
The String Edit Distance Matching Problem with

Moves

GRAHAM CORMODE

AT&T Labs–Research

and

S. MUTHUKRISHNAN

Rutgers University

The edit distance between two strings S and R is defined to be the minimum
number of character inserts, deletes and changes needed to convert R to S. Given
a text string t of length n, and a pattern string p of length m, informally, the string
edit distance matching problem is to compute the smallest edit distance between p
and substrings of t.

We relax the problem so that (a) we allow an additional operation, namely, sub-
string moves, and (b) we allow approximation of this string edit distance. Our result
is a near linear time deterministic algorithm to produce a factor of O(log n log∗ n)
approximation to the string edit distance with moves. This is the first known
significantly subquadratic algorithm for a string edit distance problem in which
the distance involves nontrivial alignments. Our results are obtained by embed-
ding strings into L1 vector space using a simplified parsing technique we call Edit
Sensitive Parsing (ESP).

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complex-

ity]: General

General Terms: Algorithms, Theory

Additional Key Words and Phrases: approximate pattern matching, data streams, edit distance,
embedding, similarity search, string matching

1. INTRODUCTION

String matching has a long history in computer science, dating back to the first
compilers in the sixties and before. Text comparison now appears in all areas of
the discipline, from compression and pattern matching to computational biology

Author’s addres: G. Cormode, AT&T Labs–Research, 180 Park Avenue, Florham Park, NJ 07932
USA.
Work carried out while the first author was at University of Warwick and the second author was
at AT&T Research.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 0000-0000/2006/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, November 2006, Pages 1–0??.

2 · G. Cormode and S. Muthukrishnan

and web searching. The basic notion of string similarity used in such comparisons
is that of edit distance between pairs of strings. If R and S are strings then the edit
distance between R and S, e(R, S), is defined as the minimum number of character
insertions, deletions or changes necessary to turn R into S. This distance measure
is motivated from a number of scenarios: insertions and deletions on lossy com-
munication channels [Levenshtein 1966]; typing errors in documents [Crochemore
and Rytter 1994]; and evolutionary changes in biological sequences [Sankoff and
Kruskal 1983].

In the string edit distance matching problem studied in Combinatorial Pattern
Matching, we are given a text string t of length n and a pattern string p of length
m < n. The string edit distance matching problem is to compute the minimum
string edit distance between p and any prefix of t[i . . . n] for each i; we denote this
distance by D[i]. It is well known that this problem can be solved in O(mn) time
using dynamic programming [Landau and Vishkin 1989; Gusfield 1997]. The open
problem is whether this quadratic bound can be improved substantially in the worst
case.

There has been some progress on this open problem. Masek and Paterson [Masek
and Paterson 1980] show how to compute D[1], the distance between the pat-
tern and the text, using the Four Russians method to improve the bound to
O(mn/ log m), which remains the best known bound in general to this date. Progress
since then has been obtained by relaxing the problem in a number of ways.

—Restrict D[i]’s of interest.
Specifically, the restricted goal is to only determine i’s for which D[i] < k for
a given parameter k. By again adapting the dynamic programming approach
a solution can be found in O(kn) time and space in this case [Landau and
Vishkin 1986; Myers 1986]. An improvement was presented by Sahinalp and
Vishkin [S. ahinalp and Vishkin 1996] (since improved by Cole and Hariharan [Cole
and Hariharan 1998]) with an O(n poly(k/m)) time algorithm which is signifi-
cantly better. These algorithms still have running time of Ω(nm) in the worst
case.

—Consider simpler string distances.
If we restrict the string distances to exclude insertions and deletions, we obtain
the Hamming distance measure. In a simple yet significant development, Abra-
hamson [Abrahamson 1987] gave a Õ(n

√
m) time solution breaking the quadratic

bound1; since then, it has been improved to Õ(n
√

k) [Amir et al. 2000]. Karloff
improved this to Õ(n) by approximating the Hamming distances to 1 + ǫ fac-
tor [Karloff 1993]. Hamming distance results however sidestep the fundamental
difficulty in string edit distance problem, namely, the need to consider nontrivial
alignment of the pattern against text when characters are inserted or deleted.

In this paper, we present a near linear time algorithm for the string edit dis-
tance matching problem. However, there is a caveat: our result relies strongly on
relaxing the problem as described below. Since our result is the first to consider
nontrivial alignment between the text and the pattern and still obtain significantly
subquadratic algorithm in the worst case, we believe it is of interest. Specifically,

1The notation Õ hides polylog factors.

ACM Journal Name, Vol. V, No. N, November 2006.

The String Edit Distance Matching Problem with Moves · 3

we relax the string edit distance matching problem in two ways:
(1) We allow approximating D[i]’s.
(2) We allow an extra operation, substring move, which moves a substring from one
position in a string to another.

This modified edit distance between strings S and R is called string edit distance
with moves and is denoted d(R, S). There are many applications where substring
moves are taken as a primitive: in certain computation biology settings a large
subsequence being moved is just as likely as an insertion or deletion; in a text pro-
cessing environment, moving a large block intact may be considered a similar level
rearrangement to inserting or deleting characters. Note that string edit distance
with moves still faces the challenge of dealing with nontrivial alignments. Formally,
then, d(R, S) is length of the shortest sequence of edit operations to transform R
into S, where the permitted operations affect a string are defined as follows:

—A character deletion at position i transforms S into S[1] . . . S[i−1], S[i+1] . . .S[n].

—An insertion of character a at position i results in S[1] . . . S[i− 1], a, S[i] . . . S[n].

—A replacement at position i with character a gives S[1] . . . S[i−1], a, S[i+1] . . .S[n].

—A substring move with parameters 1 ≤ i ≤ j ≤ k ≤ n transforms S[1] . . . S[n]
into S[1] . . . S[i − 1], S[j] . . . S[k − 1], S[i] . . . S[j − 1], S[k] . . . S[n].

This measure of distince is a metric: the distance between two strings is zero
if and only if they are identical; every operation has an equal cost inverse, so
d(R, S) = d(S, R); and any distance defined by the minimum number of unit cost
editing operations to transform one object into another must obey the triangle
inequality. Note that there is no restriction on the interaction of edit operations
so, for example, it is quite possible for a substring move to take a substring to a new
location and then for a subsequent move to operate on a substring which overlaps
the moved substring and its surrounding characters.

Our main result is a deterministic algorithm for the string edit distance match-
ing problem with moves which runs in time O(n log n). The output is the matching
array D where each D[i] is approximated to within a O(log n log∗ n) factor. Our
approach relies on an embedding of strings into a space of vectors under the L1

metric. The L1 distance between two such vectors is an O(log n log∗ n) approx-
imation of the string edit distance with moves between the two original strings.
This is a general approach, and can be used to solve many other questions of in-
terest beyond the core string edit distance matching problem. These include string
similarity search problems such as indexing for string nearest neighbors, outliers,
clustering and so on under the metric of edit distance with moves. Recently, this
distance was studied by Shapira and Storer [Shapira and Storer 2002], where finding
the distance between two strings was shown to be an NP-Complete problem. The
authors gave an O(log n) approximation algorithm for finding the distance between
pairs of strings. However, the approximation does not solve the string edit distance
matching problem. The nature of the solution presented here is more general and
allows other problems to be solved directly using the results presented.

All of our results rely at the core on a few components. First, we parse strings
into a hierarchy of substrings. This relies on deterministic coin tossing (aka local
symmetry breaking) that is a well known technique in parallel algorithms [Anderson

ACM Journal Name, Vol. V, No. N, November 2006.

4 · G. Cormode and S. Muthukrishnan

and Miller 1991; Cole and Vishkin 1986; Goldberg et al. 1987] with applications
to string algorithms [Alstrup et al. 2000; Cormode et al. 2000; Mehlhorn et al.
1997; Muthukrishnan and S.ahinalp 2000; S. ahinalp and Vishkin 1994; 1996]. In its
application to string matching, precise methods for obtaining hierarchical substrings
differ from one application instance to another, and are fairly sophisticated: in
some cases, they produce non-trees, in other cases trees of high degree. Inspired
by these techniques we present a simple hierarchical parsing procedure called Edit
Sensitive Parsing (ESP) that produces a tree of degree 3. ESP should not be
perceived to be a novel parsing technique; however, it is an attempt to simplify the
technical description of applying deterministic coin tossing to obtain hierarchical
decomposition of strings. We hope that the simplicity of ESP helps reveal further
applications of hierarchical string decompositions.

The second component of our work is the approximately distance preserving
embedding of strings into vector spaces based on the hierarchical parsing. This
general style of solution has been taken earlier [Cormode et al. 2000; Muthukrishnan
and S. ahinalp 2000]. However, the key difference between our work and previous
work is that we embed into L1 space (in contrast, these prior works embedded into
the Hamming space), allowing us to approximate edit distance with moves and
obtain a variety of string proximity results based on this distance for the first time
(the Hamming embeddings cannot be used to obtain our result).

Previous attempts to relax string edit distance involved additional substring op-
erations such as copying and deleting substrings at unit cost. Although this appears
to be a further relaxation of our distance measure, a crucial lemma we use to solve
the string edit distance matching problem with substring moves (Lemma 14) no
longer holds under this distance, and so the string edit distance matching problem
under this metric is open. Our algorithm for the string edit distance problem with
moves remains the only significantly subquadratic algorithm known for non-trivial
alignments.
Layout. We present our Edit Sensitive Parsing (ESP) and show embedding of
strings into the L1 space in Section 2. We go on to solve problems of approximate
string edit distance matching in Section 3. In Section 4 we give our results for other
related problems based around approximating the string distance, and concluding
remarks are in Section 5.

2. STRING EMBEDDING

In this section, we describe how to embed strings into a vector space so that d(),
the string edit distance with substring moves, will be approximated by vector dis-
tances. Consider any string S over an alphabet set σ. We will embed it as V (S), a
vector with an exponential number of dimensions, O(|σ||S|); however, the number
of dimensions in which the vector is nonzero will be quite small, in fact, O(|S|).
This embedding V will be computable in near linear time, and it will have the
approximation preserving property we seek.

At the high level, our approach will parse S into special substrings, and consider
the multiset T (S) of all such substrings. We will ensure that the size of T (S) is at
most 2|S|. Then, V (S) will be the “characteristic vector” for the multiset T (S).
These will be defined precisely later.

ACM Journal Name, Vol. V, No. N, November 2006.

The String Edit Distance Matching Problem with Moves · 5

The technical crux is the parsing of S into its special substrings to generate T (S).
We call this procedure as Edit Sensitive Parsing, or ESP for short. In what follows,
we will first describe ESP, and then describe our vector embedding and prove its
approximation preserving properties.

2.1 Edit Sensitive Parsing

We will build a parse tree, called the ESP tree (denoted ET (S)), for string S: S
will be parsed into hierarchical substrings corresponding to the nodes of ET (S).
The goal is that string edit operations only have a localized effect on the ET . An
obvious parse tree will have all dyadic strings of length 2i, that is, S[k2i . . . ((k +
1)2i − 1)] for all integers k and i; this will yield a fully binary parse tree. But if S
is edited by a single character insertion or deletion to obtain S′, S and S′ will get
parsed by this approach into two very different multisets of hierarchical substrings
so the resulting embedding will not be approximation preserving.

Given a string S, we now show how to hierarchically build its ESP tree in
O(log |S|) iterations. Each iteration generates a new level of the tree, where
each level contains between a half and a third of the number of nodes in the level
from which it is derived. At each iteration i, we start with a string Si and par-
tition it into blocks of length 2 or 3. We replace each such block corresponding to
S[j . . . k] by its name, which is the pair (i, h(S[j . . . k])). Here h is the one-to-one
hash function on substrings of S. Concretely, this can be performed with the Karp-
Miller-Rosenberg labelling scheme [Karp et al. 1972]. Then Si+1 consists of the
names for the blocks in the order in which they appear in Si. So |Si+1| ≤ |Si|/2.
We assume S0 = S, and the iterations continue until we are left with a string of
length 1. The ESP tree of S consists of levels such that there is a node at level i for
each of the blocks of Si−1; their children are the nodes in level i−1 that correspond
to the symbols in the block. Each character of S0 = S is a leaf node. We also
denote by σ0 the alphabet σ itself, and the set of names in Si as σi, the alphabet
at level-i.

It remains for us to specify how to partition the string Si at iteration i. This
will be based on designating some local features as “landmarks” of the string. A
landmark (say Si[j]) has the property that if Si is transformed into S′

i by an edit
operation (say character insertion at k) far away from j i.e., |k − j| >> 1), our
partitioning strategy will ensure that S′

i[j] will still be designated a landmark. In
other words, an edit operation on Si[k] will only affect j being a landmark if j
were close to k. This will have the effect that each edit operation will only change
O(maxj |kj − j|) nodes of the ESP tree at every level, where kj is the closest
unaffected landmark to j. In order to inflict the minimal number of changes to the
ESP tree, we would like this amount to be as small as possible, but still require
Si’s to be geometrically decreasing in length.

In what follows, we will describe our method for marking landmarks and parti-
tioning Si into blocks more precisely. We canonically parse any string into maximal
non-overlapping substrings of three types:

(1) Maximal contiguous substrings of Si that consist of a repeated symbol (so they
are of the form al for a ∈ σi where l > 1),

(2) “Long” substrings of length at least log∗ |σi−1| not of type 1 above.

ACM Journal Name, Vol. V, No. N, November 2006.

6 · G. Cormode and S. Muthukrishnan

(3) “Short” substrings of length less than log∗ |σi−1| not of type 1.

Each such substring is called a metablock. We process each metablock as described
below to generate the next level in the parsing.

2.1.1 Type 2: Long strings without repeats. The discussion here is similar to
those in [Goldberg et al. 1987] and [Mehlhorn et al. 1997]. Suppose we are given
a string A in which no two adjacent symbols are identical and is counted as a
metablock of type 2. We will carry out a procedure on it which will enable it to be
parsed into nodes of two or three symbols.

Given a sequence S with no repeats (i.e., S[i] 6= S[i + 1] for i = 1 . . . |S| −
1), we will designate at most |S|/2 and at least |S|/3 substrings of S as nodes.
The concatenation of these nodes gives S. The first stage consists of iterating
an alphabet reduction technique. This is effectively the same procedure as the
Deterministic Coin Tossing in [Cole and Vishkin 1986], but applied to strings.

Alphabet reduction For each symbol A[i] compute a new label, as follows. A[i−1]
is the left neighbor of A[i], and consider A[i] and A[i − 1] represented as binary
integers. Denote by l the index of the least significant bit in which A[i] differs
from A[i − 1], and let bit(l, A[i]) be the value of A[i] at the lth bit location. Form
label(A[i]) as 2l + bit(l, A[i]) — in other words, as the index l followed by the value
at that index.

Lemma 1. For any i, if A[i] 6= A[i + 1] then label(A[i]) 6= label(A[i + 1]).

Proof. Suppose that the least significant bit position at which A[i] differs from
A[i+1] is the same as that at which A[i] differs from A[i−1] (otherwise, label(A[i]) 6=
label(A[i + 1])). But the bit values at this location in each character must differ,
and hence label(A[i]) 6= label(A[i + 1]).

Following this procedure, we generate a new sequence. If the original alphabet
was size τ , then the new alphabet is sized 2 log |τ |. We now iterate (note this
iteration is orthogonal to the iteration that constructs the ESP tree of S; we are
iterating on A which is a subsequence with no identical adjacent symbols) and
perform the alphabet reduction until the size of the alphabet no longer shrinks.
This takes log∗ |τ | iterations. Note that there will be no labels for the first log∗ |τ |
characters.

Lemma 2. After the final iteration of alphabet reduction, the alphabet size is 6.

Proof. At each iteration of tagging, the alphabet size goes from |σ| to 2⌈log |σ|⌉.
If |σ| > 6, then 2⌈log |σ|⌉ is strictly less than this quantity.

Since A did not have identical adjacent symbols, neither does the final sequence of
labels on A using Lemma 1 repeatedly.

Finally, we perform three passes over the sequence of symbols to reduce the
alphabet from {0 . . . 5} to {0, 1, 2}: first we replace each 3 with the least element
from {0, 1, 2} that does not neighbor the 3, then do the same for each 4 and 5. This
generates a sequence of labels drawn from the alphabet {0,1,2} where no adjacent
characters are identical. Denote this sequence as A′.

Finding landmarks. We can now pick out special locations, known as landmarks,
from this sequence that are sufficiently close together. We first select any position

ACM Journal Name, Vol. V, No. N, November 2006.

The String Edit Distance Matching Problem with Moves · 7

i which is a local maximum, that is, A′[i − 1] < A′[i] > A′[i + 1], as a landmark.
Two maxima could still have four intervening labels, so in addition we select as a
landmark any i which is a local minimum that is, A′[i− 1] > A′[i] < A′[i + 1], and
is not adjacent to an already chosen landmark. An example of the whole process
is given in Figure 1.

Lemma 3. For any two successive landmark positions i and j, we have 2 ≤
|i − j| ≤ 3.

Proof. By our marking procedure, we insist that no adjacent pair of tags are
marked — since we cannot have two adjacent maxima, and we specifically forbid
marking local minima which are next to minima. Simple case analysis shows that
the separation of landmark positions is at most two intervening symbols.

Lemma 4. Determining the closest landmark to position i depends on only log∗ |τ |+
5 contiguous positions to the left and 5 to the right.

Proof. After one iteration of alphabet reduction, each label depends only on
the symbol to its left. We repeat this log∗ |τ | times, hence the label at position i
depends on log∗ |τ | symbols to its left. When we perform the final step of alphabet
reduction from an alphabet of size six to one of size three, the final symbol at
position i depends on at most three additional symbols to its left and to its right.
We must mark any position that is a local maximum, and then any that is a local
minimum not adjacent to a local maximum; hence we must examine at most two
labels to the left of i and two labels to the right, which in turn each depend on
log∗ |τ |+3 symbols to the left and 3 to the right. The total dependency is therefore
as stated.

Now we show how to partition A into blocks of length 2 or 3 around the land-
marks. We treat the leftmost log∗ |σi−1| symbols of the substring as if they were a
short metablock (type 3, the procedure for which is described below). The other
positions are treated as follows. We make each position part of the block generated
by its closest landmark, breaking ties to the right (see Figure 2). Consequent of
Lemma 3 each block is now of length two or three.

2.1.2 Type 1 (Repeating metablocks) and Type 3 (Short metablocks). Recall that
we seek “landmarks” which can be identified easily based only on a local neighbor-
hood. Then we can treat blocks consisting of a single repeated character as large
landmarks. Type 1 and Type 3 blocks can each be parsed in a regular fashion, the
details we give for completeness. Metablocks of length one would be attached to the
repeating metablock to the left or the right, with preference to the left when both
are possible, and parsed as described below. Metablocks of length two or three are
retained as blocks without further partitioning, while a metablock of length four is
divided into two blocks of length two. In any metablock of length five or more, we
parse the leftmost three symbols as a block and iterate on the remainder.

2.1.3 Constructing ET (S). Having partitioned Si into blocks of 2 or 3 symbols,
we construct Si+1 by replacing each block b by h(b) where h is the one-to-one
naming (hash) function. Note that blocks of different levels can use hash functions
onto distinct domains for computing names, so we focus on any given level i. If we

ACM Journal Name, Vol. V, No. N, November 2006.

8
·

G
.
C
o
rm

o
d
e

a
n
d

S
.
M

u
th

u
k
ri
sh

n
a
n

i text c a b a g e h e a d b a g
ii in binary 010 000 001 000 110 100 111 100 000 011 001 000 110
iii labels - 010 001 000 011 010 001 000 100 001 010 000 011
iv labels as integers - 2 1 0 3 2 1 0 4 1 2 0 3

v final labels - 2 1 0 1 2 1 0 2 1 2 0 1

The original text, drawn from an alphabet of size 8 (i), is written out as binary integers (ii). Following one round of alphabet reduction,
the new alphabet is size 6 (iii), and the new text is rewritten as integers (iv). A final stage of alphabet reduction brings the alphabet size
to 3 (v) and local maxima and some local minima are used as landmarks (denoted by boxes)

Fig. 1. The process of alphabet reduction and landmark finding

A
C

M
J
o
u
rn

a
l
N

a
m

e
,
V
o
l.

V
,
N

o
.
N

,
N

o
v
e
m

b
e
r

2
0
0
6
.

The String Edit Distance Matching Problem with Moves · 9

— 2 1 0 1 2 1 0 2 1 2 0 1

Fig. 2. Given the landmark characters, the nodes are formed.

use randomization, h() can be computed for any block (recall they are of length 2
or 3) in O(1) time using Karp-Rabin fingerprints [Karp and Rabin 1987]; they are
one-to-one with high probability. For deterministic solutions, we can use the Karp-
Miller-Rosenberge labelling algorithm in [Karp et al. 1972]. Using bucket sorting,
hashing can be implemented in O(1) time and linear space. Each block is a node
in the parse tree, and its children are the 2 or 3 nodes from which it was formed.

This generates the sequence Si+1; we then iterate this procedure until the se-
quence is of length 1: this is then the root of the tree. Let |Si| be the number of
nodes in ET (S) at level i. Since the first (leaf) level is formed from the characters
of the original string, |S0| = |S|. We have |Si|/3 ≤ |Si+1| ≤ ⌊|Si|/2⌋. Therefore,
3
2 |S| ≤

∑
i |Si| ≤ 2|S|. Hence for any i, |σi| ≤ |S| (recall that h() is one-to-one)

and so log∗ |σi| ≤ log∗ |S|. An example of this is shown in Figure 3.

Theorem 5. Given a string S, its ESP tree ET (S) can be computed in time
O(|S| log∗ |S|).

2.1.4 Properties of ESP. We can compute ET (S) for any string S as described
above (see Figure 4). Each node x in ET (S) represents a substring of S given by
the concatenation of the leaf nodes in the subtree rooted at x.

Definition 6. Define the multiset T (S) as all substrings of S that are represented
by the nodes of ET (S) (over all levels). We define V (S) to be the “characteristic
vector” of T (S), that is, V (S)[x] is the number of times a substring x appears in
T (S). Finally, we define Vi(S) the characteristic vector restricted to only nodes
which occur at level i in ET (S).

Note that T (S) comprises at most 2|S| strings of length at most |S|. V (S) is
a O(|σ||S|) dimensional vector since its domain is any string that may be present
in T (S); however, it is a (highly) sparse vector since at most 2|S| components are
nonzero.

We denote the standard L1 distance between two vectors u and v by ||u − v||1.
By definition, ||V (S) − V (R)||1 =

∑
x∈T (S)∪T (R) |V (S)[x] − V (R)[x]|. Recall that

d(R, S) denotes the edit distance with moves between strings R and S. Our main
theorem shows that V () is an approximation preserving embedding of string edit
distance with moves.

Theorem 7. For strings R and S, let n be max(|R|, |S|). Then

d(R, S) ≤ 2||V (R) − V (S)||1 = O(log n log∗ n)d(R, S)

2.2 Upper Bound Proof

||V (R) − V (S)||1 = O(log n · log∗ n) · d(R, S)

Proof. To show this bound on the L1 distance, we consider the effect of the
editing operations, and demonstrate that each one causes a contribution to the

ACM Journal Name, Vol. V, No. N, November 2006.

10 · G. Cormode and S. Muthukrishnan

c a b a g e h e a d b a g

T (S) = {c, a, b, a, g, e, h, e, a, d, b, a, g, ca, ba, geh, ea, db, ag, caba, gehea, dbag, cabageheadbag}
Consequently, V (S)[a] = 4, V (S)[caba] = 1, V (S)[head] = 0 and
V (S)[cabageheadbag] = 1.

Fig. 3. The hierarchical structure of nodes is represented as a parse tree on the
string S.

L1 distance that is bounded by O(log n log∗ n). Note again that, as mentioned
in the introduction, edit operations are allowed to “overlap” on blocks that were
previously the subject of moves. We give a Lemma which is similar to Lemma 4 but
which applies to any string, not just those with no adjacent repeated characters.

Lemma 8. The closest landmark to any symbol of Si is determined by at most
log∗ |σi|+5 consecutive symbols of Si to the left, and at most 5 consecutive symbols
of Si to the right.

Proof. Given a symbol of Si, say Si[j], we show how to find the closest land-
mark.
Type 1 Repeating metablock Recall that a long repeat of a symbol a is treated
as a single, large landmark. Si[j] is included in such a meta-block if Si[j] = Si[j+1]
or if Si[j] = Si[j − 1]. We also consider Si[j] to be part of a repeating substring if
Si[j − 1] = Si[j − 2]; Si[j +1] = Si[j +2]; and Si[j] 6= Si[j +1] and Si[j] 6= Si[j − 1]
— this is the special case of a metablock of length one. In total, only 2 consecutive
symbols to the left and right need to be examined.
Types 2 and 3 Non-repeating metablocks If it is determined that Si[j] is not
part of a repeating metablock, then we have to decide whether it is in a short or
long metablock. We examine the substring Si[j − log∗ |σi| − 3 . . . j − 1]. If there
is any k such that Si[k] = Si[k − 1] and this is the greatest such k, then there is
a repeating metablock terminating at position k. This is a landmark, and so we
parse Si[j] as part of a short metablock, starting from S[k + 1] (recall that the
first log∗ |σi| symbols of a long metablock get parsed as if they were in a short
metablock). Examining the substring S[j + 1 . . . j + 5] allows us to determine if
there is another repeating metablock this close to position j, and hence we can
determine what node to form containing Si[j]. If there is no repeating metablock
evident in Si[j − log∗ |σi| − 3 . . . j − 1] then it is possible to apply the alphabet
reduction technique to find a landmark. From Lemma 4, we know that this can
be done by examining log∗ |σi| + 5 consecutive symbols to the left and 5 to the
right.

This ability to find the nearest landmark to a symbol by examining only a
bounded number of consecutive neighboring symbols means that if an editing op-
eration occurs outside of this region, the same landmark will be found, and so the

ACM Journal Name, Vol. V, No. N, November 2006.

The String Edit Distance Matching Problem with Moves · 11

same node will be formed containing that symbol. This allows us to prove the
following lemma.

Lemma 9. Inserting k ≤ log∗ n + 10 consecutive characters into S to get S′

means ||Vi(S) − Vi(S
′)||1 ≤ 2(log∗ n + 10) for all levels i.

Proof. We shall make use of Lemma 8 to show this. We have a contribution to
the L1 distance from the insertion itself, plus its effect on the surrounding locality.
Consider the total number of symbols at level i that are parsed into different nodes
after the insertion compared to the nodes beforehand. Let the number of symbols at
level i which are parsed differently as a consequence of the insertion be Mi. Lemma
8 means that in a non-repeating metablock, any symbol more than 5 positions to
the left, or log∗ |σi| + 5 positions to the right of any symbols which have changed,
will find the same closest landmark as it did before, and so will be formed into
the same node. Therefore it will not contribute to Mi. Similarly, for a repeating
metablock, any symbol inside the block will be parsed into the same node (that is,
into a triple of that symbol), except for the last 4 symbols, which depend on the
length of the block. So for a repeating metablock, Mi ≤ 4. The number of symbols
from the level below which are parsed differently into nodes as a consequence of
the insertion is at most Mi−1/2, and there is a region of at most 5 symbols to the
left and log∗ |σi|+ 5 symbols to the right which will be parsed differently at level i.
Because |σi| ≤ |S| ≤ n as previously observed, we can therefore form the recurrence,
Mi ≤ Mi−1/2 + log∗ n + 10. If Mi−1 ≤ 2(log∗ n + 10) then Mi ≤ 2(log∗ n + 10).
From the insertion itself, M0 ≤ log∗ n+10. Finally ||Vi(S)−Vi(S

′)||1 ≤ 2(Mi−1/2),
since we could lose Mi−1/2 old nodes, and gain this many new nodes.

Lemma 10. Deleting k < log∗ n+10 consecutive symbols from S to get S′ means
||Vi(S) − Vi(S

′)||1 ≤ 2(log∗ n + 10).

Proof. Observe that a deletion of a sequence of labels is precisely the dual to
an insertion of that sequence at the same location. If we imagine that a sequence of
characters is inserted, then deleted, the resultant string is identical to the original
string. Therefore, the number of affected nodes must be bounded by the same
amount as for an insertion, as described in Lemma 9.

We combine these two lemmas to show that editing operations have only a
bounded effect on the parse tree.

Lemma 11. If a single permitted edit operation transforms a string S into S′

then ||V (S) − V (S′)||1 ≤ 8 logn(log∗ n + 10).

Proof. We consider each allowable operation in turn.
Character edit operations The case for insertion follows immediately from
Lemma 9 since the effect of the character insertion affects the parsing of at most
2(log∗ n + 10) symbols at each level and there are at most log2 n levels. In total
then ||V (S)−V (S′)||1 ≤ 2 logn(log∗ n+10). Similarly, the case for deletion follows
immediately from Lemma 10. Finally, the case for a replacement is shown by not-
ing that a character replacement can be considered to be a deletion immediately
adjacent to an insertion.
Substring Moves If the substring being moved is at most log∗ n + 10 in length,

ACM Journal Name, Vol. V, No. N, November 2006.

12 · G. Cormode and S. Muthukrishnan

then a move can be thought of as a deletion of the substring followed by its re-
insertion elsewhere. From Lemma 9 and Lemma 10, then ||V (S) − V (S′)||1 ≤
4 logn(log∗ n+10). Otherwise, we consider the parsing of the substring using ESP.
Consider a character in a non-repeating metablock which is more than log∗ n + 5
characters from the start of the substring and more than 5 characters from the end.
Then according to Lemma 8, only characters within the substring being moved de-
termine how that character is parsed. Hence the parsing of all such characters, and
so the contribution to V (S), is independent of the location of this substring in the
string. Only the first log∗ n+5 and last 5 characters of the substring will affect the
parsing of the string. We can treat these as the deletion of two substrings of length
k ≤ log∗ n + 10 and their re-insertion elsewhere. For a repeating metablock, if this
extends to the boundary of the substring being moved then still only 4 symbols of
the block can be parsed into different nodes. So by appealing to Lemmas 9 and 10
then ||V (S) − V (S′)|| ≤ 8 log n(log∗ n + 10).

Lemma 11 shows that each allowable operation affects the L1 distance of a
transform by at most 8 logn(log∗ n + 10). Suppose we begin with R, and per-
form a series of d editing operations, generating R1, R2, . . . Rd. At the conclusion,
Rd = S, so ||V (Rd) − V (S)||1 = 0. We begin with a quantity ||V (R) − V (S)||1,
and we also know that at each step from the above argument that ||V (Rj) −
V (Rj+1)|| ≤ 8 logn(log∗ n + 10). Hence, since d(R, S) operations transform R
into S, then ||V (R) − V (S)||1/8 logn(log∗ n + 10) ≤ d(R, S), giving a bound of
d(R, S) · 8 logn(log∗ n + 10).

2.3 Lower Bound Proof

d(R, S) ≤ 2||V (R) − V (S)||1
Here, we shall prove a slightly more general statement, since we do not need to
take account of any of the special properties of the parsing; instead, we need only
assume that the parse structure built on the strings has bounded degree (in this
case three), and forms a tree whose leaves are the characters of the string. Our
technique is to show a particular way we can use the ‘credit’ from ||V (R)−V (S)||1
to transform R into S. We give a constructive proof, although the computational
efficiency of the construction is not important. For the purpose of this proof, we
treat the parse trees as if they were static tree structures, so following an editing
operation, we do not need to consider the effect this has on the parse structure.

Lemma 12. If trees which represent the transforms have degree at most k, then
the tree ET (S) can be made from the tree ET (R) using no more than (k−1)||V (S)−
V (R)||1 move, insert and delete operations.

Proof. We first ensure that any good features of R are preserved. In a top-
down, left to right pass over the tree of R, we ‘protect’ certain nodes — we place a
mark on any node x that occurs in the parse tree of both R and S, provided that
the total number of nodes marked as protected does not exceed Vi(S)[x]. If a node
is protected, then all its descendents become protected. The number of marked
copies of any node x is min(V (R)[x], V (S)[x]). Once this has been done, the actual
editing commences, with the restriction that we do not allow any edit operation to
split a protected node.

ACM Journal Name, Vol. V, No. N, November 2006.

The String Edit Distance Matching Problem with Moves · 13

We shall proceed bottom-up in log n rounds ensuring that after round i when
we have created Ri that ||Vi(S) − Vi(Ri)||1 = 0. The base case to create R0 deals
with individual symbols, and is trivial: for any symbol a, if V0(R)[a] > V0(S)[a]
then we delete the (V0(R)[a] − V0(S)[a]) unmarked copies of a from R; else if
V0(R)[a] < V0(S)[a] then at the end of R we insert (V0(S)[a] − V0(R)[a]) copies of
a. In each case we perform exactly |V0(R)[a] − V0(S)[a]| operations, which is the
contribution to ||V0(R) − V0(S)||1 from symbol a. R0 then has the property that
||V0(R0) − V0(S)||1 = 0.

Each subsequent case follows an inductive argument: assuming we have enough
nodes of level i−1 (so ||Vi−1(S)−Vi−1(Ri−1)||1 = 0), we show how to make Ri using
just (k−1)||Vi(S)−Vi(R)||1 move operations. Consider each node x at level i in the
tree ET (S). If Vi(R)[x] ≥ Vi(S)[x], then we would have protected Vi(S)[x] copies
of x and not altered these. The remaining copies of x will be split to form other
nodes. Else Vi(S)[x] > Vi(R)[x] and we would have protected Vi(R)[x] copies of x.
Hence we need to build Vi(S)[x] − Vi(R)[x] new copies of x, and the contribution
from x to ||Vi(S) − Vi(R)||1 is exactly Vi(S)[x] − Vi(R)[x]: this gives us the credit
to build each copy of x. To make each of the copies of x, we need to bring together
at most k nodes from level i − 1. So pick one of these, and move the other k − 1
into place around it (note that we can move any node from level i − 1 so long as
its parent is not protected). We do not care where the node is made — this will be
taken care of at higher levels. Because ||Vi−1(S)− Vi−1(Ri−1)||1 = 0 we know that
there are enough nodes from level i − 1 to build every level i node in S. We then
require at most k−1 move operations to form each copy of x by moving unprotected
nodes.

Since this inductive argument holds, and we use at most k − 1 = 2 moves for
each contribution to the L1 distance, the claim follows.

3. SOLVING THE STRING EDIT DISTANCE MATCHING PROBLEM

In this section, we present an algorithm to solve the string edit distance problem
with moves. For any string S, we will assume that V (S) can be stored in O(|S|)
space by listing only the nonzero components of |S|. More formally, we store V (S)[x]
if it is nonzero in a table indexed by h(x), and we store x as a pointer into S together
with |x|.

The result below on pairwise string comparison follows immediately from Theo-
rems 5 and 7 together with the observation that given V (R) and V (S), ||V (R) −
V (S)||1 can be found in O(|R| + |S|) time.

Theorem 13. Given strings S and R with n = max(|S|, |R|), there exists a
deterministic algorithm to approximate d(R, S) accurate up to an O(log n log∗ n)
factor in O(n log∗ n) time with O(n) space.

3.1 Pruning Lemma

In order to go on to solve the string edit distance problem, we need to “compare”
pattern p of length m against t[i . . . n] for each i, and there are O(n) such “com-
parisons” to be made. Further, we need to compute the distance between p and
t[i . . . k] for all possible k ≥ i in order to compute the best alignment starting at
position i, which presents O(mn) subproblems in general. The classical dynamic

ACM Journal Name, Vol. V, No. N, November 2006.

14 · G. Cormode and S. Muthukrishnan

programming algorithm performs all these comparisons in a total of O(mn) time in
the worst case by using the dependence amongst the subproblems. Our algorithm
will take a different approach. First, we make the following crucial observation:

Lemma 14. (Pruning Lemma) Given a pattern p and text t, ∀l, r : 1 ≤ l ≤ r ≤
n,

d(p, t[l . . . l + m − 1]) ≤ 2 d(p, t[l . . . r]).

Proof. Observe that for all r in the lemma, d(p, t[l . . . r]) ≥ |(r − l + 1) − m|
since this many characters must be inserted or deleted. Using triangle inequality
of edit distance with moves, we have for all r, d(p, t[l . . . l + m − 1])

≤ d(p, t[l . . . r]) + d(t[l . . . r], t[l . . . l + m − 1)

= d(p, t[l . . . r]) + |(r − l + 1) − m|
≤ 2d(p, t[l . . . r])

which follows by considering the longest common prefix of t[l . . . r] and t[l . . . l +
m − 1].

The significance of the Pruning Lemma is that it suffices to approximate only
O(n) distances, namely, d(p, t[l . . . l + m − 1) for all l, in order to solve the string
edit distance problem with moves, correct up to a factor 2 approximation.2 Hence,
it prunes candidates away from the “quadratic” number of distance computations
that a straightforward procedure would entail.

Still, we cannot directly apply Theorem 13 to compute d(p, t[l . . . l + m − 1])
for all l, because that will be expensive. It will be desirable to use the answer for
d(p, t[l . . . l+m−1]) to compute d(p, t[l+1 . . . l+m]) more efficiently. In what follows,
we will give a more general procedure that will help compute d(p, t[l . . . l + m− 1])
very fast for every l, by using further properties of ESP.

3.2 ESP subtrees

We know that we can approximate the distance between the pattern p and any
substring of t by comparing the ESP parsings of the two. However, to compute
the parsing of many substrings of t will be expensive and wasteful. In this section
we show that given the ESP tree for a string, then taking the subtree induced by
any substring means that this subtree will have the same edit-sensitive properties
as the whole tree.

Definition 15. Let ETi(S)j be the jth node in level i of the parsing of S.
Define range(ETi(S)j) as the set of values [a . . . b] so that the leaf labels of the
subtree rooted at ETi(S)j correspond to the substring S[a . . . b].
We define an ESP Subtree of S, EST (S, l, r) as the subtree of ET (S) which contains
all nodes S[i] for l ≤ i ≤ r, and all ancestors of these nodes. Formally, we find all
nodes of ETi(S)j where [l . . . r]∩ range(ETi(S)j) 6= ∅. The name of a node derived
from ETi(S)j is (i, h(S[range(ETi(S)j) ∩ [a . . . b]])).

2The Pruning Lemma also holds for the classical edit distance where substring moves are not
allowed since we have only used the triangle inequality and unit cost to insert or delete characters
in its proof; hence, it may be of independent interest. However, it does not hold when substrings
may be copied or deleted, such as the “LZ distance” [Cormode et al. 2000].

ACM Journal Name, Vol. V, No. N, November 2006.

The String Edit Distance Matching Problem with Moves · 15

This yields a proper subtree of ET (S), since a node is included in the subtree
if and only if at least one of its children is included (as the ranges of the children
partition the range of the parent). As before, we can define a vector representation
of this tree.

Definition 16. Define V S(S, l, r) as the characteristic vector of EST (S) by anal-
ogy with V (S), that is, V S(S, l, r)[x] is the number of times the substring x is
represented as a node in EST (S, l, r).

Note that EST (S, 1, |S|) = ET (S), but in general it is not the case that EST (S, l, r) =
ET (S[l . . . r]). However, EST (S, l, r) shares the properties of the edit sensitive
parsing. We can now state a theorem that is analogous to Theorem 7.

Theorem 17. Let d be d(R[lp . . . rp], S[lq . . . rq]). Then

d ≤ 2||V S(R, lp, rp]) − V S(S, lq, rq])||1 = O(log n log∗ n)d

Proof. Certainly, since Lemma 12 makes no assumptions about the structure
of the tree, then the lower bound holds, that the editing distance is no more than
twice the size of the difference between the ESP subtrees.

For the upper bound, consider applying the necessary editing operations to the
substrings of R and S. We study the effect on the original ESP trees, ET (R) and
ET (S). Theorem 7 proved that each editing operation can cause a difference of
at most O(log n log∗ n) between V (S) and V (S′). It follows that the difference in
V S(S, l, r) must be bounded by the same amount: it is not possible that any more
nodes are deleted or removed, since the nodes of EST (S, l, r) are a subset of the
nodes of ET (S). Therefore, by the same reasoning as in Theorem 7, the total
difference ||V S(R, lp, rp) − V S(S, lq, rq)||1 = d · O(log n log∗ n).

We need one final lemma before proceeding to build an algorithm to solve the String
Edit Distance problem with moves.

Lemma 18. V S(S, l+1, r+1) can be computed from V S(S, l, r)) in time O(log |S|).
Proof. Recall that a node is included in EST (S, l, r) if and only if one of its

children is. A leaf node corresponding to S[i] is included if and only if i ∈ [l . . . r].
This gives a simple procedure for finding EST (S, l + 1, r + 1) from EST (S, l, r),
and so for finding V S(S, l + 1, r + 1): (1) At the left hand end, let x be the node
corresponding to S[l] in EST (S, l, r). We must remove x from EST (S, l, r), and
also remove any ancestors which do not contain S[l], to produce EST (S, l + 1, r).
We must also adjust every ancestor of x to ensure that their name is correct. A
node at level i corresponding to the substring S[j . . . k] which is an ancestor of x
was previously represented in the subtree by the name (i, h(S[l . . . k])); this needs
to be replaced by the name (i, h(S[l + 1 . . . k])). (2) At the right hand end let y be
the node corresponding to S[r + 1] in ET (S). We must add y to EST (S, l + 1, r)
to produce EST (S, l + 1, r + 1), and set the parent of y to be its parent in ET (S),
adding any ancestor if it is not present. We then adjust every ancestor of y to ensure
that their name is correct: an ancestor of y corresponding to the string S[j . . . k]
should be given the name (i, h(S[j . . . r + 1])). Since in both cases we only consider
ancestors of one leaf node, and the depth of the tree is O(log |S|), it follows that
this procedure takes time O(log |S|).

ACM Journal Name, Vol. V, No. N, November 2006.

16 · G. Cormode and S. Muthukrishnan

3.3 String Edit Distance Matching Algorithm

Combining these results allows us to solve the main problem we study in this paper.

Theorem 19. Given text t and pattern p, we can solve the string edit distance
matching problem with moves by computing an O(log n log∗ n) approximation to
D[i] = mini≤k≤n d(p, t[i . . . k]) for each i, in time O(n log n).

Proof. Our algorithm is as follows: given pattern p of length m and text t of
length n, we compute ET (p) and ET (t) in time O(n log∗ n) as per Theorem 5. We
then compute EST (t, 1, m). This can be carried out in time at worst O(n) since
we have to perform a pre-order traversal of ET (t) to discover which nodes are in
EST (t, 1, m). From this we can compute D̂[1] = ||V S(t, 1, m)−V S(p, 1, m)||1. We
then iteratively compute ||V S(t, i + 1, i + m) − V S(p, 1, m)||1 from ||V S(t, i, i +
m − 1) − V S(p, 1, m)||1 by using Lemma 18 to find which nodes to add or remove
to EST (t, i, i + m − 1) and adjusting the count of the difference appropriately.
This takes n comparisons, each of which takes O(log n) time. By Theorem 17 and
Lemma 14, D[i] ≤ D̂[i] ≤ O(log n log∗ n)D[i].

If log∗ n is O(log m) as one would expect for any reasonable sized pattern and
text, then a tighter analysis can show the running time to be O(n log m). This is
because we only need to consider the lower log m levels of the parse trees; above
this EST (t, i, i + m − 1) has only a single node in each level.

4. APPLICATIONS AND EXTENSIONS OF OUR TECHNIQUES

Our embedding of strings into vector spaces in an approximately distance preserv-
ing manner has many other applications as such, and with extensions. In this
section, we describe some further results. In contrast to the previous results, which
have all been deterministic, many of these applications make use of randomized
techniques.

4.1 Sketches in the Streaming model

We consider the embedding of a string S into a vector space as before, but now
suppose S is truly massive, too large to be contained in main memory. Instead, the
string arrives as a stream of characters in order: (s1, s2 . . . sn). This is the data
streams model [Henzinger et al. 1998], and we must perform computations with
o(n) space, preferably polylogarithmic space, without backtracking on the data.
We are able to perform our embedding in this restricted model, the first such result
known in string matching, as shown below. The result of our computations is a
sketch vector for the string S. The idea of sketches is that they can be used as
much smaller surrogates for the actual objects in distance computations.

Theorem 20. A sketch sk(V (S)) can be computed in the streaming model to
allow approximation of the string edit distance with moves using O(log n log∗ n)
space. For a combining function f , then d(R, S) ≤ f(sk(V (R)), sk(V (S))) ≤
O(log n log∗ n)d(R, S) with probability 1 − δ. Each sketch is a vector of length
O(log 1/δ) that can be manipulated in time linear in its size. Sketch creation takes
total time O(n log∗ n log 1/δ).

ACM Journal Name, Vol. V, No. N, November 2006.

The String Edit Distance Matching Problem with Moves · 17

Proof. It is precisely the properties of ESP that ensures edit operations have
local effect on the parse structure that also allow us to process the stream with very
little space requirements. Since Lemma 8 tells us that the parsing of any symbol
at any level Sj depends only on at most O(log∗ n) other symbols, we only need
to have these symbols in memory to make the parsing. This is true at every level
in the parsing: only O(log∗ n) nodes at each level need to be held in memory to
make the parsing. When we group nodes of level i together to make a node of
level i + 1 we can conceptually “pass up” this new node to the next level in the
process. Each node corresponds to addition of one to an entry in V (S). We cannot
store all the entries of the vector V (S) without using linear space. Instead, we
can store a short summary of V (S) which can be used as a surrogate for distance
computations. Existing techniques can be adapted to achieve this, in particular
the streaming techniques described in Theorem 2 of [Indyk 2000]. For vectors x

and y, we can compute sketches, sk(x) and sk(y) so with probability 1 − δ for a
combining function f :

(1 − ǫ)||x − y||1 ≤ |f(sk(x), sk(y)) ≤ (1 + ǫ)||x − y||1
Such methods are necessarily approximate and randomized. The requirement for

a naming function h() is solved by using Karp-Rabin signatures for the substrings
[Karp and Rabin 1987]. These have the useful property that the signature for a
long substring can be computed from the signatures of its two or three component
substrings. Thus, we can compute entries of V (S) and so build a sketch of V (S)
using poly-logarithmic space. Since V (S) can be used to approximate the string
edit distance with moves up to a O(log n log∗ n) factor, it follows that these sketches
achieve the same order of approximation. Overall, the total working space needed to
create the parsing is log n levels each keeping log∗ n nodes, totalling O(log n log∗ n)
space.

This type of computation on the data stream is useful in the case where the
string is too large to be stored in memory, and so is held on secondary storage,
or is communicated over a network. Sketches allow rapid comparison of strings:
hence they can be used in many situations to allow approximate comparisons to be
carried out probabilistically in time O(log 1/δ) instead of the O(n) time necessary
to even inspect both strings.

4.2 Tighter Bounds

With further analysis, we can tighten the bounds of approximation slightly. This
is useful for applications where the distances being approximated are large.

Lemma 21. For strings R and S, let n = max(|R|, |S|). Then

d(R, S) ≤ 2||V (R) − V (S)||1 = O(log(n/d(R, S)) log∗ n)d(R, S)

Proof. We improve the upper bound by observing that in the top levels of the
tree, there are only a limited number of nodes, so although these might change many
times during a sequence of editing operations we have the bound ||Vi(S)−Vi(R)||1 ≤
|Si|+|Ri|. A worst case argument says that the greatest number of nodes that could
be affected is when one level in the tree is completely altered. The size of this level
is |Si|+ |Ri| = 8d(log∗ n+10), and the number of nodes above it in the tree (which

ACM Journal Name, Vol. V, No. N, November 2006.

18 · G. Cormode and S. Muthukrishnan

may all be affected) is
∑

j≥i |Si| + |Ri| ≤ 16d(log∗ n + 10). Below this, we may

assume that the worst case is when each edit operation contributes 8(log∗ n+10) to
||Vj(S)−Vj(R)|| for j < i. Thus ||V (S)−V (R)||1 ≤ d(log n−log(d log∗ n))8(log∗ n+
10) + 16d(log∗ n + 10) = O(d log∗ n log(n/d log∗ n)) = O(d log(n/d) log∗ n).

We note that since the approximation depends on log(n/d), the quality of the
approximation actually increases the less alike the strings are.

4.3 Other Applications

The embedding into L1 distance leads to a variety of results as an immediate con-
sequence, using existing algorithms in this vector space. We outline some examples
of these.

—Outlier finding: given a set of strings, these can be preprocessed in polynomial
time. Then for a query string, we can find a string which is at least O(ǫn)
away from the query for some constant fraction ǫ, with constant probability. The
procedure takes time O(n log k+log3 k) per query, using the results of [Goel et al.
2001] with Lemma 21.

—Approximate Nearest Neighbors: preprocess a set of strings so that given a query
sequence we can find an approximate nearest neighbor. Using the embedding to
L1 and the algorithms of [Indyk and Motwani 1998] we can find O(log n log∗ n)
approximations to the nearest neighbor with polynomial time pre-processing and
O(n log k + k1/2 log n) query time.

—Other similar problems can be solved for the string edit distance with moves using
the L1 embedding. For example, we can perform clustering, similarity search,
minimum spanning tree and so on by adapting algorithms for these problems
that work in L1 space to use the embedding.

5. CONCLUSION

We have provided a deterministic near linear time algorithm that is an O(log n log∗ n)
approximation to the string edit distance matching problem with moves. This is the
first substantially subquadratic algorithm known for any string edit distance match-
ing problem with nontrivial alignment. Our result was obtained by embedding this
string distance into the L1 vector distance; this embedding is of independent in-
terest since it can be used to solve a variety of string proximity problems such
as nearest neighbors, outlier detection, and stream-based approximation of string
distances. All of these results are the first known for this string edit distance. It
is open whether the O(log n log∗ n) factor in our approximations can be improved.

With only minor modifications, the techniques in this paper can allow the dis-
tances being approximated to incorporate additional operations such as linear scal-
ings, substring reversals, copies, deletions and interchanges. However, the out-
standing open problem is to understand the standard string edit distance matching
problem (or quite simply computing the standard edit distance between two strings)
where substring moves are not allowed, and find solutions faster than the essentially
quadratic upper bounds. We have yet to make progress on this problem.

Additional Note Subsequent to completing this work, we learned of [S. ahinalp and
Vishkin 1995] where strings are parsed into 2-3 trees similar to our ESP method.

ACM Journal Name, Vol. V, No. N, November 2006.

The String Edit Distance Matching Problem with Moves · 19

That paper proposes a novel approach for data compression by parsing strings
hierarchically online; their methods do not involve embeddings, and do not yield
results in this paper.

Acknowledgements We gratefully thank Cenk S.ahinalp for introducing us to
string parsings, useful comments and pointing us to [S. ahinalp and Vishkin 1995].
We also thank Sariel Har-Peled, Piotr Indyk and Mike Paterson for comments on
early versions.

REFERENCES

Abrahamson, K. 1987. Generalized string matching. SIAM Journal on Computing 16, 6, 1039–
1051.

Alstrup, S., Brodal, G. S., and Rauhe, T. 2000. Pattern matching in dynamic texts. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms. 819–828.

Amir, A., Lewenstein, M., and Porat, E. 2000. Faster algorithms for string matching with
k-mismatches. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms. 794–803.

Anderson, R. J. and Miller, G. L. 1991. Deterministic parallel list ranking. Algorithmica 6,
859–868.

Cole, R. and Hariharan, R. 1998. Approximate string matching: A simpler, faster algorithm.
In Proceedings of ACM-SIAM Symposium on Discrete Algorithms. 463–472.

Cole, R. and Vishkin, U. 1986. Deterministic coin tossing and accelerating cascades: micro and
macro techniques for designing parallel algorithms. In Proceedings of the ACM Symposium on

Theory of Computing. 206–219.

Cormode, G., Paterson, M., S.ahinalp, S. C., and Vishkin, U. 2000. Communication complex-
ity of document exchange. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms.
197–206.

Crochemore, M. and Rytter, W. 1994. Text Algorithms. Oxford University Press.

Goel, A., Indyk, P., and Varadarajan, K. 2001. Reductions among high dimensional proximity
problems. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms. 769–778.

Goldberg, A., Plotkin, S., and Shannon, G. 1987. Parallel symmetry-breaking in sparse
graphs. In Proceedings of the ACM Symposium on Theory of Computing. 315–324.

Gusfield, D. 1997. Algorithms on Strings, Trees and Sequences: Computer Science and Com-

putational Biology. Cambridge University Press.

Henzinger, M., Raghavan, P., and Rajagopalan, S. 1998. Computing on data streams. Tech.
Rep. SRC 1998-011, DEC Systems Research Centre.

Indyk, P. 2000. Stable distributions, pseudorandom generators, embeddings and data stream
computation. In IEEE Conference on Foundations of Computer Science. 189–197.

Indyk, P. and Motwani, R. 1998. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the ACM Symposium on Theory of Computing. 604–613.

Karloff, H. 1993. Fast algorithms for approximately counting mismatches. Information Pro-

cessing Letters 48, 2, 53–60.

Karp, R. M., Miller, R. E., and Rosenberg, A. L. 1972. Rapid identification of repeated
patterns in strings, trees and arrays. In Proceedings of the ACM Symposium on Theory of

Computing. 125–136.

Karp, R. M. and Rabin, M. O. 1987. Efficient randomized pattern-matching algorithms. IBM

Journal of Research and Development 31, 2, 249–260.

Landau, G. and Vishkin, U. 1989. Fast parallel and serial approximate string matching. Journal

of Algorithms 10, 2, 157–169.

Landau, G. M. and Vishkin, U. 1986. Efficient string matching with k mismatches. Theoretical

Computer Science 43, 239–249.

Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady. 10, 8, 707–710.

ACM Journal Name, Vol. V, No. N, November 2006.

20 · G. Cormode and S. Muthukrishnan

Masek, W. J. and Paterson, M. S. 1980. A faster algorithm computing string edit distances.

Journal of Computer and System Sciences 20, 18–31.

Mehlhorn, K., Sundar, R., and Uhrig, C. 1997. Maintaining dynamic sequences under equality
tests in polylogarithmic time. Algorithmica 17, 2, 183–198.

Muthukrishnan, S. and S.ahinalp, S. C. 2000. Approximate nearest neighbors and sequence
comparison with block operations. In Proceedings of the ACM Symposium on Theory of Com-

puting. 416–424.

Myers, E. W. 1986. An O(ND) difference algorithm and its variations. Algorithmica 1, 251–256.

S.ahinalp, S. C. and Vishkin, U. 1994. Symmetry breaking for suffix tree construction. In
Proceedings of the ACM Symposium on Theory of Computing. 300–309.

S.ahinalp, S. C. and Vishkin, U. 1995. Data compression using locally consistent parsing. Tech.
rep., University of Maryland Department of Computer Science.

S.ahinalp, S. C. and Vishkin, U. 1996. Efficient approximate and dynamic matching of patterns
using a labeling paradigm. In IEEE Conference on Foundations of Computer Science. 320–328.

Sankoff, D. and Kruskal, J. B. 1983. Time Warps, String Edits and Macromolecules: the

Theory and Practice of Sequence Comparison. Addison Wesley.

Shapira, D. and Storer, J. A. 2002. Edit distance with move operations. In Proceedings of

the 13th Symposium on Combinatorial Pattern Matching. Lecture Notes in Computer Science,
vol. 2373. 85–98.

ACM Journal Name, Vol. V, No. N, November 2006.

