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Abstract. Thereis much focus in the algorithms and database communities on
designing tools to manage and mine data streams. Typically, data streams consist
of multiple signals. Formally, a stream of multiple signasis (i, a;,;) wherei's
correspond to the domain, j's index the different signalsand a; ; > 0 give the
value of the jth signal at point i. We study the problem of finding norms that are
cumulative of the multiple signalsin the data stream.

For example, consider the max-dominance norm, defined as >, max; {a; ;}. It
may be thought as estimating the norm of the “upper envelope” of the multiple
signals, or alternatively, as estimating the norm of the “marginal” distribution of
tabular data streams. It is used in applications to estimate the “worst case influ-
ence” of multiple processes, for examplein IPtraffic analysis, electrical grid mon-
itoring and financial domain. In addition, it is anatural measure, generalizing the
union of data streams or counting distinct elementsin data streams.

We present the first known data stream algorithms for estimating max-dominance
of multiple signals. In particular, we use workspace and time-per-item that are
both sublinear (in fact, poly-logarithmic) in the input size. In contrast other no-
tions of dominance on streams a, b — min-dominance (>, min;{a;; }), count-
dominance(|{i|a: > b;}|) or relative-dominance (}_, a;/ max{1, b;} ) —areall
impossible to estimate accurately with sublinear space.

1 Introduction

Data streams are emerging as a powerful, new data source. Data streams comprise data
generated rapidly over timein massive amounts; each dataitem must be processed quickly
asitisgenerated. Data streams ari sein monitoring tel ecommuni cation networks, sensor
observations, financia transactions, etc. A significant scenario — and our motivating
application — arises in | P networking where Internet Service Providers (ISPs) moni-
tor (&) logs of total number of bytes or packets sent per minute per link connecting the
routers in the network, or (b) logs of IP “flow” which are roughly distinct IP sessions
characterized by source and destination IP addresses, source and destination port num-
bersetc. on each link, or at ahigher level (c) logsof web clicksand so on. Typically, the
logs are monitored in near-real time for simpleindicators of “actionable’ events, such
as anomalies, large concurrence of faults, “hot spots’, and surges, as part of the stan-
dard operations of | SPs. Systems in such applications need flexible methods to define,
monitor and mine such indicatorsin data streams.
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The starting point of our investigation here is the observation that data streams are
often not individua signals, but they comprise multiple signals presented in an inter-
spersed and distributed manner. For example, web click streams may be arbitrary order-
ing of clicks by different customers at different web servers of a server farm; financia
events may be stock activity from multiple customers on stocks from many different
sectorsand indices; and I P traffic logs may belogsat management stations of the cumu-
lativetraffic at different time periods from multiplerouter links. Even at asinglerouter,
there are severa interfaces, each of which has multiple logs of traffic data. Our focus
here from a conceptual point of view ison suitable normsto measure and monitor about
the set of al distributionswe see in the cumul ative data stream.

Previouswork on norm estimation and rel ated problemson datastreams has been ex-
tensive, but primarily focused on individual distributions. For the case of multipledistri-
butions, prior work hastypically focused on processing each distributionindividually so
that multipledistributionscan be compared based on estimating pairwise distances such
as L, norms[11,17]. These L, norms are linear so that the per-distribution processing
methods can be used to index, cluster multiple distributions or do proximity searches;
however, all such methods involve storing space proportional to the number of distinct
distributionsin the data stream. As such, they do not provide a mechanism to directly
understand trends in multipledistributions.

Our motivating scenario is one of arather large number of distributionsasin the IP
network application above. In particular, we initiate the study of norms for cumulative
trends in presence of multiple distributions. For some norms of thistype (in particular,
the max-dominance norm to be defined soon), we present efficient algorithmsinthe data
stream mode that use space independent of the number of distributionsinthesignal. For
afew other norms, we show hardness results. In what follows, we provide detailson the
data stream model, on dominance norms and our results.

1.1 Data Stream Mod€

The model hereisthat the data stream isaseries of items (4, a; ;) presented in some ar-
bitrary order; i’s correspond to the domain of the distributions(assumed to beidentical
without loss of generality), j's to the different distributionsand a; ; isthe value of the
distribution j at location i (we will assume 0 < a; ; < M for discussions here).

Notethat thereisno relation between the order of arrival and the parameter 4, which
indexesthedomain, or j, whichindexesthe signals. For convenience of notation, weuse
theindex j toindicatethat a; ; isfromsignal j, or isthe jth tuplewithindex i. However,
j is not generally made explicit in the stream and we assume it is not available for the
processing algorithmto use. We usen; to denote the number of tuplesfor index i seen so
far, andn = 3, n; isthetotal number of tuples seen inthe datastream. There are three
parameters of the algorithmthat are of interest to us: the amount of space used; thetime
used to process each item that arrives; and the time taken to produce the approximation
of thequantity of interest. For an algorithmthat worksin thedatastream to be of interest,
theworking space and per item processing time must both be sublinear in » and M, and
ideally poly-logarithmicin the these quantities.

1.2 Dominance Normsand their Relevance

We study norms that are cumulative over the multiple distributionsin the data stream.
We particularly focus on the max-dominancedefined as ) °, max; {a; ;} Intuitively, this
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Fig. 1. A mixture of distributions (left), and their upper envelope (right)

corresponds to computing the ; norm of the upper envelope of the distributions, illus-
trated schematically in Figure 1. Computing the max-dominance norm of multipledata
distributionsis interesting for many important reasons described below. First, applica
tions abound where this measure is suitable for estimating the “worst case influence”
under multipledistributions. For example, in the I P network scenario, i’s correspond to
source|P addresses and a; ; correspondsto the number of packets sent by IP address i in
the jth transmission. Here the max-dominance measures the maximum possible utiliza-
tion of the network if the transmissions from different source |P addresses were coor-
dinated. A similar analysis of network capacity using max-dominanceisrelevant inthe
electrical grid[9] and in other instanceswith | P networks, such asusing SNMP[18]. The
concept of max-dominance occurs in financia applications, where the maximum dol-
lar index (MDI) for securities class action filings characterize the intensity of litigation
activity through time[21]. In addition to finding specific applications, max-dominance
norm has intrinsic conceptual interest in the following two ways. (1) If a; ;'s were dl
0 or 1, then this norm reduces to calculating the size of the union of the multiple sets.
Therefore max-dominance norm is a generalization of the standard union operation. (2)
Max-dominance can be viewed as a generalization of the problem of counting the num-
ber of distinct elementss that occur withinastream. Thetwo normsagain coincidewhen
each a; ; takes on binary values.

We denotethe max-dominanceof suchastream a asdomax(a) = Y, maxi<j<n,{ai;}.
Equivalently, wedefinethe:'th entry of animplicit statevector asmaxi <j<n, {@,; }, and
the dom,,,,, functionisthe L; norm of thisvector. Closely related to max-dominance
normsismin-dominance: ) , min;{|a; ;|} and median-dominance: ) _, median;{|a; ;|};
or more generdly ) -, quantiles;{|a; ;| }). Generalizing these measures on various or-
derings (not just quantiles) of values are rel ative measures of dominance: Rel ative count
dominanceis based on counting the number of places where one distribution dominates
another (or others, more generdly), |{i|a; > b;}| for two given data distributionsa and
b, and relative sum dominance which is Zi{m}. All of these dominances are

very natura for collating information from two or more signasin the data stream.

1.3 Our Resaults
Our contributionsare as follows.

1. We initiate the study of dominance norms as indicators for collating information
from multiple signalsin data streams.

2. We present streaming algorithms for maintai ning the max-dominance of multiple
data streams. Our & gorithms estimate max-dominanceto 1 + e approximation with



probability at least 1 — &. We show an algorithm that U%O(W#Z)M) by re-
ducing the problem to multipleinstances of the problem of estimating distinct items
on datastreams. However, themain part of our technical contributionisanimproved
agorithm that uses only O( lof—zM) space. In both cases, the running time aswell as
time to compute the norm is also similarly polylogarithmic. This isthe bulk of our
technical work. No such sublinear space and time result was known for estimating
any dominance norms in the data stream model.

3. Weshow that, in contrast, all other closely rel ated dominance norms— min-dominance,
relative count dominance and relative sum dominance — need linear space to be
even probabilistically approximatedin thestreaming model . Thefull resultsare given
in[6] and usereductionsfrom other problemsknown to be hard in the streaming and
communication complexity models.

1.4 Reated Work

Surprisingly, almost no datastream al gorithmsare known for estimating any of thedom-
inance norms, although recent work has begun to investigate the problemsinvolved in
analyzing and comparing multiple data streams [23]. There, the problem is to predict
missing val ues, or determinevariationsfrom expected val ues, in multipleevol ving streams.
Much of the recent flurry of results in data streams has focused on using various L,
normsfor individual distributionsto compare and collateinformationfrom different data
streams, for example, (>, (3_; ai ;)P)V/P for 0 < p < 2[1,11,17] and related notions
such as Hamming norms > ,((3_; ai,;) # 0) [4]. While these norms are suitable for
capturing comparative trends in multiple data streams, they are not applicable for com-
puting the various dominance norms (max, min, count or relative). Most related to the
methods here is our work in [4], where we used Stable Distributionswith small param-
eter. We extend thiswork by applying it to a new scenario, that of dominance norms.
Herewe need to derive new properties: the behavior of these distributionsas the param-
eter approaches zero (Sections 3.4—3.6), how range sums of variables can be computed
efficiently (Section 3.6), and so on.

Also relevant iswork on computing the number of distinct values within a stream,
which has been the subject of much study [13-15, 4, 2]. In[15], the authors mention that
their algorithm can be applied to the problem of computing » ", max{a;, b;}, which is
arestricted version of our notion of dominance norm. Applyingtheir algorithm directly
yieldsatime cost of {2(M) to process each item, which is prohibitivefor large M (itis
exponential intheinput size). Other approacheswhich are used in ensembl e asindicators
when observing data streams include monitoring those items that occur very frequently
(the “heavy hitters’ of [12,10]), and those that occur very rarely [8]. We mention only
work related to our current interest in computing dominance norms of streams. For a
more genera overview of issues and al gorithmsin processing data streams, see the sur-

vey [19].

2 Max-Dominance Normsusing Distinct Element Counting

Let usfirst elaborate on the challenge in computing dominance norms of multiple data
streams by focusing on the max-dominance norm. If we had space proportiona to the
range of values i then for each ¢, we can store max;{|a; ;|} for al thea; ;'s seen thus
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Fig. 2. Eachitemisroundedtothenext valueof (1+¢)". We sendevery k < I toadistinct elements
counter Dy,. The output of these countersis scaled appropriately, to get back the maximum value
seen (approximateto 1 + )

far, and incrementally maintain ) , max; {|a; ;| }. However, inour motivating scenarios,
algorithmsfor computing max-dominance norms are no longer obvious.

Theorem 1. By maintaining independent copies of amethod for counting distinct
valuesin the stream, we can computea 1 + e approxi mation to the dominance normwith
probability 1 — §. The per-element processing timeis that needed to insert an element
into O(log “4) of the distinct elements algorithms.

log M
€

Proof. Werequireaccessto K = [log(M)/log(1+€)]+1 = log(X)+0(1) different
instantiationsof distinct elementsagorithms. Weshall refer totheseas Dy ... Dy, ... D

On receiving atuple (i, a; ;), we compute the ‘level’, I, of thisitemas! = mcég(fiiﬂ-
We then insert the identifier 4 into certain of the distinct element algorithms: those Dy,
where 0 < k£ < . Let D¢“* indicate the approximation of the number of distinct ele-

ments of Dj,. The approximation of the dominance norm of the sequenceis given by:

K
d(a) = D§" + 3 ([(1+ef] = [+ ) D§"!

j=1

We consider the effect of any individual ¢, which isrepresented in the stream by mul -
tiple values a; ;. By the effect of the distinct elements algorithms, the contribution is
1 at each level up to [log(max;{a; ;})/log(l + €)]. The effect of this on the scaled
sum isthen between max;{a; ;} and (1 + €) max;{a; ; } if each distinct element algo-
rithmsgive the exact answer. This procedureisillustrated graphically in Figure 2. Since
these are actually approximate, then we find a result between (1 — ¢) max;{a; ;} and
(1 4 €)2 max;{a; ;}. Summing this over al i, we get (1 — €) domyay(a) < d(a) <
(1 + €)? domyax(a)

Corollary 1. There isan algorithmfor computing Dominance norms which outputs a
(1 + €) approximation with probability 1 — § which uses O(logiM (% +logM)log )
space, and amortized time O (L log® M log 242 per item (here O surpresseslog log n

andlog 1 factors).




Thisfollowsby adopting the third method described in [2], which isthe most space
efficient method for finding the number of distinct elements in a stream that isin the
literature. The space required for each D is O((% + log M) log £ loglog(M)log % ).
Updates take amortized time O (log M + log 2). In order to have probability 1 — § of
every count being accurate within the desired bounds, we have to increase the accuracy
of each individual test, replacing ¢ with 10251\4 . Putting thistogether with the above the-
orem gets the desired result. Clearly, with better methods for computing the number of
distinct elements, better results could be obtained. O

3 Max-Dominance Norm via Stable Distributions

We present a second method to compute the max-dominance of streams, which makes
use of stable distributionsto improve the space requirements.

3.1 StableDistributions

Indyk pioneered the use of Stable Distributionsin data streams and since then have re-
ceived agreat deal of attention [17, 5, 4, 16]. Throughout our discussion of distributions,
we shall use ~ for the equivalence relation meaning “is equivaent in distributionto”.

A stable distributionis defined by four parameters. These are (i) the stability index,
0 < a < 2; (ii) the skewness parameter, —1 < g < 1; (iii) scale parameter, v > 0; and
(iv) location parameter, §. Throughout we shall deal with a canonical representation of
stabledistributions, wherey = 1 and 6 = 0. Therefore, we consider stable distributions
S(«, B) sothat, given o and (3 the distributionis uniquely defined by these parameters.
Wewrite X ~ S(«a, () to denotethe random varigble X isdistributed as a stable distri-
butionwith parameters « and 5. When = 0, aswewill oftenfind, then the distribution
is symmetric about the mean, and is called strictly stable.

Definition 1. Thestrictly stabledistributionS(«, 0) isdefined by the property that given
independent variables distributed stable:

X ~8(a,0),Y ~ S(,0), Z ~ S(a,0) = aX +bY ~ cZ,a“ +b* =

That is, if X and Y are distributed with stability parameter «, then any linear combina-
tion of them isalso distributed as a stabl e distributionwith the same stability parameter
. Theresult is scaled by the scalar ¢ where ¢ = |a® + b*|'/*. The definition uniquely
defines a distribution, up to scaling and shifting. By centering the distribution on zero
and fixing a scale, we can tak about the strictly stable distribution with index «.. From
the definition it followsthat (writing ||a||o = (3, |ai|*)'/)

Xi... X, ~8(,0); a=(ar,...,an);=> >, a;:X; ~|]a||oS(a,0)

3.2 Our Reault

Recall that we wish to compute the sum of the maxi mum va ues seen in the stream. That
is, wewant to find dommax(a) = >, max{a; 1, a2, ...a;n, }. Wewill show how the
max-dominance can be found approximately by using values drawn from stable distri-
butions. This alows usto state our main theorem:



Theorem 2. Itispossibleto computean approximationto ), maxi<j<y,{a; ;} inthe
streaming model that is correct within a factor of (1 + ¢) with probability 1 — § using
space O( % (log(M) + e~ 'lognloglogn)log 3 ) and taking O( log a; j lognlog $)
time per item.

3.3 Idealized Algorithm

Wefirst givean outlinea gorithm, then go on to show how thisalgorithm can be applied
in practice on the stream with small memory and timerequirements. Weimaginethat we
have access to aspecial indicator distribution X . Thishasthe (impossibl€) property that
for any positiveinteger c (that is, ¢ > 0) then E(cX) = 1 and bounded variance. From
thisit is possibleto derive a solution problem of finding the max-dominance of a stream
of values. Wemaintain ascalar z, initialy zero. We creste a set of z; 5, each drawn from
iid distributions X; ., ~ X. For every a; ; in theinput streams we update z as follows:

Qi j
2 2 I Tk

Thismaintainsthe property that theexpectationof z is) |, max;{a; ;}, asrequired. This
is a consequence of the “impossible” property of X ;. that it contributes only 1 to the
expectation of z no matter how many timesit isadded. For example, supposeour stream
consistsof {(i = 1,a11 = 2),(3,3),(3,5)}. Then z isdistributed as Xy ; + X112 +
2X31 + 2X32 + 2X33 + X34 + X3.5. The expected value of z is then the number
of different terms, 7, which is the max dominance that we require (2+5). The required
accuracy can be achieved by in parallel keeping severa different values of = based on
independent drawings of valuesfor x; ;. There are anumber of hurdlesto overcomein
order to turn thisideainto a practical solution.

1. How to choosethedistributions X ;? We shall see how appropriate use of stable
distributionscan achieve a good approximation to these indicator variables.

2. How toreduce space requirements? The abovea gorithm requiresrepeated access
to z; 5, for many values of ¢ and k. We need to be able to provide this access with-
out explicitly storingevery x; ; that isused. We also need to show that the required
accuracy can be achieved by carrying out only a small number of independent rep-
etitionsin paralldl.

3. How to compute efficiently? We require fast per item processing, that is polylog-
arithmic in the size of the stream and the size of the items in the stream. But the
agorithm above requires adding a; ; different valuesto acounter in each step: time
linear in the size of the data item (that is, exponentia in the size of its binary rep-
resentation). We show how to compute the necessary range sums efficiently while
ensuring that the memory usage remains limited.

3.4 Our Algorithm

Wewill use stable distributionswith small stability parameter « in order to approximate
theindicator variable X; ;. Stable distributionscan be used to approximate the number
of non-zero values in a vector [4]. For each index ¢, we can consider avector a(i) de-
fined by the tuples for that index ¢ aong, so that a(i)r = |{j|a:; > k}|. Then the
number of non-zero entriesof a (i) = max; a; ;. Weshall writea for the vector formed
by concatenated all such vectorsfor different i. Thisisan aternate representation of the



stream, a. To approximate the max-dominance, we will maintain a sketch vector z(a)
which summarizes the stream a.

Definition 2. The sketch vector z(a) has a number of entriesm (= O(Z% log 3)). We
make use of anumber of valuesz; 1 ;, each of whichisdrawnindependently fromS(«;, 0),
for « = ¢/ logn. Initially z is set to zero in every dimension.

Invariant. WWe maintain the property for each [ that z; = Zi‘j ZZ;Q Ti kL

Update Procedure. On receiving each pair (i, a; ;) in the stream, we maintain the in-
variant by updating z asfollows: V1 < 1 < m. z; < z; + > 4o i 4

Output. Our approximation of the max-dominance normisin 2(median; |z;|)*

At any point, it is possible to extract from the sketch z(a) a good approximation of
the sum of the maximum values.

Theorem 3. Inthelimit, as « tendsto zero,
(1 — €) dompayx(a) <1In2 (median; |z(a);|)* < (1 + €)? dompyax(a)

Proof. From the defining property of stable distributions (Definition 1), we know by
construction that each entry of z isdrawn from thedistribution||al| . S(«, 0). We know
that we will add any z; 1, ; to z; a most oncefor each tupleinthe stream, so we have an
upper bound U = n on each entry of a. A simple observationisthat for small enough o
and an integer val ued vector then thenorm ||a||% (L. norm raised to the power «, which
isjust Y, a$) approximates the number of non-zero entries in the vector. Formally, if
we set an upper bound U so that Vi.|a;| < U and fix 0 < o < ¢/ log, U then

{ilai # 0} = > 1% < ) |ai|” = lall2

a;#0 a;#0
< Y U < exp(eln2)|{ila; # 0}|
aﬁéO

< (1+¢)l{ila; # 0}

Using this, we choose a tobee/ log, n since each valuei appears a most n timeswithin
the stream, so U = n. This guarantees

dommax(a) < [la|[§ < (1 + €) dommax(a)
Lemmal. If X ~ S(a, ) then

lim,_,o+ median(|cX|%) = |c|* median(| X |*) = ll(;z

Proof: Let E be distributed with the exponentia distribution with mean one. Then
lim, o+ |S(a, 3)|* = E~1[7]. Thedensity of E~tis f(x) = 272 exp(—1/z), 2 > 0
and the cumul ative density is

| o

Fla) = [ e = exp(-1/2)

sointhelimit, median(E~') = F~1(1/2) =1/In2 O
Consequently Vk.|zx|* ~ ||a]|2|X|* and median | ||a||oX|* — ||a||$/In2. We
next make use of a standard sampling result:



Lemma?2. Let X beadistributionwith cumulativedensity function F'(x). If derivative
of theinverse of F'(X) isbounded by a constant around the median then the median of
O(% log ) samples from X iswithina factor of 1 + € of median(X) with probability
1-96

The derivative of the inverse density is indeed bounded at the median in the limit,
since F~!(r) = —1/Inr,and (F~1)'(3) < 5. Hence for alarge enough constant ¢, by
taking avector z withm = %5 log % entries, each based on an independent repetition of
theabove procedure, thenwe can approximatethedesired quantity and so (1—e¢)||a||& <
(In2) mediang |zx|* < (1 + €)||al|& with probability 1 — § by thisLemma.

Thusto find our approximation of the sum of the maximum values, we maintain the
vector z asthedot product of the underlyingvector a with the values drawn from stable
distributions, z; 5 ;. When we take the absolute value of each entry of z and find their
median, the result raised to the power « and scaled by the factor of 1n 2 isthe approxi-
mation of dom,yax(a).

3.5 Space Requirement

For the agorithm to be applicable in the streaming model, we need to ensure that the
space requirementsare minimal, and certainly sublinear in the size of the stream. There-
fore, we cannot explicitly keep al the values we draw from stable distributions, yet we
requirethe valuesto bethe same each timethe same entry isrequested at different points
inthealgorithm. Thisproblem can be solved by using pseudo-random generators: we do
not storeany x; 5 ; explicitly, instead we creste it as a pseudo-random function of k, i,
 and asmall number of stored random bits whenever it is needed. We need a different
set of random bitsin order to generate each of the m instantiationsof the procedure. We
therefore need only consider the space required to store the random bits, and to hold the
vector z. It is known that although there is no closed form for stable distributions for
generad a, it ispossibleto draw values from such distributionsfor arbitrary « by using
atransform from two independent uniform random variables.

Lemma3 (Equation (2.3) of [3]). Let U bea uniformrandomvariableon [0, 1] and ©
uniformon [, Z]. Then

(0, 0) ~ sin a® (cos(loz)@) B

(cos @)1/« —InU

We also make use of two other results on random variables from the literature (see
for example [22]), with which we will prove the space requirements for the a gorithm.

Lemmad. (i)Y ~ S(a,1),Z ~ S(a, 1) = 27 Y(Y — Z) ~ S(a, 0)
(ii) In the limit, the density function f(z) obeys X ~ S(a,1),a — 0" = f(z) =
O(aexp(—z= )z~ H, 2 >0

Lemma5. The space requirement of this algorithmis O (2 (log M + L logn)log 1)
bits.



Proof. For each repetition of the procedure, we require O (logn) random bitsto instan-
tiate the pseudo-random generators, as per [20, 17]. We al so need to consider the space
used to represent each entry of z. We analyze the process at each step of the algorithm: a
vauez isdrawn (pseudo-randomly) from S(«;, 0), and added to an entry in z. The num-
ber of bits needed to represent this quantity islog, |z|. Since the cumulative distribution
of the limit from Lemma 4 (ii) is

Fgi(x) = / aexp(—z~ )z tdr = exp(—2~%)
0

then Fﬁ;ll(r) =(nrHYro<r<i

So |z = O(F4y(r)) = O(27/*(Inr—)~1/«) by Lemma 4 (i). Therefore log, || =
O(2 loglnr). The dependence on « is O(a~), which was set in Theorem 3as o <
¢/ logn. The value of r requires a poly-log number of bits to represent, so represent-
ing x requires O(% log nloglogn) bits. Each entry of z isformed by summing many
such variables. The total number of summations is bounded by Mn. So the total space
to represent each entry of z is

log z, = O(log Mnz) = O(log M + logn + 1logn)

Thetotal space required for all O(Z log 1) entriesof z isO( 2 log 4 lognloglogn) if
we assume M isbounded by a polynomial inn.

3.6 Per Item Processing Time

For each item, we must compute several sums of variables drawn from stable distribu-
tions. Directly doing thiswill take time proportional to a; ;. We could precompute sums
of thenecessary variables, but wewish to avoid explicitly storing any valuesof variables
to ensure that the space requirement remains sublinear. However, the defining property
of stabledistributionsisthat the sum of any number of variablesisdistributed asastable
distribution.

Lemma6. Thesum) ;") x; , canbeapproximated uptoafactor of 1+-€inO( L loga; ;)
steps.

Proof. To giveal + e gpproximation imagine rounding each a; ; to the closest value of
[(1 + €)*], guaranteeing an answer that is no more than (1 + ¢) the true vdue. So we

L[(14€)° '] _ i it
compute sums of the form Zk:L(1+e)SJ+1 x; , ) whichisdistributed as

(LA -+ = [T +e)°)Y*S(a,0)

loga;, ;

The sum can be computed inlog; | . a;,; = .77+

= O(% 10g ai,j) Seps

The main Theorem 2 follows as a consequence of combining Theorem 3 with Lem-
mas 5 and 6 and by appropriate rescaling of 6.

We briefly mention an additional property of this method, which does not follow
for the previous method. It is possible to include deletions of values from the past in
the following sense: if we are presented with a tuple (i, —a, ;), then we interpret this
asareguest to remove the contribution of a; ; fromindex :. Provided that there was an
earlier tuple (¢, a; ;), then we can compute the effect this had on z and remove this by
subtracting the appropriate quantities.



4 Hardness of Other Dominances

We recall the definition of the min-dominance, >, min;{a; ;}. We show that, unlike
the max-dominance norm, it is not possible to compute a useful approximation to this
guantity in the data stream model. Thisis shown by using a reduction from the size of
the intersection of two sets, a problem that is known to be hard to approximate in the
communi cation complexity model. Similarly, finding the accumul ation of any averaging
function (Mean, Median or Mode) of a mixture of signals requires as much storage as
there are different signals. Proofs are omitted for space reasons, see [6] for full details.

— Any algorithm to compute a constant factor approximation to min-dominance of a
stream with constant probability requires {2(n) bits of storage.

— Computing >, (3_; ai,;/n:) on the stream to any constant factor ¢ with constant
probability requires {2(n/c) bits of storage.

— Computing ), median;{a; ;} and_, mode;{a; ;} toany constant factor with con-
stant probability requires £2(n) bits of memory.

— Approximatingtherelativesumdominance > a;/ max{1, b; } toany constant c with
constant probability requires £2(n/c) bits of storage.

5 Conclusion

Datastreams often consist of multiplesignals. Weinitiated the study of estimating dom-
inance norms over multiple signals. We presented algorithms for estimating the max-
dominance of the multiple signals that uses small (poly-logarithmic) space and takes
small time per operation. These are thefirst known algorithm for any dominance norm
inthe data stream model. In contrast, we showed that related quantities such asthe min-
dominance cannot be so approximated.

We have aready discussed some of the applications of max-dominance, and we ex-
pect it to find many other uses, as such, and variations thereof. The question of finding
useful indicators for actionable events based on multiple data streams is an important
one, and it isof interest to determine other measures which can be computed efficiently
to give meaningful indicators. The analysis that we give to demonstrate the behavior of
stable distributionswith small index parameter «, and our procedure for summing large
ranges of such variablesvery quickly may spur the discovery of further applications of
these remarkabl e distributions.

Acknowledgments Wethank Mayur Datar and Piotr Indyk for some hel pful discussions.
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