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Abstract. We present a new sketch for summarizing network data. The sketch has the follow-

ing properties which make it useful in communication-efficient aggregation in distributed streaming

scenarios, such as sensor networks: the sketch is duplicate-insensitive, i.e. re-insertions of the same

data will not affect the sketch, and hence the estimates of aggregates. Unlike previous duplicate-

insensitive sketches for sensor data aggregation [32, 15], it is also time-decaying, so that the weight

of a data item in the sketch can decrease with time according to a user-specified decay function. The

sketch can give provably approximate guarantees for various aggregates of data, including the sum,

median, quantiles, and frequent elements. The size of the sketch and the time taken to update it

are both polylogarithmic in the size of the relevant data. Further, multiple sketches computed over

distributed data can be combined without loss of accuracy. To our knowledge, this is the first sketch

that combines all the above properties.
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1. Introduction. The growing size and scope of sensor networks has led to

greater demand for energy-efficient communication of sensor data. Although sensors

are increasing in computing ability, they remain constrained by the cost of commu-

nication, since this is the primary drain on their limited battery power. It is widely

agreed that the working life of a sensor network can be extended by algorithms which

limit communication [29]. In particular, this means that although sensors may ob-

serve large quantities of information over time, they should preferably return only

small summaries of their observations. Ideally, we should be able to use a single com-

pact summary that is flexible enough to provide estimates for a variety of aggregates,

rather than using different summaries for estimating different aggregates.

The sensor network setting leads to several other desiderata. Because of the radio

network topology, it is common to take advantage of the ‘local broadcast’ behavior,

where a single transmission can be received by all the neighboring nodes. Here, in

communicating back to the base station, each sensor opportunistically listens for in-

formation from other sensors, merges received information together with its own data

to make a single summary, and announces the result. This multi-path routing has
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many desirable properties: appropriate merging ensures each sensor sends the same

amount, a single summary, and the impacts of loss are much reduced, since informa-

tion is duplicated many times (without any additional communication cost) [32, 15].

However, this duplication of data requires that the quality of our summaries remains

guaranteed, no matter whether a particular observation is contained within a single

summary, or is captured by many different summaries. In the best case the sum-

mary is duplicate-insensitive and asynchronous, meaning that the resulting summary

is identical, irrespective of how many times, or in what order, the data is seen and

the summaries are merged.

Lastly, we observe that in any evolving setting, recent data is more reliable than

older data. We should therefore weight newer observations more heavily than older

ones. This can be formalized in a variety of ways: we may only consider observations

that fall within a sliding window of recent time (say, the last hour), and ignore (assign

zero weight to) any that are older; or, more generally, use an arbitrary function

that assigns a weight to each observation as a function of its initial weight and its

age [18, 14]. A data summary should allow such decay functions to be applied, and

give us guarantees relative to the exact answer.

Putting all these considerations together leads to quite an extensive requirements

list. We seek a compact, general purpose summary, which can apply arbitrary time

decay functions, while remaining duplicate insensitive and handle asynchronous ar-

rivals. Further, it should be easy to update with new observations, merge together

multiple summaries, and query the summary to give guaranteed quality answers to a

variety of analysis. Prior work has considered various summaries which satisfy certain

subsets of these requirements, but no single summary has been able to satisfy all of

them. Here, we show that it is possible to fulfill all the above requirements by a

single sketch which is based on a hash-based sampling procedure that allows a variety

of aggregates to be computed efficiently under a general class of decay functions in

a duplicate insensitive fashion over asynchronous arrivals. In the next section, we

describe more precisely the setting and requirements for our data structures.

1.1. Problem Formulation. Consider a data stream of observations seen by

a single sensor R = 〈e1, e2, . . . , en〉. Each observation ei, 1 ≤ i ≤ n is a tuple

(vi, wi, ti, idi), where the entries are defined as follows:

• vi is a positive integer value, perhaps a temperature observation by the sensor.

• wi is a weight associated with the observation, perhaps a number reflecting

the confidence in it.

• ti is the integer timestamp, tagged at the time ei was created.

• idi is a unique observation id for ei.

This abstraction captures a wide variety of cases that can be encoded in this form.

It is deliberately general; users can choose to assign values to these fields to suit their

needs. For example, if the desired aggregate is the median temperature reading across

all (distinct) observations, this can be achieved by setting all weights to wi = 1 and
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the values vi to be actual temperatures observed. The unique observation id idi

can be formed as the concatenation of the unique sensor id and time of observation

(assuming there is only one reading per instant). We shall give other examples in the

next section.

It is possible that the same observation appears multiple times in the stream,

with the same id, value and timestamp preserved across multiple appearances — such

repeated occurrences must not be considered while evaluating aggregates over the

stream. Note that our model allows different elements of the stream to have different

ids, but the same values and/or timestamps — in such a case, they will be considered

separately in computing the aggregates.

We consider asynchronous streams, where the elements do not necessarily arrive

in order of timestamps. Handling asynchrony is especially important because of multi-

path routing, as well as the need to handle the union of sketches. Note that ei+1 is

received after ei, and en is the most recently received item. In the asynchronous case,

it is possible that i > j, so that ei is received later than ej , but ti < tj. Most prior

research on summarizing data streams containing timestamps (with the exception

of [35, 10]) has focused on the case of synchronous streams, where the elements of the

stream are assumed to arrive in the order of timestamps. There is a growing body of

work (for example, [7]) that recognizes that the assumption of synchronous streams

may not always be practical and that there is a need to study more complex temporal

models, such as asynchronous arrivals.

Decay Functions. The age of an element is defined as the elapsed time since the

element was created. Thus, the age of element (v, w, t, id) at time c is c− t. A decay

function takes the initial weight and the age of an element and returns its decayed

weight.

Definition 1.1. A decay function f(w, x) takes two parameters, the weight

w ≥ 0, and an integral age x ≥ 0, and should satisfy the following conditions. (1)

f(w, x) ≥ 0 for all w, x; (2) if w1 > w2, then f(w1, x) ≥ f(w2, x); (3) if x1 > x2,

then f(w, x1) ≤ f(w, x2).

The decayed weight of an element (v, w, t, id) at time c ≥ t is f(w, c − t). An

example decay function is the sliding window model [18, 22, 35], where f(w, x) is

defined as follows. For some window size W , if x ≤ W , then f(w, x) = w; otherwise,

f(w, x) = 0. Other popular decay functions include exponential decay f(w, x) =

w · exp(−ax) and polynomial decay, f(w, x) = w · (x+ 1)
−a

, where a is a constant.

Definition 1.2. A decay function f(w, x) is an integral decay function if f(w, x)

is always an integer.

For example, sliding window decay is trivially such a function. Another integral

decay function is: f(w, x) =
⌊

w
2x

⌋

. The class of decomposable decay functions is

defined as follows.

Definition 1.3. A decay function f(w, x) is a decomposable decay function if it

can be written in the form f(w, x) = w · g(x) for some function g().
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Note that the conditions on a decay function f(w, x) naturally impose the follow-

ing conditions on g(): (1) g(x) ≥ 0 for all x; (2) if x1 < x2, then g(x1) ≥ g(x2). To

our knowledge, all previous work on computing time decayed aggregates on streams,

including [14, 6, 18, 23, 19, 4, 35, 10, 28, 36] considered decomposable decay functions.

For example, exponential decay, sliding window decay, and polynomial decay are all

decomposable.

1.2. Aggregates. Let f(·, ·) denote a decay function, and c denote the time at

which a query is posed. Let the set of distinct observations in R be denoted by D.

We now describe the aggregate functions considered:

Decayed Sum. At time c the decayed sum is defined as

V =
∑

(v,w,t,id)∈D

f(w, c− t)

i.e. the sum of the decayed weights of all distinct elements in the stream. For example,

suppose every sensor published one temperature reading every minute or two, and

we are interested in estimating the mean temperature over all readings published

in the last 90 minutes. This can be estimated as the ratio of the sum of observed

temperatures in the last 90 minutes, to the number of observations in the last 90

minutes. For estimating the sum of temperatures, we consider a data stream where

the weight wi is equal to the observed temperature, and the sum is estimated using a

sliding window decay function of 90 minutes duration. For the number of observations,

we consider a data stream where for each temperature observation, there is an element

where the weight equals to 1, and the decayed sum is estimated over a sliding window

of 90 minutes duration.

Decayed φ-Quantile. Informally, the decayed φ-quantile at time c is a value ν

such that the total decayed weight of all elements in D whose value is less than or

equal to ν is a φ fraction of the total decayed weight. For example, in the setting

where sensors publish temperatures, each observation may have a “confidence level”

associated with it, which is assigned by the sensor. The user may be interested in the

weighted median of the temperature observations, where the weight is initially the

“confidence level” and decays with time. This can be achieved by setting the value v

equal to the observed temperature, the initial weight w equal to the confidence level,

φ = 0.5, and using an appropriate time decay function.

Since computation of exact quantiles (even in the unweighted case) in one pass

provably takes space linear in the size of the set [30], we consider approximate quan-

tiles. Our definition below is suited for the case when the values are integers, and

where there could be multiple elements with the same value in D. Let the relative

rank of a value u in D at time c be defined as
(

∑

{(v,w,t,id)∈D:v≤u} f(w, c− t)
)

/
(

∑

(v,w,t,id)∈D f(w, c− t)
)

. For a user defined 0 <

ǫ < φ, the ǫ-approximate decayed φ-quantile is a value ν such that the relative rank

of ν is at least φ− ǫ and the relative rank of ν − 1 is less than φ+ ǫ.
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Decayed Frequent Items. Let the (weighted) relative frequency of occurrence of

value u at time c be defined as

ψ(u) =

∑

{(v,w,t,id)∈D:v=u} f(w, c− t)
∑

(v,w,t,id)∈D f(w, c− t)

The frequent items are those values ν such that ψ(ν) > φ for some threshold φ, say

φ = 2%. The exact version of the frequent elements problems requires the frequency of

all items to be tracked precisely, which is provably expensive to do in small space [4].

Thus we consider the ǫ-approximate frequent elements problem, which requires us to

return all values ν such that ψ(ν) > φ and no value ν′ such that ψ(ν′) < φ− ǫ.

Decayed Selectivity Estimation. A selectivity estimation query is, given a predicate

P (v, w) which returns 0 or 1 as a function of v and w, to evaluate Q defined as:

Q =

∑

(v,w,t,id)∈D P (v, w)f(w, c − t)
∑

(v,w,t,id)∈D f(w, c− t)

Informally, the selectivity of a predicate P (v, w) is the ratio of the total (decayed)

weight of all stream elements that satisfy predicate P to the total decayed weight of

all elements. Note that 0 ≤ Q ≤ 1. The ǫ-approximate selectivity estimation problem

is to return a value Q̂ such that |Q̂−Q| ≤ ǫ.

An exact computation of the duplicate insensitive decayed sum over a general

integral decay function is impossible in small space, even in a non-distributed setting.

If we can exactly compute a duplicate sensitive sum, we can insert an element e, and

test whether the sum changes. The answer determines whether e has been observed

already. Since this would make it possible to reconstruct all the (distinct) elements

observed in the stream so far, such a sketch needs space linear in the size of the

input, in the worst case. This linear space lower bound holds even for a sketch

which can give exact answers with a δ error probability for δ < 1/2 [3], and for a

sketch that can give a deterministic approximation [3, 27]; such lower bounds for

deterministic approximations also hold for quantiles and frequent elements in the

duplicate insensitive model. Thus we look for randomized approximations of all these

aggregates; as a result, all of our guarantees are of the form “With probability at least

1− δ, the estimate is an ǫ-approximation to the desired aggregate”.

1.3. Contribution. The main contribution of this paper is a general purpose

sketch that can estimate all the above aggregates in a general model of sensor data

aggregation—with duplicates, asynchronous arrivals, broad class of decay functions,

and distributed computation. The sketch can accommodate any integral decay func-

tion, or any decomposable decay function. As already noted, to our knowledge, the

class of decomposable decay functions includes all the decay functions that have been

considered in the data stream literature so far. The space complexity of the sketch

is logarithmic in the size of the input data, logarithmic in 1/δ where δ is the er-

ror probability, and quadratic in 1/ǫ, where ǫ is the relative error. There are lower
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bounds [24] showing that the quadratic dependence on 1/ǫ is necessary for duplicate

insensitive computations on data streams, thus implying that our upper bounds are

close to optimal.

Beyond the preliminary version of this paper [17], we have the following new

contributions.

1. Our algorithm for an integral decay function is based on random sampling, and

this paper proposes a novel technique that can quickly determine the time till which

an item must be retained within a sample (this is called as the “expiry time” of the

item). This technique may be of independent interest. Given a range of integers, it

can quickly return the smallest integer of the range selected by a pairwise independent

random sampling (or detect that such an integer does not exist).

2. In an extensive experimental evaluation, we observed that the space required by

the sketch in practice can be an order of magnitude smaller than the theoretical

predictions, while still meeting the accuracy demands. Further, they confirm that the

sketch can be updated quickly in an online fashion, allowing for high throughput data

aggregation.

Outline of the Paper. After describing related work in Section 2, we consider the

construction of a sketch for the case of integral decay in Section 3. Although such

functions initially seem limiting, they turn out to be the key to solving the class of

decomposable decay functions efficiently. In Section 4, we show a reduction from an

arbitrary decomposable decay function to a combination of multiple sliding window

queries, and demonstrate how this reduction can be performed efficiently; combining

these pieces shows that arbitrary decomposable decay functions can be applied to

asynchronous data streams to compute aggregates such as decayed sums, quantiles,

frequent elements (or “heavy hitters”), and other related aggregates. A single data

structure suffices, and it turns out that even the decay function does not have to be

fixed, but can be chosen at evaluation time. In Section 5, we present the results of

our experiments. We make some concluding observations in Section 6.

2. Related Work. There is a large body of work on data aggregation algorithms

in the areas of data stream processing [31] and sensor networks [25, 2, 12]. In this

section, we survey algorithms that achieve some of our goals: duplicate insensitivity,

time-decaying computations, and asynchronous arrivals in a distributed context —

we know of no prior work which achieves all of these simultaneously.

The Flajolet-Martin (FM) sketch [20] is a simple technique to approximately count

the number of distinct items observed, and hence is duplicate insensitive. Building

on this, Nath, Gibbons, Seshan and Anderson [32] proposed a set of rules to verify

whether the sketch is duplicate-insensitive, and gave examples of such sketches. They

showed two techniques that obey these rules: FM sketches to compute the COUNT

of distinct observations in the sensor network, and a variation of min-wise hashing [9]

to draw a uniform, unweighted sample of observed items. Also leveraging the FM
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sketch [20], Considine, Li, Kollios and Byers [15] proposed a technique to accelerate

multiple updates, and hence yield a duplicate insensitive sketch for the COUNT and

SUM aggregates. However, these sketches do not provide a way for the weight of data

to decay with time. Once an element is inserted into the sketch, it will stay there

forever, with the same weight as when it was inserted into the sketch; it is not possible

to use these sketches to compute aggregates on recent observations. Further, their

sketches are based on the assumption of hash functions returning values that are

completely independent, while our algorithms work with the pairwise independent

hash functions. The results of Cormode and Muthukrishnan [16] show duplicate

insensitive computations of quantiles, heavy hitters, and frequency moments. They

do not consider the time dimension either.

Datar, Gionis, Indyk and Motwani [18] considered how to approximate the count

over a sliding window of elements in a data stream under a synchronous arrival model.

They presented an algorithm based on a novel data structure called exponential his-

togram for basic counting, and also presented reductions from other aggregates, such

as sum and ℓp norms, to use this data structure. Gibbons and Tirthapura [22] gave

an algorithm for basic counting based on a data structure called wave with improved

worst-case performance. Subsequently, Braverman and Ostrowsky [8] defined Smooth

Histograms, a generalization of exponential histograms that take further advantage

of the aggregation function (such as SUM and norm computations) to reduce the

space required. These algorithms rely explicitly on synchronous arrivals: they par-

tition the input into buckets of precise sizes (typically, powers of two). So it is not

clear how to extend to asynchronous arrivals, which would fall into an already “full”

bucket. Arasu and Manku [4] presented algorithms to approximate frequency counts

and quantiles over a sliding window. The space bounds for frequency counts were re-

cently improved by Lee and Ting [28]. Babcock, Datar, Motwani and O’Callaghan [6]

presented algorithms for maintaining the variance and k-medians of elements within

a sliding window. All of these algorithms rely critically on structural properties of the

aggregate being approximated, and use similar “bucketing” approaches to the above

methods for counts, meaning that asynchronous arrivals cannot be accommodated.

In all these works, the question of duplicate-insensitivity is not considered except in

Datar, Gionis, Indyk and Motwani [18], Section 7.5, where an approach to count the

distinct values in a sliding window is briefly described.

Cohen and Strauss [14] formalized the problem of maintaining time-decaying ag-

gregates, and gave strong motivating examples where functions other than sliding

windows and exponential decay are needed. They demonstrated that any general

time-decay function based SUM can be reduced to the sliding window decay based

SUM. In this paper, we extend this reduction and show how our data structure sup-

ports it efficiently; we also extend the reduction to general aggregates such as fre-

quency counts and quantiles, while guaranteeing duplicate-insensitivity and handling

asynchronous arrivals. This arises since we study duplicate-insensitive computa-
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tions (not a consideration in [14]): performing an approximate duplicate-insensitive

count (even without time decay) requires randomization in order to achieve sublinear

space [3]. Subsequently, Kopelowitz and Porat [26] showed that the worst-case space

of this approach for decayed SUM can be improved by more carefully handling the

number of bits used to record timestamps, bucket indices, and so on, reducing the

costs by logarithmic factors. They also provided lower bounds for approximations

with additive error but did not consider duplicate-insensitive computation. Cohen

and Kaplan [13] considered spatially-decaying aggregation over network data, based

on tracking lists of identies of other nodes in the network chosen via hash functions.

Our results can be viewed as an algorithm for maintaining a sample from the

stream, where the probability of an item being present in the sample is proportional to

the current decayed weight of that item. Prior work for sampling with weighted decay

includes Babcock, Datar and Motwani [5] who gave simple algorithms for drawing a

uniform sample from a sliding window. To draw a sample of expected size s they keep

a data structure of size O(s log n), where n is the number of items which fall in the

window. Recently, Aggarwal [1] proposed an algorithm to maintain a set of sampled

elements so that the probability of the rth most recent element being included in the

set is (approximately) proportional to exp(−ar) for a chosen parameter a. An open

problem from [1] is to be able to draw samples with an arbitrary decay function, in

particular, ones where the timestamps can be arbitrary, rather than implicit from the

order of arrival. We partially resolve this question, by showing a scheme for the case

of integral decay functions.

Gibbons and Tirthapura [21] introduced a model of distributed computation over

data streams. Each of many distributed parties only observes a local stream and

maintains a space-efficient sketch locally. The sketches can be merged by a central

site to estimate an aggregate over the union of the streams: in [21], they considered the

estimation of the size of the union of distributed streams, or equivalently, the number

of distinct elements in the streams. This algorithm was generalized by Pavan and

Tirthapura [33] to compute the duplicate-insensitive sum as well as other aggregates

such as max-dominance norm. Xu, Tirthapura, and Busch [35] proposed the concept

of asynchronous streams and gave a randomized algorithm to approximate the sum

and median over a sliding window. Here, we extend this line of work to handle both

general decay and duplicate arrivals.

3. Aggregates over an Integral Decay Function. In this section, we present

a sketch for duplicate insensitive time-decayed aggregation over an integral decay

function f(). We first describe the intuition behind our sketch.

3.1. High-level description. Recall that R denotes the observed stream and

D denotes the set of distinct elements in R. Though our sketch can provide estimates

of multiple aggregates, for the intuition, we suppose that the task was to answer a
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query for the decayed sum of elements in D at time κ, i.e.

V =
∑

(v,w,t,id)∈D

f(w, κ− t)

Let wmax denote the maximum possible decayed weight of any element, i.e. wmax =

f(w̄, 0) where w̄ denotes the maximum possible weight of a stream element. Let idmax

denote the maximum value of id. Consider the following hypothetical process, which

happens at query time κ. This process description is for intuition and the correctness

proof only, and is not executed by the algorithm as such. For each distinct stream

element e = (v, w, t, id), a range of integers is defined as

rκ
e = [wmax · id, wmax · id+ f(w, κ− t)− 1]

Note that the size of this range, rκ
e , is exactly f(w, κ − t). Further, if the same

element e appears again in the stream, an identical range is defined, and for elements

with distinct values of id, the defined ranges are disjoint. Thus we have the following

observation.

Observation 3.1.

∑

e=(v,w,t,id)∈D

f(w, κ− t) =

∣

∣

∣

∣

∣

⋃

e∈R

rκ
e

∣

∣

∣

∣

∣

The integers in rκ
e are placed in random samples T0, T1, . . . , TM as follows. M is

of the order of log(wmax · idmax), and will be precisely defined in Section 3.4. Each

integer in rκ
e is placed in sample T0. For i = 0 . . .M −1, each integer in Ti is placed in

Ti+1 with probability approximately 1/2 (the probability is not exactly 1/2 due to the

nature of the sampling functions, which will be made precise later). The probability

that an integer is placed in Ti is pi ≈ 1/2i. Then the decayed sum V can be estimated

using Ti as the number of integers selected into Ti, multiplied by 1/pi. It is easy to

show that the expected value of an estimate using Ti is V for every i, and by choosing

a “small enough” i, we can get an estimate for V that is close to its expectation with

high probability.

We now discuss how our algorithm simulates the behavior of the above process

under space constraints and under online arrival of stream elements. Over counting

due to duplicates is avoided through sampling based on a hash function h, which will

be precisely defined later. If an element e appears again in the stream, then the same

set of integers rκ
e is defined (as described above), and the hash function h leads to

exactly the same decision as before about whether or not to place each integer in Ti.

Thus, if an element appears multiple times it is either selected into the sample every

time (in which case duplicates are detected and discarded) or it is never selected into

the sample.
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Another issue is that for an element e = (v, w, t, id), the length of the defined

range rκ
e is f(w, κ − t), which can be very large. Separately sampling each of the

integers in rκ
e would require evaluating the hash function f(w, κ − t) times for each

sample, which can be very expensive time-wise, and exponential in the size of the

input. Similarly, storing all the selected integers in rκ
e could be expensive, space-wise.

Thus, we store all the sampled integers in rκ
e together (implicitly) by simply storing

the element e in Ti, as long as there is at least one integer in rκ
e sampled into Ti.

However, the query time κ, and hence the weight of an observation, f(w, κ − t), are

unknown at the time the element arrives in the stream, which means the range rκ
e is

unknown when e is processed. To overcome this problem, we note that the weight at

time κ, f(w, κ − t), is a non-increasing function of κ, and hence rκ
e is a range that

shrinks as κ increases. We define the “expiry time” of element e at level i, denoted

by expiry(e, i), as the smallest value of κ such that rκ
e has no sampled elements in Ti.

We store e in Ti as long as the current time is less than expiry(e, i). For any queries

issued at time κ ≥ expiry(e, i), there will be no contribution from e to the estimate

using level i, and hence e does not have to be stored in Ti. In Section 3.3, we present

a fast algorithm to compute expiry(e, i).

Next, for smaller values of i, Ti may be too large (e.g. T0 is the whole input seen

so far), and hence take too much space. Here the algorithm stores only the subset Si

of at most τ elements of Ti with the largest expiry times, and discards the rest (τ is

a parameter that depends on the desired accuracy). Note that the τ largest elements

of any stream of derived values can be easily maintained incrementally in one pass

through the stream with O(τ) space. Let the samples actually maintained by the

algorithm be denoted S0, S1, . . . , SM .

Upon receiving a query for V at time κ, we can choose the smallest i such that

Si = Ti, and use Si to estimate V . In particular, for each element e in Ti, the

time-efficient Range-Sampling technique, introduced in [33], can be used to return the

number of selected integers in the range rκ
e quickly in time O(log |rκ

e |).

We show an example of computing the time decayed sum in Figure 3.1. Since the

“value” field v is not used, we simplify the element as (w, t, id). The input stream

e1, e2, . . . , e8 is shown at the top of the figure. We assume that the decayed weight of

an element (wi, ti, idi) at time t is ωt
i = f(wi, t− ti) = ⌊ wi

t−ti
⌋. The figure only shows

the expiry times of elements at level 0. Suppose the current time c = 15. The current

state of the sketch is shown in the figure. At the current time, e1 and e3 have expired

at level 0, which implies they also have expired at all other levels. e7 and e8 do not

appear in the sketch, because they are duplicates of e4 and e5 respectively. Among

the remaining elements e2, e4, e5, e6, only the τ = 3 elements with the largest expiry

times are retained in S0; thus e4 is discarded from S0. From the set {e2, e4, e5, e6}, a

subset {e4, e5, e6} is (randomly) selected into S1 based on the hash values of integers

in r15ei
(this implies expiry(e4, 1) > 15, expiry(e5, 1) > 15, expiry(e6, 1) > 15 and

expiry(e2, 1) ≤ 15), and since there is enough room, all these are stored in S1. Only
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Fig. 3.1. An example stream with 8 elements arriving in the order e1, e2, . . . , e8, and its sketch

{S0, S1, S2, S3} for the decayed sum. The current time is 15. The decayed weight of ei at time t is

denoted by ωt

i
. The expiry time of ei at level j is denoted by expiry(ei, j). The element e4 in the

dashed box indicates that it was discarded from S0 due to an overflow caused by more than τ = 3

elements being selected into T0.

e5 is selected into S2 and no element is selected into level 3.

When a query is posed for the sum at time 15, the algorithm finds the smallest

number ℓ such that the sample Sℓ has not discarded any element whose expiry time

is greater than 15. For example, in Figure 3.1, ℓ = 1. Note that at this level, Sℓ = Tℓ,

and so Sℓ can be used to answer the query for V . The intuition of choosing such

a smallest ℓ is that the expected sample size at level ℓ is the largest among all the

samples that can be used to answer the query, and the larger the sample size is, the

more accurate the estimate will be. Further, it can be shown with high probability, the

estimate for V using Sℓ has error that is a function of τ ; by choosing τ appropriately,

we can ensure that the error is small.

3.2. Formal Description. We now describe how to maintain the different sam-

ples S0, S1, . . . , SM . Let h be a pairwise independent hash function chosen from a

2-universal family of hash functions as follows (following Carter and Wegman [11]).

Let Υ = wmax(idmax + 1). The domain of h is [1 . . .Υ]. Choose a prime number

p such that 10Υ < p < 20Υ, and two numbers a and b uniformly at random from

{0, . . . , p− 1}. The hash function h : {1, . . . ,Υ} → {0, . . . , p− 1} is defined as

h(x) = (a · x+ b) mod p. We define the expiry time of an element e = (v, w, t, id) at

sample level i as follows.

Let Ai
e =

{

t̄ ≥ t : |rt̄
e| > 0 and for all x ∈ rt̄

e, h(x) > ⌊2
−ip− 1⌋

}

. Set Ai
e is the

set of clock times at which range rt̄
e is not empty (meaning f(w, t̄ − t) > 0), but has

no integers selected by the hash function h at level i. Note that when t̄ becomes

larger, range rt̄
e shrinks and eventually becomes empty, so the size of Ai

e is finite and

can be 0.

Let Be =
{

t̄ ≥ t : |rt̄
e| = 0

}

. Set Be is the set of clock times at which range rt̄
e

is empty (meaning f(w, t̄ − t) = 0). We assume that for every decay function f we
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Algorithm 1: Initialization(M)

Randomly choose a hash function h as described in Section 3.2 ;1

for 0 ≤ i ≤M do Si ← ∅; ti ← −1 ;2

// ti is maximum expiry time of all the elements discarded so far

at level i

Algorithm 2: ProcessItem(e = (v, w, t, id))

for 0 ≤ i ≤M do1

if (e ∈ Si) then return ; // e is a duplicate.2

if (expiry(e, i) > max{c, ti}) then3

Si ← Si ∪ {e};4

if |Si| > τ then // overflow5

ti ← mine∈Si
expiry(e, i) ;6

Si ← Si\{e : expiry(e, i) = ti};7

consider, there is some finite time tmax such that f(w, tmax) = 0 for every possible

weight w, so B must be non-empty.

It is obvious that if Ai
e 6= ∅, then min(Ai

e) < min(Be) must be true, because

f(w, t̄ − t) > 0 for any t̄ ∈ Ai
e, but f(w, t̄ − t) = 0 for any t̄ ∈ Be, so all the clock

times in set A must be smaller than all the clock times in set B.

Definition 3.1. For stream element e = (v, w, t, id), and level 0 ≤ i ≤M :

expiry(e, i) =

{

min(Ai
e) if Ai

e 6= ∅

min(Be) otherwise

Intuitively, expiry(e, i) is the earliest clock time t̄, at which either the correspond-

ing non-empty integral range rt̄
e has no integers selected by hash function h at level i

or the decayed weight of e becomes 0.

The sketch S for an integral decay function is the set of pairs (Si, ti), for i =

0 . . .M , where Si is the sample, and ti is the largest expiry time of any element

discarded from Si so far. The formal description of the general sketch algorithm over

an integral decay function is shown in Algorithms 1 and 2.

Lemma 3.2. The sample Si is order insensitive; it is unaffected by permuting the

order of arrival of the stream elements. The sample is also duplicate insensitive; if

the same element e is observed multiple times, the resulting sample is the same as if

it had been observed only once.

Proof. Order insensitivity is easy to see since Si is the set of τ elements in Ti with

the largest expiry times, and this is independent of the order in which elements arrive.

To prove duplicate insensitivity, we observe that if the same element e = (v, w, t, id)
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Algorithm 3: MergeSketches(S, S′)

for 0 ≤ i ≤M do1

Si ← Si ∪ S′
i ;2

ti ← max{ti, t′i};3

while |Si| > τ do4

ti ← mine∈Si
expiry(e, i) ;5

Si ← Si\{e : expiry(e, i) = ti} ;6

is observed twice, the function expiry(e, i) yields the same outcome, and hence Ti is

unchanged, from which Si is correctly derived.

Lemma 3.3. Suppose two samples Si and S′
i were constructed using the same

hash function h on two different streams R and R′ respectively. Then Si and S′
i can

be merged to give a sample of R ∪R′.

Proof. To merge samples Si and S′
i from two (potentially overlapping) streams

R and R′, we observe that the required ith level sample of R ∪ R′ is a subset of the

τ elements with the largest expiry times in Ti ∪ T ′
i, after discarding duplicates. This

can easily be computed from Si and S′
i. The formal algorithm is given in Algorithm 3.

Since it is easy to merge together the sketches from distributed observers, for

simplicity the subsequent discussion is framed from the perspective of a single stream.

We note that the sketch resulting from merging S and S′ gives the same correctness

and accuracy with respect to R ∪ R′ as did S and S′ with respect to R and R′

respectively.

Theorem 3.4 (Space and Time Complexity). The space complexity of the sketch

for integral decay is O(Mτ) units, where each unit is an input observation (v, w, t, id).

The expected time for each update is O(logw(log τ + logw + log tmax)). Merging two

sketches takes time O(Mτ).

Proof. The space complexity follows from the fact that the sketch consists of

M + 1 samples, and each sample contains at most τ stream elements. For the time

complexity, the sample Si can be stored in a priority queue ordered by expiry times.

To insert a new element e into Si, it is necessary to compute the expiry time of e as

expiry(e, i) once. This takes time O(logw+log tmax) (Section 3.3). Note that for each

element e, we can compute its expiry time at level i exactly once and store the result

for later use. An insertion into Si may cause an overflow, which will necessitate the

discarding of elements with the smallest expiry times. In the worst case, all elements

in Si may have the same expiry time, and may need to be discarded, leading to a cost

of O(τ + logw+ log tmax) for Si, and a worst case time of O(M(τ + logw+ log tmax))

in total. But the amortized cost of an insertion is much smaller and is O(logw(log τ+

logw+ log tmax)), since the total number of elements discarded due to overflow is no
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more than the total number of insertions, and the cost of discarding an element due

to overflow can be charged to the cost of a corresponding insertion. The expected

number of levels into which the element e = (v, w, t, id) is inserted is not M , but only

O(logw), since the expected value of |{h(x) ≤ ⌊2−ip⌋ : x ∈ rc
e}| = pi|rc

e| ≈ w/2i.

Thus the expected amortized time of insertion is O(logw(log τ + logw + log tmax)).

Two sketches can be merged in time O(Mτ) since two priority queues (imple-

mented as max-heaps) of O(τ) elements each can be merged and the smallest elements

discarded in O(τ) time.

3.3. Computation of Expiry Time. We now present an algorithm which,

given an element e = (v, w, t, id) and level i, 0 ≤ i ≤M , computes expiry(e, i). Recall

that expiry(e, i) is defined as the smallest integer κ ≥ t such that either f(w, κ−t) = 0

(meaning |rκ
e | = 0) or |{x ∈ rκ

e : |rκ
e | > 0, h(x) ≤ ⌊2−ip⌋}| = 0. Let si

e = min{x ∈ rt
e :

h(x) ∈ {0, 1, . . . , ⌊2−ip⌋ − 1}}. Note that si
e may not exist. We define ∆i

e as follows.

If si
e exists, then ∆i

e = si
e −wmax · id ≥ 0; else, ∆i

e = −1. In the following lemma, we

show that given ∆i
e, it is easy to compute expiry(e, i).

Lemma 3.5. If ∆i
e ≥ 0, then expiry(e, i) = t + t′, where t′ = min{t̄ : f(w, t̄) ≤

∆i
e}. Further, given ∆i

e, the expiry time can be computed in time O(log tmax). If

∆i
e = −1, then expiry(e, i) = t.

Proof. If ∆i
e ≥ 0, meaning si

e exists, since f(w, x) is a non-increasing function of

x, when x becomes large enough (≤ tmax) we can have wmax · id+ f(w, x) − 1 < si
e,

i.e., f(w, x) ≤ ∆i
e, which further means the range of rt+x

e does not include si
e. Since

si
e is the smallest selected integer in rt

e at level i, and rt+x
e is the smaller portion of

rt
e and does not include si

e, so rt+x
e does not have any selected integer at level i. In

other words, e has expired at time t+ x as long as f(w, x) ≤ ∆i
e. By the definition of

the expiry time, we have expiry(e, i) = t+ min{x : f(w, x) ≤ ∆i
e} = t+ t′.

If ∆i
e = −1, meaning si

e does not exist, then there is no integer in rt
e to be selected

at level i. e expires since it was generated at time t, i.e., expiry(e, i) = t.

If ∆i
e ≥ 0, we can perform a binary search on the range of [t, t+ tmax] to find t′,

using O(log tmax) time. If ∆i
e = −1, simply set expiry(e, i) = t.

The pseudocode for ExpiryTime(), which computes expiry(e, i), is formally pre-

sented in Algorithm 4.

We can now focus on the efficient computation of ∆i
e. One possible solution,

presented in a preliminary version of this paper [17], is a binary search over the range

rt
e to find ∆i

e. This approach takes O(logw log tmax) time since in each step of the

binary search, a RangeSample [33] operation is invoked, which takes O(logw) time,

and there are O(log tmax) such steps in the binary search.

We now present a faster algorithm for computing ∆i
e, called MinHit() which is

described formally in Algorithm 5. Given hash function h and sample level i, in

O(logw) time, MinHit() returns ∆i
e.

Let Zp denote the ring of non-negative integers modulo p. Let l = wmax · id

and r = wmax · id + f(w, 0) − 1, the left and right end points of rt
e. The sequence
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Algorithm 4: ExpiryTime(e, i)

Input: e = (v, w, t, id), i, 0 ≤ i ≤M

Output: expiry(e, i)

∆i
e ← MinHit

(

p, a, h(wmax · id), w · f(0)− 1, ⌊2−ip⌋ − 1
)

; /* h(x) = (ax+ b)1

mod p */

if ∆i
e ≥ 0 then /* si

e exists */2

l← 0; r← tmax ;3

for
(

t′ ← ⌊ l+r
2 ⌋; t

′ 6= l; t′ ← ⌊ l+r
2 ⌋

)

do /* Binary Search for t′ */4

if (f(w, t′) > ∆i
e) then l← t′else r ← t′5

return t+ t′;6

else return t ; /* si
e does not exist */7

h(l), h(l+ 1), . . . , h(r) is an arithmetic progression over Zp with a common difference

a. The task of finding ∆i
e reduces to the following problem by setting u = h(l) and

n = f(w, 0)− 1, L = ⌊p2−i⌋ − 1.

Problem 1. Given integers p > 0, 0 ≤ a < p, 0 ≤ u < p, n ≥ 0, L ≥ 0, compute

d, which is defined as follows. If set P = {j : 0 ≤ j ≤ n, (u+ j · a) mod p ≤ L} 6= ∅,

then d = min(P ); else, d = −1.

Let S denote the following arithmetic progression on Zp: 〈u mod p, (u + a)

mod p, . . . , (u + n · a) mod p〉. Let S[i] denote (u + i · a) mod p, the ith number

in S. Problem 1 can be restated as: find the smallest integer j, 0 ≤ j ≤ n, such that

S[j] ≤ L.

Note that if L ≥ p, then obviously d = 0. Thus we consider the case L < p. Similar

to the approach in [33], we divide S into multiple subsequences: S = S0S1 . . . Sk, as

follows: S0 = 〈S[0], S[1] . . . , S[i]〉, where i is the smallest natural number such that

S[i] > S[i + 1]. The subsequences Sj, j > 0, are defined inductively. If Sj−1 =

〈S[t], S[t + 1] . . . , S[m]〉, then Sj = 〈S[m + 1], S[m + 2], . . . , S[r]〉, where r is the

smallest number such that r > m + 1 and S[r] > S[r + 1]; if no such r exists, then

S[r] = S[n]. Note that if Sj = 〈S[t], S[t+ 1], . . . , S[m]〉, then 〈S[t], S[t+ 1], . . . , S[m]〉

are in ascending order and if j > 0 then S[t] < a. Let fi denote the first element in

Si. Let sequence F = 〈f0, f1, . . . , fk〉. Let |Si| denote the number of elements in Si,

0 ≤ i ≤ k.

We first observe the critical fact that if P 6= ∅, ((u + d · a) mod p) must be a

member of F . More precisely, we have the following lemma.

Lemma 3.6. If d 6= −1, then S[d] = fm ∈ F , where m = min{i : 0 ≤ i ≤ k, fi ≤

L}.

Proof. First, we prove S[d] ∈ F . Suppose S[d] 6∈ F and S[d] ∈ St, for some t,

0 ≤ t ≤ k. Let ft = S[d′]. Note that d′ < d. Since S[d] 6∈ F , we have ft ≤ S[d] ≤ L.

Because d′ < d, if d′ is not returned, d will not be returned either. This yields a

contradiction. Second, we prove S[d] = fm. Suppose S[d] = fm′ , where m′ > m. Let
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Algorithm 5: MinHit(p, a, u, n, L)

Input: p > 0, 0 ≤ a < p, 0 ≤ u < p, n ≥ 0, L ≥ 0

Output: d = min{i : 0 ≤ i ≤ n, (u+ i · a) mod p ≤ L}, if d exists; otherwise,

−1.

// Recursive Call Exit Conditions

if (p ≤ L or u ≤ L) then return 0 ;1

else if (a = 0) then return −1 ;2

else3

Compute |S0| ; /* S = {u, (u+ a) mod p, · · · , (u+ n · a)4

mod p} = S0S1 · · ·Sk */

if (|S0| = n+ 1) then return −1 ;5

else if (a = 1) then return (p− u)6

// Recursive Calls

r ← p mod a ;7

Compute k, f1 ; /* f1 is the first element of S1 */8

if (a− r ≤ a/2) then d← MinHit(a, a− r, f1, k − 1, L) ;9

else d← MinHit (a, r, (a− f1 + L) mod a, k − 1, L) ;10

// Recursive Call Returns

if (d 6= −1) then11

Compute fd+1 ;12

d← [(d+ 1)p− u+ fd+1]/a ;13

return d14

fm = S[d′]. Note that d′ < d as m < m′. Since d′ < d and S[d′] ≤ L, if d′ is not

returned, d will not be returned either. This is also a contradiction.

The next lemma shows that using m and fm in Lemma 3.6, we can obtain d

directly.

Lemma 3.7. If m exists, then d = (mp− f0 + fm)/a.

Proof. Let S′ = S[0], . . . , S[d] denote the sub-sequence starting from f0 to fm in

S, so S[0] = f0 and S[d] = fm. The distance that has been traveled in the progression

over the ring Zp from f0 to fm is (mp− f0 + fm). Since the common difference in the

progression is a, we have d = (mp− f0 + fm)/a. Note that f0 = u mod p is known.

The next observation from [33] is crucial for finding m.

Observation 3.2 (Observation 2, Section 3.1 [33]). Sequence F̄ = F \{f0} is an

arithmetic progression over Za, with common difference a − r (or −r equivalently),

where r = p mod a.

So, we have two possibilities: (1) If f0 ≤ L, then m = 0 and fm = f0, thus d = 0.

(2) Else, the task of finding m is a new instance of Problem 1 of a smaller size by
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setting:

pnew = a, anew = a− r, unew = f1, nnew = k − 1, Lnew = L

Note that once m is known, we can directly obtain fm = (f1 +(m−1)(a−r)) mod a.

However, because of the similar argument in [33], the reduction may not always

be useful since a − r may not be much smaller than a. However, since at least one

of a− r or r is less than or equal to a/2, we can choose to work with the smaller of

a− r or r as follows. The benefit of working with the smaller one will be shown later

in the time and space complexity analysis.

Reduction in Case 1: a− r ≤ a/2. We work with a− r. Problem 1 is recursively

reduced to a new instance of Problem 1 of a smaller size that finds m over sequence

F̄ by setting:

pnew = a, anew = a− r, unew = f1, nnew = k − 1, Lnew = L

Reduction in Case 2: r < a/2. We work with r. In this case, things are a

bit complex. First we visualize the intuition with the help of Figure 3.2. Note that

F̄ = 〈f1, f2, . . . , fk〉 is a sequence of points lining up along the ring of Za with common

difference a − r > a/2. For simplicity, we only show the first few elements in F̄ , say

〈f1, f2, . . . , f5〉. We want to find the first point in sequence F̄ that is within the dark

range [0, L] in Figure 3.2(a).

Note that our goal is to make anew to be r in the parameter setting of the new

instance of Problem 1 for finding m, so we flip the ring of Za along with the points

on it (Figure 3.2(a)) and get the result shown in Figure 3.2(b). After this flipping,

the points in F̄ comprise a new sequence F̄ ′ = 〈f ′
1, f

′
2, . . . , f

′
k〉, where f ′

i = (a − fi)

mod a, 1 ≤ i ≤ k, the dark range [0, L] is mapped to the new one [a−L, a− 1]∪ {0}.

Note that F̄ ′ is an arithmetic progression over Za with common different −(a − r)

mod a = r. Let m′ = min{i : a− L ≤ f ′
i ≤ a− 1 or f ′

i = 0, 1 ≤ i ≤ k}, i.e., f ′
m is the

first point in F̄ ′ such that f ′
m is within the dark range in Figure 3.2(b). Obviously

m′ = m, as we did not change the relative positions of all the points and the dark

range during the flipping. Note that the idea of flipping the ring is implicitly proposed

in [33], however, it is not clear how to further apply the technique in [33] to find m′.

Our new idea is to shift the origin of the ring of Za in Figure 3.2(b) by a distance

of L in a counter-clockwise direction without moving all the points and the dark

range, resulting in Figure 3.2(c). After this shifting, sequence F̄ ′ in Figure 3.2(b) is

mapped to a new sequence F̄ ′′ = 〈f ′′
1 , f

′′
2 , . . . , f

′′
k 〉 in Figure 3.2(c), where f ′′

i = (f ′
i +L)

mod a, and the dark range in Figure 3.2(b) is mapped to [0, L] in Figure 3.2(c). Let

m′′ = min{i : 0 ≤ f ′′
i ≤ L, 1 ≤ i ≤ k}, i.e., fm′′ is the first point in F̄ ′′ such that fm′′

is within the dark range [0, L] in Figure 3.2(c). Obviously m′′ = m′, as we did not

change the relative positions of all the points and the dark range during the shifting

of the origin in Figure 3.2(b). This further implies m′′ = m. Therefore, Problem 1

can be recursively reduced to a smaller problem of finding m′′ over sequence F̄ ′′ by
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setting:

pnew = a, anew = r, unew = (a− f1 + L) mod a, nnew = k − 1, Lnew = L

We note that the idea of shifting the origin of the ring is quite simple and useful.

Using this idea simplifies the Hits algorithm in [33] since all the additional operations

dealing with the effect of flipping the ring can be omitted.

The above visualized intuition in case 2 is validated by the following lemma.

Lemma 3.8. Given p, a, u, n, L as in Problem 1, set P = {i : 0 ≤ i ≤ n, (u+ i · a)

mod p ≤ L} and P ′ = {j : 0 ≤ j ≤ n, ((p− u+ L) mod p+ j · (p− a)) mod p ≤

L}, then:

P = P ′

Proof. (i) P ⊆ P ′. Suppose γ ∈ P , then 0 ≤ γ ≤ n and (u + γ · a) mod p ≤ L.

We prove γ ∈ P ′.

[(p− u+ L) mod p+ γ · (p− a)] mod p

= [p− u+ L+ γ · (p− a)] mod p

= [L− (u+ γ · a)] mod p

= [L− (u+ γ · a) mod p] mod p

Since 0 ≤ (u + γ · a) mod p ≤ L, we have 0 ≤ [L − (u + γ · a) mod p] mod p ≤ L.

Thus γ ∈ P ′.

(ii) P ′ ⊆ P . Suppose γ ∈ P ′, then 0 ≤ γ ≤ n and [(p−u+L) mod p+γ · (p−a)]

mod p ≤ L. We prove γ ∈ P .

[(p− u+ L) mod p+ γ · (p− a)] mod p

= [L− (u+ γ · a) mod p] mod p

≤ L

If (u+γ ·a) mod p > L, say (u+γ ·a) mod p = L+σ < P for some σ > 0, from

the above inequality, we can have that (−σ) mod p = p − σ ≤ L, i.e., L + σ ≥ P ,

this yields a contradiction. Therefore, (u + γ · a) mod p ≤ L. So, γ ∈ P .

Since P = P ′, then the Problem 1 with the setting pnew = a, anew = a − r,

unew = f1, nnew = k − 1, Lnew = L and the Problem 1 with the setting pnew = a,

anew = r, unew = (a − f1 + L) mod a, nnew = k − 1, Lnew = L return the same

answer.

Lemma 3.9. The algorithm MinHit(p, a, u, n, L) (shown in Algorithm 5) computes

d in Problem 1 in time O(log n) and space O(log p+ logn).

Proof. Correctness. Recall that MinHit(p, a, u, n, L) should return d = min{i :

0 ≤ i ≤ n, (u+ i · a) mod p ≤ L}, if such d exists; otherwise, return d = −1. Clearly,



TIME-DECAYING SKETCHES 19

0
L

f1

f4

f3

f2

a-r

180o

f5

(a) Ring of Za and Sequence F̄

0
a-L

-(a-r)

r

f1
’

f2
’

f3
’

f4
’

f5
’

(b) Flipped Ring of Za and

Sequence F̄ ′

L
0

r

f1
’’

f2
’’

f3
’’

f4
’’

f5
’’

(c) Flipped Ring of Za

with Shifted Origin and

Sequence F̄ ′′

Fig. 3.2. Find fm ∈ F̄ over the Ring of Za in the Case of r < a/2

if p ≤ L or u ≤ L, d = 0. Line 1 correctly handles this scenario; Else, if a = 0,

which means all the integers in sequence S are equal to u, since after line 1 we know

u > L, d = −1 is returned in line 2; Else, if S = S0, since after line 1 we know

f0 > L, all the integers in S are greater than L, thus d = −1 is returned at line 5;

Else, if a = 1, since |S| > |S0|, we can easily find f1 = S[p − u] = 0 ≤ L, thus

d = p− u is returned by line 6. If all the above conditions are not satisfied, we have

a > 1, u > L,L < p, |S| > |S0|. Since f0 = u > L, by Lemma 3.6, if d 6= −1, we

know S[d] ∈ F̄ . Because of Observation 3.2, we can make a recursive call at lines 9 or

10, to find j, 1 ≤ j ≤ k, such that fj = S[d]. Because of Lemma 3.8, lines 9 and 10

return the same result (with different time cost though). Using the formula presented

in Lemma 3.7, the answer for the original problem is calculated and returned by lines

11–14 using the answer from the recursive call at either step 9 or 10. Therefore,

MinHit(p, a, u, n, L) correctly returns d as the answer for Problem 1.

Time Complexity. We assume that the additions, multiplications and divisions

take unit time. It is clear that lines 1–8 and 11–14 can be computed in constant time.

In each recursive call at lines 9 and line 10, because nnew ≤ ⌈n · a/p⌉ and a ≤ p/2

always hold in every recursive call, thus we have nnew ≤ n/2, which yields the time

cost of MinHit(p, a, u, n, L) is O(log n).

Space Complexity. In each recursive call, MinHit() needs to store a con-

stant number of local variables such as p, a, n, etc.. Since p dominates a, u and L

(if L ≥ p, then MinHit() returns without recursive calls), each recursive call needs

O(log p + logn) stack space. Since the depth of the recursion is no more than logn,

the space cost is O(log n(log p+logn)). Using a similar argument as in [33], in general

MinHit(p1, p2, p3, p4, p5) = β+γMinHit(p′1, p
′
2, p

′
3, p

′
4, p

′
5), where β and γ are functions

of p1, . . . , p5. This procedure can be implemented using tail recursion, which does not

need to allocate space for the stack storing the state of each recursive step and does

not need to tear down the stack when it returns. Thus, the space cost can be reduced
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Algorithm 6: DecayedSumQuery(c)

ℓ = min{i : 0 ≤ i ≤M, ti ≤ c} ;1

if ℓ does not exist then return ; // the algorithm fails2

if ℓ exists then return 1
pℓ

∑

e∈Sℓ
RangeSample(rc

e, ℓ);3

to O(log p+ logn).

Theorem 3.10. Given a stream element e = (v, w, t, id) and the sample level

i, 0 ≤ i ≤ M , expiry(e, i) can be computed in time O(logw + log tmax) using space

O(log p+ logw).

Proof. MinHit() can compute ∆i
e in O(logw) time using space O(log p+ logw).

Due to Lemma 3.5, given ∆i
e algorithm ExpiryTime() computes expiry(e, i) using

additional O(log tmax) time for the binary search.

Faster Computation of Expiry Time. In some cases, the expiry time can be com-

puted faster than using the above algorithm. In particular, it can be computed in

O(logw) time, if the decay function f has the following property: given an initial

weight w and decayed weight w′ ≤ w, min{x : f(w, x) = w′} can be computed in a

constant number of steps. This includes a large class of decay functions. For exam-

ple, for the integral version of exponential decay f(w, x) =
⌊

w
ax

⌋

, given ∆i
e ≥ 0 (note

that w′ = ∆i
e + 1), which is computed O(logw) time, the expiry time can be com-

puted in a constant number of steps through expiry(e, i) =
⌊

loga
w

∆i
e+1

⌋

+ t+1, where

e = (v, w, id, t). A similar observation is true for the integral version of polynomial

decay f(w, x) = ⌊w · (x + 1)−a⌋. For the sliding window decay, given ∆i
e ≥ 0, then

expiry(e, i) = t+W , where e = (v, w, t, id) and W is the window size.

3.4. Computing Decayed Aggregates Using the Sketch. We now describe

how to compute a variety of decayed aggregates using the sketch S. For i = 0 . . .M ,

let pi = ⌊p2−i⌋
p

denote the sampling probability at level i.

Decayed Sum. We begin with the decayed sum:

V =
∑

(v,w,t,id)∈D

f(w, c− t)

For computing the decayed sum, let the maximum size of a sample be τ = 60/ǫ2, and

the maximum number of levels be M = ⌈logwmax + log idmax⌉.

Theorem 3.11. For any integral decay function f , Algorithm 6 yields an estima-

tor V̂ of V such that Pr[|V̂ −V | < ǫV ] > 2
3 . The time taken to answer a query for the

sum is O(logM + 1
ǫ2

logwmax). The expected time for each update is O(logw(log 1
ǫ
+

logw + log tmax)). The space complexity is O( 1
ǫ2

(logwmax + log idmax)).

Proof. We show the correctness of our algorithm for the sum through a reduction

to the range-efficient algorithm for counting distinct elements from [33] (we refer to

this algorithm as the PT algorithm, for the initials of the authors of [33]). Suppose a

query for the sum was posed at time c. Consider the stream I = {rc
e : e ∈ R}, which
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is defined on the weights of the different stream elements when the query is posed.

From Observation 3.1, we have | ∪r∈I r| = V .

Consider the processing of the stream I by the PT algorithm. The algorithm

samples the ranges in I into different levels using hash function h. When asked for

an estimate of the size of ∪r∈Ir, the PT algorithm uses the smallest level, say ℓ′,

such that the |{e ∈ D : RangeSample(rc
e, ℓ

′) > 0}| ≤ τ , and returns an estimate

Y = 1
pℓ′

∑

e∈D RangeSample(rc
e, ℓ

′). From Theorem 1 in [33], Y satisfies the condition

Pr[|Y − V | < ǫV ] > 2/3 if we choose the sample size τ = 60/ǫ2, and number of levels

M such that M > logVmax where Vmax is an upper bound on V . Since wmaxidmax is

an upper bound on V (each distinct id can contribute at most wmax to the decayed

sum), our choice of M satisfies the above condition.

Consider the sample Sℓ used by Algorithm 6 to answer a query for the sum.

Suppose ℓ exists, then ℓ is the smallest integer such that tℓ ≤ c. For every i <

ℓ, we have ti > c, implying that Si has discarded at least one element e such

that RangeSample(rc
e, i) > 0. Thus for level i < ℓ, it must be true that |{e :

RangeSample(rc
e, i) > 0}| > τ , and similarly for level ℓ, it must be true that |{e :

RangeSample(rc
e, ℓ) > 0}| ≤ τ . Thus, if level ℓ exists, then ℓ = ℓ′, and the estimate

returned by our algorithm is exactly Y , and the theorem is proved. If ℓ does not exist,

then it must be true that for every level i, 0 ≤ i ≤M , |{e ∈ D : RangeSample(rc
e, i) >

0}| > τ , and thus the PT algorithm also fails to find an estimate.

For the time complexity of a query, observe that finding the right level ℓ can be

done in O(logM) time by organizing the tis in a search structure, and once ℓ has

been found, the function RangeSample() has to be called on the O(τ) elements in Sℓ,

which takes a further O(logwmax) time per call to RangeSample().

The expected time for each update and the space complexity directly follows from

Theorem 3.4.

We note that typically one wants a guarantee that the failure probability is δ ≪ 1
3 .

To give such a guarantee, we can keep Θ(log 1/δ) independent copies of the sketch

(based on different hash functions), and take the median of the estimates. A standard

Chernoff bounds argument shows that the median estimate is accurate within ǫV with

probability at least 1− δ.

Selectivity Estimation. Now we consider the estimation of the selectivity

Q =

∑

(v,w,t,id)∈D P (v, w)f(w, c − t)
∑

(v,w,t,id)∈D f(w, c− t)

where P (v, w) is a predicate given at the query time. We return the selectivity of

sample Sℓ using the predicate P as the estimate of Q, where Sℓ is the lowest numbered

sample that does not have any discarded element whose expiry time is larger than c.

The formal algorithm is given in Algorithm 7. We show that by setting τ = 492/ǫ2

and M = ⌈logwmax + log idmax⌉, we can get Theorem 3.26.

The following process only helps visualize the proof, and is not executed by the

algorithm. Since the sketch is duplicate insensitive (Lemma 3.2), we simply consider
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streamD, which is the set of distinct elements in stream R. At query time c, streamD

is converted to be a stream of intervals D′ = {rc
d : d ∈ D}. Note that d = (v, w, t, id)

and rc
d = [wmax ∗ id, wmax ∗ id+ f(w, c− t)− 1]. Further, stream D′ is expanded to

stream I of the constituent integers. For each interval [x, y] ∈ D′, stream I consists

of x, x + 1, . . . , y. Clearly all the items in I are distinct and the decayed sum V =

|I|. Given the selectivity predicate P (v, w), let Î = {x ∈ rc
d) : d = (v, w, t, id) ∈

D, p(v, w) = 1} and V ′ = |I ′|. Note that I ′ ⊆ I and the selectivity with predicate

P (v, w) is Q = V ′

V
, for which we compute an estimate Q′. Recall that the sample size

τ = C/ǫ2, where C is a constant to be determined through the analysis.

The next part of this section, from Fact 3.1 through Lemma 3.25, helps in the

proof of Theorem 3.26 (stated formally below).

Fact 3.1 (Fact 1 in [33]). For any i ∈ [0 . . .M ], 1
2i+1 ≤ pi ≤

1
2i

Lemma 3.12. If |D′| ≤ τ , then Q = Q′

Proof. If |D′| ≤ τ , all the rc
d ∈ D

′ can be implicitly stored in S0, i.e., all unexpired

stream elements can be stored in S0, which can return the exact Q.

Thus, in the following part of the proof, we assume |D′| > τ .

Definition 3.13. For each e ∈ I, for each level i = 0, 1, . . . ,M , random variable

xi(e) is defined as follows: if h(e) ∈ [0, ⌊p2−i⌋], then xi(e) = 1; else xi(e) = 0.

Definition 3.14. For i = 0, 1, . . . ,M , Ti is the set constructed by the following

probabilistic process. Start with Ti ← ∅. If there exists at least one integer y ∈ rc
d,

where d ∈ D, such that xi(y) = 1, insert d into Ti.

Note that Ti is defined for the purpose of the proof only, but the Tis are not stored

by the algorithm. For each level i, the algorithm only stores at most τ elements with

largest expiry time.

Definition 3.15. For i = 0, 1, . . . ,M , Xi =
∑

y∈rc
d
xi(y), X

′
i =

∑

y∈rc
d
,p(v,w)=1 xi(y),

where d = (v, w, t, id) ∈ D.

Lemma 3.16. For any e ∈ rc
d, d ∈ D, E[xi(e)] = pi, σ

2
xi(e)

= pi(1 − pi), 0 ≤ i ≤

M .

Proof. E[xi(e)] = Pr[xi(e) = 1] = Pr[0 ≤ h(e) ≤ ⌊p2−i⌋] = ⌊p2−i⌋ = pi.

σ2
xi(e)

= E[x2
i (e)]−E[xi(e)]

2 = Pr[x2
i (e) = 1]−Pr[xi(e) = 1]2 = pi−p2

i = pi(1−pi)

Lemma 3.17. For i = 0, 1, . . . ,M , E[Xi] = piV , σ2
Xi

= pi(1−pi)V , E[X ′
i] = piV

′,

σ2
X′

i
= pi(1− pi)V

′

Proof. E[Xi] = E[
∑

y∈rc
d
xi(y)] = |{y ∈ rc

d : d ∈ D}| · E[xi(y)] = piV . Since

xi(y)’s are pairwise independent random variables, we have: σ2
Xi

= |{y ∈ rc
d : d ∈

D}| · σ2
xi(y) = pi(1− pi)V . Similarly, E[X ′

i] = piV
′, σ2

X′

i
= pi(1 − pi)V

′ are true.

Definition 3.18. For i = 0, 1, . . . ,M , define event Bi to be true if Q′ 6∈ [Q −

ǫ,Q + ǫ], and false otherwise; define event Gi to be true if (1 − ǫ/2)piV ≤ Xi ≤

(1 + ǫ/2)piV , false otherwise.

Definition 3.19. Let ℓ∗ ≥ 0 be an integer such that E[Xℓ∗ ] ≤ τ/2 and E[Xℓ∗ ] >

τ/4.
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Lemma 3.20. Level ℓ∗ is uniquely defined and exists for every input stream D.

Proof. Since |D′| > τ , E[X0] > τ . By the definition of M = logwmaxidmax, it

must be true that V < 2M for any input stream D, so that E[XM ] ≤ 1. Since for

every increment in i, E[Xi] decreases by a factor of 2, there must be a unique level

0 < ℓ∗ < M such that E[Xℓ∗ ] ≤ α/2 and E[Xℓ∗ ] ≥ α/4.

From now on we consider the case with 0 < Q ≤ 1/2. By symmetry, a similar

proof exists for the case with 1/2 ≤ Q < 1. Obviously the algorithm can return

Q′ = Q, if Q ∈ {0, 1}.

The following lemma shows that for levels that are less than or equal to ℓ∗, Q′ is

very likely to be close to Q.

Lemma 3.21. For 0 ≤ ℓ ≤ ℓ∗,

Pr[Bℓ] <
5

C · 2ℓ∗−ℓ−4

Proof.

Pr[Bℓ] = Pr[Gℓ ∧Bℓ] + Pr[Ḡℓ ∧Bℓ]

≤ Pr[Bℓ|Gℓ] · Pr[Gℓ] + Pr[Ḡℓ] ≤ Pr[Bℓ|Gℓ] + Pr[Ḡℓ] (3.1)

Using Lemmas 3.22 and 3.23 in Equation 3.1, we get:

Pr[Bℓ] <
5

C · 2ℓ∗−ℓ−4

Lemma 3.22. For 0 ≤ ℓ ≤ ℓ∗,

Pr[Ḡℓ] <
1

C · 2ℓ∗−ℓ−4

Proof. By Lemma 3.17, µXℓ
= pℓV, σ

2
Xℓ

= pℓ(1 − pℓ)V , and by Chebyshev’s

inequality, we have

Pr[Ḡℓ] = Pr[Xℓ < (1− (ǫ/2))µXℓ
∨Xℓ > (1 + (ǫ/2))µXℓ

]

= Pr[|Xℓ − µXℓ
| > (ǫ/2) · µXℓ

]

≤
σ2

Xℓ

(ǫ/2)2µ2
Xℓ

= (1− pℓ)/
(

(ǫ/2)2 · µXℓ

)

≤
1

(ǫ/2)2 · µXℓ

≤
1

C · 2ℓ∗−ℓ−4

The last inequality is due to the fact: µXℓ
≥ 2ℓ∗−ℓ ·µX∗

ℓ
> 2ℓ∗−ℓ · τ/4 = 2ℓ∗−ℓ−2 ·

C/ǫ2, using Fact 3.1

Lemma 3.23. For 0 ≤ ℓ ≤ ℓ∗,

Pr[Bℓ|Gℓ] <
1

C · 2ℓ∗−ℓ−6
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Proof.

Pr[Bℓ|Gℓ] = Pr[Q < Q′ − ǫ|Gℓ] + Pr[Q > Q′ + ǫ|Gℓ]

The proof will consist of two parts, Equations 3.2 and 3.3.

Pr[Q+ ǫ < Q′|Gℓ] <
1

C · 2ℓ∗−ℓ−5
(3.2)

Pr[Q− ǫ > Q′|Gℓ] <
1

C · 2ℓ∗−ℓ−5
(3.3)

Proof of Equation 3.2: Let Y =
∑

y∈I′ xℓ(y) = Q′Xℓ > (Q + ǫ)Xℓ. By

Lemma 3.17, we have µY = pℓV Q, σ2
Y = pℓ(1−pℓ)V Q. Using Chebyshev’s inequality

and the fact Xℓ ≥ (1− ǫ/2)pℓV , we have the following,

Pr[Q+ ǫ < Q′|Gℓ] ≤ Pr[Y > (Q+ ǫ)Xℓ|Gℓ]

= Pr[(Y > (Q+ ǫ)Xℓ) ∧Gℓ]/Pr[Gℓ]

≤ Pr[Y > (Q+ ǫ)(1 − ǫ/2)pℓV ]/Pr[Gℓ]

= Pr[Y − µY > (Q+ ǫ)(1 − ǫ/2)pℓV − µY ]/Pr[Gℓ]

≤

(

σ2
Y

[(Q+ ǫ)(1− ǫ/2)pℓV − µY ]2

)

/Pr[Gℓ]

=

(

pℓ(1 − pℓ)V Q

[(Q+ ǫ)(1− ǫ/2)pℓV − pℓV Q]2

)

/Pr[Gℓ]

≤

(

4

ǫ2pℓV

)

/Pr[Gℓ] <

(

1

C · 2ℓ∗−ℓ−4

)

/

(

1−
1

C · 2ℓ∗−ℓ−4

)

<
1

C · 2ℓ∗−ℓ−5

The last three inequalities use the facts: (1−pℓ)Q < 1, (Q+ ǫ)(1− ǫ/2) ≥ Q+ ǫ/2

due to 0 < ǫ < Q ≤ 1/2, pℓV > 2ℓ∗−ℓτ/4 and choosing C ≥ 32.

Proof of Equation 3.3: By symmetry, the proof is similar as the one for Equa-

tion 3.2. Therefore,

Pr[Bℓ|Gℓ] <
1

C · 2ℓ∗−ℓ−6

Lemma 3.24.

ℓ=ℓ∗
∑

ℓ=0

Pr[Bℓ] <
160

C

Proof. The proof directly follows from Lemma 3.21.

ℓ=ℓ∗
∑

ℓ=0

Pr[Bℓ] =
ℓ=ℓ∗
∑

ℓ=0

5

C · 2ℓ∗−ℓ−4
=

80

C

ℓ∗
∑

i=0

1

2i
<

160

C
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Lemma 3.25.

Pr[ℓ > ℓ∗] <
4

C

Proof. If ℓ > ℓ⋆, it follows that Xℓ⋆ > |Tℓ⋆ | > τ , else the algorithm would have

stopped at a level less than or equal to ℓ⋆. Thus, Pr[ℓ > ℓ⋆] ≤ Pr[Xℓ⋆ > τ ]. Let

Y = Xℓ⋆ . By Lemma 3.17, Chebyshev’s inequality and the fact µY < τ/2, we have

Pr[ℓ > ℓ⋆] ≤ Pr[Y > τ ] ≤ Pr[Y > 2µY ] = Pr[Y−µY > µY ] =
σ2

Y

µ2
Y

=
pℓ(1 − pℓ)V

p2
ℓV

2
=

1− pℓ

pℓV

Since µY = pℓV > τ/4, we have

Pr[ℓ > ℓ⋆] ≤
1− pℓ

τ/4
< 4/τ =

4

C
ǫ2 <

4

C

Theorem 3.26. For any integral decay function f , Algorithm 7 yields an esti-

mate Q̂ of Q such that Pr[|Q̂ − Q| < ǫ] > 2/3. The time taken to answer a query

for the selectivity of P is O(logM+ 1
ǫ2

logwmax). The expected time for each update is

O(logw(log 1
ǫ
+logw+log tmax)). The space complexity is O( 1

ǫ2
(logwmax + log idmax)).

Proof. Let f denote the probability that the algorithm fails to return an ǫ-

approximate selectivity estimation of D. Using Lemmas 3.24 and 3.25, we get:

f = Pr[ℓ > M ] + Pr[
M
⋃

i=0

(ℓ = i) ∧Bi]

≤ Pr[ℓ > ℓ⋆] +

ℓ⋆

∑

i=0

Pr[Bi] <
164

C
=

1

3
, by choosing C = 492

The query time complexity analysis is similar to the one for the sum in Theorem 3.11.

The expected time for each update and the space complexity directly follows from

Theorem 3.4.

As in the sum case, we can amplify the probability of success to (1− δ) by taking

the median of Θ(log 1/δ) repetitions of the data structure (based on different hash

functions).

Theorem 3.27. For any integral decay function f , it is possible to answer queries

for ǫ-approximate φ-quantiles and frequent items queries using the sketch, in time

O(logM+ 1
ǫ2

log(wmax

ǫ
)). The expected time for each update is O(logw(log 1

ǫ
+logw+

log tmax)).The space complexity is

O( 1
ǫ2

(logwmax + log idmax)).

Proof. The expected time for each update and the space complexity directly

follows from Theorem 3.4. Now we show how to reduce a sequence of problems to



26 G. CORMODE, S. TIRTHAPURA AND B. XU

Algorithm 7: DecayedSelectivityQuery(P ,c)

ℓ = min{i : 0 ≤ i ≤M, ti ≤ c} ;1

if ℓ does not exist then return ; // the algorithm fails2

if ℓ exists then return

P

e=(v,w,t,id)∈Sℓ
RangeSample(rc

e,ℓ)·P (v,w)
P

e∈Sℓ
RangeSample(rc

e,ℓ)
;

3

instances of selectivity estimation. To answer the query for the aggregate of interest,

we first find the appropriate weighted sample Sℓ in logM time, where ℓ is defined (as

before) as the smallest integer such that tℓ < c.

• Rank. A rank estimation query for a value ν asks to estimate the (weighted)

fraction of elements whose value v is at most ν. This is encoded by a predicate

P≤ν such that P≤ν(v, w) = 1 if v ≤ ν, else 0. Clearly, this can be solved using

the above analysis with additive error at most ǫ.

• Median. The median is the item whose rank is 0.5. To find the median,

we can sort Sℓ by value in O(τ log τ) time, then evaluate the rank of every

distinct value in the sample and return the median of Sℓ as the median of

the stream with an additional O(τ logwmax) time cost. Due to the argument

about the rank estimation, we have that the median of Sℓ has a rank of 0.5

over the stream with additive error at most ǫ with probability at least 1− δ.

• Quantiles. Quantiles generalize the median to find items whose ranks are

multiples of φ, e.g. the quintiles, which are elements at ranks 0.2, 0.4, 0.6 and

0.8. Again, sort Sℓ by value and return the φ-quantile of Sℓ as the φ-quantile

of the stream with additive error at most ǫ with probability at least 1 − δ.

The argument is similar to the one for the median.

• Frequent items. Sort Sℓ in O(τ log τ) time, then evaluate the frequency

of every distinct value in Sℓ with another O(τ logwmax) time cost. We can

return those values whose frequency in Sℓ is φ or more as the frequent items

in the stream, because for each returned value ν, regarding the predicate

“P=ν(v, w) = 1 if v = ν”, the selectivity of ν, which is also the frequency of

ν, in the stream is φ or more with additive error at most ǫ with probability

at least 1− δ.

4. Decomposable Decay Functions via Sliding Window.

4.1. Sliding Window Decay. Recall that a sliding window decay function,

given a window size W , is defined as fW (w, x) = w if x < W , and fW (w, x) = 0

otherwise. As already observed, the sliding window decay function is a perfect example

of an integral decay function, and hence we can use the algorithm from Section 3. We

can compute the expiry time of any element e at level ℓ in logw time as (t +W ) if

∆ℓ
e ≥ 0; t, otherwise. We can prove a stronger result though: If we set f(w, x) = w

for all x ≥ 0 when inserting the element (i.e., element e never expires at level ℓ) unless
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∆ℓ
e < 0, and discard the element with the oldest timestamp when the sample is full,

we can keep a single data structure that is good for any sliding window size W <∞,

where any W can be specified after the data structure has been created, to return a

good estimate of the aggregates.

Theorem 4.1. Our data structure can answer sliding window sum and selectivity

queries where the parameter W is provided at query time. Precisely, for τ = O( 1
ǫ2

)

and M = O(logwmax+log idmax), we can provide an estimate V̂ of the sliding window

decayed sum, V , such that Pr[|V̂ − V | < ǫV ] > 2
3 and an estimate Q̂ of the sliding

window decayed selectivity, Q, such that Pr[|Q̂ − Q| < ǫ] > 2
3 . The time to answer

either query is O(logM + τ).

Proof. Observe that for all parameters W , at any level ℓ, over the set of element

e = (v, w, t, id) where ∆ℓ
e ≥ 0, the expiry order is the same: ej expires before ek if and

only if tj < tk. So we keep the data structure as usual, but instead of aggressively

expiring items, we keep the τ most recent items at each level i as Si. Let ti denote

the largest timestamp of the discarded items from level i. We only have to update

Si when a new item e with ∆ℓ
e ≥ 0 arrives in level i. If there are fewer than τ items

at the level, we retain it. Otherwise, we either reject the new item if t ≤ ti, or else

retain it, eject the oldest item in the Si, and update ti accordingly. For both sum and

selectivity estimation, we find the lowest level where no elements which fall within the

window have expired—this is equivalent to the level ℓ from before. From this level,

we can extract the sample of items which fall within the window, which are exactly

the set we would have if we had enforced the expiry times. Hence, we obtain the

guarantees that follow from Theorems 3.11 and 3.26.

At the time of the query, for the selected sample, we need to compute the con-

tribution of each range to the aggregate – this can be done through a call to the

RangeSample routine. We can make the query time smaller at the cost of increased

processing time per element (but the same asymptotic complexity for the processing

time per element) by calling the RangeSample routine during insertion, and not need-

ing to recompute this at the query time. This yields the desired time complexity of

processing an element and of the query time.

Similarly, we can amplify the probability of success to (1−δ) by taking the median

of Θ(1/δ) repetitions of the data structures, each of which is based on different hash

functions.

4.2. Reduction from a Decomposable Decay Function to Sliding Win-

dow Decay. In this section, we show that for any decomposable decay function of

the form f(w, x) = w · g(x), the computation of decayed aggregates can be reduced to

the computation of aggregates over sliding window decay. This randomized reduction

generalizes a (deterministic) idea from Cohen and Strauss [14]: rewrite the decayed

computation as the combination of many sliding window queries, over different sized

windows. We further show how this reduction can be done in a time-efficient manner.
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(a) (b) (c)

Fig. 4.1. Reduction of a decomposable decay function to sliding window: (a) a sample decay

function (b) breaking the decay function into sliding windows every time step (c) computing sliding

windows only for the subset of stored timestamps.

Selectivity Estimation. Lemma 4.2. Selectivity estimation using any decompos-

able decay function f(w, x) = w · g(x) can be rewritten as the combination of at most

2c sliding window queries, where c is the current time.

Proof. Let the set of distinct observations in the stream (now sorted by times-

tamps) be D = 〈e1 = (v1, w1, t1, id1), e2 = (v2, w2, t2, id2), . . . , en = (vn, wn, tn, idn)〉.

The decayed selectivity of P at time c

Q =
∑

(v,w,t,id)∈D

w · P (v, w) · g(c− t)/
∑

(v,w,t,id)∈D

w · g(c− t), (4.1)

This can be rewritten as Q = A/B where,

A = g(c− t1)
n

∑

i=1

wiP (vi, wi) +

tn
∑

t=t1+1



[g(c− t)− g(c− t+ 1)] ·
∑

{i:ti≥t}

P (vi, wi)wi





B = g(c− t1)
n

∑

i=1

wi +

tn
∑

t=t1+1



[g(c− t)− g(c− t+ 1)] ·
∑

{i:ti≥t}

wi





We compute A and B separately; first, consider B, which is equivalent to V , the

decayed sum under the function w·g(x). Write V W for the decayed sum under the slid-

ing window of sizeW . We can compute V̂ =
∑tn

t=t1+1 ([g(c− t)− g(c− t+ 1)] · V c−t),

using the sliding window algorithm for the sum to estimate each V c−t, from t = t1 +1

till tn. We also add (
∑

i wi)g(c− t1), by tracking
∑

iwi exactly. Applying our algo-

rithm, each sliding window query V W is accurate up to a (1 ± ǫ) relative error with

probability at least 1− δ, so taking the sum of (tn− t1) ≤ c such queries yields an an-

swer that is accurate with a (1±ǫ) factor with probability at least 1−cδ, by the union

bound. Similarly, A can also be computed by using the sliding window algorithm for

the sum. Further, the data stream over which A is computed is a substream, which

satisfies the selectivity predicate, of D, over which B is computed. Thus theorem 4.1

implies each sliding window query in A is accurate up to a (±ǫV ) additive error with

probability at least 1 − δ. This analysis further yields an estimate for A with the

accuracy up to (±ǫV ) additive error with probability at least 1− cδ. Combining the
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estimates for A and B and using τ = O(1/ǫ2), we get |Q′ −Q| ≤ ǫ with probability

at least (1 − 2cδ), where Q′ is the estimate of A/B. To give the required overall

probability guarantee, we can adjust δ by a factor of 2c. Since the total space and

time taken depend only logarithmically on 1/δ, scaling δ by a factor of 2c increases

the space and time costs by a factor of O(log c).

Theorem 4.3. We can answer a selectivity query using an arbitrary decomposable

decay function f(w, x) = w · g(x) in time O(Mτ log(Mτ
δ

) log(Mτ log Mτ
δ

)) to find Q̂

so that Pr[|Q− Q̂| > ǫ] < δ.

Proof. Implementing the above reduction directly would be too slow, depending

linearly on the range of timestamps. However, we can improve this by making some

observations on the specifics of our implementation of the sliding window sum. Ob-

serve that since our algorithm stores at most τ timestamps at each of M levels. So

if we probe it with two timestamps tj < tk such that, over all timestamps stored in

the Si samples, there is no timestamp t such that tj < t ≤ tk, then we will get the

same answer for both queries. Let tji denote the jth timestamp in ascending order in

Si. We can compute the exact same value for our estimate of (4.1) by only probing

at these timestamps, as:

M
∑

i=0

|Si|
∑

j=1

t
j
i
<tmin

i−1

(g(c− tji )− g(c− t
j+1
i ))V c−t

j
i (4.2)

where for 0 ≤ i ≤ M , tmin
i denotes the smallest (oldest) timestamp of the items in

Si, and tmin
−1 = c + 1, where c is the current time (this avoids some double counting

issues). This process is illustrated in Figure 4.1: we show the original decay function,

and estimation at all timestamps and only a subset. The shaded boxes denote window

queries: the length is the size, W of the query, and the height gives the value of

g(c− tji )− g(c− t
j+1
i ).

We need to keep b = log Mτ
δ

independent copies of the data structure (based

on different hash functions) to give the required accuracy guarantees. We answer a

query by taking the median of the estimates from each copy. Thus, we can generate

the answer by collecting the set of timestamps from all b structures, and working

through them in sorted order of recency. In each structure we can incrementally work

through level by level: for each subsequent timestamp, we modify the answer from the

structure that this timestamp originally came from (all other answers stay the same).

We can track the median of the answers in time O(log b): we keep the b answers

in sorted order, and one changes each step, which can be maintained by standard

dictionary data structures in time O(log b). If we exhaust a level in any structure,

then we move to the next level and find the appropriate place based on the current

timestamp. In this way, we work through each data structure in a single linear pass,

and spend time O(log b) for every time step we pass. Overall, we have to collect and

sort O(Mτb) timestamps, and perform O(Mτb) probes, so the total time required is

bounded by O(Mτb log(Mτb)). This yields the bounds stated above.
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(a) Exponential Decay,

β = 0.01
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(b) Polynomial Decay, α = 1.0
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(c) Sliding Window, W = 200s

Fig. 4.2. Decayed Sum: Accuracy vs C (ǫ = 0.05)
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(a) P1: P1(v, w) = 1

iff v/w ≥ 2
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(b) P2: P2(v, w) = 1 iff v/w ≥ 3
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(c) P3: P3(v, w) = 1

iff v/w ≥ 4

Fig. 4.3. Selectivity with Exponential Decay: Accuracy vs C (ǫ = 0.05, β = 0.01)

Once selectivity can be estimated, we can use the same reductions as in the sliding

window case to compute time decayed ranks, quantiles, and frequent items, yielding

the same bounds for those problems.

Decayed Sum Computation. We observe that the maintenance of the decayed

sum over general decay functions has already been handled as a subproblem within

selectivity estimation.

Lemma 4.4. The estimation of decayed sum using an arbitrary decomposable

decay function can be rewritten as the combination of at most c sliding window queries,

where c is the current time.

Theorem 4.5. We can answer a query for the sum using an arbitrary decom-

posable decay function f(w, x) = w ·g(x) in time O(Mτ log(Mτ
δ

) log(Mτ log(Mτ
δ

))) to

find V̂ such that Pr[|V̂ − V | > ǫV ] < δ].

5. Experiments. In this section, we experimentally evaluate the space and time

costs of the sketch, as well as its accuracy in answering queries. We consider three

popular integral decay functions: sliding window decay, and modified versions of

polynomial and exponential decay. The decay functions are defined as follows:

(1) Sliding window decay with window size W : fW (w, x) = w if x ≤ W , and 0

otherwise. We experiment over a range of window sizes, ranging from 200 seconds to

25 hours.

(2) Polynomial decay: f(w, x) =
⌊

w
(x+1)α

⌋

. We use α ∈ {1.0, 1.5, 2.0, 2.5, 3}

(3) Exponential decay: f(w, x) =
⌊

w
eβx

⌋

. We use β ∈ {0.01, 0.2, 0.4, 0.6, 0.8}
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iff v/w ≥ 2
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(b) P2: P2(v, w) = 1 iff v/w ≥ 3
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(c) P3: P3(v, w) = 1

iff v/w ≥ 4

Fig. 4.4. Selectivity with Polynomial Decay: Accuracy vs C (ǫ = 0.05, α = 1.0)
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(a) P1: P1(v, w) = 1 iff v/w ≥ 2
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(b) P2: P2(v, w) = 1 iff v/w ≥ 3
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Fig. 4.5. Selectivity with Sliding Window: Accuracy vs C (ǫ = 0.05, W = 200 seconds)
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Fig. 4.6. Space vs C (ǫ = 0.05, α = 1.0, β = 0.01, W = 200 seconds, 25 hours)
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(a) Update Speed vs C

(ǫ = 0.05, α = 1.0, β = 0.01, W = 200 seconds)
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Fig. 4.7. Update speed for different decay functions
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Fig. 4.8. Update Speed vs Decay Degree (ǫ = 0.05, C = 60)

We perform the experiments for the time decayed sum as well as the time decayed

selectivity. Note that selectivity estimation generalizes the problems of estimating the

rank, φ-quantiles and frequent elements (Theorem 3.27).

Results. Our main observations from the experiments are as follows. First, the

actual space used by the sketch can be much smaller than the theoretically derived

bounds, while the accuracy demand for estimation is still met. Next, the sketch can be

updated quickly in an online fashion, allowing for high throughput data aggregation.

5.1. Experimental Setup. We implemented the sketch and the RangeSample

algorithm [33] in C++, using gcc 3.4.6 as the compiler and making use of data struc-

tures from the standard template library (STL). The space usage is reported in terms

of the number of nodes present in the sketch after the data stream is processed. The

input stream is generated from the log of web request records collected on the 58th

day of the 1998 World Cup [34], and has 32, 355, 332 elements, of which 24, 498, 894

are distinct. All experiments were run on a 2.8GHz Pentium Linux machine with

2GB memory.

Data Preparation. For repeatability, we present the transformation we performed

on the original data set from the 1998 World Cup. Note that these transformations

are not part of the sketch that we have designed, and are only used to create the

experimental inputs. Each web request record r is a tuple:

〈timestamp, clientID, objectID, size,method, status, type, server〉. All the records

are archived in [34] in the ascending order of the timestamp, which is the number

of seconds since the Epoch. Our goal is to transform the set of records into a data

stream which has asynchrony in the timestamps and has a reasonable percentage of

duplicates.

STEP 1: Project each r to a stream element e = (v, w, t, id). (1) e.id =

r.timestamp mod 86400 + r.clientID mod 100 + r.serverID mod 100. Note that

“+” is the string concatenation, thus idmax = 863, 999, 999. The timestamp is taken

modulo 86400 since all the data is collected from a single day. Binding

〈r.timestamp, r.clientID, r.server〉 together into e.id results in the stream having a

reasonable percentage of duplicates, because at a certain point of time, the number

of web requests between a given pair of client and server is very likely to be one, or

a number slightly larger than one. (2) e.v = r.size mod 109. (3) e.w = r.objectID
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mod 103, hence wmax = 999. (4) e.t = r.timestamp mod 86400.

STEP 2: Make the duplicates consistent. Note that the duplicates from Step 1

may differ in either w or v. We sort the stream elements in ascending order of id

(hence also in increasing order of t), then replace the duplicates with the first copy.

STEP 3: Create the asynchrony. We divide the stream into multiple substreams,

such that the elements in each substream have the same server. Then we interleave

the substreams into a new stream as follows. We remove the first element of a ran-

domly selected non-empty substream and append it into the new stream, until all the

substreams are empty.

STEP 4: Create the processing time of each stream element. Since w, t and the

processing time determine the decayed weight of e when it is processed, every stream

element needs to have the same processing time in a repetition of any experiment. The

processing time of e is generated as follows: (1) Pr[delay = i] = 1
3 , i ∈ {0, 1, 2}. (2) If

the processing time of the previous element is larger than that of the current stream

element, we assign the processing time of the previous element to the current element,

as the processing time must be non-decreasing. Note that whenever we receive a query

for the aggregate of interest, we assume the current clock time (query time) is the

processing time of the most recently processed stream element.

5.2. Accuracy vs Space Usage. Recall that the theoretically derived sample

size is C
ǫ2

for an ǫ-approximation (with probability ≥ 2
3 ) of the time decayed sum

(C = 60, Theorem 3.11) and the time decayed selectivity (C = 492, Theorem 3.26).

However, in the course of our experiments, we found that the desired accuracy could

be achieved using much smaller values of C (and hence much smaller space) than the

theoretical prediction.

Figure 4.2, 4.3, 4.4 and 4.5, shows the influence of C on the accuracy of esti-

mations of the sum and the selectivity. In these experiments we set ǫ = 0.05, α = 1,

β = 0.01 and W = 200 seconds. We use the following three predicates for selectivity

estimation: (1) P1(v, w) = 1, if v/w ≥ 2; otherwise, 0. (2) P2(v, w) = 1, if v/w ≥ 3;

otherwise, 0. (3) P3(v, w) = 1, if v/w ≥ 4; otherwise, 0.

With each time decay model and each value for C, we perform 10 experiments

estimating the sum over the whole stream (Figure 4.2). Each dot in these figures

represents an estimate for the sum. The x-axis of the dot is the value for C used in

the experiment and the y-axis represents the relative error in the estimate for the sum.

The lower bound and upper bound lines in each figure set up the boundaries between

which the dots are the ǫ-approximations. Similarly, for each decay model, each value

for C and each predicate, we perform 10 experiments estimating the selectivity over

the whole stream (Figure 4.3, 4.4 and 4.5), whereas the y-axis of each dot is the

additive error in the estimate for the selectivity.

Figure 4.2, 4.3, 4.4 and 4.5 first show that not surprisingly, a larger C yields more

accurate estimators for both sum and selectivity. The second observation is that even

a value as low as C = 2 is good enough to guarantee an ǫ-approximation of the sum
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with probability ≥ 2
3 , whereas C = 1 is sufficient in the case of the selectivity (for the

predicates we considered). The second observation gives a crucial indication that in

the real applications of this sketch, the actual value for C can be much smaller than

the theoretical predictions.

We next studied the influence of C on the sketch size using four different decay

functions in Figure 4.6. Besides the exponential decay and polynomial decay, for

which α, β are assigned the same values as in Figure 4.2, 4.3 and 4.4, we also study

the size of the sketch using the sliding window decay with window size W = 200

seconds and W = 25 hours. Note that all the data in the experiments was collected

within a day, therefore the sketch using the sliding window decay with W = 25 hours

is a general sketch, which has enough information to answer time decayed sum or

selectivity queries using any decay model (Section 4.2). Figure 4.6 shows that a

smaller C can significantly reduce the sketch size, e.g., if C = 2, then the sketch size

is about 10KB, whereas if C = 20, the sketch size is about 100KB. Figure 4.6 also

shows that for the same value for C, the sliding window for W = 25 hours takes the

most space, which is reasonable, since it can answer the broadest class of queries.

Overall, compared with the size of the input (over 32 million), the sketch size

is significantly smaller. Note that the sketch size is independent of the input size,

meaning even if the input is larger, the sketch will not be any larger, as long as the

desired accuracy remains the same. Small sketch size is crucial for the sensor data

aggregation scenario since the energy cost in the data transmission within the network

can be significantly reduced by transmitting the sketches between nodes rather than

the whole data.

5.3. Time Efficiency. In this section, we present experimental results for the

time taken to update the sketch for different decay functions and parameter settings.

We report the updating speed in terms of the number of stream elements processed

per second. Our experiments demonstrate that overall, the sketch can be updated

quickly (in the order of 10,000 updates per second).

Figure 4.7(a) shows the time (in seconds) taken to update the sketch for exponen-

tial decay, polynomial decay and sliding window decay. It shows that if C = 60, the

sketch can handle about 15000 elements per second. If C = 2, the speed of updating is

more than doubled, since a smaller C yields a smaller sketch (as shown in Figure 4.6),

and smaller the sketch, faster are the operations on the sketch. Similarly, a higher

accuracy demand (a smaller ǫ) slows down the sketch update (Figure 4.7(b)).

Both Figures 4.7(a) and 4.7(b) show that the sketch using polynomial decay has

the highest time efficiency, whereas the sketch using the sliding window decay has

the lowest time efficiency. This may come as a surprise, since exponential decay is

often considered to be the “easiest” to handle, and polynomial decay is thought to

be “harder”. The reasons for our results are the parameter settings that we used for

exponential and polynomial decay, and the distribution of the processing delays. In

the experiments shown, we set α = 1.0, causing a rather “fast” polynomial decay,
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and β = 0.01, causing a rather “slow” exponential decay. Of course, even with

these settings, exponential decay will still cause the weights to decay “faster” than

polynomial decay for very old elements, which are being processed long after they

were generated. Due to the way we constructed our input, the processing delay of

most stream elements were within 3 seconds. As a result, for most elements, when

they are processed, their weight in polynomial decay was smaller than their weight

in exponential decay, and their weight in sliding window decay was the largest. Since

a smaller decayed weight implies an insertion into fewer samples, and the cost of

computing the expiry time for a particular level is the same for all three decay models,

polynomial decay resulted in the fastest processing time, while sliding window decay

(with window size 200 seconds) led to the slowest processing time.

In general a sketch working with a decay function that decays “faster”, i.e., a

larger value for α and β in polynomial decay and exponential decay respectively, or

a smaller value for W in sliding window decay, has better time efficiency, because a

“faster” decay function makes the weight of the element smaller, hence fewer insertions

are performed on the sketch. This is shown in Figure 4.8(a) and 4.8(b), where for

either exponential decay or polynomial decay, the time efficiency increases as the decay

becomes faster. However, at the first glance, this is not the case for the sliding window

decay displayed in Figure 4.8(c), and the update speed does not seem to change

significantly with W . This is because in our experiments the ages of most elements

at their processing time are no more than the smallest window size considered, 200

seconds, therefore the decayed weights of an element at its processing time using the

sliding window decay of different window sizes (W ∈ {200, 400, 600, 800, 1000}) are

the same (equal to the original weight).

6. Concluding Remarks. In this work, we have presented a powerful result.

There exists a single sketch that allows duplicate-insensitive, distributed, and time-

decayed computation of a variety of aggregates over asynchronous data streams. This

sketch can accommodate any integral decay function, or any decomposable decay

function, via the reduction to sliding window decay. For the class of decomposable

decay functions, the decay function need not even be known a priori, and can be

presented at query time.

We experimentally show that the actual space needed by the sketch can be signifi-

cantly smaller than theoretical predictions, while still meeting the accuracy demands.

Our experiments confirm that the sketch can be updated quickly in an online fashion,

allowing for high throughput data aggregation.
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