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Abstract1 
Electronic book is an application with a multimedia 
database of instructional resources, which include 
hyperlinked text, instructor’s audio/video clips, slides, 
animation, still images, etc.  as well as content-based 
information about these data, and metadata such as 
annotations, tags, and cross-referencing information. 
Electronic books in the Internet or on CDs today are 
not easy to learn from. We propose the use of a 
multimedia database of instructional resources in 
constructing and delivering multimedia lessons about 
topics in an electronic book. 
We introduce an electronic book data model containing 
(a) topic objects and (b) instructional resources, called 
instruction module objects, which are multimedia 
presentations possibly capturing real-life lectures of 
instructors. We use the notion of topic prerequisites for 
topics at different detail levels, to allow electronic book 
users to request/compose multimedia lessons about 
topics in the electronic book. We present automated 
construction of the “best” user-tailored lesson (as a 
multimedia presentation. 
 

1. Introduction 

 
Presently, a large number of user manuals and books 
are made available in electronic form over the Internet 
or in CD-ROMS. These electronic books are typically 
large, usually contain hyper-linked table of contents, 
indexed search facilities on keywords, and occasionally 
have multimedia data such as images, maps, and 
audio/video streams.  Most of the time, the sheer size 
of these electronic books and their static and black box 
nature impede the user in effectively learning from 
such books.  One commonly hears the frustration of 
electronic book readers in trying to learn topics from 
electronic books or in finding an answer to a specific 
question that they have. We think that new techniques 
and tools are needed for modeling, querying, 
“teaching” and “learning” from electronic books. We 
use the term electronic book as an application with a 
multimedia database of instructional resources 
containing, among others, pre-captured multimedia 
presentations about topics in the book. Our goal is 
designing techniques for the automated and/or query-
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based assembly of lessons from electronic books. In 
doing so, we borrow from the Computer-Assisted 
Learning (CAL) literature, and use some of the existing 
CAL techniques such as  “over-the-shoulder” guidance 
of users, and interactivity in our environment. We 
propose electronic books as learning environments. We 
assume that multimedia presentations of instructors 
about topics in a book are captured and enhanced with 
content-based information, tags, annotations, etc. We 
call each such unit of data an instruction module, or 
simply a module2, and maintain it in the database of an 
electronic book. This way, a content-based model of 
instruction modules is provided. The DBMS maintains 
user profiles (such as users’ knowledge levels about 
topics covered in the electronic book), and allows 
automated or query-based construction of user-tailored 
multimedia lessons for a given topic. In short, an 
electronic book is an application with a multimedia 
database, and has the ability to 

a) model its data, 
b) maintain users’ knowledge about topics 

covered in the electronic book, 
c) keep a (possibly, growing) list of multimedia 

instruction modules of instructors, e.g., about 
the electronic book’s original author’s 
teaching sessions as well as the teaching 
sessions of other instructors,  

d) automatically or manually create multimedia 
lessons as multimedia presentations, and 

e) enable users to learn about ad hoc topics or to 
obtain answers to specific questions using a 
mixture of searching, browsing and querying. 

In essence, an electronic book application, 
together with its database, automated lesson 
construction techniques and a query language, provides 
controlled, interactive and over-the-shoulder-guided 
learning environments. Clearly, such applications can 
be used for independent, remote and distance learning 
as well. 

This paper 

                                                           
2 As an example, an instruction module can be an enhanced, 
tagged, annotated, and catalogued version of a course lecture, 
a tutorial, or a seminar. It may contain instructor’s 
audio/video clips, student’s audio/video clips (asking 
questions and interacting with the instructor), whiteboards, 
animated data, slides, text, etc. 
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1) extends electronic books with a data model 
containing (a) topic hierarchies, (b) instruction 
modules of instructors about topics in the book, 
(c) prerequisite dependencies  specifying the 
order of teaching different topics at different 
knowledge levels, (d) user profiles with explicit 
knowledge levels on each topic,  (e) table of 
contents (TOC) hierarchies, (f) relationships 
between various instructional resources such as 
topic hierarchies, TOC  hierarchies, keywords, 
references, assignments, assignment solutions (as 
text data or as instruction modules), tests, etc., 

2) introduces the notions of teaching and learning 
topics, by using multimedia presentations, called 
lessons, constructed from instruction modules, 
and 

3) discusses automated lesson construction 
techniques for assembling the “best” lesson from 
instruction modules in an automated manner, 
given the user’s request for learning a set of 
topics. 

Section 2 lists the main features of a data model 
for electronic books, to be used as a basis in the rest of 
the paper. Section 3 discusses prerequisite 
dependencies. In Section 4, we discuss automated 
construction of the best lesson for a specific lesson 
construction request. Section 5 concludes. 

2. Electronic book data model 

We use an object-oriented data model for 
electronic book databases with the following object 
types and properties. 
• Electronic book objects of type: text, tables, figures, 

pictures, pie-charts, histograms, maps, images. Text 
objects are paginated with page objects containing 
some of the above-listed objects as well as 
hyperlinks to different objects.  

 
• Topic Hierarchies. In hardcopy books, topics, in their 

simplest form as keywords, appear as part of a book 
index at the end of each book. We allow topics to be 
defined as phrases or keywords. Topics form a main 
component in our electronic book data model. Topics 
are organized into a “topic hierarchy” (TP 
hierarchy). In hardcopy books, the TP hierarchy 

itself is not used. For each topic, we assume that 
there are a number of integer-valued topic detail 
levels describing how advance the level of the topic 
is. To illustrate topic detail levels, for example, the 
knowledge of a user on the topic “relational 
calculus” can be at a beginner (i.e., detail level 1) 
level, e.g., only “relational calculus with 
propositional calculus formulas”. Or, it may be at an 
advanced (say, detail level n) level, e.g., “relational 
calculus and its safety”, etc. Topic x at detail level i 
is more advanced (i.e., more detailed) than topic x at 
detail level j when i > j. 

• Text objects that are classified into a Table of 
Contents (TOC) hierarchy with the book object at 
the top level, chapter objects at the next level 
followed by section objects, subsection objects, and 
so on.  This is the traditional classification hierarchy 
used in hardcopy textbooks, and also available in 
(some) electronic books today.  

• User profiles contain the knowledge levels of users 
about topics as well as users’ preferences. Other 
information kept in user profiles may be sections 
(chapters, examples, pictures, etc.) of electronic 
books that are read/viewed by users, the number of 
times each section is taught, and the time spent on 
sections.  
If the user has learned the topic x at level n then we 
say that the user’s knowledge level of topic x is at 
level n. For a given user and a topic, the knowledge 
level of the user on the topic (zero, originally) is kept 
in the user profile. 

• Multimedia instruction modules on topics.  The main 
component of an instruction module, or simply 
module, is a synchronized multimedia presentation 
which contains audio/video segments of 
instructors/students/teaching assistants as well as 
images, text, animation, whiteboards used by the 
instructor/students, etc. In addition to the multimedia 
presentation, an instruction module also contains a 
content-based model of the multimedia data in the 
presentation. As an example, the content-based 
model captures information like “Instructor John 
Doe explains with an example the (topic) Relational 
Algebra Divison operator in the audio/video segment 
#3”. In Figure 2.1, using the horizontal x-axis as a 
timeline, (the multimedia presentation component of) 
an instruction module is illustrated. Possibly, an 
instruction module is captured in real-time from a 
live lecture/teaching session in an automated manner. 
It is then analyzed and enhanced by a domain expert 
(instructor or someone highly trained in the subject 
matter) by identifying important and relevant parts 
and content information, tagging different media, 
cross-referencing, etc. Finally, we assume that an 
electronic book administrator (EBA), a computer 
expert, modifies the database by entering the 
structure of the presentation (in the instruction 

     
 
Window 1:                                                                          Audio/Video             1         
Student 1 
 
Window2:                            Still Image A                                                     
Still Images 
 
Window3: 
Instructor Lectures              Audio/Video                        Video Only                       
  
Figure 2.1.  Multimedia Presentation Component of an Instruction 
Module  
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module), defining the content-based model and 
entering content data, etc. into the database. We 
expect that the process of instruction module creation 
will be a labor-intensive, but one-time, task 
involving the joint expertise of the domain expert 
and the EBA. 

• Prerequisite Dependencies. Some hardcopy 
textbooks provide “dependency diagrams” in an 
attempt to help instructors/students choose the order 
of topic coverage. For example, the prerequisite to 
discussing the topic relational algebra in a database 
course is the coverage of the topic relational data 
model. We formalize this concept into the concept of  
“prerequisite dependencies” among topics, and use it 
and the existing instruction modules in the database, 
for automated lesson (i.e., multimedia presentation) 
construction. For example, we may have the 
prerequisite dependency “the topic relational 
algebra (ra) should be taught after teaching the topic 
relational data model (rm)”. That is, the teaching 
dependency ra�rm holds. In a given course, if topic 
y is a prerequisite to another topic x (i.e., x→y 
holds), for the cohesiveness of the course, the 
instructor makes sure that topic y is covered first, 
and topic x is covered next. We require that, when a 
student requests a lesson (a multimedia presentation) 
on x, and has not yet been rendered those instruction 
modules that correspond to y then the constructed 
lesson should also have the instruction modules that 
correspond to y. Please note that we actually use 
prerequisite dependencies among topics at different 
detail levels, e.g., the prerequisite dependency 
ra4�rm1 states that “the prerequisite to teaching 
relational algebra at the detail level 4 is teaching 
relational data model at the detail level 1 or higher”.  

• Users request multimedia lessons from the electronic 
book. Each lesson is a sequence of (multimedia 
presentation components of) instruction modules, as 
defined above. Thus, a lesson is also a multimedia 
presentation, constructed from multiple modules, and 
refined by the system. One of the main 
responsibilities of the electronic book application is 
to construct “semantically coherent” lessons (that 
satisfy the prerequisite dependencies and other user-
defined constraints) from instruction modules. 

 
We say that lesson S containing a set of instruction 

modules covers topic t at level i if S contains all the 
instruction modules in the mapping from the topic t at 
level i to the set of instruction modules.  
 
• For the sake of simplicity, in this paper, we assume 

that there is a total ordering of all the instruction 
modules in the database so that, for a given lesson L 
containing a number of instruction modules to be 
rendered (i.e., played out), modules in L are ordered 
into a sequence. Thus, any chosen sets of modules 

are always ordered by this total ordering in order to 
form a lesson.  

We now define the notions of teaching and learning. 

Definition (Teaching): Topic t is said to be taught at 
level i if a lesson that covers the topic t at level i and all 
the prerequisite topics of t at level i are rendered to the 
user at least once. Such a lesson is said to be a teaching 
lesson for topic t at level i. 

For each user, we keep in the database those topics 
that are taught, the dates and the number of times they 
are taught, instruction modules played out, etc.  
• For each topic and its level, there is a timed test in the 

database that evaluates the users’ knowledge on 
the topic at that level.  The test is passed when the 
user obtains a score above a pre-defined threshold. 

As in a traditional classroom environment, testing is 
not always sufficient by itself to make sure that topics 
are “learned” by electronic book users. Developing a 
deeper learning behavior for electronic book users is a 
research topic for education specialists. In this paper, 
we will make the, perhaps insufficient, assumption 
that, for electronic book users, given a topic, passing 
the associated test constitutes “learning” the topic at 
that level.  

Definition (Learning): Topic t is said to be learned at 
level i by a user if the user passes the test for t at level 
i. A learning lesson for topic t at level i is a lesson that 
includes in it the test for t at level i.  
 

3. Prerequisite dependencies 

Prerequisite dependencies can be defined in 
different ways. One approach is for the electronic book 
administrator to enter the dependencies directly into the 
system. Another approach is the automated creation of 
prerequisite dependencies: the electronic book DBMS 
can be instructed to create a prerequisite dependency 
x→z from topic x to topic z when the number of 
references to topic z in (the instruction modules of) 
topic x exceed a predetermined threshold, say, K. 
Similarly, DBMS can create a prerequisite dependency 
xy→z when the number of references to topic z in (the 
instruction modules of) topics x and y exceed K, even 
though the number of references to topic z in x or y 
alone may be less than K. “References to topic z” can 
be (i) references to z itself or to its descendant topics in 
the topic hierarchy of z, or (ii) the occurrences of 
“keywords” of z. 

3.1. Consistency of prerequisite dependencies 
We expect that, in different electronic book 

environments, different and possibly domain-
dependent consistency requirements will exist for 
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prerequisite dependencies. As domain-independent 
consistency example, consider the following rules. 

Consistency Rule #1: For a dependency xa→xb, the 
property a>b always holds. 

That is, for a given topic, if there is a prerequisite 
dependency within its levels, the dependency is always 
from a higher (i.e., more detailed; more advanced) 
level to a lower (i.e., less detailed) level. In order to 
teach a topic at a given level, it may be necessary to 
teach it first at a simpler level, but never at a more 
advanced level.  

Consistency Rule #2: For two dependencies xa→yb and 
xc→yd, if a<c then b≤d.  

This is due to the fact that, since c>a, x at level c is 
a more detailed (i.e., more advanced) topic than x at 
level a. Thus, teaching x at level c should necessitate 
teaching y at a level at least as advanced as b, i.e., y at 
level d where d is at least as high as b.  

The following consistency requirement may apply 
to some, but not necessarily all, electronic book 
environments. 
 
Consistency Rule #3: If there is a dependency from x 
(at any level) to y (at any level) then, for each level i of 
x, there is a dependency from x at level i to y at some 
level. 

3.2. Computing topic and prerequisite 
dependency closures 

Prerequisite dependencies may be 
a) cyclic (e.g., x→x forms a trivial cycle; x→y 

and y→x form a non-trivial cycle). The 
alternative is to allow only acyclic prerequisite 
dependencies (e.g., trivial or non-trivial cycles 
are not allowed), 

b) (left-hand-side) decomposable (e.g., xy→z is 
equivalent to x→z and y→z) or 
nondecomposable (e.g., xy→z is not 
equivalent to x→z and y→z). 

We first define what it means for a set of 
dependencies to be acyclic. 

Def’n: A set of dependencies is strongly cyclic if, 
applying the rule of transitivity, it is possible to deduce 
that a topic depends on itself.  For example, the set F = 
{X → Y, Y → Z, Z → X} is strongly cyclic.  This still 
holds if X represents a set of topics. 

Def’n: A set of dependencies is weakly cyclic if, 
treating the set of dependencies as decomposable and 
applying the rule of transitivity it is possible to deduce 
that a topic depends on itself.  For example, the set F = 
{WX →Y, YZ →V, V →W} is weakly cyclic.   

A set of dependencies is considered to be acyclic if it is 
neither weakly cyclic nor strongly cyclic.  Absence of 
weak cycles implies absence of strong cycles. 

The simplest prerequisite dependency model that is 
commonly used in hardcopy textbooks allows only 
acyclic and decomposable prerequisite dependencies. 
However, one can also have electronic book 
environments in which prerequisite dependencies are 
cyclic and/or nondecomposable. Consider the case of a 
cycle of three prerequisite dependencies, namely, x�y, 
y�z, z�x among topics x, y, and z. We interpret the 
existence of this cycle as “in any lesson request having 
one of topics x, y, or z, the instruction modules that 
cover all three topics must be included into the 
constructed lesson”. Clearly, this attaches a separate 
semantics to a cycle of prerequisite dependencies, 
which overrides the semantics of each individual 
prerequisite dependency in the cycle. 

As for decomposability, consider the prerequisite 
dependency ab�c which states that “ a and b together 
in a presentation request have c as the prerequisite” or 
“the prerequisite of a and b is c”. We say that ab�c is 
nondecomposable if ab�c does not imply that a�c 
and b�c. (Note that the reverse is always true, i.e., the 
prerequisite dependencies a�c and b�c always imply 
the prerequisite dependency ab�c)3. Below we 
illustrate a case in which prerequisite dependencies are 
nondecomposable. 

Example 3.1. Assume s, q, and r represent the topics 
SQL, Query-by-Example, and Relational Calculus, 
respectively. When a lesson about both SQL and 
Query-by-Example, both at level 2, is requested, it may 
make sense to include Relational Calculus at level 1 
into the lesson for completeness (thus, the prerequisite 
dependency s2q2→r1). However, we may not require 
Relational Calculus to be included into the lesson if 
only one of SQL or Query-by-Example is requested 
(e.g., s2q2→r1 is not equal to s2→r1 and q2→r1). 

In the rest of this section, we discuss how to 
compute topic and/or prerequisite dependency closures 
when prerequisite dependencies are cyclic/acyclic and 
decomposable/nondecomposable. 

 
3.2.1.  Cyclic and nondecomposable prerequisite 
dependencies.  If prerequisite dependencies are 
nondecomposable and allowed to be cyclic then their 
semantics is equivalent to the semantics of functional 
dependencies. That is, prerequisite dependencies can 
be axiomatized using Armstrong’s axioms, which are 
sound and complete [3]. One can then compute P+, the 

                                                           
3 When prerequisite dependencies are automatically created 

by the DBMS as discussed in the first paragraph of section 
3, their semantics implies nondecomposable prerequisite 
dependencies. 
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closure (i.e., the set of implied prerequisite 
dependencies) of a set P of prerequisite dependencies. 
More interestingly, one can find the closure (i.e., all the 
prerequisite topics) X+ of a set X of topics by using the 
O(N.L) closure algorithm for a set of attributes [3] 
where N is the number of prerequisite dependencies, 
and L is the length of the encoding for a prerequisite 
dependency. 

Assume that there is a nondecomposable 
prerequisite dependency xy�z in the database. First, 
the user u asks for a lesson which includes x, but does 
not include y or z. Later, the user u asks for another 
lesson which includes y, but does not include x or z. As 
a result of these two lessons, user u will be taught x and 
y, but not z, thus violating the prerequisite dependency 
xy�z. One possible solution to this problem is to 
utilize the user profiles. Since user profiles contain 
users’ knowledge about all instruction modules that are 
taught to the user, topic z coverage can be added to the 
second lesson request when topic y is requested (it is 
known in the user profile that x is taught to the user 
before). 
 
3.2.2.  Acyclic and decomposable prerequisite 
dependencies. If prerequisite dependencies are acyclic 
and decomposable then a given topic cannot be a 
prerequisite to itself. This means that the reflexivity 
axiom for functional dependencies does not apply to 
prerequisite dependencies of this model. Similarly, 
augmentation axiom of functional dependencies does 
not apply either4. Also, this model allows prerequisite 
dependencies of the form xy→z to be equivalent to 
x→z and y→z, which is not true for functional 
dependencies. For this case, to find the closure P+ of a 
set P of prerequisite dependencies, we can first “fully” 
decompose all prerequisite dependencies into P’ so as 
to have only one topic in the left-hand-side and the 
right-hand-side of each dependency. Then, we can 
create a dependency graph GP(V,E), where V is the set 
of topics, and the set E of edges contains the edge from 
node a to node b iff P’ contains the prerequisite 
dependency a�b. The closure P+ of P can then be 
found by finding the transitive closure of GP. And, the 
closure X+ of a set of topics X can be found by finding 
all topics that contain nodes in GP reachable from each 
of the nodes in X.  Also note that we can check the 
acyclicity of a set of prerequisite dependencies in this 
model by simply checking the existence of a cycle in 
its precedence graph in linear time. 

 

                                                           
4 Given x→y and z, zx→zy is valid for functional 

dependencies. However, for prerequisite dependencies, 
when z is replaced by x, we have xx→xy, which creates a 
trivial cycle and is not allowed. 

3.2.3.  Cyclic and decomposable prerequisite 
dependencies.  If prerequisite dependencies are cyclic 
and nondecomposable then finding the closure P+ of a 
set P of prerequisite dependencies is identical to the 
solution of section 3.2.2 above. We first “fully” 
decompose all prerequisite dependencies in P into P’ so 
as to have only one topic in the left-hand-side and the 
right-hand-side of each dependency. Then, we create 
the dependency graph GP(V,E), where V is the set of 
topics, and the set E of edges contains the edge from 
node a to node b iff P’ contains the prerequisite 
dependency a�b. The closure P+ of P can be found by 
finding the transitive closure of GP. And, the closure X+ 
of a set of topics X can be found by finding all nodes in 
GP reachable from each of the nodes in X.  

 
3.2.4.  Acyclic and nondecomposable prerequisite 
dependencies.  If prerequisite dependencies are acyclic 
and nondecomposable then the left-hand-side of a 
prerequisite dependency may contain multiple topics. 
In this case, one may think of using a dependency 
graph where the node from which an edge emanates 
contains a set of topics. Such a graph leads to a 
hypergraph as a dependency graph. However, unlike 
the solutions in sections 3.2.2 and 3.2.3, the transitive 
closure of such a graph would not capture all the 
dependencies. Consider, for example, the set of 
dependencies {x→a,  ab→c}, and the request for the 
closure of the set {x, b} of topics. The transitive 
closure of the dependency graph returns {x, a, b} as the 
answer whereas the correct answer should be {x, a, b, 
c}. Thus, transitivity itself is not sufficient for topic 
closure. Below we give a sound and complete 
axiomatization for this case, and describe a topic 
closure algorithm. 
 

We observe that Armstrong's Axioms, used to 
axiomatize standard functional dependencies, are not 
appropriate when acyclicity is demanded. The axiom of 
reflexivity generates trivial (weak) cycles, as does the 
axiom of augmentation.   
Def’n: Pseudo-transitivity axiom: If  X→Y and 
WY→Z then WX→Z. 
 
Def’n: Split/join axiom: if X→AB then X→A and X→ 
B, and vice-versa.   
 
Theorem 1: The pseudo-transitivity and split/join 
axioms are sound and complete. 
Proof: Omitted due to space requirements. Please see 
[1] for details. 
 
The following algorithm computes the closure of a set 
of topics X. 
Algorithm: 
1. X(0) is set to empty. 
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2. X(i+1) is X(i)  U {y} such that there is a dependency in 
F of the form Xi → y, where Xi ⊆X U X(i) and y ∉X.   
 
The algorithm terminates when X(j)=X(j+1) (when no 
dependency can be invoked), and the output X+ is X(j).  
Clearly it will always terminate.  
 
Lemma 1:  Algorithm 1 correctly computes X(+). 
Proof: Omitted due to space requirements. Please see 
[1]. 
 
This algorithm can be implemented naively to check 
through the set of dependencies at each iteration to see 
whether any new topics can be added.  A more efficient 
implementation is described in [3], which  runs in time 
linear in the size of the dependencies (counting one for 
each topic which appears in each dependency). 
 
Finally, we show that our system does not break the 
condition of acyclicity. 
 
Lemma 2: Computation of the closure of a set of 
topics X under a set F of acyclic nondecomposable 
dependencies does not violate acyclicity. That is, X 
⇒X+ will not imply any cycles. 
Proof: Omitted due to space requirements. Please see 
[1]. 
 

4. Automated lesson construction  

When users request a lesson from an electronic 
book in an automated manner, what types of 
constraints would they attach to their requests? We list 
some possibilities: 

(a) Lessons about topics. An example request is 
“prepare a lesson on topics x at level i and y 
at level j”. 

(b) an upper bound tUB on the time length of the 
lesson. An example is “prepare a lesson on 
topic x which is at most 30 minutes long”.  

(c) Lessons constructed around tests, 
assignments, quizzes, chapters, etc. An 
example is “Prepare a lesson on (the topics 
covered in) the current assignment”. Since we 
assume that there are mappings from tests, 
quizzes, assignments, chapters, etc., into 
topics, these requests reduce to requests of 
type (a) above, and we will not deal with such 
requests. 

(d) A quantifiable increase, say integer k, on the 
user’s knowledge level(s) on a given topic. 
An example is “prepare a learning lesson (i.e., 
one with tests) on topic x that, if I pass the 
tests in the lesson, increases my current 
knowledge on topic x by k units (e.g., from 
“beginner” to “intermediate”)”. 

In this section, we characterize and classify 
“typical” automated lesson construction requests, and 
discuss how they can be evaluated.  

4.1. Automated lesson construction requests 
The lesson construction requests described in this 

section have different solutions for each prerequisite 
dependency case (1-4) described in Section 3.2. The 
differences between the solutions are in the calculation 
of topic closures and in the handling of cycles. Topic 
closure calculation is included in deciding the 
complexity of the algorithms: topic closure can be 
calculated in O(N) for all four cases where N is the 
number of topics in the database and the length of a 
dependency encoding is one.  

Lesson Request 1. Given (a) the user’s knowledge 
levels for topics, (b) the set X of topics, and (c) 
prerequisite dependencies in the electronic book, 
produce a lesson that teaches topics X, in the order 
given, at the highest levels. 

Request 1 can be evaluated by a polynomial-time 
algorithm. First, we calculate the topic closure X+ of X 
using the highest detail level. Then we eliminate the 
topics known by the user from X+. The last step is to 
find the instruction modules that map to the topics that 
are left in X+, and to order them (using their total 
ordering) to obtain a lesson. Steps 1 has complexity 
O(N)  where N is the number of topics in the database, 
and steps 2 and 3, each, have O(M) complexity, where 
M is the number of topics in X+. 

Lesson Request 2. Given (a) the user’s knowledge 
levels for topics, (b) prerequisite dependencies in the 
electronic book, (c) the set X of topics, and (d) an 
upper bound tUB on the lesson timelength, produce 
within the time bound tUB a lesson that teaches all the 
topics in X, in the order given in X, at the highest equal 
possible levels. 

Request 2 can also be evaluated by a polynomial-
time algorithm [2]. 

Lesson Request 3. Given (a) the user’s knowledge 
levels for topics, (b) the set X of topics and priorities 
attached to topics in X, (c) prerequisite dependencies 
in the electronic book, and (d) an upper bound tUB on 
the lesson timelength, produce a lesson of duration tUB 
or less that has the highest total priority. 

Theorem 2. Request 3 is a NP-Complete problem. 

Proof: Omitted due to space requirements. Please see [2].  

The following request asks for a lesson that maximizes 
the number of topics taught from the user’s list of 
chosen topics. 
 
Lesson Request 4. Given (a) the user’s knowledge 
levels for topics, (b) the set X of topics, (c) 
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prerequisite dependencies in the electronic book, and 
(d) an upper bound tUB on the lesson timelength, 
produce a lesson of duration tUB or less that teaches as 
many of the topics in X as possible. 
 
Theorem 3:  Request 4 is NP-Complete. 

Proof: Omitted due to space requirements. Please see [1].  

In the next three sections, we propose four heuristics 
to evaluate Requests 3 and 4, and evaluate their 
expected and worst-case behavior. The algorithm 
below uses these four heuristics in evaluating Request 
4. 

Request 4 Heuristic Algorithm: 
begin 
time:=0; 
results:={}; 
repeat 
 begin 
   Pick topic x from X using one of the heuristics in  
       section 4.2; 
   Find the topic closure x+ of x at the highest detail  
       level; 
   Eliminate from x+ the topics that are already known  
       by the user, to obtain y; 
   results := results UNION y; 
   time := time + time of y; 
 end 
until time > tUB; 
 
The complexity of the above algorithm is O(N) where 
N is the number of topics. 

Lesson construction requests above dealt with 
constructing teaching lessons, i.e., lessons with no 
tests. The requests below are for construction learning 
lessons, i.e., lessons with tests, where the user’s 
knowledge levels about topics are evaluated. 
Lesson Request 5.  Given (a) the user’s knowledge 
levels for topics, (b) prerequisite dependencies in the 
electronic book, and (c) an upper bound tUB on the 
lesson time length, produce a learning lesson of 
duration tUB or less for topics X such that, if the tests in 
the lesson are passed, the sum of the level increases on 
topics in X is maximized. 
Theorem 4: Request 5 is NP-Complete. 
Proof: Omitted due to space requirements. Please see 
[2]. 
 
An approximate algorithm similar to the one in Figure 
4.2 can also be used for evaluating Request 5. 
 
Lesson Request  6. Given (a) the user’s knowledge 
levels for topics, (b) prerequisite dependencies in the 
electronic book, (c) the set X of topics, (d) an upper 
bound tUB on the lesson time length, and (e) integers tp 
and k, produce a learning lesson of duration less than 

tUB that, if the tests in the lesson are passed, increases 
the user’s knowledge levels on at least tp topics in X by 
at least k levels. 

4.2.  Heuristics for expensive lesson requests 
Best Base Heuristic (BB): Find the topic x in X which 
is a prerequisite to the largest number of topics in X; 
and add the corresponding instruction modules into the 
lesson being constructed. 
The motivation for heuristic BB is that if a topic x is 
included in a lesson, it will satisfy, as much as possible, 
the prerequisite requirement of other topics in X. To 
find x, we find the prerequisites of each topic in X. 
Next, we calculate the number of times a topic appears 
in the prerequisite lists of other topics in X. The topic 
with the highest prerequisite count is chosen. 
 
Example 4.1. Assume that the knowledge level of the 
user is zero on all topics; X = {a4, b6, c5, d6, e5, f4}; the 
instruction modules of all topics at all levels take the 
same amount of time, say t, to present (e.g. a4 takes 4t 
time to present); total time allowed for the presentation 
is 20t; and the prerequisite dependencies are a4�b5, 
c4�a4, d6�b3, and e3�f2. We calculate the 
prerequisite count (the number of times a topic appears 
in the second column) for a as 1, b as 3, c as 0, d as 0, e 
as 0, and f as 1. Using heuristic BB, b will be the first 
topic included in the result. A solution set of topics 
using BB would be {b6, a4, f4, c5} with duration 19t. 
Any other solution set with four or more topics which 
does not include b will have a duration longer than 20t. 
Clearly, for this example, including b as the first topic 
into the solution by heuristic BB is a good choice. 
 
Lowest Detail Level Heuristic (LDL): Find the topic 
with the lowest detail level, which is not known by the 
user, and add the corresponding instruction modules 
into the lesson being constructed. 
The motivation for heuristic LDL is that lower detail 
levels of topics are more likely to be prerequisites to 
other topics. Then, it is easier to include a topic in a 
lesson if the prerequisite of the topic is already 
included in a lesson. Hence, adding the topic with the 
lowest detail level into the lesson being constructed 
increases the chances of other topics in X being 
included.  
 
Example 4.2. Assume that the knowledge level of user 
is zero on all topics; X = {a4, b6, c3, d6, e4, f4}; all 
topics at all levels take the same amount of time (t) to 
present (e.g. a4 takes 4t to present); total time allowed 
for the presentation is 15t; and the prerequisite 
dependencies are a4�c2, b4�c1, d6�b3, and e3�f2. 
Using heuristic LDL, c will be the first topic included 
in the result as it has the lowest detail level unknown to 
the user. A solution set of topics using LDL would be 
{c3, a4, f4, e4} with duration 15t. Any other solution set 
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with four or more topics will have duration longer than 
15t, which is not acceptable. Including c as the first 
topic into the solution by the heuristic LDL allows us 
to include other topics that depend on c, and is clearly a 
good choice.   
 
Highest Number of Detail Levels Heuristic (HNDL): 
Find the topic with the highest number of detail levels 
that is not known by the user, and add the 
corresponding instruction modules into the lesson 
being constructed. 
The motivation for heuristic HNDL is that a topic with 
high number of detail levels has a higher chance of 
being a prerequisite to other topics than a topic with a 
low number of detail level. Similar to LDL, including 
more prerequisites in a lesson increases the chances of 
other topics in X to be included into the lesson. 
 
Example 4.3. Assume that the knowledge level of user 
is zero on all topics; X = {a4, b6, c4, d4, e4, f5}; a topic 
at level x takes x*t time to present (e.g. a4 takes 4t time 
to present); total time allowed for the presentation is 
15t; and the prerequisite dependencies are a4�b6, 
c4�b6, d4�b6, b6�f5 and e4�f5. Using heuristic 
HNDL, b will be the first topic included in the result as 
it has the highest number of detail levels unknown to 
the user. A solution set of topics using HNDL would be 
{b6, f5, a4} with duration 15t. Any other solution set 
with three or more topics will have a duration of at 
least 15t, which is not any better than the solution 
found by HNDL heuristic. Including b as the first topic 
into the solution by the heuristic HNDL allows us to 
include other topics that depend on b, and is clearly a 
good choice.   
 
Lowest Number of Prerequisites Heuristic (LNP): 
Find the topic with the lowest number of prerequisites 
(that are not known by the user), and add the 
corresponding instruction modules into the lesson 
being constructed. 
The motivation for heuristic LNP is that we expect to 
include more topics by choosing topics with few 
prerequisites.  
 
Example 4.4. Assume that the knowledge level of user 
is zero on all topics; X = {a5, b6, c5, d6, e3, f4}; a topic 
at level x takes t*x time to present (e.g. a5 takes 5t time 
to present); total time allowed for the presentation is 
20t; and the prerequisite dependencies are a5�b6, 
c5�a5, d6�b6, b6�f4, and e3�f4. Then the number of 
prerequisites for a is 2 (i.e., b6 and f4), b is 1 (i.e., f4), c 
is 3 (i.e., a5, b6 and f4), d is 2 (i.e., b6 and f4), e is 1 (i.e., 
f4), and f is 0. Using heuristic LNP, f will be the first 
topic included in the result. A solution set of topics 
using LNP would be {f4, e3, b6, a5} with duration 18t. 
Any other solution set with four or more topics, which 
does not include f, will have a duration of at least 22t. 

Clearly including f as the first topic into the solution by 
the heuristic LNP is a good choice.  

4.3. Evaluating the expected case behavior of 
the heuristics for lesson request 4 

 
We now briefly summarize the experiments conducted 
to evaluate the expected performances of the four 
heuristics described above for only the lesson request 
4. To evaluate the heuristics, we simulated an 
electronic classroom. Electronic classroom is an 
education environment where students decide on the 
length and the content of a presentation about a lecture 
using various constraints.  We used four components 
(users, topics, dependencies, and requests) to model the 
electronic classroom environment. Please see the 
details at [2]. 
 
To observe the effects of changing the number of 
prerequisite dependencies, we kept the following 
parameters constant: the number of topics 1000, topic 
depth 12, length of a topic detail level 10 minutes, 
presentation length 60minutes, and length of requests 
10 topics. We observed that, as the number of 
prerequisite dependencies increases, the number of 
presented topics decreases. This result is expected as 
increasing the number of prerequisite dependencies 
increases the length of the presentation of topics, and 
hence decreases the chances of topics being included 
into the resulting lesson. All heuristics performed 
within 7% of the theoretical maximum. Among the 
heuristics, LNP performed the best while HNDL 
performed the poorest. 
 
To observe the effect of the topic depth (i.e., the 
number of detail levels) on the percentage of requested 
topics presented, we kept the following parameters 
constant: number of topics 1000, length of a topic 
detail level 10 minutes, presentation length 60 minutes, 
and length of requests 10 topics. The number of 
prerequisite dependencies (400-4000) was changed 
proportional to the change in the number of detail 
levels (2-20). The results were similar to prerequisite 
dependency results. As the topic depth increases, topics 
at higher detail levels are included in the requests. 
Topics at higher detail levels have longer durations 
than topics at lower detail levels; and this decreases the 
chances of a topic being included into the resulting 
lesson. Obviously, topic depth and the percentage of 
the requested topics presented are inversely 
proportional. As the topic depth increases, the 
percentage of the requested topics presented decreases. 
 
As for the effect of increasing the time upper bound tUB 
on the presentation, we kept the following parameters 
constant: number of topics 1000, topic depth 12, length 
of a topic detail level 10 minutes, number of 
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prerequisite dependencies 2400, and length of requests 
10 topics. Clearly, increasing the time limit increases 
the chances of a topic being included into the resulting 
lesson. Similar to the previous results, the behaviors of 
all heuristics closely resemble the theoretically possible 
best result. Time upper bound and the percentage of the 
requested topics presented are directly proportional. As 
the time upper bound increases, the percentage of the 
requested topics presented increases. 
  
As expected, changing the number of topics in the 
simulation had no effect on the performance of the 
heuristics. To observe this, we kept the following 
parameters constant: topic depth 12, length of a topic 
detail level 10 minutes, presentation length 60 minutes, 
and length of requests 10 topics. 
 
Changing the request length (i.e., the number of topics 
in X) had an effect similar to changing the prerequisite 
dependencies or changing the topic depth. In this 
experiment, we kept the following parameters constant: 
number of topics 1000, topic depth 12, length of a topic 
detail level 10 minutes, presentation length 60 minutes, 
and the number of prerequisite dependencies 2400. 
Since the time limit on the lesson does not change, the 
percentage of requested topics that are presented 
decreases. Request length and the percentage of the 
requested topics presented are inversely proportional. 
As the request length increases, the percentage of the 
requested topics presented decreases. 
 
And, for the effectiveness of the heuristics compared to 
calculating the best lesson by enumeration to the lesson 
request 4 of Section 4.1, we observed that, as the length 
of the lesson increases, the time to calculate the best 
solution increases exponentially. When the lesson 
includes 18 topics, all heuristic algorithms produce a 
solution under 5 mseconds while it takes over 167 
seconds for the solution by enumeration. Clearly, as the 
request length increases, heuristic solutions become a 
must for an efficient implementation. Thus, all of the 
four heuristics performed well with results that are 
within 7% of the best solution. Relatively, LNP 
performed the best, BB and LDL performed very close 
to LNP, and HNDL performed the poorest. Similar 
results can be shown for lesson requests 3, 5 and 6. 

4.4. Worst-case performances of lesson 
requests 

From the previous section, we have observed that the 
expected performances of lesson construction requests 
are shown to have acceptable performance on 
randomly generated test data. However, in the worst 
case their performance can be dramatically poorer, on 
data contrived to elicit this performance. Next, we 
illustrate this for the lesson construction request 4 and 
two of the heuristics. 

 
4.3.1. Request 4 and Best-Base heuristic.  This 
heuristic picks the topic x from X which is a 
prerequisite to most other topics from X, and adds (x)+ 
to the output, then iterates. We consider the case where 
tUB has some specified value, k, and all topics have unit 
cost. We set X to be the topics x’, x’’, and xi for all 0 ≤ i 
≤ k. We choose F to consist of x’’→x’,  x’ →yi, for all 
1≤ i ≤k. There are no dependencies of the form xi → z, 
and so we could teach all k topics xi. However, the Best 
Base Heuristic leads us to choose to teach x0, as it is 
the base of the most topics in X.  Since x0 depends on k 
topics which are not in X, these must be taught first, 
meaning that applying this heuristic results in none of 
the topics in X being taught. 
 
Although this example is contrived, it could feasibly 
occur.  Suppose X consisted of two distinct kinds of 
topic: a set of basic topics which have no prerequisites, 
but also are not prerequisite to any other topics in X; 
and a few very advanced topics, which have a common 
prerequisite, which in turn depends on many other 
(unrequested) topics.  The most topics from X would 
be achieved by teaching the simple topics, but the Best 
Base Heuristic will cause the system to try to teach the 
advanced topic that has many prerequisites. 
 
4.3.2. Request 4 and the Lowest-Number-of 
Prerequisites heuristic.  In tests, the Lowest Number 
of prerequisites (LNP) Heuristic performed the best out 
of the heuristics tested, but again we can force it to 
give bad results. We consider tUB to be set to a constant 
value, 2k, and all topics have unit cost. We set X to be 
the topics xi for 0≤ i ≤ k, and create F with the 
following dependencies: x0 →yi for 1 ≤ i ≤ k-1; and ∀i, 
1 ≤ j ≤ k,  xi →zj. Since x0 has k-1 prerequisites, and all 
other topics in X have k prerequisites, LNP will lead us 
to choose to teach x0, at total cost k.  To teach any 
further topics from X, we require all the k zj’s, but by 
the time these have been taught, the time bound of 2k 
has been reached. In total, LNP allows one topic from 
X to be taught. However, the optimal solution is to 
teach all k topics zj and then all k dependent topics xi, 
i>0, resulting in k topics from X being taught within 
the time-bound. Again, this situation could feasibly 
occur, if X consisted on a large set of similar topics, 
which have a large common set of prerequisites, and 
one unrelated topic which has a lesser number of 
prerequisites. Although teaching the unrelated topic has 
lower initial cost, this cost does not `buy' anything 
useful. 

4.5. Worst-case performance guarantees of 
lesson requests 

For worst-case performance guarantees of lesson 
request algorithms, we will consider the simplest case, 
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i.e., decomposable prerequisite dependencies, and the 
lesson request 4.  We first transform the problem into 
the bipartite graph problem, and state it as a 
mathematical integer programming problem, which are 
known to be difficult to approximate. 
 
So far we have often considered the case where the 
hierarchy of dependencies is shallow: the topics are 
partitioned into two sets, with dependencies from one 
set to the other. We shall now show that this situation 
is not unrepresentative: any set of decomposable 
dependencies can be rewritten as a two-level hierarchy. 
Each topic is represented by a node, x, on the left side 
of the bipartite graph.  The cost of this topic is set to 
zero. We also create a topic, x’, on the right hand side 
of the bipartite graph whose cost is that of the topic. 
We initialize F, the new set of dependencies, to be x 
→x’. We then add dependencies to F such that x →y’ 
for each y ∈ (x)+. This problem is identical to the 
original problem instance. 
 
In the case that we are trying to answer a request of the 
form of Request 4, we can reduce the problem further. 
Our observation is that we are only interested in the 
requested topics in X. Where we have that some y not 
in X has closure (y)+ such that no member of (y)+ is in 
X, then we can replace the whole of (y)+ with a single 
topic whose length is the sum of the lengths of the 
component topics. We can also merge any topics which 
form a cycle into a single topic, whose prerequisites are 
the union of the prerequisites of the component topics.  
The intuition here is that if any topic in a cycle is 
chosen, then all topics in that cycle must be included. 
This leads to a canonical form for representing such 
requests as a bipartite graph problem. The goal is to 
‘collect’ as many nodes on the left side as possible 
within the time limit. To collect such a node, we must 
‘buy’ all the nodes on the right to which it is connected, 
each of which has a certain cost. We have a total 
budget of tUB. This problem can also be stated as a 
mathematical integer-programming problem: 
 
Maximize f(X) subject to: C.X ≤ tUB  Xi = 0,1 ∀i  
where f(X) is defined as Σx∈X Πy∈x+y. 
 
Unfortunately, problems of this type are hard to 
approximate. Results from Mathematical Programming 
Theory [4] show that there is effectively no 
approximation for the general nonlinear programming 
problem. Even considering the extreme restriction that 
each topic can depend on at most one topic, (that is, for 
a topic x then (x)+ contains at most one other item), 
then the problem is still hard.  This restricted problem 
forms an instance of quadratic programming, for which 
no general approximation algorithms are known [4]. 
This leads us to conclude that for requests like Request 
4, there are unlikely to be approximation algorithms 

that can guarantee that their results are within any 
factor of the optimal, and so we should be content with 
using ad hoc heuristics to solve real instances of the 
problems. 

5. Conclusions 

In this paper, we have studied the use of a multimedia 
database, and database techniques for electronic books 
containing pre-captured multimedia presentations 
about topics in an electronic book. We have designed 
an electronic book environment for the automated 
assembly of multimedia lessons, and discussed possible 
heuristics for lesson construction and their expected-
case and worst-case time complexities. 
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