
A Near-Optimal Algorithm for Computing the Entropy of a Stream

Amit Chakrabarti ∗

ac@cs.dartmouth.edu

Graham Cormode †

graham@research.att.com

Andrew McGregor
andrewm@seas.upenn.edu

Abstract
We describe a simple algorithm for approximating the em-
pirical entropy of a stream of m values in a single pass, us-
ing O(ε−2 log(δ−1) log m) words of space. Our algorithm is
based upon a novel extension of a method introduced by
Alon, Matias, and Szegedy [1]. We show a space lower
bound of Ω(ε−2/ log(ε−1)), meaning that our algorithm is
near optimal in terms of its dependency on ε. This improves
over previous work on this problem [8, 13, 17, 5]. We show
that generalizing to kth order entropy requires close to linear
space for all k ≥ 1, and give additive approximations using
our algorithm. Lastly, we show how to compute a multi-
plicative approximation to the entropy of a random walk on
an undirected graph.

1 Introduction

The problem of computing the frequency moments of
a stream [1] has stimulated significant research within
the algorithms community, leading to new algorithmic
techniques and lower bounds. For all frequency mo-
ments, matching upper and lower bounds for the space
complexity are now known [9, 21, 16, 6]. In the last
year, attention has been focused on the strongly related
question of computing the entropy of a stream. Moti-
vated by networking applications [12, 20, 22], several
partial results have been shown on computing the (em-
pirical) entropy of a sequence of m items in sublinear
space [8, 13, 17, 5]. In this paper, we show a simple al-
gorithm for computing an (ε, δ)-approximation to this
quantity in a single pass, using O(ε−2 log(δ−1) log m)
words of space. We also show a lower bound of
Ω(ε−2/ log(ε−1)), proving that our algorithm is near-
optimal in terms of its dependency on ε. We then give
algorithms and lower bounds for kth order entropy, a
quantity that arises in text compression, based on our
results for empirical (zeroth order) entropy. We also
provide algorithms to additively approximate the en-
tropy of a random walk over an undirected graph. Our
techniques are based on a method originating with Alon,
Matias, and Szegedy [1]. However, this alone is insuf-
ficient to approximate the entropy in bounded space.

∗Work supported by an NSF CAREER award and by Dart-
mouth College startup funds

†Work carried out while the author was at Lucent Bell Labo-
ratories

At the core of their method is a procedure for drawing
a uniform sample from the stream. We show how to
extend this to drawing a larger sample, according to a
specific distribution, of distinct values from the stream.
The idea is straightforward to implement, and may have
applications to other problems. For the estimation of
entropy we will show that keeping a “back-up sample”
of a single additional item is sufficient to guarantee the
desired space bounds. In Section 2 we discuss this case
and present our algorithm for approximating entropy
(along with the lower bound.) The results pertaining
to kth order entropy are in Section 3. The extension to
entropy of a random walk on a graph is in Section 4.

Preliminaries. A randomized algorithm is said to
(ε, δ)-approximate a real number Q if it outputs a value
Q̂ such that |Q̂−Q| ≤ εQ with probability at least (1−δ)
over its internal coin tosses. Our goal is to produce such
(ε, δ)-approximations for the entropy of a stream. We
first introduce some notation and definitions.

Definition 1. For a data stream A = 〈a1, a2, . . . , am〉,
with each token aj ∈ [n], we define mi := |{j : aj = i}|
and pi := mi/m, for each i ∈ [n]. The empirical
probability distribution of A is p := (p1, p2, . . . , pn).
The empirical entropy of A is defined1 as H(p) :=∑n

i=1−pi lg pi. The entropy norm of A is FH :=∑n
i=1 mi lg mi.

Clearly FH and H are closely related, since we can
write FH = m lg m − mH. However, they differ sig-
nificantly in their approximability: FH cannot be ap-
proximated within constant factors in poly-logarithmic
space [8], while we show here an (ε, δ)-approximation of
H in poly-logarithmic space.

Prior Work. In the networking world, the problem of
approximating the entropy of a stream was considered
in Lall et al. [17]. They focused on estimating FH , un-
der assumptions about the distribution defined by the
stream that ensured that computing H based on their

1Here and throughout we use lg x to denote log2 x.

estimate of FH would give accurate results. Guha, Mc-
Gregor and Venkatasubramanian [13] gave constant fac-
tor as well as (ε, δ)-approximations for H, using space
that depends on the value of H. Chakrabarti, Do Ba
and Muthukrishnan [8] gave a one pass algorithm for
approximating H with sublinear but polynomial in m
space, as well as a two-pass algorithm requiring only
poly-logarithmic space. Most recently, Bhuvanagiri and
Ganguly [5] described an algorithm that can approxi-
mate H in poly-logarithmic space in a single pass. The
algorithm is based on the same ideas and techniques
as recent algorithms for optimally approximating fre-
quency moments [16, 6], and can tolerate streams in
which previously observed items are removed. The ex-
act space bound is

O

(
ε−3(log4 m)(log δ−1)

log m + log n + log ε−1

log ε−1 + log log m

)
,

which is suboptimal in its dependency on ε, and has
high cost in terms of log m.

2 Computing the Entropy of a Stream

2.1 Upper Bound Consider a data stream A as in
Definition 1. For a non-decreasing function f such that
f(0) = 0, let us define f(A) := 1

m

∑n
i=1 f(mi). We

base our approach on the method of Alon, Matias and
Szegedy [1] to estimate quantities of the form f(A): note
that the empirical entropy of A is one such quantity with
f(mi) = mi log(m/mi).

Definition 2. Let D(A) be the distribution of the ran-
dom variable R defined thus: Pick J ∈ [m] uniformly at
random and let R = |{j : aj = aJ , J ≤ j ≤ m}|.

The core idea is to space-efficiently generate a
random variable R ∼ D(A). For an integer c, define
the random variable

(1) Estf (R, c) :=
1
c

c∑
i=1

Xi ,

where the random variables {Xi} are independent and
each distributed identically to (f(R) − f(R − 1)). Ap-
pealing to Chernoff-Hoeffding bounds one can show that
by increasing c, Estf (R, c) can be made arbitrarily close
to f(A). This is formalized in the lemma below; we skip
the (easy) proof.

Lemma 1. Let X := f(R) − f(R − 1) and c ≥
3ε−2 ln(2δ−1) max[X]/ E[X] where max[X] is the max-
imum value in the range of X. Then E[X] = f(A) and
the estimator Estf (R, c) gives an (ε, δ)-approximation
to f(A) using space c times the space required to main-
tain R. 2

Overview of the technique. We now give some of
the intuition behind our algorithm for estimating H(p).
Let A′ denote the substream of A obtained by remov-
ing from A all occurrences of the most frequent token
(with ties broken arbitrarily) and let R′ ∼ D(A′). A key
component of our algorithm (see Algorithm Maintain-
Samples below) is a technique to simultaneously main-
tain R and enough extra information that lets us recover
R′ when we need it. Let pmax := maxi pi. Let λ be given
by

(2) λ(x) := x lg(m/x) , where λ(0) := 0 ,

so that λ(A) = H(p). Define X = λ(R)− λ(R− 1) and
X ′ = λ(R′)−λ(R′−1). If pmax is bounded away from 1
then we can show that 1/ E[X] is “small,” so Estλ(R, c)
gives us our desired estimator for a “small” value of c,
by Lemma 1. If, on the other hand, pmax > 1

2 then we
can recover R′ and can show that 1/ E[X ′] is “small.”
Finally, by our analysis we can show that Estλ(R′, c)
and an estimate of pmax (which we can maintain in
parallel to Algorithm Maintain-Samples using, e.g., the
Misra-Gries algorithm [18]) can be combined to give
an (ε, δ)-approximation to H(p). This logic is given in
Algorithm Entropy-Estimator below.

We make this intuition precise with some pseu-
docode. By abuse of notation we use Estλ(r, c) to also
denote the algorithmic procedure of running in parallel
c copies of an algorithm that produces r and combining
these results as in (1).

Maintaining Samples from the Stream. We show
a procedure that allows us to generate R and R′ with
the appropriate distributions. For each token a in the
stream, we draw t, a random number in the range [m3],
as its label. We choose to store certain tokens from
the stream, along with their label and the count of the
number of times the same token has been observed in
the stream since it was last picked. We store two such
tokens: the token s0 that has achieved the least t value
seen so far, and the token s1 such that it has the least t
value of all tokens not equal to s0 seen so far. Let t0 and
t1 denote their corresponding labels, and let r0 and r1

denote their counts in the above sense. Note that it is
easy to maintain these properties as new items arrive in
the stream, as Algorithm Maintain-Samples illustrates.

Lemma 2. Algorithm Maintain-Samples satisfies the
following properties. (i) After processing the whole
stream A, s0 is picked uniformly at random from A and
r0 ∼ D(A). (ii) For a ∈ [n], let A \ a denote the stream
A with all occurrences of a removed. Suppose we set s
and r thus: if s0 6= a then s = s0 and r = r0, else s = s1

and r = r1. Then s is picked uniformly from A \ a and
r ∼ D(A \ a).

Algorithm Maintain-Samples
1. for a ∈ A
2. do Let t be a random number in the range [m3]
3. if a = s0

4. then if t < t0 then (s0, t0, r0)← (s, t, 1) else r0 ← r0 + 1
5. else if a = s1 then r1 ← r1 + 1
6. if t < t0
7. then (s1, t1, r1)← (s0, t0, r0); (s0, t0, r0)← (a, t, 1)
8. else if t < t1 then (s1, t1, r1)← (a, t, 1)

Algorithm Entropy-Estimator
1. c← 6ε−2 lg m lg(2δ−1)
2. Run the Misra-Gries algorithm on A with k =

⌈
7ε−1

⌉
counters, in parallel with Maintain-Samples

3. if Misra-Gries retains a token i with counter m̂i > m/2
4. then (imax, p̂max)← (i, m̂i/m)
5. if a0 = imax then r ← r1 else r ← r0

6. return (1− p̂max) · Estλ(r, c) + p̂max lg(1/p̂max)
7. else return Estλ(r0, c)

Figure 1: Algorithms for sampling and estimating entropy.

Proof. To prove (i), note that the way we pick each label
t ensures that (w.h.p.) there are no collisions amongst
labels and, conditioned on this, the probability that any
particular token gets the lowest label value is 1/m.

We show (ii) by reducing to the previous case.
Imagine generating the stream A \ a and running the
algorithm on it. Clearly, picking the item with the
smallest t value samples uniformly from A \ a. Now
let us add back in all the occurrences of a from A. One
of these may achieve a lower t value than any item in
A \ a, in which case it will be picked as s0, but then
s1 will correspond to the sample we wanted from A \ a,
so we can return that. Else, s0 6= a, and is a uniform
sample from A \ a. Hence, by checking whether s0 = a
or not, we can choose a uniform sample from A\a. The
claim about the distribution of r is now straightforward:
we only need to observe from the pseudocode that, for
j ∈ {0, 1}, rj correctly counts the number of occurrences
of sj in A from the time sj was last picked. 2

Entropy Estimation. The full algorithm is given
above in Algorithm Entropy-Estimator . As indicated
in the overview, it uses an algorithm (in this case,
the Misra-Gries algorithm [18]) to identify the most
frequent item, and chooses how to form the estimator
from multiple copies of the samples.

Theorem 1. Algorithm Entropy-Estimator uses space
O(ε−2 log(δ−1) log m(log m + log n)) bits and gives an
(ε, δ)-approximation to H(p).

Proof. To argue about the algorithm’s correctness,

we begin by looking closely at the Misra-Gries algo-
rithm [18] used within Algorithm Entropy-Estimator .
This (deterministic) algorithm processes the stream, re-
taining up to k tokens along with estimates of their fre-
quencies. Initially, all counters are zero. For each item
i observed in the stream, if there is already a counter ci

associated with the token, then ci is incremented; else,
if there is a counter with count zero, it is allocated to i
and set to 1; if all counters are non-zero and allocated
to other tokens, then all counters are decremented by
1. After processing the whole stream, for each token i
that is retained, the estimate m̂i of mi is ci, and this
satisfies m̂i ≤ mi. A simple analysis of this algorithm
shows that mi− m̂i ≤ m/k. More strongly, it is easy to
show that mi − m̂i ≤ (m −mi)/k; see, e.g., [7]. Thus,
p̂i := m̂i/m is a good estimate of pi. To be precise,
|p̂i − pi| ≤ (1 − pi)/k. Hence, by virtue of the estima-
tion method, if pi > 2

3 and k ≥ 2, then i must be among
the tokens retained and must satisfy p̂i > 1

2 . Therefore,
in this case we will pick imax — the item with maximum
frequency — correctly, and pmax will satisfy

(3) p̂max ≤ pmax and |p̂max − pmax| ≤
1− pmax

k
.

Let A,A′, R, R′, X,X ′ be as before. Suppose
p̂max ≤ 1

2 . The algorithm then reaches Line 7. By
Part (i) of Lemma 2, the returned value is Estλ(R, c).
Now (3), together with k ≥ 2, implies pmax ≤ 2

3
and a simple convexity argument shows that H(p) ≥
2
3 lg 3

2 + 1
3 lg 3

1 > 0.9. Note that 0 ≤ X ≤ lg m and
hence Lemma 1 implies c is large enough to ensure the

return value is a (3
4ε, δ)-approximation to H(p).

Now suppose p̂max > 1
2 . The algorithm then reaches

Line 6. By Part (ii) of Lemma 2, the return value is
(1−p̂max)·Estλ(R′, c)+ p̂max lg(1/p̂max), and (3) implies
that pmax > 1

2 . Assume, w.l.o.g., that imax = 1. Then

E[X ′] = λ(A′)

=
1

m−m1

n∑
i=2

λ(mi)

≥ lg
m

m−m1

≥ 1 ,

where the penultimate inequality follows by convexity
arguments. Note that 0 ≤ X ′ ≤ lg m, and hence
Lemma 1 implies that c is large enough to ensure that
Estλ(R′, c) is a (3

4ε, δ)-approximation to λ(A′).
Next, we show that p̂1 lg(1/p̂1) is a (2

k , 0)-
approximation to p1 lg(1/p1), as follows:

|p1 lg(1/p1)− p̂1 lg(1/p̂1)|
p1 lg(1/p1)

≤ |p̂1 − p1|
p1 lg(1/p1)

max
p∈[12 ,1]

∣∣∣∣ d

dp
(p lg(1/p))

∣∣∣∣
≤ (1− p1)

k p1 lg(1/p1)
· lg e

≤ 2
k

,

where the final inequality follows from the fact that
g(p) := (1 − p)/(p ln(1/p)) is non-increasing in the
interval [23 , 1], so g(p) ≤ g(2

3) < 2. To see this,
note that 1 − p + ln p ≤ 0 for all positive p and that
g′(p) = (1− p + ln p)/(p ln p)2. Now observe that

(4) H(p) = (1− p1)λ(A′) + p1 lg(1/p1) .

From (3) it follows that (1 − p̂1) is an (1
k , 0)-

approximation to (1 − p1). Setting k ≥
⌈
7ε−1

⌉
, and

assuming ε ≤ 1 ensures that that (1− p̂1) ·Estλ(R′, c) is
a (ε, δ)-approximation to (1− p1)λ(A′), and p̂1 lg(1/p̂1)
is a (better than) (ε, 0)-approximation to p1 lg(1/p1).
Thus, we have shown that in this case the algorithm re-
turns a (ε, δ)-approximation to H(p), since both terms
in (4) are approximated with relative error.

The claim about the space usage is straightfor-
ward. The Misra-Gries algorithm requires O(k) =
O(ε−1) counters and item identifiers. Each run
of Algorithm Maintain-Samples requires O(1) coun-
ters, labels, and item identifiers, and there are c =
O(ε−2 log(δ−1) log m) such runs. Everything stored
is either an item from the stream, a counter that is
bounded by m, or a label that is bounded by m3, so the
space for each of these is O(log m + log n) bits. 2

Randomness and Stream Length. As described,
our algorithm requires O(m log m) bits of randomness,
since we require a random number in the range [m3] for
each item in the stream. This randomness requirement
can be reduced to O(logO(1) m) bits by standard argu-
ments invoking Nisan’s pseudorandom generator [19].
An alternate approach is to use a hash function from
a min-wise independent family on the stream index to
generate t [14]. This requires a modification to the anal-
ysis: the probability of picking any fixed item changes
from 1/m to a value in the interval [(1−ε)/m, (1+ε)/m].
One can show that this introduces a 1 + O(ε) factor in
the expressions for expectation and variance of the esti-
mators, which does not affect the overall correctness; an
additional O(log n log ε−1) factor in space would also be
incurred to store the descriptions of the hash functions.

The algorithm above also seems to require prior
knowledge of m, although an upper bound clearly
suffices (we can compute the true m as the stream
arrives). But we only need to know m in order to
choose the size of the random labels large enough to
avoid collisions. Should the assumed bound be proven
too low, it suffices to extend the length of labels t0
and t1 by drawing further random bits in the event
of collisions to break ties. Invoking the principle of
deferred decisions, it is clear that the correctness of the
algorithm is unaffected.

Sliding Window Computations. In many cases it is
desirable to compute functions not over the whole semi-
infinite stream, but rather over a sliding window of the
last W updates. Our method easily accommodates such
an extension with only an expected O(log W) expansion
of space. This relies on an observation on the number
of different minima within the window. Consider the
item which achieves the smallest t value: when this
falls outside the window, we want to move to the item
with the next smallest t value that occurs later in the
stream, and so on. There are O(log W) such items, with
high probability [2]. We notionally remove each of these
from the stream and repeat the procedure to find the
sequence of “runners-up”. These can be found in one
pass, since each “runner-up” is former winner that is
“beaten” by a subsequent item in the stream. For any
window, we can find the s0 and s1 (and their counts)
from among the list of winners and the list of runners
up. Hence, we need to keep O(log W) items w.h.p. for
each estimator, and update these as new items are seen
and old (stored) items fall out of the window.

Extensions to the Technique. We observe that the
method we have introduced here, of allowing a sample to
be drawn from a modified stream with an item removed

may have other applications. The method naturally
extends to allowing us to specify a set of k items to
remove from the stream after the fact, by keeping the
k + 1 distinct items achieving the smallest label values.
In particular, Lemma 2 can be extended to give the
following.

Lemma 3. There exists an algorithm A, using O(k)
space, that returns k pairs (si, ri)i∈[k+1] such that si is
picked uniformly at random from A \ {s1, . . . , si−1} and
r ∼ D(A \ {s1, . . . , si−1}). Consequently, given a set S
of size at most k and the output of A it is possible to
sample (s, r) such that s is picked uniformly at random
from A \ S and r ∼ D(A \ S).

This may be of use in applications where we can in-
dependently identify “junk” items or other undesirable
values which would dominate the stream if not removed.
For example, in the case in which we wish to compute
the quantiles of a distribution after removing the k most
frequent items from the distribution. Additionally, the
procedure may have utility in situations where a small
fraction of values in the stream can significantly con-
tribute to the variance of other estimators.

2.2 Lower Bound. We now show that the depen-
dence of the above space bound on ε is nearly tight. To
be precise, we prove the following theorem.

Theorem 2. Any one-pass randomized (ε, 1
4)-

approximation for H(p) requires Ω(ε−2/ log(ε−1))
space.

Proof. Let gap-hamdist denote the following (one-
way) communication problem. Alice receives x ∈
{0, 1}N and Bob receives y ∈ {0, 1}N . Alice must send
a message to Bob after which Bob must answer “near”
if the Hamming distance ‖x − y‖1 ≤ N/2 and “far” if
‖x− y‖1 ≥ N/2 +

√
N . They may answer arbitrarily if

neither of these two cases hold. The two players may
follow a randomized protocol that must work correctly
with probability at least 3

4 . It is known [15] that
gap-hamdist has one-way communication complexity
Ω(N).

We now reduce gap-hamdist to the problem of
approximating H(p). SupposeA is a one-pass algorithm
that (ε, δ)-approximates H(p). Let N be chosen such
that ε−1 = 3

√
N lg N and assume, w.l.o.g., that N is an

integer. Alice and Bob will run A on a stream of tokens
from [N] × {0, 1} as follows. Alice feeds the stream
〈(i, xi)〉Ni=1 into A and then sends over the memory
contents of A to Bob who then continues the run by
feeding in the stream 〈(i, yi)〉Ni=1. Bob then looks at the

output out(A) and answers “near” if

out(A) < lg N +
1
2

+
1

2
√

N

and answers “far” otherwise. We now prove the correct-
ness of this protocol.

Let d := ‖x−y‖1. Note that the stream constructed
by Alice and Bob in the protocol will have N −d tokens
with frequency 2 each and 2d tokens with frequency 1
each. Therefore,

H(p) = (N−d)· 2
2N

lg
2N

2
+2d· 1

2N
lg

2N

1
= lg N+

d

N
.

Therefore, if d ≤ N/2, then H(p) ≤ lg N + 1
2 whence,

with probability at least 3
4 , we will have

out(A) ≤ (1 + ε)H(p)

≤
(

1 +
1

3
√

N lg N

)(
lg N +

1
2

)
< lg N +

1
2

+
1

2
√

N

and Bob will correctly answer “near.” A similar calcula-
tion shows that if d ≥ N/2+

√
N then, with probability

at least 3
4 , Bob will correctly answer “far.” Therefore

the protocol is correct and the communication complex-
ity lower bound implies that A must use space at least
Ω(N) = Ω(ε−2/ log(ε−1)). 2

3 Higher-Order Entropy

The kth order entropy is a quantity defined on a se-
quence that quantifies how easy it is to predict a char-
acter of the sequence given the previous k characters.
We start with a formal definition.

Definition 3. For a data stream A = 〈a1, a2, . . . , am〉,
with each token aj ∈ [n], we define

mi1i2...ik
:= |{j : (aj , aj+1, . . . , aj+k−1) = (i1, . . . , ik)}| ,

and pik|i1,i2,...,ik−1 := mi1i2...ik
/mi1i2...ik−1 ,

for i1, i2, . . . , ik ∈ [n]. The (empirical) kth order
entropy of A is defined as

Hk(A) := −
∑
i1

pi1

∑
i2

pi2|i1 . . .
∑
ik+1

pik+1|i1...ik
lg pik+1|i1...ik

.

Unfortunately, unlike empirical entropy, H0, there
is no small space algorithm for multiplicatively approxi-
mating Hk. This is even the case for H1 as substantiated
in the following theorem.

Theorem 3. Approximating H1(A) up to any multi-
plicative error requires Ω(m/ log m) space.

Proof. Let Prefix denote the following (one-way) com-
munication problem. Alice has a string x ∈ {0, 1}N and
Bob has a string y ∈ {0, 1}N ′

with N ′ ≤ N . Alice must
send a message to Bob, and Bob must answer “yes” if
y is a prefix of x, and “no” otherwise. The one-way
probabilistic communication complexity of Prefix is
Ω(N/ log N), as the following argument shows. Suppose
we could solve Prefix using C bits of communication.
Repeating such a protocol O(log n) times in parallel re-
duces the probability of failure from constant to O(1/n).
But by posing O(n) Prefix queries in response to Al-
ice’s message in this latter protocol, Bob could learn x
with failure probability at most a constant. Therefore,
we must have C log n = Ω(n).

Consider an instance (x, y) of Prefix. Let
Alice and Bob jointly construct the stream A =
〈a1, a2, . . . , aN , b1, b2, . . . , bN ′〉, where ai = (i, xi) for
i ∈ [N] and bi = (i, yi) for i ∈ [N ′]. Note that,

H1(A) = −
∑

i

pi

∑
j

pj|i lg pj|i = 0

if x is a prefix of y. But H1(A) 6= 0 if x is not a prefix
of y. This reduction proves that any multiplicative
approximation to H1 requires Ω(N/ log N) space, using
the same logic as that in the conclusion of the proof of
Theorem 2. Since the stream length m = N + N ′ =
Θ(N), this translates to an Ω(m/ log m) lower bound.
2

Since the above theorem effectively rules out effi-
cient multiplicative approximation, we now turn our at-
tention to additive approximation. The next theorem
(and its proof) shows how the algorithm in Section 2
gives rise to an efficient algorithm that additively ap-
proximates the kth order entropy.

Theorem 4. Hk(A) can be ε-additively approximated
with O(k2ε−2 log(δ−1) log2 n log2 m) space.

Proof. We first rewrite the kth order entropy as follows.

Hk(A)

= −
∑

i1,...,ik

pi1pi2|i1 . . . pik+1|i1i2...ik
lg pik+1|i1i2...ik

=
∑

i1,i2,...,ik+1

mi1...ik+1

m
lg

mi1...ik

mi1...ik+1

= −
∑

i1,i2,...,ik

mi1...ik

m
lg

m

mi1...ik

+
∑

i1,i2,...,ik+1

mi1...ik+1

m
lg

m

mi1...ik+1

= αk+1H(pk+1)− αkH(pk) + αk+1 lg α−1
k+1 − αk lg α−1

k

where pk is the distribution over nk points with
pk

i1i2...ik
= mi1i2...ik

/(m−k+1) and αk = m/(m−k+1).
The last two terms can easily be computed exactly.
We may assume that k = o(m) since otherwise we
could store the entire stream in the permitted space.
Hence αk = Θ(1). Since H(pk) is less than k lg n, if
we approximate it to a multiplicative factor of at most
(1 + ε/(2αkk lg n)) then we have an additive ε/2 ap-
proximation. Appealing to Theorem 1 this can be done
in O(k2ε−2 log(δ−1) log2(n) log(m)) space. We can deal
with H(pk+1) similarly and hence we get an ε additive
approximation for Hk(A). Directly implementing these
algorithms, we need to store strings of k characters from
the input stream as a single kth order character; for
large k, we can hash these strings onto the range [m2].
Since there are only m− k substrings of length k, then
there are no collisions in this hashing w.h.p., and the
space needed is only O(log m) bits for each stored item
or counter. 2

4 Entropy of a Random Walk

In Theorem 3 we showed that it was impossible to
multiplicatively approximate the first order entropy, H1,
of a stream in sub-linear space. In this section we
consider a related quantity HG, the unbiased random
walk entropy. We will discuss the nature of this
relationship after a formal definition.

Definition 4.1. For a data stream A =
〈a1, a2, . . . , am〉, with each token aj ∈ [n], we de-
fine an undirected graph G(V,E) on n vertices where,

V = [n] and

E = {{u, v} ∈ [n]2 : u = aj , v = aj+1 for some j ∈ [m− 1]} .

Let di be the degree of node i. Then the unbiased
random walk entropy is defined as,

HG =
1

2|E|
∑
i∈[n]

di lg di .

Consider a stream formed by an unbiased random
walk on an undirected graph G, i.e., if ai = j then ai+1

is uniformally chosen from the dj neighbors of j. Then
HG is the limit of H1(A) as the length of this random
walk tends to infinity:

HG =
1

2|E|
∑
i∈[n]

di lg di

= lim
m→∞

∑
i∈[n]

mi

m

∑
j∈[n]

mij

mi
lg

mi

mij

= lim
m→∞

H1(〈a1, a2, . . . , am〉)

since limm→∞(mij/mi) = 1/di and limm→∞(mi/m) =
di/(2|E|) as the stationary distribution of
a random walk on an undirected graph is
(d1/(2|E|), d2/(2|E|), . . . , dn/(2|E|)).

For the rest of this section it will be convenient to
reason about a stream E′ that can be easily transduced
from A. E′ will consist of m − 1, not necessarily
distinct, edges on the set of nodes V = [n], E′ =
〈e1, e2, . . . , em−1〉 where ei = (ai, ai+1) . Note that E
is the set produced by removing all duplicate edges in
E′.

Overview of the algorithm. Our algorithm uses the
standard AMS-Estimator as described in Section 2.
However, because E′ includes duplicate items which
we wish to disregard, our basic estimator is necessar-
ily more complicated. The algorithm combines ideas
from multi-graph streaming [10] and entropy-norm esti-
mation [8] and uses min-wise hashing [14] and distinct
element estimators [3].

Ideally the basic estimator would sample a node
w uniformly from the multi-set in which each node
u occurs du times. Then let r be uniformly chosen
from {1, . . . , dw}. If the basic estimator were to return
g(r) = f(r) − f(r − 1) where f(x) = x lg x then the
estimator would be correct in expectation:∑
w∈[n]

dw

2|E|
∑

r∈[dw]

1
dw

(f(r)−f(r−1)) =
1

2|E|
∑

w∈[n]

dw lg dw .

To mimic this sampling procedure we use an ε-min-wise
hash function h [14] to map the distinct edges in E′ into
[m]. It allows us to pick an edge e = (u, v) (almost)
uniformly at random from E by finding the edge e that
minimizes h(e). We pick w uniformly from {u, v}. Note
that w has been chosen with probability proportional to
(1± ε) dw

2|E| . Let i = max{j : ej = e} and consider the r

distinct edges among {ei, . . . , em} that are incident on
w. Let e1, . . . , edw be the dw edges that are incident on
w and let ik = max{j : ej = ek} for k ∈ [dw]. Then r
is distributed as |{k : ik ≥ i}| and hence takes a value
from {1, . . . , dw} with probability (1± ε)/dw.

Unfortunately we can not compute r exactly unless
it is small. If r ≤ ε−2 then we maintain an exact
count, by keeping the set of distinct edges. Otherwise
we compute an (ε, δ)-approximation of r using a distinct
element estimation algorithm, e.g. [3]. Note that if this
is greater than n we replace the estimate by n to get a
better bound. This will be important when bounding
the maximum value of the estimator. Either way, let
this (approximate) count be r̃. We then return g(r̃).
The next lemma demonstrates that using g(r̃) rather
than g(r) only incurs a small amount of additional error.

Lemma 4. Assuming ε < 1/4, |g(r)− g(r̃)| ≤ O(ε)g(r)
with probability at least 1− δ.

Proof. If r ≤ ε−2, then r = r̃, and the claim follows
immediately. Therefore we focus on the case where
r > ε−2. Let r̃ = (1 + γ)r where |γ| ≤ ε. We write
g(r) as the sum of the two positive terms,

g(r) = r lg(1 + 1/(r − 1)) + lg(r − 1)

and will consider the two terms in the above expression
separately.

Note that for r ≥ 2, r̃−1
r−1 = 1 ± 2ε. Hence, for the

first term, and providing the distinct element estimation
succeeds with its accuracy bounds,

| lg(r̃−1)−lg(r−1)| =
∣∣∣∣lg r̃ − 1

r − 1

∣∣∣∣ = O(ε) ≤ O(ε) lg(r−1) .

where the last inequality follows since r > ε−2, ε < 1
4 ,

and hence lg(r − 1) > 1.
Note that for r ≥ 2, r lg

(
1 + 1

r−1

)
≥ 1. For the

second term,∣∣∣∣r lg
(

1 +
1

r − 1

)
− r̃ lg

(
1 +

1
r̃ − 1

)∣∣∣∣
≤ εr lg

(
1 +

1
r̃ − 1

)
+ r

∣∣∣∣∣lg
(

1 + 1
r−1

1 + 1
r̃−1

)∣∣∣∣∣
≤ O(ε)

r

r̃ − 1
+ r

∣∣∣∣∣lg
(

1 +
r̃−1
r−1 − 1

r̃

)∣∣∣∣∣
≤ O(ε) + rO

(
1
r̃

∣∣∣∣ r̃ − 1
r − 1

− 1
∣∣∣∣)

≤ O(ε) + O(ε)

≤ O(ε)r lg
(

1 +
1

r − 1

)
.

Hence |g(r)− g(r̃)| ≤ O(ε)g(r) as required. 2

Theorem 5. There exists an (ε, δ)-approximation al-
gorithm for HG using2 O(ε−4 log2 n log2 δ−1) space.

Proof. Consider the expectation of the basic estimator:

E [X]

=
∑

w∈[n]

(1±O(ε))dw

2|E|
∑

r∈[dw]

(1±O(ε))
dw

(f(r)− f(r − 1))

=
1±O(ε)

2|E|
∑

w∈[n]

dw lg dw .

2Ignoring factors of log log n and log ε−1.

Note that since the graph G is revealed by a random
walk, this graph must be connected. Hence |E| ≥ n− 1
and dw ≥ 1 for all w ∈ V . But then

∑
w dw = 2|E| ≥

2(n− 1) and therefore,

1
2|E|

∑
w∈[n]

dw lg dw ≥ lg
2|E|
n
≥ lg 2(1− 1/n) .

The maximum value taken by the basic estimator is,

max[X] ≤ max
1≤r≤n

(f(r)− f(r − 1))

≤
(

n lg
n

n− 1
+ lg(n− 1)

)
≤

(
n

n− 1
+ lg(n− 1)

)
< (2 + lg n) .

Therefore, by appealing to Lemma 1, we know that
if we take c independent copies of this estimator we
can get a (ε, δ)-approximation to E [X] if c ≥ 6ε−2(2 +
lg n) ln(2δ−1)/(lg 2(1 − 1/n)). Hence with probability
1−O(δ), the value returned is (1±O(ε))HG.

The space bound follows because for each of the
O(ε−2 log n log δ−1) basic estimators we require an ε
min-wise hash function using O(log n log ε−1) space [14]
and a distinct element counter using O((ε−2 log log n +
log n) log δ−1

1) space [3] where δ−1
1 = O(cδ−1). Hence,

rescaling ε and δ at the outset gives the required result.
2

Our bounds are independent of the length of the
stream, m, since there are only n2 distinct edges, and
our algorithms are not affected by multiple copies of the
same edge.

Finally, note that our algorithm is actually correct
if the multi-set of edges E′ arrives in any order, i.e. it is
not necessary that (u, v) is followed by (v, w) for some
w. Hence our algorithm also fits into the adversarial
ordered graph streaming paradigm e.g., [4, 11, 10].

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
Journal of Computer and System Sciences, 58(1):137–
147, 1999.

[2] B. Babcock, M. Datar, and R. Motwani. Sampling from
a moving window over streaming data. In SODA, pages
633–634, 2002.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar,
and L. Trevisan. Counting distinct elements in a data
stream. In RANDOM, pages 1–10, 2002.

[4] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reduc-
tions in streaming algorithms, with an application to
counting triangles in graphs. In SODA, pages 623–632,
2002.

[5] L. Bhuvanagiri and S. Ganguly. Estimating entropy
over data streams. In ESA, 2006.

[6] L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha.
Simpler algorithm for estimating frequency moments
of data streams. In SODA, pages 708–713, 2006.

[7] P. Bose, E. Kranakis, P. Morin, and Y. Tang.
Bounds for frequency estimation of packet streams. In
SIROCCO, 2003.

[8] A. Chakrabarti, K. Do Ba, and S. Muthukrishnan.
Estimating entropy and entropy norm on data streams.
In STACS, pages 196–205, 2006.

[9] A. Chakrabarti, S. Khot, and X. Sun. Near-optimal
lower bounds on the multi-party communication com-
plexity of set disjointness. In CCC, pages 107–117,
2003.

[10] G. Cormode and S. Muthukrishnan. Space efficient
mining of multigraph streams. In PODS, pages 271–
282, 2005.

[11] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang. On graph problems in a semi-streaming
model. Theoretical Computer Science, 348(2-3):207–
216, 2005.

[12] Y. Gu, A. McCallum, and D. Towsley. Detecting
anomalies in network traffic using maximum entropy
estimation. In Proc. Internet Measurement Conference,
2005.

[13] S. Guha, A. McGregor, and S. Venkatasubramanian.
Streaming and sublinear approximation of entropy and
information distances. In SODA, pages 733–742, 2006.

[14] P. Indyk. A small approximately min-wise indepen-
dent family of hash functions. Journal of Algorithms,
38(1):84–90, 2001.

[15] P. Indyk and D. P. Woodruff. Tight lower bounds for
the distinct elements problem. In FOCS, pages 283–
289, 2003.

[16] P. Indyk and D. P. Woodruff. Optimal approximations
of the frequency moments of data streams. In STOC,
pages 202–208, 2005.

[17] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang.
Data streaming algorithms for estimating entropy of
network traffic. In ACM SIGMETRICS, 2006.

[18] J. Misra and D. Gries. Finding repeated elements.
Science of Computer Programming, 2:143–152, 1982.

[19] N. Nisan. Pseudorandom generators for space-bounded
computation. Combinatorica, 12:449–461, 1992.

[20] A. Wagner and B. Plattner. Entropy based worm and
anomaly detection in fast IP networks. In 14th IEEE
International Workshops on Enabling Technologies: In-
frastructures for Collaborative Enterprises (WET ICE),
2005.

[21] D. P. Woodruff. Optimal space lower bounds for all
frequency moments. In SODA, pages 167–175, 2004.

[22] K. Xu, Z. Zhang, and S. Bhattacharya. Profiling inter-
net backbone traffic: Behavior models and applications.
In ACM SIGCOMM, 2005.

