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Some Key Concepts in Data Mining – Clustering
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1. Introduction

The notion of ‘clusters’ is a very natural one, and occurs frequently in discus-
sions of epidemiology. We hear about ‘cancer clusters’, areas where the number
of reported cancer cases within an area or group of people exceeds the expected
amount. Such clusters lead to investigation of possible carcinogens or explanation
for greater susceptibility amongst certain groups.

When thinking about clusters, people most often think of geographical clusters—
the image of “pins in a map” is a resonant one. In fact, this approach has its roots
in the very foundation of epidemiology. The famed work of John Snow in 1854
was to plot cases of cholera on a map of London, and to observe that these were
centered around certain water pumps. Thus the result of this early instance of
clustering was to produce a hypothesis on the source of the cholera cases, which
was subsequently verified. The evolution of this early success in visualizing data
has been the development of sophisticated GIS systems, which can rapidly plot a
variety of data on top of maps in many ways.

However, not all data is geographic in nature. Patient admission records con-
tain large numbers of variables of different types: geographic (home address, work
address); time (date of birth, duration of symptoms); categorical (existing medica-
tions, socio-economic indicators); textual (physician’s notes); and numeric (patient
readings, such as heart rate, blood pressure etc.). We would also like to cluster
such data in order to find patterns of similarity that can lead to new hypotheses.
It is no longer possible to plot such high dimensional and heterogeneous data on a
chart and visually pick out clusters. Instead, we turn to data mining approaches
to take the data and find the clusters therein.

We will focus on the data mining methods used to produce these clusters, but
there are many other aspects of the problem surrounding this that we only touch
on.

• Data Collection. Data Collection is a major hurdle for any data mining
task. Designing experiments and enrolling volunteers to get a significant
study group can be a major commitment. Sometimes data mining is
characterized as “data dredging”: taking existing data sets collected for
some other purpose and ‘dredging’ them for new information. Even this
approach is fraught: since the data was not collected with the current goal
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in mind, there may be relevant attributes missing. Important information
about the collection method may have been lost. It may be necessary to
fuse together multiple data sets, and done without sufficient care this can
lead to erroneous conclusions. Lastly, there are myriad issues of privacy
and consent: subjects may have agreed to their data being used in one
study, but do not want it to be used for innumerable others. Issues of
individual privacy also mean that some attribute values (home address,
date of birth) may be omitted, randomly perturbed by a small amount, or
otherwise changed. Data users need to be aware of all these effects before
drawing conclusions from the data.

• Data Cleaning. No data set is perfect. At the very least, one can
expect missing values for some attributes, some errors in transcription or
data input, and duplicate entries. Dealing with these issues is a topic of
major study in itself [1]. Sometimes, a received data set has already been
‘cleaned’. Perhaps ‘scrubbed’ is a better term: missing values are some-
times filled in with average values, or values copied from similar looking
records. Values outside “sanity bounds” (ages greater than 120, pulse
rates below 0) may be replaced with default values, or the correspond-
ing record dropped completely. As with data collection, it is important
to know the methodology applied to clean the data in order to interpret
conclusions correctly.

• Interpreting Results. Most data mining tasks do not give as their
output a set of hypotheses about diseases and their cause. Instead, they
merely produce observations about the input data, to some degree of
confidence, and it is up to the user to draw their own conclusions. To
return to a geographical example, we might plot cancer data across the
United States, and observe much higher incidence in some areas, such as
Florida. Before forming hypotheses about possible carcinogens prevalent
in these areas, we need to consider to what extent this can be explained
by already known factors. In this case, if we had not adjusted the data
for demographic factors, then the observation may be explained by the
fact that many senior citizens retire to Florida, and incidence of cancers
increase with age. Great care must be taken to adjust for all relevant
factors before claiming that observed results are significant, and frequently
subsequent work is needed to verify initial findings, and ensure that the
input data was not anomalous.

We continue our discussion of clustering as follows. In the next subsection we
will give a mathematical formalism to clustering, and define it as an optimization
problem over input data. Then we consider three popular clustering methods: hi-
erarchical clustering, the k-means algorithm, and Expectation Maximization (EM).

2. The Clustering Problem

In order to cluster the input into sets of similar points, we need to be able to
define a distance between any pair of points to gauge their similarity. Formally, we
assume that the input is a set of points from a metric space, with an associated
metric, or distance, function. We will denote this distance as d, so the distance
between two points x and y is given by d(x, y). If the points are in a metric space,
then this gives three requirements on d:
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(1) Identity: d(x, x) = 0 — the distance from any point to itself is zero.
(2) Symmetry: d(x, y) = d(y, x) ≥ 0 — the distance between any two

points is the same in both directions, and is non-negative.
(3) Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z) — this means that it

is never quicker to get from one point to another by going via a different
point.

In extensions of clustering applications, it is possible to drop some or all of
these conditions, but we will focus on the metric space setting.

Defining an appropriate distance function can be challenging. If all the data is
numeric, then we can use the Euclidean distance function (straight line distance) or
L∞ distance (maximum distance in any co-ordinate). However, real data is rarely
like this. We could map our data onto numerical values, although the choice of scale
can affect the result dramatically. Suppose we had a categorical attribute which
takes two values: malign, and benign. We could map benign to 0, and malign to
1, or to 0 and 100, respectively. The choice of this difference effectively determines
the extent to which we are emphasizing that attribute relative to the others. One
can attempt to normalize the data, by rescaling all values into the range [0 . . . 1],
but this still does not solve the problem completely. Once the distance function
has been chosen, we can go on to define the general clustering problem.

Definition 1 (Clustering Algorithm). A clustering algorithm takes as input a
set of points from a metric space, and outputs a set of clusters, C = {C1 . . . Ck}.

Note that this definition is very broad—it does not describe how the clusters
are described or what criteria they fulfil. This is because there are many ways to
define the desired clustering. We give two commonly used formalisms:

Definition 2 (k-center). A k-center clustering algorithm outputs a set of k
points C = {C1 . . . Ck} (“centers”) from the metric space to define the clusters: each
input data point is associated with the point from C that is closest to it (ties can
be broken arbitrarily). The quality of the clustering is determined by the maximum
distance of a point to its closest center, ie maxx mini d(x,Ci).

Definition 3 (k-median). A k-median clustering algorithm outputs a set of k
points C (“medians”) from the metric space to define the clusters: each input data
point is associated with the point from C that is closest to it (ties can be broken
arbitrarily). The quality of the clustering is determined by the average distance of
points to their closest median, ie for n points this is 1

n

∑
x mini d(x,Ci).

Note that in both cases, the way points are allocated to clusters is the same,
but it is the objective function that varies—that is, the function that we wish
to minimize to get the best clustering. To give a good clustering we want to
find centers/medians so that the generated clusters give a good covering of the
points. This definition also puts each point in exactly one cluster; more general
definitions allow a point to belong to multiple clusters, perhaps with some degree
of certainty/probability.

Formally speaking, both these objectives are NP-Hard to optimize. That is,
all known algorithms to find the optimal solution take time exponential in the size
of the input. In theoretical computer science, researchers look for algorithms with
guaranteed approximation factors, that come provably close to the optimal solution.
However, these tend to be complicated and are often slow in practice. Instead, we
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Figure 1. Hierarchical clustering of nine points. Ellipses around
sets of points illustrate the hierarchy of containment. Initially,
points 1 and 2 are closest, so they are merged; then points 3
and 4, and so on. Suppose we wanted to extract three clusters.
Then, from this hierarchical clustering we would find the group-
ings {1, 2, 5}, {3, 4, 6, 7, 8}, {9}, since these are the last three sets
to remain in the order of merging.

will focus on describing some clustering algorithms that give few strong guarantees
about their output, but which have been observed to work well and efficiently in
practice.

3. Hierarchical Clustering

We begin our discussion of clustering algorithms with a simple to describe
method [7]. The idea of hierarchical (also known as agglomerative) clustering is
to begin with each point from the input as a separate cluster. We then build
clusters by merging clusters that are close to each other: repeatedly merge the two
clusters that are closest to each other out of all pairs. This gives a hierarchy of
containment, as each point in the input belongs to a succession of larger clusters.
If we keep merging, we end up with a single cluster that contains all points, and
the structure of the hierarchy can be represented as a (binary) tree. From this tree
we can extract a set of k clusters by, for example, stopping the merging when only
k clusters remain, or when the closest pair of clusters are at a distance exceeding
some threshold. An example hierarchical clustering is illustrated in Figure 1.

The crucial part of this algorithm is to define the distance between two clusters
of multiple points. Several natural definitions suggest themselves: it could be the
smallest distance between a point in one cluster and a point in another; the greatest
distance between such points; or the average distance. Each definition has its own
advantages and disadvantages. For example, taking the minimum cross-cluster
distance (also known as single-link clustering) can lead to building clusters that are
“snakes”: long and thin clusters, where each point is close to its closest neighbor,
but the whole cluster spreads out very far. Taking the maximum distance (complete
link clustering) favors clusters that are circular in preference to other shapes that
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might better capture the nature of the data. And computing the average (average
link clustering) can considerably slow down the computation of the clustering, which
can already be somewhat slow. This is seen as one of the principal disadvantages
of the hierarchical approach: even on fairly small data sets, the running time can
be quite significant. We need to maintain the distance between each cluster and
every other cluster. Initially, there are Ω(n2) such inter-cluster distances, since
everyone of the n input points is in its own cluster. Every time we merge a pair
of clusters, we have to update the distance between the new cluster and all other
clusters. Since there are up to n merges of clusters, the total cost of this algorithm
is Ω(n3) distance computations. This cost can grow to Ω(n4) for the average link
case.

4. The k-means method

Algorithm 1 The k-means algorithm [8]

Require: set of input items, x, in Euclidean space; desired number of clusters, k.
1: for 1 ≤ i ≤ k do
2: kmeans[i]← random item from data
3: centroid[i]← 0
4: count[i]← 0
5: repeat
6: for all x ∈ items do
7: mindist← 1
8: for 1 ≤ i ≤ k do
9: if ‖x− kmeans[i]‖2 < ‖x− kmeans[mindist]‖2 then

10: mindist← i
11: cluster[x]← mindist
12: centroid[mindist]← centroid[mindist] + x
13: count[mindist]← count[mindist] + 1
14: for 1 ≤ i ≤ k do
15: kmeans[i]← centroid[i]/count[i]
16: centroid[i]← 0
17: count[i]← 0;
18: until no items reclassified or repetition count exceeded
19: each x ∈ items is now classified by cluster[x]

The k-means algorithm [8] is very widely used to produce clusterings of data,
due to its simplicity and speed. The idea is based around clustering items using
centroids. These are points in the metric space that define the clusters. Each
centroid defines a single cluster, and each point from the data is associated with
the cluster defined by its closest centroid (ties being broken arbitrarily as usual).
The algorithm proceeds in rounds: in each round, every input point is inspected
and compared to the k centroid points to find which is closest. At the end of every
round, we compute a new set of centroids based on the points in each cluster. For
each cluster, we compute the centroid of that cluster, as the “center of mass” of the
points. The center of mass can be found efficiently by finding the mean value of
each co-ordinate. This leads to an efficient algorithm to compute the new centroids
with a single scan of the data: for each of the k clusters, compute the sum of each
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Figure 2. Expectation Maximization seeks to find the mixture of
distributions that best explains the input set of points.

co-ordinate value of all points that are associated with that cluster, and the count of
the number of points in the cluster. The new centroids can then be easily computed
after all points have been allocated to clusters. The process terminates either when
the clusters do not change (no points are placed in different clusters), or after a set
number of iterations. The algorithm is given in pseudocode in Algorithm 1.

From this description, two factors emerge. Firstly, the process relies on the
data being numerical in all attributes. The distances measured are implicitly Eu-
clidean distance. So, in the presences of non-numeric data, then k-means cannot be
applied unless some pre-processing of the data is done to convert it to a numerical
format. Secondly, the results depend on the choice of the initial setting of the cluster
centroids. Typically these are chosen as random points from the input, but other
heuristics can be applied. It is observed that the algorithm can be very sensitive to
the initial centroids. Different choices can give very different clusterings. Certain
bad cases can occur: sometimes, if two centroids are very close to one another, then
one tends to dominate the other, so the number of points in one shrinks to almost
zero, effectively “wasting” a centroid. Also, outlier points can distort the results,
either by stretching the shape of the clusters, or by taking a centroid away from
the bulk of the data. Various heuristics can be applied to avoid bad cases, such as
repeating the clustering a few times and picking the one with the best score, based
on the k-center or k-median criterion.

A more general complaint is that the method requires k to be specified up
front, and typically it is not clear in advance how many clusters there are within the
data. This applies to several clustering methods, not just k-means. The response
of practitioners seems to be to try various values of k until an appropriate value
is found. Here at least the speed of the k-means method is an advantage: each
round requires each input point to be compared to the current k centroids, and so
it can completed in time O(kn). Typically, a relatively small number of rounds are
required before a good clustering is found.

5. Expectation Maximization (EM)

In some ways, the Expectation Maximization (EM) [2] approach to clustering
can be seen as an extension of k-means, with a more solid theoretical underpinning.
What is the model that k-means is applying to the data? It is that the each data
point belongs to one of k clusters that are defined by a set of k points. The division
of space induced by these points can be represented by a Voronoi diagram [14]. EM
relaxes the assumption that every point comes from a single cluster, and instead
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models the data as the result of some generative process. For example, typically EM
uses a model that says that the data is being generated by a mixture of Gaussian
(Normal) distributions. Each distribution gives a probability density over the whole
of the space for generating points. If there are k such distributions, then the
probability density function comes from taking the scaled union of these individual
densities. Each of the distributions can have different parameters—in the case of
Gaussians, these need only be the mean and standard deviation for one dimension;
for higher dimensions, then there are more parameters to describe the shape of the
distribution. This is illustrated in Figure 2. If we accept this model for the data,
then the clustering process can be thought of as a search for the parameters of the
generating distributions. The Expectation Maximization stage is, given the model
and the data, to find the settings of the parameters of the model that best explain
the data. That is, they are the most likely settings of the parameters given the
data. The result of this means that we do not allocate points to clusters but rather
for each data point we can evaluate the produced model at that point and see the
relative probabilities that this point came from each of the k different distributions.
It is this model which represents the clustering, and which can be used to predict
future outcomes.

In order to generate the maximum likelihood settings of the parameters, various
algorithms can be employed which, at a high level, resemble k-means. From an
initial guess of the settings of the parameters, successive passes over the data refine
these guess and improve the fit of the data to the current model. The details depend
on the distributions used in the model (Gaussian, Log-Normal, Poisson, Discrete).
For a model with a single Gaussian distribution, the sample mean is the maximum
likelihood estimator. For two or more Gaussians, one can write out the expression
for the mixture of these distributions, and, based on the current estimates of the
parameters, compute the likelihood that each input point was generated by each
of the distributions. Based on these likelihoods, we can create new settings of the
parameters, and iterate. Each step increases the likelihood of the observed data
given the current parameters, until a maximum is reached. Note that this maximum
may be a local maximum, rather than the global maximum. The maximum that is
reached depends on the initial setting of parameters. Hence we see the connection
to k-means, the principal differences being the greater emphasis on an underlying
model, and the way that each point has a probability or likelihood of belonging to
each cluster, rather than a unique parent cluster.

A further advantage of EM is that non-numerical data can more easily be
fitted into the models: for categorical data, for example, we can have a discrete
probability distribution giving the probability of being in each category for each
point. However, the additional cost of evaluating the model and computing the
new likelihoods means that it can be slower than k-means. It also requires the user
to provide a global hypothesis in advance on the model: not only do they have to
give k, the number of distributions, but also describe these: are they k Gaussians,
or j Poisson distributions and k − j Gaussians, etc. Compared to the crispness of
other so-called “hard clustering” methods, the “fuzzy clustering” produced by EM
can disquiet some users.
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6. Conclusion

Clustering remains a popular method for extracting hypotheses from large
amounts of data. One particular advantage is that, unlike some other data mining
methods, it does not require any of the input data to be “labeled”, that is, inspected
by an expert and tagged with a prognostication. Instead, clustering merely tries
to identify groups of similar items within the data and report these back to the
user. This falls into the class of “unsupervised learning” techniques, in contrast to
“supervised learning”, which requires a training set of data to be made available
which is tagged with the appropriate class identifier. Understanding the mecha-
nism of the clustering method is important for the user, so that they may evaluate
the significance and meaning of the results of clustering. We have only discussed
a few of the clustering methods that have been proposed, and mentioned a few of
the factors in their use. There have been many variations and alternative methods
defined in the database literature on clustering: methods such as CLARANS [12],
DBSCAN [3], CURE [4], BIRCH [17], and many others.

Many software packages are commercially available that implement such clus-
tering methods. For example, Mathematica [9] and Matlab [10] both contain rou-
tines to perform various clustering operations on input data. XLMiner is a plug-in
for Excel that implements k-means clustering and hierarchical clustering [16]. Clus-
tan (http://www.clustan.com/) is a software package devoted to cluster analysis.
In addition to these and many other commercial solutions, one can also find free
implementations of a variety of languages: Fortran, C++ and Java being the most
popular. For more details on clustering approaches, see one of the several good qual-
ity textbooks on data mining [6, 5, 1], or tutorials available on the web [15, 11, 13].
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