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Abstract. There is much focus in the algorithms and database communities on
designing tools to manage and mine data streams. Typically, data streams consist
of multiple signals. Formally, a stream of multiple signals is (i, ai,j) where i’s
correspond to the domain, j’s index the different signals and ai,j ≥ 0 give the
value of the jth signal at point i. We study the problem of finding norms that are
cumulative of the multiple signals in the data stream.
For example, consider the max-dominance norm, defined as

�
i maxj{ai,j}. It

may be thought as estimating the norm of the “upper envelope” of the multiple
signals, or alternatively, as estimating the norm of the “marginal” distribution of
tabular data streams. It is used in applications to estimate the “worst case influ-
ence” of multiple processes, for example in IP traffic analysis, electrical grid mon-
itoring and financial domain. In addition, it is a natural measure, generalizing the
union of data streams or counting distinct elements in data streams.
We present the first known data stream algorithms for estimating max-dominance
of multiple signals. In particular, we use workspace and time-per-item that are
both sublinear (in fact, poly-logarithmic) in the input size. In contrast other no-
tions of dominance on streams a, b — min-dominance (

�
i minj{ai,j}), count-

dominance (|{i|ai > bi}|) or relative-dominance (
�
i ai/max{1, bi} ) — are all

impossible to estimate accurately with sublinear space.

1 Introduction

Data streams are emerging as a powerful, new data source. Data streams comprise data
generated rapidlyover time in massive amounts; each data item must be processed quickly
as it is generated. Data streams arise in monitoring telecommunication networks, sensor
observations, financial transactions, etc. A significant scenario — and our motivating
application — arises in IP networking where Internet Service Providers (ISPs) moni-
tor (a) logs of total number of bytes or packets sent per minute per link connecting the
routers in the network, or (b) logs of IP “flow” which are roughly distinct IP sessions
characterized by source and destination IP addresses, source and destination port num-
bers etc. on each link, or at a higher level (c) logs of web clicks and so on. Typically, the
logs are monitored in near-real time for simple indicators of “actionable” events, such
as anomalies, large concurrence of faults, “hot spots”, and surges, as part of the stan-
dard operations of ISPs. Systems in such applications need flexible methods to define,
monitor and mine such indicators in data streams.
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The starting point of our investigation here is the observation that data streams are
often not individual signals, but they comprise multiple signals presented in an inter-
spersed and distributed manner. For example, web click streams may be arbitrary order-
ing of clicks by different customers at different web servers of a server farm; financial
events may be stock activity from multiple customers on stocks from many different
sectors and indices; and IP traffic logs may be logs at management stations of the cumu-
lative traffic at different time periods from multiple router links. Even at a single router,
there are several interfaces, each of which has multiple logs of traffic data. Our focus
here from a conceptual point of view is on suitable norms to measure and monitor about
the set of all distributions we see in the cumulative data stream.

Previous work on norm estimation and related problems on data streams has been ex-
tensive, but primarily focused on individualdistributions.For the case of multiple distri-
butions, prior work has typically focused on processing each distribution individually so
that multiple distributionscan be compared based on estimating pairwise distances such
as Lp norms [11, 17]. These Lp norms are linear so that the per-distribution processing
methods can be used to index, cluster multiple distributions or do proximity searches;
however, all such methods involve storing space proportional to the number of distinct
distributions in the data stream. As such, they do not provide a mechanism to directly
understand trends in multiple distributions.

Our motivating scenario is one of a rather large number of distributions as in the IP
network application above. In particular, we initiate the study of norms for cumulative
trends in presence of multiple distributions. For some norms of this type (in particular,
the max-dominance norm to be defined soon), we present efficient algorithms in the data
stream model that use space independent of the number of distributions in the signal. For
a few other norms, we show hardness results. In what follows, we provide details on the
data stream model, on dominance norms and our results.

1.1 Data Stream Model

The model here is that the data stream is a series of items (i, ai,j) presented in some ar-
bitrary order; i’s correspond to the domain of the distributions (assumed to be identical
without loss of generality), j’s to the different distributions and ai,j is the value of the
distribution j at location i (we will assume 0 ≤ ai,j ≤M for discussions here).

Note that there is no relation between the order of arrival and the parameter i, which
indexes the domain, or j, which indexes the signals. For convenience of notation, we use
the index j to indicate that ai,j is from signal j, or is the jth tuple with index i. However,
j is not generally made explicit in the stream and we assume it is not available for the
processing algorithm to use. We use ni to denote the number of tuples for index i seen so
far, and n =

∑
i ni is the total number of tuples seen in the data stream. There are three

parameters of the algorithm that are of interest to us: the amount of space used; the time
used to process each item that arrives; and the time taken to produce the approximation
of the quantity of interest. For an algorithm that works in the data stream to be of interest,
the working space and per item processing time must both be sublinear in n andM , and
ideally poly-logarithmic in the these quantities.

1.2 Dominance Norms and their Relevance

We study norms that are cumulative over the multiple distributions in the data stream.
We particularly focus on the max-dominance defined as

∑
i maxj{ai,j} Intuitively, this



Fig. 1. A mixture of distributions (left), and their upper envelope (right)

corresponds to computing the L1 norm of the upper envelope of the distributions, illus-
trated schematically in Figure 1. Computing the max-dominance norm of multiple data
distributions is interesting for many important reasons described below. First, applica-
tions abound where this measure is suitable for estimating the “worst case influence”
under multiple distributions. For example, in the IP network scenario, i’s correspond to
source IP addresses and ai,j corresponds to the number of packets sent by IP address i in
the jth transmission. Here the max-dominance measures the maximum possible utiliza-
tion of the network if the transmissions from different source IP addresses were coor-
dinated. A similar analysis of network capacity using max-dominance is relevant in the
electrical grid [9] and in other instances with IP networks, such as using SNMP [18]. The
concept of max-dominance occurs in financial applications, where the maximum dol-
lar index (MDI) for securities class action filings characterize the intensity of litigation
activity through time [21]. In addition to finding specific applications, max-dominance
norm has intrinsic conceptual interest in the following two ways. (1) If ai,j’s were all
0 or 1, then this norm reduces to calculating the size of the union of the multiple sets.
Therefore max-dominance norm is a generalization of the standard union operation. (2)
Max-dominance can be viewed as a generalization of the problem of counting the num-
ber of distinct elements i that occur within a stream. The two norms again coincide when
each ai,j takes on binary values.
We denote the max-dominance of such a stream a as dommax(a) =

∑
i max1≤l≤ni{ai,l}.

Equivalently, we define the i’th entry of an implicit state vector as max1≤l≤ni{ai,l}, and
the dommax function is the L1 norm of this vector. Closely related to max-dominance
norms is min-dominance:

∑
i minj{|ai,j|} and median-dominance:

∑
imedianj{|ai,j|};

or more generally
∑
i quantilesj{|ai,j|}). Generalizing these measures on various or-

derings (not just quantiles) of values are relative measures of dominance: Relative count
dominance is based on counting the number of places where one distribution dominates
another (or others, more generally), |{i|ai > bi}| for two given data distributions a and
b, and relative sum dominance which is

∑
i{ ai

max{1,bi}}. All of these dominances are
very natural for collating information from two or more signals in the data stream.

1.3 Our Results

Our contributions are as follows.

1. We initiate the study of dominance norms as indicators for collating information
from multiple signals in data streams.

2. We present streaming algorithms for maintaining the max-dominance of multiple
data streams. Our algorithms estimate max-dominance to 1 + ε approximation with



probability at least 1− δ. We show an algorithm that usesO( logM log log2 M
ε3 ) by re-

ducing the problem to multiple instances of the problem of estimating distinct items
on data streams. However, the main part of our technical contributionis an improved
algorithm that uses onlyO( logM

ε2 ) space. In both cases, the running time as well as
time to compute the norm is also similarly polylogarithmic. This is the bulk of our
technical work. No such sublinear space and time result was known for estimating
any dominance norms in the data stream model.

3. We show that, in contrast, all other closely related dominance norms — min-dominance,
relative count dominance and relative sum dominance — need linear space to be
even probabilisticallyapproximated in the streaming model. The full results are given
in [6] and use reductions from other problems known to be hard in the streaming and
communication complexity models.

1.4 Related Work

Surprisingly, almost no data stream algorithms are known for estimating any of the dom-
inance norms, although recent work has begun to investigate the problems involved in
analyzing and comparing multiple data streams [23]. There, the problem is to predict
missing values, or determine variations from expected values, in multipleevolvingstreams.
Much of the recent flurry of results in data streams has focused on using various Lp
norms for individualdistributionsto compare and collate information from different data
streams, for example, (

∑
i(
∑
j ai,j)

p)1/p for 0 < p ≤ 2 [1, 11, 17] and related notions
such as Hamming norms

∑
i((
∑

j ai,j) 6= 0) [4]. While these norms are suitable for
capturing comparative trends in multiple data streams, they are not applicable for com-
puting the various dominance norms (max, min, count or relative). Most related to the
methods here is our work in [4], where we used Stable Distributions with small param-
eter. We extend this work by applying it to a new scenario, that of dominance norms.
Here we need to derive new properties: the behavior of these distributions as the param-
eter approaches zero (Sections 3.4—3.6), how range sums of variables can be computed
efficiently (Section 3.6), and so on.

Also relevant is work on computing the number of distinct values within a stream,
which has been the subject of much study [13–15, 4, 2]. In [15], the authors mention that
their algorithm can be applied to the problem of computing

∑
i max{ai, bi}, which is

a restricted version of our notion of dominance norm. Applying their algorithm directly
yields a time cost of Ω(M ) to process each item, which is prohibitive for large M (it is
exponential in the input size). Other approaches which are used in ensemble as indicators
when observing data streams include monitoring those items that occur very frequently
(the “heavy hitters” of [12, 10]), and those that occur very rarely [8]. We mention only
work related to our current interest in computing dominance norms of streams. For a
more general overview of issues and algorithms in processing data streams, see the sur-
vey [19].

2 Max-Dominance Norms using Distinct Element Counting

Let us first elaborate on the challenge in computing dominance norms of multiple data
streams by focusing on the max-dominance norm. If we had space proportional to the
range of values i then for each i, we can store maxj{|ai,j|} for all the ai,j’s seen thus
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Fig. 2. Each item is rounded to the next value of (1+ε)l. We sendevery k < l to a distinct elements
counterDk . The output of these counters is scaled appropriately, to get back the maximum value
seen (approximate to 1 + ε)

far, and incrementally maintain
∑
i maxj{|ai,j|}. However, in our motivatingscenarios,

algorithms for computing max-dominance norms are no longer obvious.

Theorem 1. By maintaining logM
ε independent copies of a method for counting distinct

values in the stream, we can compute a 1±ε approximation to the dominance norm with
probability 1 − δ. The per-element processing time is that needed to insert an element
intoO(log

ai,j
ε ) of the distinct elements algorithms.

Proof. We require access toK = dlog(M )/ log(1+ε)e+1 = log(Mε )+O(1) different
instantiationsof distinct elements algorithms. We shall refer to these asD0 . . .Dk . . .DK .
On receiving a tuple (i, ai,j), we compute the ‘level’, l, of this item as l = d log ai,j

log(1+ε)e.
We then insert the identifier i into certain of the distinct element algorithms: those Dk

where 0 ≤ k ≤ l. Let Dout
k indicate the approximation of the number of distinct ele-

ments of Dk . The approximation of the dominance norm of the sequence is given by:

d̂(a) = Dout
0 +

K∑

j=1

(d(1 + ε)je − d(1 + ε)j−1e)Dout
j

We consider the effect of any individual i, which is represented in the stream by mul-
tiple values ai,j . By the effect of the distinct elements algorithms, the contribution is
1 at each level up to dlog(maxj{ai,j})/ log(1 + ε)e. The effect of this on the scaled
sum is then between maxj{ai,j} and (1 + ε) maxj{ai,j} if each distinct element algo-
rithms give the exact answer. This procedure is illustrated graphically in Figure 2. Since
these are actually approximate, then we find a result between (1 − ε) maxj{ai,j} and
(1 + ε)2 maxj{ai,j}. Summing this over all i, we get (1 − ε) dommax(a) ≤ d̂(a) ≤
(1 + ε)2 dommax(a)

Corollary 1. There is an algorithm for computing Dominance norms which outputs a
(1 + ε) approximation with probability 1 − δ which uses Õ( logM

ε
( 1
ε2

+ logM ) log 1
δ
)

space, and amortized time Õ(1
ε log2M log logM

δε ) per item (here Õ surpresses log logn

and log 1
ε factors).



This follows by adopting the third method described in [2], which is the most space
efficient method for finding the number of distinct elements in a stream that is in the
literature. The space required for each D is O(( 1

ε2 + logM ) log 1
ε log log(M ) log 1

δ ).
Updates take amortized time O(logM + log 1

ε
). In order to have probability 1 − δ of

every count being accurate within the desired bounds, we have to increase the accuracy
of each individual test, replacing δ with εδ

logM . Putting this together with the above the-
orem gets the desired result. Clearly, with better methods for computing the number of
distinct elements, better results could be obtained. ut

3 Max-Dominance Norm via Stable Distributions

We present a second method to compute the max-dominance of streams, which makes
use of stable distributions to improve the space requirements.

3.1 Stable Distributions

Indyk pioneered the use of Stable Distributions in data streams and since then have re-
ceived a great deal of attention [17, 5, 4, 16]. Throughout our discussion of distributions,
we shall use ∼ for the equivalence relation meaning “is equivalent in distribution to”.

A stable distribution is defined by four parameters. These are (i) the stability index,
0 < α ≤ 2; (ii) the skewness parameter, −1 ≤ β ≤ 1; (iii) scale parameter, γ > 0; and
(iv) location parameter, δ. Throughout we shall deal with a canonical representation of
stable distributions, where γ = 1 and δ = 0. Therefore, we consider stable distributions
S(α, β) so that, given α and β the distribution is uniquely defined by these parameters.
We writeX ∼ S(α, β) to denote the random variableX is distributed as a stable distri-
bution with parameters α and β. When β = 0, as we will often find, then the distribution
is symmetric about the mean, and is called strictly stable.

Definition 1. The strictly stable distributionS(α, 0) is defined by the property thatgiven
independent variables distributed stable:

X ∼ S(α, 0), Y ∼ S(α, 0), Z ∼ S(α, 0)⇒ aX + bY ∼ cZ, aα + bα = cα

That is, ifX and Y are distributed with stability parameter α, then any linear combina-
tion of them is also distributed as a stable distribution with the same stability parameter
α. The result is scaled by the scalar c where c = |aα + bα|1/α. The definition uniquely
defines a distribution, up to scaling and shifting. By centering the distribution on zero
and fixing a scale, we can talk about the strictly stable distribution with index α. From
the definition it follows that (writing ||a||α = (

∑
i |ai|α)1/α)

X1 . . .Xn ∼ S(α, 0); a = (a1, . . . , an);⇒∑
i aiXi ∼ ||a||αS(α, 0)

3.2 Our Result

Recall that we wish to compute the sum of the maximum values seen in the stream. That
is, we want to find dommax(a) =

∑
i max{ai,1, ai,2, . . .ai,ni}. We will show how the

max-dominance can be found approximately by using values drawn from stable distri-
butions. This allows us to state our main theorem:



Theorem 2. It is possible to compute an approximation to
∑
i max1≤j≤ni{ai,j} in the

streaming model that is correct within a factor of (1 + ε) with probability 1 − δ using
space O( 1

ε2 (log(M ) + ε−1 logn log logn) log 1
δ ) and taking O( 1

ε4 log ai,j logn log 1
δ )

time per item.

3.3 Idealized Algorithm

We first give an outline algorithm, then go on to show how this algorithm can be applied
in practice on the stream with small memory and time requirements. We imagine that we
have access to a special indicator distributionX. This has the (impossible) property that
for any positive integer c (that is, c > 0) then E(cX) = 1 and bounded variance. From
this it is possible to derive a solution problem of finding the max-dominance of a stream
of values. We maintain a scalar z, initially zero. We create a set of xi,k, each drawn from
iid distributionsXi,k ∼ X. For every ai,j in the input streams we update z as follows:

z ← z +
∑ai,j
k=1 xi,k

This maintains the property that the expectation of z is
∑
imaxj{ai,j}, as required. This

is a consequence of the “impossible” property of Xi,k that it contributes only 1 to the
expectation of z no matter how many times it is added. For example, suppose our stream
consists of {(i = 1, a1,1 = 2), (3, 3), (3, 5)}. Then z is distributed as X1,1 + X1,2 +
2X3,1 + 2X3,2 + 2X3,3 + X3,4 + X3,5. The expected value of z is then the number
of different terms, 7, which is the max dominance that we require (2+5). The required
accuracy can be achieved by in parallel keeping several different values of z based on
independent drawings of values for xi,k. There are a number of hurdles to overcome in
order to turn this idea into a practical solution.

1. How to choose the distributionsXi,k? We shall see how appropriate use of stable
distributions can achieve a good approximation to these indicator variables.

2. How to reduce space requirements? The above algorithm requires repeated access
to xi,k for many values of i and k. We need to be able to provide this access with-
out explicitly storing every xi,k that is used. We also need to show that the required
accuracy can be achieved by carrying out only a small number of independent rep-
etitions in parallel.

3. How to compute efficiently? We require fast per item processing, that is polylog-
arithmic in the size of the stream and the size of the items in the stream. But the
algorithm above requires adding ai,j different values to a counter in each step: time
linear in the size of the data item (that is, exponential in the size of its binary rep-
resentation). We show how to compute the necessary range sums efficiently while
ensuring that the memory usage remains limited.

3.4 Our Algorithm

We will use stable distributions with small stability parameter α in order to approximate
the indicator variable Xi,k. Stable distributions can be used to approximate the number
of non-zero values in a vector [4]. For each index i, we can consider a vector a(i) de-
fined by the tuples for that index i along, so that a(i)k = |{j|ai,j ≥ k}|. Then the
number of non-zero entries of a(i) = maxj ai,j . We shall write a for the vector formed
by concatenated all such vectors for different i. This is an alternate representation of the



stream, a. To approximate the max-dominance, we will maintain a sketch vector z(a)
which summarizes the stream a.

Definition 2. The sketch vector z(a) has a number of entries m (= O( 1
ε2

log 1
δ
)). We

make use of a number of valuesxi,k,l, each of which is drawn independently fromS(α, 0),
for α = ε/ logn. Initially z is set to zero in every dimension.

Invariant. We maintain the property for each l that z l =
∑
i,j

∑ai,j
k=1 xi,k,l

Update Procedure. On receiving each pair (i, ai,j) in the stream, we maintain the in-
variant by updating z as follows: ∀1 ≤ l ≤ m. z l ← zl +

∑ai,j
k=1 xi,k,l

Output. Our approximation of the max-dominance norm is ln 2(medianl |zl|)α

At any point, it is possible to extract from the sketch z(a) a good approximation of
the sum of the maximum values.

Theorem 3. In the limit, as α tends to zero,

(1− ε) dommax(a) ≤ ln 2 (medianl |z(a)l|)α ≤ (1 + ε)2 dommax(a)

Proof. From the defining property of stable distributions (Definition 1), we know by
construction that each entry of z is drawn from the distribution ||a||αS(α, 0). We know
that we will add any xi,k,l to zl at most once for each tuple in the stream, so we have an
upper boundU = n on each entry of a. A simple observation is that for small enoughα
and an integer valued vector then the norm ||a||αα (Lα norm raised to the powerα, which
is just

∑
i a

α
i ) approximates the number of non-zero entries in the vector. Formally, if

we set an upper bound U so that ∀i.|ai| ≤ U and fix 0 < α ≤ ε/ log2 U then

|{i|ai 6= 0}| =
∑

ai 6=0

1α ≤
∑

ai 6=0

|ai|α = ||a||αα

≤
∑

ai 6=0

Uα ≤ exp(ε ln 2)|{i|ai 6= 0}|

≤ (1 + ε)|{i|ai 6= 0}|
Using this, we chooseα to be ε/ log2 n since each value i appears at mostn times within
the stream, so U = n. This guarantees

dommax(a) ≤ ||a||αα ≤ (1 + ε) dommax(a)

Lemma 1. If X ∼ S(α, β) then

limα→0+ median(|cX|α) = |c|αmedian(|X|α) = |c|α
ln 2

Proof: Let E be distributed with the exponential distribution with mean one. Then
limα→0+ |S(α, β)|α = E−1 [7]. The density ofE−1 is f(x) = x−2 exp(−1/x), x > 0
and the cumulative density is

F (x) =

∫ x

0

f(x)dx = exp(−1/x)

so in the limit, median(E−1) = F−1(1/2) = 1/ ln 2 ut
Consequently ∀k.|zk|α ∼ ||a||αα|X|α and median | ||a||αX|α → ||a||αα/ ln 2. We

next make use of a standard sampling result:



Lemma 2. LetX be a distribution with cumulative density functionF (x). If derivative
of the inverse of F (X) is bounded by a constant around the median then the median of
O( 1

ε2 log 1
δ ) samples from X is within a factor of 1± ε of median(X) with probability

1− δ.

The derivative of the inverse density is indeed bounded at the median in the limit,
since F−1(r) = −1/ ln r, and (F−1)′(1

2 ) < 5. Hence for a large enough constant c, by
taking a vector z withm = c

ε2 log 1
δ entries, each based on an independent repetition of

the above procedure, then we can approximate the desired quantityand so (1−ε)||a||αα ≤
(ln 2) mediank |zk|α ≤ (1 + ε)||a||αα with probability 1− δ by this Lemma.

Thus to find our approximation of the sum of the maximum values, we maintain the
vector z as the dot product of the underlying vector a with the values drawn from stable
distributions, xi,k,l. When we take the absolute value of each entry of z and find their
median, the result raised to the power α and scaled by the factor of ln 2 is the approxi-
mation of dommax(a).

3.5 Space Requirement

For the algorithm to be applicable in the streaming model, we need to ensure that the
space requirements are minimal, and certainly sublinear in the size of the stream. There-
fore, we cannot explicitly keep all the values we draw from stable distributions, yet we
require the values to be the same each time the same entry is requested at different points
in the algorithm. This problem can be solved by using pseudo-random generators: we do
not store any xi,k,l explicitly, instead we create it as a pseudo-random function of k, i,
l and a small number of stored random bits whenever it is needed. We need a different
set of random bits in order to generate each of them instantiations of the procedure. We
therefore need only consider the space required to store the random bits, and to hold the
vector z. It is known that although there is no closed form for stable distributions for
general α, it is possible to draw values from such distributions for arbitrary α by using
a transform from two independent uniform random variables.

Lemma 3 (Equation (2.3) of [3]). Let U be a uniform random variable on [0, 1] andΘ
uniform on [−π2 ,

π
2 ]. Then

S(α, 0) ∼ sinαΘ

(cosΘ)1/α

(
cos(1− α)Θ

− lnU

) 1−α
α

We also make use of two other results on random variables from the literature (see
for example [22]), with which we will prove the space requirements for the algorithm.

Lemma 4. (i) Y ∼ S(α, 1), Z ∼ S(α, 1)⇒ 2−1/α(Y − Z) ∼ S(α, 0)
(ii) In the limit, the density function f(x) obeys X ∼ S(α, 1), α → 0+ ⇒ f(x) =
O(α exp(−x−α)x−α−1), x > 0

Lemma 5. The space requirement of this algorithm is O( 1
ε2

(logM + 1
ε

logn) log 1
δ
)

bits.



Proof. For each repetition of the procedure, we requireO(logn) random bits to instan-
tiate the pseudo-random generators, as per [20, 17]. We also need to consider the space
used to represent each entry of z. We analyze the process at each step of the algorithm: a
value x is drawn (pseudo-randomly) from S(α, 0), and added to an entry in z. The num-
ber of bits needed to represent this quantity is log2 |x|. Since the cumulative distribution
of the limit from Lemma 4 (ii) is

Fβ=1(x) =

∫ x

0

α exp(−x−α)x−α−1dx = exp(−x−α)

then F−1
β=1(r) = (ln r−1)−1/α 0 ≤ r ≤ 1

So |x| = O(F−1
β=0(r)) = O(2−1/α(ln r−1)−1/α) by Lemma 4 (i). Therefore log2 |x| =

O( 1
α

log ln r). The dependence on α is O(α−1), which was set in Theorem 3 as α ≤
ε/ logn. The value of r requires a poly-log number of bits to represent, so represent-
ing x requires O( 1

ε logn log logn) bits. Each entry of z is formed by summing many
such variables. The total number of summations is bounded by Mn. So the total space
to represent each entry of z is

log zk = Õ(logMnx) = Õ(logM + logn+ 1
ε logn)

The total space required for allO( 1
ε2 log 1

δ ) entries of z isO( 1
ε3 log 1

δ logn log logn) if
we assume M is bounded by a polynomial in n.

3.6 Per Item Processing Time

For each item, we must compute several sums of variables drawn from stable distribu-
tions. Directly doing this will take time proportional to ai,j . We could precompute sums
of the necessary variables, but we wish to avoid explicitly storing any values of variables
to ensure that the space requirement remains sublinear. However, the defining property
of stable distributions is that the sum of any number of variables is distributed as a stable
distribution.

Lemma 6. The sum
∑ai,j
k=1 xi,k can be approximated up to a factor of 1+ε inO( 1

ε logai,j)
steps.

Proof. To give a 1 + ε approximation imagine rounding each ai,j to the closest value of
b(1 + ε)sc, guaranteeing an answer that is no more than (1 + ε) the true value. So we

compute sums of the form
(∑b(1+ε)s+1c

k=b(1+ε)sc+1 xi,k
)

which is distributed as

(b(1 + ε)s+1c − b(1 + ε)sc)1/αS(α, 0)

The sum can be computed in log1+ε ai,j =
log ai,j
log 1+ε = O( 1

ε log ai,j) steps.

The main Theorem 2 follows as a consequence of combining Theorem 3 with Lem-
mas 5 and 6 and by appropriate rescaling of δ.

We briefly mention an additional property of this method, which does not follow
for the previous method. It is possible to include deletions of values from the past in
the following sense: if we are presented with a tuple (i,−ai,j), then we interpret this
as a request to remove the contribution of ai,j from index i. Provided that there was an
earlier tuple (i, ai,j), then we can compute the effect this had on z and remove this by
subtracting the appropriate quantities.



4 Hardness of Other Dominances

We recall the definition of the min-dominance,
∑
iminj{ai,j}. We show that, unlike

the max-dominance norm, it is not possible to compute a useful approximation to this
quantity in the data stream model. This is shown by using a reduction from the size of
the intersection of two sets, a problem that is known to be hard to approximate in the
communication complexity model. Similarly, finding the accumulation of any averaging
function (Mean, Median or Mode) of a mixture of signals requires as much storage as
there are different signals. Proofs are omitted for space reasons, see [6] for full details.

– Any algorithm to compute a constant factor approximation to min-dominance of a
stream with constant probability requires Ω(n) bits of storage.

– Computing
∑
i(
∑
j ai,j/ni) on the stream to any constant factor c with constant

probability requires Ω(n/c) bits of storage.
– Computing

∑
imedianj{ai,j} and

∑
imodej{ai,j} to any constant factor with con-

stant probability requires Ω(n) bits of memory.
– Approximating the relative sum dominance

∑
ai/max{1, bi} to any constant cwith

constant probability requires Ω(n/c) bits of storage.

5 Conclusion

Data streams often consist of multiple signals. We initiated the study of estimating dom-
inance norms over multiple signals. We presented algorithms for estimating the max-
dominance of the multiple signals that uses small (poly-logarithmic) space and takes
small time per operation. These are the first known algorithm for any dominance norm
in the data stream model. In contrast, we showed that related quantities such as the min-
dominance cannot be so approximated.

We have already discussed some of the applications of max-dominance, and we ex-
pect it to find many other uses, as such, and variations thereof. The question of finding
useful indicators for actionable events based on multiple data streams is an important
one, and it is of interest to determine other measures which can be computed efficiently
to give meaningful indicators. The analysis that we give to demonstrate the behavior of
stable distributions with small index parameter α, and our procedure for summing large
ranges of such variables very quickly may spur the discovery of further applications of
these remarkable distributions.
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