
Exponentially Decayed Aggregates on Data Streams
Graham Cormode†, Flip Korn†, Srikanta Tirthapura∗

†AT&T Labs-Research
{graham,flip}@research.att.com

∗ Iowa State University
snt@iastate.edu

Abstract— In a massive stream of sequential events such as
stock feeds, sensor readings, or IP traffic measurements, tuples
pertaining to recent events are typically more important than
older ones. It is important to compute various aggregates over
such streams after applying a decay function which assigns
weights to tuples based on their age. We focus on the computation
of exponentially decayed aggregates in the form of quantiles and
heavy hitters. Our techniques are based on extending existing
data stream summaries, such as the q-digest [1] and the “space-
saving” algorithm [2]. Our experiments confirm that our methods
can be applied in practice, and have similar space and time costs
to the non-decayed aggregate computation.

I. INTRODUCTION

The rapid growth in data volumes from applications such
as networking, scientific experiments and automated processes
continues to surpass our ability to store and process using
traditional means. Consequently, a new generation of systems
and algorithms has been developed, under the banner of “data
streaming”. Here, we must be able to answer potentially
complex queries continuously in real time, as the stream is
observed in whatever order it arrives. In contrast with a stored
database, events in a data stream that have occurred recently
are usually more significant than those in the distant past.
This is typically handled through decay functions that assign
greater weight to more recent elements in the computation of
aggregates. Of particular interest is the notion of exponential
decay, where the weight of an item which occurred a time
units ago is exp(−λa), for a decay parameter λ.

Exponential decay is a popular model due in part to the
relative simplicity with which simple counters can incorporate
exponential decay (this result is virtually folklore). As a
consequence, for methods based on counts that are linear
functions of the input, such as randomized sketches, the
ability to apply exponential decay and out-of-order arrivals
follows almost immediately. For other summaries, this is not
so immediate: Manjhi et al. [3] carefully prove variations of
known frequent items algorithms to track heavy hitters with
exponential decay in space O(1

ε). Aggarwal [4] shows how
to draw a sample with approximately exponential decay on
sequence numbers. Other decay functions have been studied,
for more details see [5], [6].

In this paper, we study how exponential decay can be ap-
plied to complex streaming aggregates, in particular quantiles
and heavy hitters. Our algorithms extend previously known
algorithms for these problems without any time decay, and as

a consequence run with at least the same time cost and space
bounds. This yields the first known deterministic algorithms
for quantiles under exponential decay; it also yields algorithms
for heavy hitters under exponential decay which are simpler
and more flexible than prior work [3], since they tolerate
arrivals in arbtirary orders. As such, they are quite practical for
use in a live data streaming system handling many hundreds
of thousands of transactions per second.

II. PRELIMINARIES

Definition 1: A data stream is an (unbounded) sequence of
tuples ei = 〈xi, wi, ti〉, where xi is the identifier of the item
(the key), wi is a non-negative initial weight associated with
the item, and ti the timestamp.

For example, a stream of IP network packets may be
abstracted as a stream where xi is the destination address,
wi is the size of the packet in bytes, and ti the time at which
it was sent. The “current time” is denoted by the variable t.
It is possible for many items in the stream to have the same
timestamp. The weight of an item at time t is based on an
exponential decay function:

Definition 2: Given an input stream S = {〈xi, wi, ti〉}, the
decayed weight of each item at time t is wi exp(−λ(t− ti))
for a parameter λ > 0. The decayed count of the stream at t is
D(t) =

∑
i wi exp(−λ(t− ti)) (or just D when t is implicit).

The definitions of time-decayed aggregates introduced be-
low are implicit in some prior work, but have not previously
been stated explicitly. In most cases, the definitions of time-
decayed aggregates are natural and straightforward extensions
of their undecayed versions. Since exact computation of these
aggregates requires space linear in the input size even without
decay, we consider the following approximation problems:

Definition 3: For 0 < ε < φ ≤ 1, the ε-approximate
exponentially decayed φ-quantiles problem is to find q so that

(φ− ε)D ≤
∑

i,xi<q wi exp(−λ(t− ti)) ≤ (φ + ε)D.
For 0 < ε < φ ≤ 1, the ε-approximate exponentially

decayed φ-heavy hitters problem is to find a set of items {p}
satisfying

∑
i,xi=p wi exp(−λ(t− ti)) ≥ (φ− ε)D, and omit-

ting no q such that
∑

i,xi=q wi exp(−λ(t− ti)) ≥ (φ + ε)D.
Note that timestamp ti is completely decoupled from time

t when the tuple is observed. So it is possible that i < j, so
that ei = 〈xi, wi, ti〉 is received earlier than ej = 〈xj , wj , tj〉,
but ti > tj so ei is more recent than ej . The above aggregates
are thus well defined on such out-of-order arrivals.

III. EXPONENTIALLY DECAYED QUANTILES

We describe our approach for computing quantiles on times-
tamp ordered data under exponential decay, which is the first
deterministic algorithm for this problem. Given a parameter
0 < ε < 1, the q-digest [1] summarizes the frequency
distribution fi of a multiset defined by a stream of N items
drawn from the domain [0 . . .W−1]. The q-digest can be used
to estimate the rank r(q) of an item q, which is defined as the
number of items dominated by q, i.e., r(q) =

∑
i<q fi. The

data structure maintains an appropriately defined set of dyadic
ranges of the form [i2j . . . (i + 1)2j − 1] and their associated
counts. It is easy to see that an arbitrary range of integers
[a . . . b] can be uniquely partitioned into at most 2 log(b− a)
dyadic ranges, with at most 2 dyadic ranges of each length.
The q-digest has the following properties:

• Each range, count pair (r, c(r)) has c(r) ≤ εN
log2 W , unless

r represents a single item.
• Given a range r, denote its parent range as par(r), and

its left and right child ranges as left(r) and right(r)
respectively. For every (r, c(r)) pair, we have that
c(par(r))+ c(left(par(r)))+ c(right(par(r))) ≥ εN

log2 W .
• If the range r is present in the data structure, then the

range par(r) is also present in the data structure.
Given query point q ∈ [0 . . .W − 1], we can compute

an estimate of the rank of q, denoted by r̂(q), as the sum
of the counts of all ranges to the left of q, i.e. r̂(q) =∑

(r=[l,h],c(r)),h<q c(r). The following accuracy guarantee can
be shown for the estimate of the rank: r̂(q) ≤ r(q) ≤ r̂(q) +
εN . Similarly, given a query point q one can estimate fq, the
frequency of item q as f̂q = r̂(q+1)−r̂(q), with the following
accuracy guarantee: f̂q − εN ≤ fq ≤ f̂q + εN . The q-digest
can be maintained in space O(log W

ε) [1], [7]. Updates to a q-
digest can be performed in (amortized) time O(log log W), by
binary searching the O(log W) dyadic ranges containing the
new item to find the appropriate place to record its count; and
queries take O(log W

ε). Now observe that: (1) The q-digest can
be modified to accept updates with arbitrary (i.e. fractional)
non-negative weights; and (2) multiplying all counts in the
data structure by a constant γ gives an accurate summary of
the input scaled by γ. It is easy to check that the properties
of the data structure still hold after these transformations, e.g.
that the sum of the counts is D, the sum of the (possibly
scaled) input weights; no count for a range exceeds εD

log U ; etc.
Thus given an item arrival of 〈xi, ti〉 at time t, we can

create a summary of the exponentially decayed data. Let t′

be the last time the data structure was updated; we multiply
every count in the data structure by the scalar exp(−λ(t− t′))
so that it reflects the current decayed weights of all items,
and then update the q-digest with the item xi with weight
exp(−λ(t− ti)). Note that this may be time consuming, since
it affects every entry in the data structure. We can be more
“lazy” by tracking D, the current decayed count, exactly, and
keeping a timestamp tr on each counter c(r) denoting the last
time it was touched. Whenever we require the current value of
range r, we can multiply it by exp(−λ(t− tr)), and update tr

Algorithm IV.1: HEAVYHITTERUPDATE(xi, wi, ti, λ)

Input: item xi, timestamp ti, weight wi, decay factor λ
Output: Current estimate of item weight
if ∃j. item[j] = xi;

then j ← item−1(xi)
else j ← arg mink(count[k]);

item[j]← xi;
count[j]← count[j] + wi exp(λti)
return (count[j] ∗ exp(−λti))

Fig. 1. Pseudocode for Heavy Hitters with exponential decay

to t. This ensures that the asymptotic space and time costs of
maintaining an exponentially decayed q-digest are as before.

To see the correctness of this approach, let S(r) denote
the subset of input items which the algorithm is representing
by the range r: when the algorithm processes a new update
〈xi, ti〉 and updates a range r, we (notionally) set S(r) =
S(r) ∪ i; when the algorithm merges a range r′ together into
range r by adding the count of (the child range) r′ into the
count of r (the parent), we set S(r) = S(r) ∪ S(r′), and
S(r′) = ∅ (since r′ has given up its contents). Our algorithm
maintains c(r) =

∑
i∈S(r) wi exp(−λ(t − ti)); it is easy to

check that every operation which modifies the counts (adding
a new item, merging two range counts, applying the decay
functions) maintains this invariant. In line with the original q-
digest algorithm, every item summarized in S(r) is a member
of the range r, i.e. i ∈ S(r) ⇒ xi ∈ r, and at any time each
tuple i from the input is represented in exactly one range r.

To estimate the decayed rank of x at time t, rλ(x, t) =∑
i,xi≤x wi exp(λ(t− ti)), we compute

r̂λ(x, t) =
∑

r=[l...h],h≤x c(r).
By the above analysis of c(r), we correctly include all

items that are surely less than x, and omit all items that are
surely greater than x. The uncertainty depends only on the
ranges containing x, and the sum of these ranges is at most
ε
∑

r c(r) = εD. This allows to quickly find a φ-quantile
with the desired error bounds by binary searching for x whose
approximate rank is φD. In summary,

Theorem 1: Under a fixed exponential decay function
exp(−λ(t − ti)), we can answer ε-approximate decayed
quantile queries in space O(1

ε log U) and time per update
O(log log U). Queries take time O(log U

ε).

IV. EXPONENTIALLY DECAYED HEAVY HITTERS

Prior work by Manjhi et al. [3] computed Heavy Hitters on
timestamp ordered data under exponential decay by modifying
algorithms for the problem without decay. We take a similar
tack, but our approach means that we can also easily accom-
modate out-of-order arrivals, which is not the case in [3]. A
first observation is that we can use the same (exponentially
decayed) q-digest data structure to also answer heavy hitters
queries, since the data structure guarantees error at most εD in
the count of any single item; it is straightforward to scan the
data structure to find and estimate all possible heavy hitters in
time linear in the data structure’s size. Thus Theorem 1 also
applies to heavy hitters. However, we can reduce the required

 0

 200

 400

 600

 800

 1000

 1200

 0 0.05 0.1 0.15 0.2

s
p
a
c
e
 (

#
n
o
d
e
s
)

ε

nodecay
expdecay

(a) exp (λ = 0.1) and no-decay: space vs ε

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

4M3M2M1M0

e
la

p
s
e
d
 s

e
c
s

time step

nodecay
expdecay

(b) performance vs timestamp (World Cup)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.05 0.1 0.15 0.2

ru
n
 t
im

e
 (

m
s
)

ε

no decay
exp decay

(c) performance vs ε (flow)

Fig. 2. Experimental results on real data for exponentially time-decayed aggregates

space, and extend to the case when the input is drawn from
an arbitrary domain, and arrives in arbitrary order.

Our algorithm, a modified version of the “Space-saving”
algorithm [2] tracks a set of O(1

ε) pairs of item names and
counters, with the counters initialized to zero. For each item
xi in the stream, we see if there is currently an (item, counter)
pair for that item. If so, we update the quantity of wi exp(λti),
and add this to the counter associated with xi. Otherwise, we
add the same quantity, wi exp(λti), to the smallest counter
(breaking ties arbitrarily), and set the item associated with the
counter to xi. Pseudo-code is in Figure 1. To find the heavy
hitters, visit each item stored in the data structure, item[i],
estimate its decayed weight at time t as exp(−λt) count[i],
and output item[i] if this is above φD.

Theorem 2: The algorithm finds ε-approximate exponen-
tially decayed heavy hitters in space O(1

ε), with update time
O(log 1

ε). Queries take time O(1
ε).

Proof: The space bound follows from the definition of the
algorithm and the time bound follows if we use a standard heap
data structure to track the smallest count in the data structure.
It remains to prove correctness. The following invariant holds
by induction over updates:

∑
j count[j] =

∑
i wi exp(λti) =

D exp(λt). Also, since there are 1
ε counters, the smallest

count, min = minj(count[j]), is at most εD exp(λt). The
true decayed count of any item xi which is not recorded in the
data structure is at most min exp(−λt), by induction over the
sequence of updates (it is true intially, and remains true over
each operation). Thus, when an uncounted item is stored in the
data structure, we associate it with the current value of min,
which at is always an overestimate of the true decayed count
(scaled by exp(λt)). Hence, every count at query time is an
overestimate. Suppose we do not store some item x whose true
decayed count is above εD. Then we must have overwritten x
with another item xi when the minimum count was mini. But
since our estimate of the count of x at any instant is guaranteed
to be an overestimate, this gives a contradiction, since the
true decayed count of x is at least εD ≥ min ≥ mini;
consequently, we would not have overwritten x. Therefore,
we can conclude that the data structure retains information
about all items with decayed count at least εD. The estimated
counts are overestimates by at most εD, so we can accurately
answer heavy hitter queries from the stored information.

V. EXPERIMENTS

We implemented our method from Section III (based on
q-digests) in C and measured the space usage (in terms of
number of nodes stored in the data structure) and processing
time. We show results on two different network data streams:
5 million records of IP flow data aggregated at an ISP
router using Cisco NetFlow, projected onto (begin time,
num octets); and 5 million records of Web log data col-
lected during the 1998 Football World Cup (http://ita.
ee.lbl.gov/.), projected onto (time, num bytes).
Experiments were run on a 2.8GHz Pentium Linux machine
with 2 GB main memory.

Figure 2(a) graphs the space usage of exponential decay
compared to no decay (regular q-digests) for different values of
ε on flow data. It shows that in practice there is very little space
overhead for exponential decay. The results on World Cup
data (not shown) were almost identical. Figure 2(b) compares
the time (in seconds) taken to update the data structure
for exponential and no-decay at increasing timestamps using
World Cup data (flow data was similar). Figure 2(c) shows how
these times vary with ε, on a log scale. Exponential decay can
handle a throughput of around 1 million updates per second. It
is highly effective to implement, since the overhead compared
to no decay is small.

REFERENCES

[1] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians
and beyond: New aggregation techniques for sensor networks,” in ACM
SenSys, 2004.

[2] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in International Conference
on Database Theory, 2005.

[3] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston, “Finding (re-
cently) frequent items in distributed data streams,” in IEEE International
Conference on Data Engineering, 2005, pp. 767–778.

[4] C. C. Aggarwal, “On biased reservoir sampling in the presence of stream
evolution,” in International Conference on Very Large Data Bases, 2006,
pp. 607–618.

[5] E. Cohen and M. Strauss, “Maintaining time-decaying stream aggregates,”
in ACM Principles of Database Systems, 2003.

[6] G. Cormode, F. Korn, and S. Tirthapura, “Time decaying aggregates in
out-of-order streams,” Center for Discrete Mathematics and Computer
Science (DIMACS), Tech. Rep. 2007-10, 2007.

[7] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Space-
and time-efficient deterministic algorithms for biased quantiles over data
streams,” in ACM Principles of Database Systems, 2006.

