
Title: Count-Min Sketch
Name: Graham Cormode1
Affil./Addr. Department of Computer Science, University of War-

wick, Coventry, UK
Keywords: streaming algorithms; frequent items; approximate count-

ing, sketch
SumOriWork: 2004; Cormode, Muthukrishnan

Count-Min Sketch
GRAHAM CORMODE1

Department of Computer Science, University of Warwick, Coventry, UK

Years aud Authors of Summarized Original Work
2004; Cormode, Muthukrishnan

Keywords
streaming algorithms; frequent items; approximate counting, sketch

Problem Definition
The problem of sketching a large mathematical object is to produce a compact data structure
that approximately represents it. Much work has focused on the problem of sketching large
vectors to provide a small “sketch” of the vector from which key properties – such as the
norm of the vector, or estimates of entries – can be retrieved.

The Count-Min (CM) Sketch is an example of a sketch that allows a number of related
quantities to be estimated with accuracy guarantees, including point queries and dot product
queries. Such queries are at the core of many computations, so the structure can be used in
order to answer a variety of other queries, such as frequent items (heavy hitters), quantile
finding, join size estimation, and more. Since the sketch can process updates in the form of
additions or subtractions to dimensions of the vector (which may correspond to insertions
or deletions, or other transactions), it is capable of working over streams of updates, at high
rates.

The data structure maintains the linear projection of the vector with a number of other
random vectors. These vectors are defined implicitly by simple hash functions. Increasing
the range of the hash functions increases the accuracy of the summary, and increasing the
number of hash functions decreases the probability of a bad estimate. These tradeoffs are
quantified precisely below. Because of this linearity, CM sketches can be scaled, added and
subtracted, to produce summaries of the corresponding scaled and combined vectors.

2

+c

+c

+c

hd

+c1

i

h

Fig. 1. Each item i is mapped to one cell in each row of the array of counts: when an update of ct to item it
arrives, ct is added to each of these cells

Key Results
The Count-Min sketch was first proposed in 2003 [4], following several other sketch tech-
niques, such as the Count sketch [2] and the AMS sketch [1]. The sketch is similar to a
counting Bloom filter or Multistage-Filter [7].

Data Structure Description

The CM sketch is simply an array of counters of widthw and depth d,CM [1, 1] . . . CM [d, w].
Each entry of the array is initially zero. Additionally, d hash functions

h1 . . . hd : {1 . . . n} → {1 . . . w}
are chosen uniformly at random from a pairwise-independent family. Once w and d are
chosen, the space required is fixed: the data structure is represented by wd counters and d
hash functions (which can each be represented in O(1) machine words [12]).

Update Procedure. A vector a of dimension n is decscribed incrementally. Initially,
a(0) is the zero vector, 0, so ai(0) is 0 for all i. Its state at time t is denoted a(t) =
[a1(t), . . . ai(t), . . . an(t)]. Updates to individual entries of the vector are presented as a
stream of pairs. The tth update is (it, ct), meaning that

ait(t) = ait(t− 1) + ct
ai′(t) = ai′(t− 1) i′ 6= it

For convenience, the subscript t is dropped, and the current state of the vector simply
referred to as a. For simplicity of description, it is assumed here that although values of ai
increase and decrease with updates, each ai ≥ 0. However, the sketch can also be applied to
the case where ais can be less than zero with some increase in costs [4].

When an update (it, ct) arrives, ct is added to one count in each row of the Count-Min
sketch; the counter is determined by hj . Formally, given (it, ct), the following modifications
are performed:

∀1 ≤ j ≤ d : CM [j, hj(it)]← CM [j, hj(it)] + ct

This procedure is illustrated in Figure 1. Because computing each hash function takes
constant time, the total time to perform an update is O(d), independent of w. Since d is
typically small in practice (often less than 10), updates can be processed at high speed.

3

Point Queries. A point query is to estimate the value of an entry in the vector ai. Given
a query point i, an estimate is found from the sketch as âi = min1≤j≤dCM [j, hj(i)]. The
approximation guarantee is that if w = d e

ε
e and d = dln 1

δ
e, the estimate âi obeys ai ≤ âi;

and, with probability at least 1− δ,

âi ≤ ai + ε‖a‖1.

Here, ‖a‖1 is the L1 norm of a, i.e. the sum of the (absolute) values. The proof follows by
using the Markov inequality to bound the error in each row, then using the independence of
the hash functions to amplify the success probability.

This analysis makes no assumption about the distribution of values in a. In many
applications there are Zipfian, or power law, distributions of item frequencies. Here, the
(relative) frequency of the ith most frequent item is proportional to i−z, for some parameter
z, where z is typically in the range 1—3. Here, the skew in the distribution can be used to
show a stronger space/accuracy tradeoff: for a Zipf distribution with parameter z, the space
required to answer point queries with error ε‖a‖1 with probability at least 1− δ is given by
O(ε−min{1,1/z} ln 1/δ) [5].

Range, Heavy Hitter and Quantile Queries. A range query is to estimate
∑r

i=l ai for a
range [l . . . r]. For small ranges, the range sum can be estimated as a sum of point queries;
however, as the range grows, the error in this approach also grows linearly. Instead, log n
sketches can be kept, each of which summarizes a derived vector ak where

ak[j] =

(j+1)2k−1∑
i=j2k

ai

for k = 1 . . . log n. A range of the form j2k . . . (j + 1)2k − 1 is called a dyadic range,
and any arbitrary range [l . . . r] can be partitioned into at most 2 log n dyadic ranges. With
appropriate rescaling of accuracy bounds, it follows that Count-Min sketches can be used to
find an estimate r̂ for a range query on l . . . r such that

r̂ − ε‖a‖1 ≤
r∑
i=l

ai ≤ r̂

The right inequality holds with certainty, and the left inequality holds with probability at
least 1 − δ. The total space required is O(log

2 n
ε

log 1
δ
) [4]. The closely related φ-quantile

query is to find a point j such that

j∑
i=1

ai ≤ φ‖a‖1 ≤
j+1∑
i=1

ai.

Range queries can be used to (binary) search for a j which satisfies this requirement approx-
imately (i.e. tolerates up to ε‖a‖1 error in the above expression) given φ. The overall cost
is space that depends on 1/ε, with further log factors for the rescaling necessary to give the
overall guarantee [4]. The time for each insert or delete operation, and the time time to find
any quantile, is logarithmic in n, the size of the domain.

Heavy Hitters are those points i such that ai ≥ φ‖a‖1 for some specified φ. The
range query primitive based on Count-Min sketches can again be used to find heavy hitters,
by recursively splitting dyadic ranges into two and querying each half to see if the range is
still heavy, until a range of a single, heavy, item is found. The cost of this is similar to that
for quantiles, with space dependent on 1/ε and log n. The time to update the data structure,

4

and to find approximate heavy hitters, is also logarithmic in n. The guarantee is that every
item with frequency at least (φ+ ε)‖a‖1 is output, and with probability 1− δ no item whose
frequency is less than φ‖a‖1 is output.

Inner product queries. The Count-Min sketch can also be used to estimate the inner prod-
uct between two vectors. The inner product a · b can be estimated by treating the Count-Min
sketch as a collection of d vectors of length w, and finding the minimum inner product
between corresponding rows of sketches of the two vectors. With probability 1 − δ, this es-
timate is at most an additive quantity ε‖a‖1‖b‖1 above the true value of a · b. This is to be
compared with AMS sketches which guarantee ε‖a‖2‖b‖2 additive error, but require space
proportional to 1

ε2
to make this guarantee.

Conservative update. If only positive updates arrive, then the “conservative update” pro-
cess (due to Estan and Varghese [7]) can be used. For an update (i, c), âi is computed, and the
counts are modified according to ∀1 ≤ j ≤ d : CM [j, hj(i)]← max(CM [j, hj(i)], âi + c).
This procedure still ensures for point queries that ai ≤ âi, and that the error is no worse than
in the normal update procedure; it has been observed that conservative update can improve
accuracy “up to an order of magnitude” [7]. However, deletions or negative updates can no
longer be processed, and the new update procedure is slower than the original one.

Applications
The Count-Min sketch has found a number of applications.

• Indyk [9] used the Count-Min Sketch to estimate the residual mass after removing
a set of items. That is, given a (small) set of indices I , to estimate

∑
i 6∈I ai. This

supports clustering over streaming data.
• The entropy of a data stream is a function of the relative frequencies of each item or

character withn the stream. Using Count-Min Sketches within a larger data structure
based on additional hashing techniques, B. Laksminath and Ganguly [8] showed how
to estimate this entropy to within relative error.

• Sarlós et al. [14] gave approximate algorithms for personalized page rank compu-
tations which make use of Count-Min Sketches to compactly represent web-size
graphs.

• In describing a system for building selectivity estimates for complex queries, Spiegel
and Polyzotis [15] use Count-Min Sketches in order to allow clustering over a high-
dimensional space.

• Sketches that reduce the amount of information stored seem like a natural candi-
date to preserve privacy of information. However, proving privacy requires more
care. Roughan and Zhang use the Count-Min sketch to allow private computation
of a sketch of a vector [13]. Dwork et al. show that the Count-Min sketch can be
made pan-private, meaning that information about individuals contributing to the
data structure is held private.

Experimental Results
There have been a number of experimental studies of COUNTMIN and related algorithms,
for a variety of computing models. These have shown that the algorithm is accurate and fast
to execute [3; 11]. Implementations on desktop machines achieve between many millions of
updates per second, primarily limited by IO throughput. Other implementation have incorpo-
rated Count-Min Sketch into high speed streaming systems such as Gigascope [6], and tuned

5

it to process packet streams of multi-gigabit speeds. Lai and Byrd report on an implemen-
tation of Count-Min sketches on a low-power stream processor [10], capable of processing
40 byte packets at a throughput rate of up to 13Gbps. This is equivalent to about 44 million
updates per second.

URLs to Code and Data Sets
Sample implementations are widely available in a variety of languages.

C code is given by the MassDal code bank: http://www.cs.rutgers.edu/˜muthu/
massdal-code-index.html.
C++ code due to Marios Hadjieleftheriou is available from http://research.att.
com/˜marioh/sketches/index.html.
The MADlib project has SQL implementations for Postgres/Greenplum http://madlib.
net/
OCaml implementation is available via https://github.com/ezyang/ocaml-cminsketch

Cross-References
AMS Sketch

Recommended Reading
1. Alon N, Matias Y, Szegedy M (1996) The space complexity of approximating the frequency moments. In:

ACM Symposium on Theory of Computing, pp 20–29
2. Charikar M, Chen K, Farach-Colton M (2002) Finding frequent items in data streams. In: Procedings of

the International Colloquium on Automata, Languages and Programming (ICALP)
3. Cormode G, Hadjieleftheriou M (2009) Finding the frequent items in streams of data. Communications of

the ACM 52(10):97–105
4. Cormode G, Muthukrishnan S (2005) An improved data stream summary: The Count-Min sketch and its

applications. Journal of Algorithms 55(1):58–75
5. Cormode G, Muthukrishnan S (2005) Summarizing and mining skewed data streams. In: SIAM Conference

on Data Mining
6. Cormode G, Korn F, Muthukrishnan S, Johnson T, Spatscheck O, Srivastava D (2004) Holistic UDAFs at

streaming speeds. In: ACM SIGMOD International Conference on Management of Data, pp 35–46
7. Estan C, Varghese G (2002) New directions in traffic measurement and accounting. In: Proceedings of

ACM SIGCOMM, Computer Communication Review, vol 32, 4, pp 323–338
8. Ganguly S, Lakshminath B (2006) Estimating entropy over data streams. In: European Symposium on

Algorithms (ESA)
9. Indyk P (2003) Better algorithms for high-dimensional proximity problems via asymmetric embeddings.

In: ACM-SIAM Symposium on Discrete Algorithms
10. Lai YK, Byrd GT (2006) High-throughput sketch update on a low-power stream processor. In: Proceedings

of the ACM/IEEE symposium on Architecture for networking and communications systems
11. Manerikar N, Palpanas T (2009) Frequent items in streaming data: An experimental evaluation of the

state-of-the-art. Data Knowledge Engineering 68(4):415–430
12. Motwani R, Raghavan P (1995) Randomized Algorithms. Cambridge University Press
13. Roughan M, Zhang Y (2006) Secure distributed data mining and its application in large-scale network

measurements. ACM SIGCOMM Computer Communication Review (CCR)
14. Sarlós T, Benzúr A, Csalogány K, Fogaras D, Rácz B (2006) To randomize or not to randomize: space

optimal summaries for hyperlink analysis. In: International Conference on World Wide Web (WWW)
15. Spiegel J, Polyzotis N (2006) Graph-based synopses for relational selectivity estimation. In: ACM SIG-

MOD International Conference on Management of Data

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://research.att.com/~marioh/sketches/index.html
http://research.att.com/~marioh/sketches/index.html
http://madlib.net/
http://madlib.net/
https://github.com/ezyang/ocaml-cminsketch

	Count-Min Sketch

