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ABSTRACT
Federated Computation is an emerging area that seeks to provide
stronger privacy for user data, by performing large scale, distributed
computations where the data remains in the hands of users. Only
the necessary summary information is shared, and additional secu-
rity and privacy tools can be employed to provide strong guarantees
of secrecy. The most prominent application of federated computa-
tion is in training machine learning models (federated learning),
but many additional applications are emerging, more broadly rel-
evant to data management and querying data. This tutorial gives
an overview of federated computation models and algorithms. It
includes an introduction to security and privacy techniques and
guarantees, and shows how they can be applied to solve a vari-
ety of distributed computations providing statistics and insights
to distributed data. It also discusses the issues that arise when im-
plementing systems to support federated computation, and open
problems for future research.
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1 MOTIVATION
There are increasing needs for privacy-enhancing technologies to
be deployed at scale in order to provide users with useful prod-
ucts and services while protecting their private information. In
particular, recent legislation (e.g., GDPR, CCPA) imposes a greater
requirement on service providers to protect data that is entrusted
to them. Meanwhile, new restrictions on what data is available
(such as Apple’s opt-in tracking and the planned deprecation of
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third-party cookies) limit the opportunity for data collection on
which many data-intensive organizations have relied.

In response to these constraints, there has been a growth of inter-
est in the notion of Federated Computation as a means for working
with private data at very large scale. In this setting, federation refers
to the large collection of heterogenous user devices that interact
with an online service. The core concept of federated computation
is to move the bulk of data processing to the edge of the network,
so that user data is processed on user devices, and only a small
amount of summary information is provided back to the server
for further aggregation. This stands in contrast to the centralized
approach of gathering all data in one place for analysis. It echoes
the notion of “move the compute to the data, rather than vice-versa”
that has informed large-scale distributed data processing such as
MapReduce, but on a different set of scales: here, the (heterogenous)
computational entities are typically quite weak (user devices such
as phones or browsers), and the number of such entities can range
from hundreds to millions. It embodies the notions of “data mini-
mization” and “purpose limitation”: that the information shared by
the users is intended to be as little as possible, and only enough to
support the intended application. In addition, more mathematical
notions of privacy, such as differential privacy and (partially) ho-
momorphic encryption, can be adopted in order to provide a strong
guarantee of protection on the data that is shared to the server.

The most prominent notion of federated computation is Feder-
ated Learning: the process of training a machine learning model
over data held by distributed clients [8]. Federated learning has
been adopted by several large technology companies (most promi-
nently, Google, but also Apple and Meta) in order to train their
machine learning to a high level of accuracy while promising that
the training data never leaves the client device. Typically, federated
learning is based on a distributed notion of (stochastic) gradient
descent: the server provides each user with a current model, and
the user computes a gradient with which to update the model based
on how their examples are classified by it. The server will then
aggregate the returned gradients and propose a next iteration of
the model.

While federated learning is the most prominent notion of fed-
erated computation, it is by no means the only one. Modern data
processing relies on a wide range of different tasks informed by
user data. These include gathering statistics, performing statistical
tests, identifying trends and changes in data, and other complex
calculations and analyses over distributed data. These too benefit
from maintaining the data on user devices and only sharing the
minimal amount of derived data to complete the computation. Tech-
niques from privacy and security are additionally applied to protect
the sensitive information. Algorithmic techniques, such as data
summarization, dimensionality reduction and aggregation are used
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to enable complex functions to be evaluated in the distributed set-
ting. If anything, these applications are even more important than
federated learning: while many trained models are not ultimately
deployed in production, statistics and insights are more ubiqui-
tously employed in operations and decision making. Such analytics
can be both reactive (helping to identify the root cause of changes
or debug operations) and proactive (ongoing monitoring and ad-
justing to collective behavior, identifying new market segments to
launch a new product). Current approaches are mostly bespoke:
specific algorithms deployed to address a single query type. The
long term prospect is to move more in the direction of high-level
query languages, where target analytics can be defined descrip-
tively, and compiled automatically into tasks to be performed on
client devices, coupled with aggregate analysis centrally.

In this tutorial, we will give an overview of the state-of-the-art in
federated computation, and provide particular emphasis on feder-
ated analytics (FA), broadly understood as the aspects of federated
computation outside of federated learning (FL). Crudely, we can
think of FL as techniques based around vector aggregation and gra-
dient descent, and FA as techniques beyond those.Wewill introduce
the models and techniques that have been used to build federated
systems, and explain the algorithmic approaches to provide private
collection of actionable analytics. Throughout, we will comment
on open problems and directions for future work in this rapidly
expanding area.

2 OUTLINE OF THE TUTORIAL
2.1 Introduction and Motivation
We begin with a motivation of federated computation as a growing
area of study, with examples from existing deployments in practice.
We explain the motivating factors, primarily around the need for
privacy, and to scale with a large number of participating users.
We outline the two concepts of federated learning and federated
analytics, and highlight the key differences in terms of their focus.
We also point out similarities and differences with related models of
distributed computation, such as MapReduce [16] and sketching [6].
Then, we address social aspects of federated computation, such as
ensuring diversity and fairness for participants.

There are several different models to capture different styles
of federated computation. These include the distinction between
horizontal and vertical federation, and the scale of the setting. Scales
range from co-operating silos (e.g., a few hospitals), where each
participant represents many individuals, to massively distributed
scenarios (e.g., millions of mobile clients), where each participant
represents a single individual. Our main focus in the tutorial is on
the latter scenario.

We introduce the different notions of data privacy that are com-
patible with federated computation. These include privacy by data
minimization, which may be additionally protected by secure aggre-
gation [3]. Secure multi-party computation is a key tool to provide
protection of data when shared between multiple parties [10]. Dif-
ferential privacy (DP) is widely adopted to provide privacy, and
can be achieved under different models – central, local or dis-
tributed/shuffle DP provide different trade-offs between trust and
accuracy [7]. Differential privacy can be applied at different levels

– per event, per device, or per user, to provided different protection
at different levels of sensitivity to change.

2.2 Core Federated Computation Algorithms
We give examples of different algorithmic approaches to federated
computations under differentmodels of privacy, andwith increasing
complexity.

• We start with the foundational question of computing sums
and counts of numeric values. If each user is content to re-
veal their value to an aggregator, it is straightforward to add
up all responses from all users. Central differential privacy
can be achieved by adding appropriate random noise to the
result, with minimal impact on accuracy. For a stronger local
differential privacy guarantee, each user can add their own
noise independently, or via mechanisms such as random-
ized response. This removes the need to place trust in the
aggregator, but increases the magnitude of the noise.

• Computing the sum (or average) of vectors, where each user
submits a single vector, is a similarly fundamental task. Tech-
niques from multiparty computation (MPC), such as secret
sharing, are suitable to perform this sum while only reveal-
ing the aggregate sum and not any of the intermediate values.
However, additional steps are needed to handle situations
which arise in reality, such as when users may fail to com-
plete the protocol (i.e., by going off-line midway through
the data collection). Full MPC can also be challenging to
operate at federated scale, due to reliance on public key in-
frastructure and full peer-to-peer connectivity. This leads
to the notion of lightweight secure aggregation protocols
that can handle dropouts and make minimal assumptions
about infrastructure. These form the basis of FedAVG [11]
and FEDSGD [14], two very popular approaches to training
ML models under federated learning.

• Mean and variance estimation are two related statistical tasks
that underpin many more sophisticated analytics. Several
approaches have been proposed recently, which use random-
ization to extract a single bit from each user [2, 5, 17]. Re-
ducing the communication to a single bit makes the privacy-
preserving nature of the protocol more apparent, but requires
a little more care to ensure that the result provides meaning-
ful accuracy, particularly for variance and other non-linear
aggregates.

• The problem of computing a histogram (set of counts) from
a data set is one of the most heavily studied under the model
of differential privacy. Recent efforts have aimed to translate
these results to the distributed setting, where techniques
based on sampling and sketching are used to handle high-
dimensional data [1, 4, 18].

• For a discrete empirical data distribution, it is often useful
to characterize it based on the heavy hitters (i.e., peaks in
the PDF) and quantiles (i.e., an approximation of the CDF).
Hierarchical approaches build on histogram computation
and allow us to find heavy hitters and quantiles of data
distributions, with tradeoffs between interactive and non-
interactive approaches [18].



2.3 Federated Computation Systems
We go on to discuss the challenges that emerge in building systems
to support federated computation at scale. In reality, user devices
show extreme heterogeneity, which manifests in highly variable
response times (straggglers) and limited computational capabilities
(i.e., small space and limited processing power) [12]. A practical
federated stack will need to take account of these variations, while
ensuring that weaker devices are not excluded from participating.
A useful implementation must support a wide range of use-cases,
and so allow a range of tasks to be registered, while ensuring that
no user is overwhelmed with demands. So far, open source toolk-
its for general purpose federated computation have been limited,
but we will mention Tensor Flow Federated [15] for learning-like
workloads, and Crypten for multi-party computation [9].

2.4 Advanced Topics and Open Problems
We conclude the tutorial with coverage of some more advanced
computations, and point to areas ripe for further research. A key
area for more study is the borderline between federated analytics
and federated learning. Most FL work concentrates on the core
tasks of training the parameters of a specified machine learning
model, while FA research to date has mostly focused on gathering
basic statistics. There is vast potential to expand the scope of the
capabilities of federated computation in the direction of more gen-
eral purpose computation. In particular, there are many other tasks
relevant to deploying machine learning that require a federated
solution, such as drawing statistics on features to inform feature
scaling, feature selection and model architecture choice. It is im-
portant to also be able to compute properties of learned models,
such as their accuracy and performance on different inputs – this
too can require a federated solution to protect the user data used
to test the model.

The bulk of the examples discussed so far apply to data that
can be considered structured in a precise mathematical way, i.e.,
represented as scalars, vectors, matrices or tensors. It is open to
understand different types of data which bring their own semantics,
such as text or graph structured data. These in turn bring ques-
tions about privacy – what is the right notion of privacy to protect
individuals that may be represented in text or graphs, where an
individual may be represented in many different places? Related
problems concern other data mining tasks such as clustering, for
example in the FLoC effort to identify interest-based clusters of
users in a distributed way [13].

Last, the approaches discussed so far tend to assume that the
data is static. But in reality, data evolves over time, and federated
approaches need to be defined that can handle time-series data,
which arrives at the client device as a stream of updates, and allow
streaming versions of federated computation.

3 INTENDED AUDIENCE AND BACKGROUND
KNOWLEDGE

The tutorial is intended to be accessible to all participants at SIG-
MOD, and so makes minimal assumptions on prior knowledge.
While some background on security and privacy would be useful,
all the technical ideas can be understood without requiring for-
mal security proofs or statistical notions of privacy. Instead, they

are presented assuming properties of existing security and privacy
tools, which are presented in more detail in the literature. To this
end, the tutorial does not include any formal proofs, but instead
provides an overview and intuition of the key concepts. As a result
the tutorial is intended to be suitable for starting researchers, of
for those with expertise in other areas seeking to understand the
emerging topic of federated computation.We will make the tutorial
accessible to all participants at SIGMOD, and so will minimize the
assumptions on prior knowledge. While some background on secu-
rity and privacy would be useful, we can explain all the technical
ideas to a suitable level of detail without requiring formal security
proofs or statistical notions of privacy. Instead, they can be pre-
sented assuming properties of existing security and privacy tools,
which are presented in more detail in the literature. To this end, we
will not present any formal proofs, but instead provide an overview
and intuition of the key concepts. As a result, we intend that the
tutorial will be suitable for starting researchers, or for those with
expertise in other areas seeking to understand the emerging topic
of federated computation.

The intended learning outcomes are:
• Understand the motivation for and benefits of federated
computation;

• Compare the different models of security and privacy that
federated computation can be performed in;

• Understand existing algorithms that operate in the federated
model, and design new algorithms;

• Describe the challenges that arise in moving federated algo-
rithms from theory to practice;

• Identify novel open problems and research directions for
federated computation.
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