z of size n = 2k, let the 2i-binary histogram of z, denoted LTi(z),
be the binary vector of size 22i , whose jth dimension, denoted LTi(z)[j], is 1 if there is at
least one substring z[l2i + 1 : (l + 1)2i] (for l = 0, . . . , n/2i − 1) which is equal to the binary
representation of j; otherwise LTi(z)[j] = 0.

Example. Let z = 111011; to compute LT1(z) we consider only the substrings z[1 : 2] = 11,
z[3 : 4] = 10 and z[5 : 6] = 11 and deduce that LT1(z)[00] = 0, LT1(z)[01] = 0, lT1(z)[10] =
1, LT1(z)[11] = 1 and hence LT1(z) = (0, 0, 1, 1).

Definition 4.2. Let LT (z), the limited LZ transformation of z, be the concatenation of all
LTj(z) for j = 0, . . . , k.

Definition 4.3. We define the limited parse tree of a string z of size 2k as the complete
binary tree of depth k whose nodes are labeled with substrings of z as follows. The root of the
tree is labeled with z itself. The labels of the children of any given internal node with label w
are w[1 : |w|/2] and w[|w|/2 + 1 : |w|].

Theorem 4.1. If x, y are strings of length 2k, 1
2
ltd(x, y) ≤ h(LT (x), LT (y)) < 8k · ltd(x, y)

Proof. (i) h(LT (x), LT (y)) < 8k · ltd(x, y): We show that each permitted operation of the
distance affects fewer than 8k components of h(LT (x), LT (y)). (1) Changing one bit of x
could change the value of at most two components of LTi(x) at each level, in total 2k. (2)
Consider a swap of two substrings length L > 1, and let l = blogLc. In the limited parse
tree, we count the nodes which cover part of a substring to be swapped and part of the string
which remains static. Each such node corresponds to the change of at most two components
of LT (x) (since one component can go from one to zero as another goes from zero to one).
The number of such nodes is bounded above by 2(k + l) − 1 (count k from the left side
and l from the right side of both substrings). Since l ≤ k − 1, each swap affects fewer than
8k components of LT (x). (3) Consider an ‘overcopy’ of a substring length L > 1, and let
l = blogLc. The argument proceeds as for case (2), except we observe that only the string
which is copied onto changes, while the string which is copied remains the same, hence the
number of affected nodes is halved, giving a bound of 4k altered substrings.

(ii) 1
2
ltd(x, y) ≤ h(LT (x), LT (y)): We describe a procedure that obtains y by applying at

most 2h(LT (x), LT (y)) operations on x.
A preprocessing step performs a left-to-right breadth first search on the limited parse

tree of x, to “protect” certain substrings. We protect a substring of x which appears in the
limited parse tree if that substring occurs in y and it is the first occurrence of this substring
in x. The aim of this step is to ensure that substrings in the target string y which exist
in x are not damaged in the process of transforming x. Protected strings may not have
any of their substrings copied over, or swapped, nor may any bit be changed. However,
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any substring may be copied since this does not ‘damage’ the protected string. Protecting
substrings does not involve any operations, and so has no cost.

The procedure to transform x into y then proceeds as follows. We consider manipulating
substrings of length 2i for 0 ≤ i ≤ k. We will only consider substrings in the limited parse
trees of x and y. Our inductive hypothesis is that at the end of manipulation of length 2i

substrings, then the set of these substrings present in the modified string will be a superset
of those of the same length present in y. Clearly if we can maintain this hypothesis up to
substrings length 2k then we will have succesfully transformed x into y since there can be
only one sub-string of this length (the string itself).

We will show that the Hamming distance of the limited histograms gives a bound
on the number of operations needed by allocating “credits” to entries in the histrograms
which will pay for the operations. For each substring z such that LT (x)[z] = 0 and
LT (y)[z] = 1 we allocate two credits. Similarly, we also give two credits to each substring
z for which LT (x)[z] = 1 and LT (y)[z] = 0. The number of credits allocated is exactly
2h(LT (x), LT (y)). Of these two credits, at most two will be spent at any one time. Credits
from a substring of x will be spent on removing the last occurrence of that substring from
the modified string; credits for a substring of y will be spent to create that substring. Since
we create only one copy of each substring, and do not recreate uneeded copies of substrings
of x, each pair of credits will be used at most once. Not all credits will necessarily be used.

We shall now proceed to spend these credits. The base case is to ensure that the set
of length 1 substrings in x is a supersetof those present in y. If x consists of all 0s or all
1s, then we shall change the first unprotected bit, which is paid for by a credit from that
bit in y. Otherwise, no action is necessary. From this point onwards, changing a single bit
is the same as overcopying a single bit, and so we consider that there are only two feasible
operations – swapping and overcopying substrings.

The inductive case is that there exists in the modified string, xi, at least one copy of all
length 2i substrings of y. We proceed to modify xi to form xi+1. When we consider building
substrings of length 2i+1, strings of length 2i and shorter lose their protection. We pick an
arbitrary length 2i+1 substring y′ of y that is not represented in xi and try to build it in the
first slot from the left whose substring is not protected. Because y′ did not exist in x (else
it would have been protected and hence preserved up to this point), we use the two credits
for this substring to build it. There is a copy of the left and right half of y′ in xi by our
inductive hypothesis, so we spend one credit on each half bringing the two together. We now
perform a case split on what is in the intended place of the left (or right) half, and show how
this can be dealt with using a single credit.
(i) A substring which appears in x but not in y which has more than one copy in xi: we can
overcopy the appropriate half of y′ in using a single move.
(ii) A substring which appears in x but not in y and is the only occurrence of this substring
in xi: we use the two credits that this substring was allocated to overcopy the left and right
halves of the half of y′. This process may proceed recursively if one or both halves also
represent substrings of x which have only one occurrence in xi, in which case credits for
these substrings may be used as well.
(iii) A substring which appears in y and is not the only copy of this substring in xi: We can
copy over this substring without problem since there exist other copies which can be used
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later if necessary, and it is not protected (by our precondition in the above paragraph).
(iv) A substring which appears in y and is the only copy of this substring in xi: This case
requires the most care. If the source substring (the substring we wish to place) is not part
of a protected string, then we can swap this substring instead of over-copying it, at unit
cost. If the source substring is part of a protected string, then we need to change our plan:
depending on the exact situation we can instead build a substring which uses the source
substring, or else build y′ in a different place.
(v) If it happens that the two halves are in the same slot, but in the wrong order, then we
can swap them into place with a single move, which is charged to y′.

Because of the way we have formed xi, no other cases are possible. This procedure is
repeated until we have built a representative of each length 2i+1 substring of y that was not
present in xi, and this new string is our xi+1. The procedure concludes when we have built
xk, which is y. 2

Remark. The limited LZ transformation of a binary string of size n is an O(2n) dimensional
binary vector which is very sparse – only O(n/ log n) of the entries are non-zero. To decrease
the size of the signature, we start with a very large sample (of size O(2n/poly(n)) and again
increase the sample size by a factor of β in subsequent iterations. This will not affect the
communication complexity of the protocols or the confidence bounds provided. We cannot
bias our sample towards non-zero components, as suggested in a different context in [IM98],
since the sampling procedure must be completely replicable by the other party.

4.3 Converting LZ distance to Hamming distance. The procedure for converting
the LZ distance to Hamming distance is based on a generalization of the limited LZ
transformation by removing the restriction that only the aligned substrings can be swapped.
The main tool which enables us to obtain this (general) LZ transformation is the locally
consistent parsing technique, LCP [S.V96].

Given a string z of size n, its LZ transformation includes the binary histograms of the
level-i cores of z for all i = 0, . . . , log n, computed by LCP. 4 The cores are special substrings
that are determined by the size of the alphabet which satisfy the following important
property: The number of level-i cores of a given string z is upper bounded by n/2i and
is lower bounded by n/3i− 2(log∗ n+ 3) [S.V96]. This enables us to define the level-i-binary
histogram of z, denoted Ti(z), as the binary vector of size O((3 log∗ n)i), whose jth dimension,
denoted Ti(z)[j], is defined to be the number of all level-i-cores that are equal to the binary
representation of j. Now we define the LZ transformation of z as the concatenation of all
Tj(z) for j = 0, . . . , log n, and denote it by T (z). Note that we do not have the restriction
of alignment between strings, hence we can accommodate not only aligned swaps but also
unaligned swaps, insertions and deletions. This leads us to the following theorem whose
proof is left to the full paper.

Theorem 4.2. For constants c′ and c′′,
c′ · lzM(x, y) ≤ h(T (x), T (y)) ≤ c′′ · log2 n · lzM(x, y).

4Compare this to the limited LZ transformation which comprises of the binary histograms of length 2i substrings of the

input, for i = 0, . . . , logn.
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5 Correcting differences

Let d(x, y) be a metric over a set X defined by the transitive closure of a symmetric relation R
which is assigned unit cost – that is, d(x, y) is the minimum n such that Rn(x, y). Suppose
that there are two individuals, A who holds x ∈ X and B who holds y ∈ X, such that
d(x, y) ≤ l for some known l. The range of d is the natural numbers, and we will refer to
this as the distance. Let Gl be the undirected graph whose vertices are X and whose edges
are {(x, y) : d(x, y) ≤ l}.

Lemma 5.1. deg(G2l) ≤ (deg(Gl))
2.

Proof. deg(G2l) corresponds to the greatest number of vertices at a distance at most 2l (in
the graph corresponding to R) from any particular vertex, x. As the metric is defined by
unit cost operations, these vertices will be those which are at most l from all vertices at most
l from x. Since from each vertex there are at most deg(Gl) vertices at distance at most l,
the lemma follows. 2

Following the model of Orlitsky, we shall employ a hypergraph H whose vertices are the
members of X and whose hyperedges are ey = {x : d(x, y) ≤ l}. Both parties can calculate
this hypergraph independently and without communication (if some parameter of the graph
is not implicit, A can prepend this information to the message with small additive cost). They
can then use a deterministic coloring scheme to color the hypergraph with χ(H) colors. A’s
message is the color of x. By the coloring scheme and the specification of the problem, B
knows that x must be amongst the vertices in ey, and can use the color sent by A to identify
exactly which it is. We can place upper and lower bounds on the single message complexity
by considering this scheme. Since we must be able to distinguish x among the vertices in
the hyperedge x, at least log(deg(H)) bits must be sent overall. To send the color of x, we
need dlogχ(H)e bits [KN97]. Let S be the number of bits necessary in a single message to
allow B to calculate x (the single message cost). So log(deg(H)) ≤ S ≤ dlog(χ(H))e.

Lemma 5.2. χ(H) ≤ deg(G2l).

Proof. χ(H) is the number of colors required to color the vertices of H such that any two
vertices which are both at most distance l from any point x are colored differently. Consider
y and y′ such that d(x, y) ≤ l, d(x, y′) ≤ l. Since d is a metric, d(y, y′) ≤ d(y, x) + d(x, y′) =
d(x, y) + d(x, y′) ≤ 2l.

Any coloring which ensures that any two points within distance 2l have different colors
is therefore a coloring of the hypergraph H. A coloring of G2l achieves this, showing that
χ(H) ≤ χ(G2l).

On the assumption that G2l is not complete, is connected and has degree of three or more
(which will be satisfied by the examples in which we are interested), then χ(G2l) ≤ deg(G2l),
and so the lemma follows. 2

Theorem 5.1. log(deg(Gl)) ≤ S ≤ 2 log(deg(Gl)).

Proof. It is clear that deg(Gl) = deg(H); in both cases the degree of each vertex corresponds
to the number of vertices a distance at most l away. We combine this with Lemma 5.2 and
Lemma 5.1 into the fact that log(deg(H)) ≤ S ≤ dlog(χ(H))e to prove the theorem. 2
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Thus, under certain conditions, a single message can be at worst twice the lower bound
on its length for any number of messages. A similar theoretical result to that shown here
is given by Orlitsky [Orl91]. By considering a more restricted class of functions, we can
construct a concrete protocol which achieves the above bound. Note that our upper bound
is related to the degree of a graph which we can calculate, and algorithms exist which will
color a graph with this number of colors; hence it is achievable in practice. The constraints
placed upon the metric d may seem restrictive, so we show how our earlier distances (Section
2) fit the restrictions.

Definition 5.1. A protocol between two communicating parties A and B is non-trivial if it
enables A to transmit a string x to B, under a stated restriction on the distance between x
and y, using fewer than |x| log |Ξ| bits of communication in total.

Hamming distance is a metric on the space of strings of length n over an alphabet Ξ, and
is induced by defining a symmetric relation on strings which differ in a single character. For
l < n/2, G2l is not complete, and for any non-trivial n, G2l will have degree higher than two:
deg(Gl) =

∑l
i=1(ni )(|Ξ| − 1)i. There is no simple closed form for this expression, so instead

we consider the upper bound on this quantity for up to l Hamming differences described in
Lemma 3.1. This uses l log((|Ξ| − 1)(n/l)) + o(l log log(n/l)) bits, hence we have the result
that up to l Hamming errors can be corrected using a single message with asymptotic cost
at most 2l log((|Ξ| − 1)(n/l)).

Edit distance is defined by charging unit cost to insertions, deletions or alterations of a
character. Again, for l < n/2 (n denotes the length of the longer string), G2l is not complete
and will have degree more than two. Also, there is no concise exact expression for the degree
of Gl, but we can use the binary encoding (Lemma 3.2) for an upper bound on log(deg(Gl)).
We can encode up to e edit operations using at most e(log 2(|Ξ|(n + 1)/e)) + o(e log log n)
bits, so asymptotically 2 log deg(Gl) ≤ 2l log(|Ξ|(n+ 1)/l) which is non-trivial for l < n/2.

LZ metric distance also conforms to the requirements. Using the simple encoding from
Lemma 3.3 we can achieve a single message cost of 18l log n bits, non-trivial for l ≤ n log |Ξ|

18 logn
.

5.1 Multi-round protocols. It is possible to have multiple round adaptations of these
protocols. In the first round the users run the protocol with the assumption that d(x, y) is
upper bounded by some small constant. They then use a hash function over their strings
to see if they agree. If not, they double the distance, and repeat the protocol, until they
agree. This requires at most log n rounds but gives a more precise estimate of d(x, y). For
the LZ metric and the Levenshtein metric this amounts to a saving of a log2 |x| factor in
communication complexity.

Remark 5.1. While these protocols are communication-efficient, they are computationally
expensive. For the Hamming distance, an efficient coloring can be achieved by Reed-Solomon
codes (see [AGE94]). Since any one-round protocol corresponds to an error-correcting code,
an efficient coloring scheme for edit distance or the LZ metric would lead to error-correcting
codes for these systems. We have shown concrete methods to construct such codes; it is open
whether these codes could be calculated more efficiently.
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6 Computationally efficient protocols

We first consider the following abstracted problem: given a string of length n, locate h
distinguished characters by using queries of the form whether such a character exists in any
specified substring. This can be solved by dividing the string into two equal size substrings
and querying them. If a substring is free of distinguished characters, then we do not consider
it further. Otherwise it is further divided into two each of which is queried inductively.

Lemma 6.1. An upper bound on the number of queries made in this protocol is 2h log(2n/h).

Proof. (sketch) The worst case is when the distinguished characters are distributed evenly
throughout the string. If we consider descending the limited parse tree of the string
(Definition 4.3), we must query all 2h−2 substrings in the first log h levels, and 2h substrings
in each of the remaining log n− log h levels. 2

Each query gives us one bit of information, so here we are gaining no more than
2h log(n/h) + O(h) bits of information. This is asymptotically only twice the minimum
(this follows from Lemma 3.1). We will now apply this abstract problem to our various
distance measures.

6.1 Hamming distance. The problem of locating the Hamming errors, given an upper
bound on the number of errors, is similar to the problem of group testing (also observed by
Madej [Mad89]). We wish to group samples and perform a test which will return either ‘all
the same’ or ‘at least one mismatch’. The differences are that we have an ordering of the
samples, given by their location in the string, and that we have to contend with the problem
of false negatives We use negative to mean that the test indicates no errors; false negatives
are an inevitable consequence of using fewer than n bits of communication. Our tests will
be based on fingerprinting; i.e., if a substring in one string hashes to the same value as the
corresponding substring in the other, then we take this as evidence that the two substrings
match. Note that there is no danger of false positives; if a test leads us to believe that the
substrings are different, then there is zero probability that they actually match.

The following scheme is a straightforward way to locate and correct differences, and
is similar to that proposed in [Met83]. Mapping our terminology onto that of the above
problem, the locations of Hamming differences between the two strings are the distinguished
characters. We shall use the proposed simple divide and conquer algorithm to locate them.
The test we perform involves communication: in each round, one party will send the value of
a hash function for the substrings in question, and the other will calculate the value for the
corresponding substrings of their string. If they agree, then there is (with high probability) no
difference between the two substrings; otherwise there is (with certainty) some discrepancy
between them. The reply to the message is a bitmap indicating the success or failure of each
test. We must choose our functions so that the overall probability of success of the procedure
is high.

If we use linear hashes relative to a randomly chosen base B, then the probability of two
arbitrarily chosen sequences having the same hash value is 1/B. If we treat each test as
independent, then we want, say, (1− 1/B)2h(log 2n/h) ≥ pc.

Lemma 6.2. For B > 1, 1/B < − ln(1− 1/B) < 1/(B − 1).
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Proof. For the second inequality, − ln(1− 1
B

) = ln(1 + 1
B−1

) < 1
B−1

. 2

Lemma 6.3. With an estimate of the Hamming distance, ĥ, this protocol succeeds with

probability pc and communicates no more than 2h(log 2n/h) log
(

2ĥ log(2n/ĥ)
ln 1/pc

)
bits.

Proof. Follows immediately by using Lemma 6.2 to choose B to be at least d2h(log 2n/h)
ln 1/pc

e and
combining this with Lemma 6.1. 2

This protocol is non-trivial for h = O(n/ log n log log n). The overall cost is a factor of
O(log n̂ log n) above the optimal; however, this cost comes from the size of the hash values
sent. With regard to the number of hash values sent, we have shown it is about twice
the optimal of any possible scheme which uses hash functions to give a binary answer to a
question. The number of rounds is logarithmic in the length of the string, as we can progress
one level of the limited parse tree in each round.

6.2 Edit Distance. We next translate the above approach to deal with the edit distance.
A similar scheme is proposed but not analyzed in [SBB90].

It is not immediately apparent how to map the edit distance problem onto the abstract
problem presented above. However, observe that the way that differences were located was
by a process of elimination: identical substrings were found, until all that remained were
disparate substrings. We may use the same kind of hierarchical approach to identify common
fragments. It is no longer the case that substrings are aligned between the strings; however,
we know that matching substrings will be offset by at most the edit distance.

The party B receiving the hash values must therefore do more work to identify them
with a substring. B has a bound d̂ on the edit distance; if a substrings is unaltered by the
editing process, then it will be found at a displacement of no more than d̂ from its location
in A’s string. So B calculates hashes of substrings of the appropriate length at all such
displacements left and right from the corresponding position in its string, testing each one
to see if it agrees with the sent hash. If they do agree, it is assumed that they match, and
so B now knows the substring at this location in A.

We consider an optimal edit sequence from x to y and how it affects the limited parse
tree representing the splitting of x. Deletions and replacements affect single characters at
leaf nodes. An insertion of any number of consecutive characters between two adjacent
characters is considered to occur at the internal node which is the lowest common ancestor
of the pair. The protocol must traverse this tree, computing hashes on every node whose
subtree contains any of these edit operations.

Lemma 6.4. This protocol succeeds with probability pc and communicates no more than
4d log (2n/d) log(2d̂) +O(d log n log logn

ln 1/pc
)) bits.

Proof. Observe that the worst case is exactly as before – if (almost) all errors are deletions
or alterations (since we have to descend further down the tree to discover these). Certainly,
in the worst case, the number of hashes sent will be that given by Lemma 6.1, 2d log(2n/d).
We must compare each hash sent with up to 2d̂ + 1 others in the worst case. As
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before, we want the probability of an error to be no more than a constant, which gives(
B−1
B

)2d̂(2d̂+1) log(2n/d̂)
≥ pc. We again use Lemma 6.2 to choose B, and the lemma follows. 2

This expression is O(d log(n/d) log d̂), asymptotically O(log d̂) above the optimal.

6.3 LZ distance. Consider a variation of the above abstract problem. Instead of h
distinguished characters, suppose that there are l “dividers” which are positioned between
characters, such that there is at most one divider between any two adjacent characters. This
problem is reducible to the distinguished character problem: there are n− 1 locations where
dividers can be placed. If our queries are whether there are any dividers within a substring,
then clearly the same protocol will suffice, with the same number of hashes.

Rather than descending the tree in parallel, the protocol performs a depth-first search.
We consider a notional optimal parsing of a string x relative to a string y with lzD(x, y) = l.
The protocol proceeds as follows: B maintains a dictionary of ‘resolved’ hashes, containing
the mapping from hash values to each substring of length 2i. This is initialized with all
possible hashes over y, and is augmented with information about x as it is learned. 5 On
receiving a pair of hashes, B tries to use this dictionary to identify them. B indicates to A
how far along x he can identify. A, who maintains a record of the progress of B, sends two
hash values on strings made by splitting the first remaining unresolved substring into two
equal pieces. The number of rounds involved is at most l log(n/l).

Lemma 6.5. This protocol uses no more than 4l log(2n/l) log( 2n
ln 1/pc

) bits of communication
and succeeds with probability pc.

Proof. In an optimal parsing, x is parsed into l pieces, each piece of which is a substring
present in y or earlier in x, or a single character. The number of hashes necessary for B
who holds y to identify x is that needed to locate the l − 1 “dividers” which separate the
substrings, given by Lemma 6.1. This is 2(l − 1) log(2n−1

l−1
), which is less than 2l log(2n/l).

We are performing many more comparisons between hash values than before, so we
require a larger base over which to compute hashes in order to ensure that the chance
of a hash collision is still only constant for the whole process. We only compare hashes
for substrings of the same length. If we have two strings each of length n then there are
fewer than 2n substrings of any given length. So there are fewer than 2n2 possible pairwise
comparisons. Invoking Lemma 6.2 again leads us to choose B = d 2n2

ln 1/pc
e. The lemma then

follows. 2

If, instead of the full LZ metric, we only imagine the unknown string to be parsed into
substrings of the other string and single characters, then it is straightforward to show that
performing the divide and conquer algorithm breadth first is O(log n) above optimal cost
under this measure and only uses log n rounds. In the case where we expect the files to share
many substrings, then this approach would be appropriate.

5So if B identifies a sub-string of length 16, then not only is the mapping from its hash to the substring added, but so are

the 9 substrings of length 8, the 13 substrings of length 4 and the 15 of length 2.
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Appendix.

Proof for lemma 4.1.
Let ej = Pr[

∑
bi = j] = (kj )(1− p)k−jpj. The generating function for ej is E(x) =

∑
ejx

j =
(1− p+ px)k, so e0 + e2 + . . . = (E(1) + E(−1))/2 = (1 + (1− 2p)k)/2. 2

Proof for lemma 4.2.
(i) Since e−kp = C(k, p) = 1 for p = 0, we can show e−kp ≤ C(k, p) by proving
d
dp
e−kp ≤ d

dp
C(k, p), i.e., e−kp ≥ (1 − 2p)k−1, for k ≥ 2, or kp ≤ −(k − 1) log(1 − 2p).

However, −(k − 1) log(1− 2p) = (k − 1)(2p+ (2p)2

2
+ . . .) ≥ (k − 1)2p ≥ kp. For the right-

hand inequality, (1− 2p)k ≤ e−2pk since 1− 2p ≤ e−2p.

(ii) We want to show that (1 + e−2kp)/2 ≤ e−
2
3
kp under the given inequality. Putting

y = e−
2
3
kp, we want the inequality 1 + y3− 2y = (1− y)(1− y− y2) ≤ 0 when 1 ≥ y ≥

√
5−1
2

.
This is easily checked. 2

Proof for lemma 4.4.
The protocol’s estimate for p is p̂ = 3(β−1) ln(1/ε)

2k
. Let k′ = 3(β−1) ln(1/ε)

2p
.

Pr[p̂ ≥ αp] = Pr[k ≤ k′

α
] = 1− Z(k′/(1 + α), p, β)

≤ 1− exp

(
k′p

α(1− 1/β)

)
= 1− exp

(
−3β ln(1/ε)

2α

)

If α ≥ 3β ln(1/ε)
2 ln 2

, then Pr[p̂ ≥ αp] ≤ 1
2
. 2


