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Problem Definition
Streaming algorithms aim to summarize a large volume of data into a compact summary,
by maintaining a data structure that can be incrementally modified as updates are observed.
They allow the approximation of particular quantities. The AMS Sketch is focused on ap-
proximating the sum of squared entries of a vector defined by a stream of updates. This
quantity is naturally related to the Euclidean norm of the vector, and so has many applica-
tions in high-dimensional geometry, and in data mining and machine learning settings that
use vector representations of data.

The data structure maintains a linear projection of the stream (modeled as a vector)
with a number of randomly chosen vectors. These random vectors are defined implicitly
by simple hash functions, and so do not have to be stored explicitly. Varying the size of
the sketch changes the accuracy guarantees on the resulting estimation. The fact that the
summary is a linear projection means that it can be updated flexibly, and sketches can be
combined by addition or subtraction, yielding sketches corresponding to the addition and
subtraction of the underlying vectors.

Key Results
The AMS sketch was first proposed by Alon, Matias and Szegedy in 1996 [1]. Several re-
finements or variants have subsequently appeared in the literature, for example in the work
of Thorup and Zhang [4]. The version presented here works by using hashing to map each
update to one of t counters, rather that taking the average of t repetitions of an “atomic”
sketch, as was originally proposed. This hashing-based variation is often referred to as the
“fast AMS” summary.
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Data Structure Description

The AMS summary maintains an array of counts which are updated with each arriving item.
It gives an estimate of the `2-norm of the vector v that is induced by the sequence of updates.
The estimate is formed by computing the norm of each row, and taking the median of all
rows. Given parameters ε and δ, the summary uses space O(1/ε2 log 1/δ), and guarantees
with probability at least 1 − δ that its estimate is within relative ε-error of the true `2-norm,
‖v‖2.

Initially, v is taken to be the zero vector. A stream of updates modifies v by specifying
an index i to which an update w is applied, setting vi ← vi + w. The update weights w can
be positive or negative.

The AMS summary is represented as a compact array C of d× t counters, arranged
as d rows of length t. In each row j, a hash function hj maps the input domain U uniformly
to {1, 2, . . . t}. A second hash function gj maps elements from U uniformly onto {−1,+1}.
For the analysis to hold, we require that gj is fourwise independent. That is, over the ran-
dom choice of gj from the set of all possible hash functions, the probability that any four
distinct items from the domain get mapped to {−1,+1}4 is uniform: each of the 16 possible
outcomes is equally likely. This can be achieved by using polynomial hash functions of the
form gj(x) = 2((ax3+ bx2+ cx+d mod p) mod 2)− 1, with parameters a, b, c, d chosen
uniformly from the prime field p.

The sketch is initialized by picking the hash functions to use, and initializing the
array of counters to all zeros. For each update operation to index i with weight w (which
can be either positive or negative), the item is mapped to an entry in each row based on
the hash functions h, and the update applied to the corresponding counter, multiplied by the
corresponding value of g. That is, for each 1 ≤ j ≤ d, hj(i) is computed, and the quantity
wgj(i) is added to entry C[j, hj(i)] in the sketch array. Processing each update therefore
takes time O(d), since each hash function evaluation takes constant time.

The sketch allows an estimate of ‖v‖22, the squared Euclidean norm of v, to be ob-
tained. This is found by taking the sum of the squares of row of the sketch in turn, and finds
the median of these sums. That is, for row j, it computes

∑t
k=1C[j, k]

2 as an estimate, and
takes the median of the d such estimates. The query time is linear in the size of the sketch,
O(td), as is the time to initialize a new sketch. Meanwhile, update operations take timeO(d).

The analysis of the algorithm follows by considering the produced estimate as a ran-
dom variable. The random variable can be shown to be correct in expectation: its expectation
is the desired quantity, ‖v‖22. This can be seen by expanding the expression of the estimator.
The resulting expression has terms

∑
i v

2
i , but also terms of the form vivj for i 6= j. However,

these “unwanted terms” are multiplied by either +1 or -1 with equal probability, depending
on the choice of the hash function g. Therefore, their expectation is zero, leaving only ‖v‖2.
To show that it is likely to fall close to its expectation, we also analyze the variance of the
estimator, and use the Chebyshev inequality to argue that with constant probability, each es-
timate is close to the desired value. Then taking the median of sufficient repetitions amplifies
this constant probability to close to certainty.

This analysis shows that that the estimate is between (1 − ε)‖v‖22 and (1 + ε)‖v‖22.
Taking the square root of the estimate gives a result that is between (1 − ε)1/2‖v‖2 and
(1 + ε)1/2‖v‖2, which means it is between (1− ε/2)‖v‖2 and (1 + ε/2)‖v‖2.

Note that since the updates to the AMS sketch can be positive or negative, it can be
used to measure the Euclidean distance between two vectors v and u: we can build an AMS
sketch of v and one of −u, and merge them together by adding the sketches. Note also that a
sketch of −u can be obtained from a sketch of u by negating all the counter values.
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Applications
The sketch can also be applied to estimate the inner-product between a pair of vectors. A
similar analysis shows that the inner product of corresponding rows of two sketches (formed
with the same parameters and using the same hash functions) is an unbiased estimator for
the inner product of the vectors. This use of the summary to estimate the inner product of
vectors was described in a follow-up work by Alon, Matias, Gibbons and Szegedy [2], and
the analysis was similarly generalized to the fast version by Cormode and Garofalakis [3].
The ability to capture norms and inner products in Euclidean space means that these sketches
have found many applications in settings where there are high dimensional vectors, such as
machine learning and data mining.

URLs to Code and Data Sets
Sample implementations are widely available in a variety of languages.

C code is given by the MassDal code bank: http://www.cs.rutgers.edu/˜muthu/
massdal-code-index.html.
C++ code due to Marios Hadjieleftheriou is available from http://hadjieleftheriou.
com/sketches/index.html.
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