
The VLDB Journal manuscript No.
(will be inserted by the editor)

Anonymizing Bipartite Graph Data using Safe Groupings

Graham Cormode · Divesh Srivastava · Ting Yu · Qing Zhang

Received: date / Accepted: date

Abstract Private data often comes in the form of asso-
ciations between entities, such as customers and products
bought from a pharmacy, which are naturally represented in
the form of a large, sparse bipartite graph. As with tabular
data, it is desirable to be able to publish anonymized ver-
sions of such data, to allow others to perform ad hoc analy-
sis of aggregate graph properties. However, existing tabular
anonymization techniques do not give useful or meaningful
results when applied to graphs: small changes or masking
of the edge structure can radically change aggregate graph
properties.

We introduce a new family of anonymizations for bi-
partite graph data, called(k, ℓ)-groupings. These groupings
preserve the underlying graph structure perfectly, and in-
stead anonymize the mapping from entities to nodes of the
graph. We identify a class of “safe”(k, ℓ)-groupings that
have provable guarantees to resist a variety of attacks, and
show how to find such safe groupings. We perform exper-
iments on real bipartite graph data to study the utility of

Yu and Zhang were partially sponsored by the NSF through grants IIS-
0430166 and CNS-0747247.

Graham Cormode
AT&T Labs–Research, Florham Park, NJ
E-mail: graham@research.att.com

Divesh Srivastava
AT&T Labs–Research, Florham Park, NJ
E-mail: divesh@research.att.com

Ting Yu
North Carolina State University, Raleigh, NC
E-mail: tyu@ncsu.edu

Qing Zhang
North Carolina State University, Raleigh, NC
E-mail: qzhangqing@gmail.com

Present address:
Qing Zhang
Teradata, El Segundo, CA

the anonymized version, and the impact of publishing al-
ternate groupings of the same graph data. Our experiments
demonstrate that(k, ℓ)-groupings offer strong tradeoffs be-
tween privacy and utility.

Keywords Privacy· Microdata· Graph· Query Answering

1 Introduction

Private data often arises in the form ofassociationsbetween
entities. A first example is represented by the products
bought by customers at a pharmacy. The set of products be-
ing sold and their properties is public knowledge, and it may
be no secret which customers visit a particular pharmacy.
However, the association between a particular individual and
a particular medication is often considered sensitive, since it
is indicative of a disease or health issue that they have. A
second example of association data is the Netflix prize data
set, released in 2006, which was anonymized based on an
unspecified heuristic method [2]. This led to speculation on
how easy it would be to break the privacy [13]. A third ex-
ample is that of authors and papers: for a conference such
as SIGMOD, reviewers learn information about submitted
papers (title, area, abstract), and could (in future) also see
detailed information about authors who have submitted pa-
pers, in order to verify conflicts of interest. But, since SIG-
MOD is a double-blind conference, the association between
authors and papers should not be revealed to reviewers.

The most natural way to model such data is as a graph
structure: nodes represent entities, and edges indicate an
association between them; much analysis can then be per-
formed on structural properties of this graph. In this work,
we study data that can be modeled as bipartite graphs—there
are two types of entity, and associations link together one en-
tity of each type. In the pharmacy, customers buy products,
and in SIGMOD, authors write papers, building (customer,

2

product) and (author, paper) associations respectively. Each
entity can be involved in few or many associations, but in
most common situations, only a tiny fraction of all possi-
ble associations are present. No customer buys more than a
small fraction of the available products, and no product is
bought by more than a small fraction of the total customers.
Similar observations hold for publication data about authors
and the papers they have written. In other words, the induced
graph is quite sparse, and we must ensure that these associ-
ations are not easily revealed.

Although the data is private, it is still desirable to allow
aggregate analysis based on the structure of the graph. Phar-
maceutical companies wish to understand which pattern of
products are bought by people in particular age ranges; pub-
lic health organizations want to watch for disease outbreaks
affecting particular demographics based on certain types of
medicine being purchased; SIGMOD may encourage anal-
ysis of hot topics in databases, or better understanding of
coauthorship patterns. Publishing the raw data would allow
these questions to be answered directly, but would fail to
meet the privacy concerns outlined above. The model where
the data owner accepts queries and either adds noise to re-
sults or refuses to answer some questions requires the data
owner to be an active participant and may limit what analy-
sis is possible. Instead, we adopt the approach of publishing
some anonymized version of the data, and ensuring that the
scope for inferring any given association from this data is
limited while the key properties, in particular the structure
of the underlying graph, are preserved. This approach al-
lows a wide variety of ad hoc analyses and novel valid uses
of the data, while ensuring our privacy goals are met.

The problem of publishing anonymized data has at-
tracted significant interest in recent years [10–12,16,18,20,
23]. However, the focus has mostly been on tabular data,
rather than the associations we study here. As a conse-
quence, applying existing anonymization techniques tends
to erase almost all structure, so that little use can be made
of the resulting data. Moreover, a tabular approach ignores
the inherent graph properties which hold a lot of the value of
the data: e.g. structure such as number of customers buying
the same product, collaboration “hop” distance between a
pair of authors, pattern of other common products between
customers using the same product, and so on. These are
all important features of interest for aggregate analysis,but
are radically altered by simply treating the data as a table
and masking or perturbing the data. In Section 3, we work
through several detailed examples to show that existing ap-
proaches for tabular data are insufficient for anonymizing
associations.

Some recent work has begun to address anonymizing
graph data, motivated by the structures present in social net-
work data. But rather than proposing ways to modify the
pattern of links in the graph to ensure privacy, our work dif-

fers by making different assumptions about the strength of
the attacker and the utility of the graph data. Prior work [1,
8] tends to assume a lot of knowledge or power on behalf of
the attacker (in particular, knowledge of node degrees, or of
particular subgraphs, and the ability to insert new nodes and
edges into the graph), and shows that under such assump-
tions some associations can be inferred. In contrast, we ad-
dress a different but equally important range of the privacy-
utility tradeoff. We give a new approach for anonymizing as-
sociations which can be represented as bipartite graphs and
show it to be resilient against certain attack models.

1.1 Our Contributions.

Our methodology is based on the idea that rather than mask-
ing or altering the graph structure, we should preserve the
graph structure exactly, and instead focus on masking the
mapping from entities to nodes of the graph. This approach
ensures that the complex and sensitive graph structure is
not affected, and so we can be sure that any analysis based
principally on the graph structure will be correct. Privacy
is ensured bygroupingthe nodes and entities: we partition
the nodes in the graph, and the corresponding entities, into
groups so that, given a group of nodes, there is a (secret)
mapping from these nodes to the corresponding group of
entities. There is no information published that would allow
an attacker to work out, within a group, which node corre-
sponds to which entity. This gives a tradeoff between privacy
and utility: intuitively, larger groups give more privacy,but
less certainty when answering queries which select a subset
of entities.

We give a simple condition for a grouping to besafe,
which precisely limits the ability of an attacker to make any
inference from the published information alone. We provide
an algorithm which is successful at finding safe groupings
in practice, and go on to describe how to answer a variety of
query types efficiently given the published anonymized data.
We also give formal analysis of how little can be deduced
by an attacker who has additional background knowledge
in the form of known associations between particular pairs
of entities, and show that there is high security for entities
about whom no information is known by the attacker.

We demonstrate the efficacy of our approach with a care-
ful experimental analysis of the ease of building safe group-
ings, and the accuracy with which a variety of queries can
be answered over such anonymized data. We also study the
effect of variations of our approach, and demonstrate that
techniques based on publishing two versions of the same
data, while significantly increasing the utility and accuracy
of query answering, can also expose more associations to
unintended revelation.

3

Customer State
c1 NJ
c2 NC
c3 CA
c4 NJ
c5 NC
c6 CA

(a) Customer table

Product Availability
p1 Rx
p2 OTC
p3 OTC
p4 OTC
p5 Rx
p6 OTC

(b) Product table

Customer Product Customer Product
c1 p2 c4 p5
c1 p6 c5 p1
c2 p3 c5 p5
c2 p4 c6 p3
c3 p2 c6 p6
c3 p4

(c) Customer-Product table

Fig. 1 Example data set in tabular form

p6

a1

a2

a3

a5

a6

a4

p1

p2

p3

p4

p5

Fig. 2 Example data set in graph representation

Outline. The paper proceeds as follows: We describe the
data model, privacy model, query model and experimental
model in Section 2. We show explicitly that prior work on
tabular data fails to give useful results when applied to the
kind of data that we study in Section 3. We propose our new
approach based on grouping in Section 4, and analyze its
properties, proving security against a natural class of attacks,
and giving experimental evidence of its utility. We consider
variations based on publishing multiple anonymizations of
the same data in Section 5, and analyze the resulting pri-
vacy. Related work is reviewed in Section 6, and concluding
remarks are given in Section 7.

2 Preliminaries

2.1 Graph Model

Throughout, we focus on problems of anonymizing bipartite
graphsG = (V, W, E) (bigraph for short). That is, the bi-
graphG consists ofm = |V | nodes of one type,n = |W |
nodes of a second type, and a set of|E| edgesE ⊆ V ×W .
Such graphs can encode a large variety of data, in partic-
ular, the set of existing links between two sets of objects.
For example, we can encode which papers were co-written
by a set of authors; which products at a pharmacy were
bought by a set of customers; which websites were visited
by users; which courses were taken by students; and so on.
Throughout, we shall work with an illustrative example of
a set of customersC = V and a set of productsP = W .
An edge(c, p) indicates customerc ∈ C bought product

p ∈ P . Observe that here, as in many of the examples above,
the graph is relativelysparse: each customer typically buys
only a small fraction of all products, and each product is
bought by only a few customers (with a few exceptions, e.g.
many customers buy aspirin). As a consequence, the num-
ber of edgese is small compared to the number ofpossible
edges, which isn ×m. More formally, we say that a graph
is α-sparse ife ≤ αnm; we will subsequently provide a
necessary bound on theα-sparseness for our method to suc-
ceed. A second measure of sparseness looks at the degree
of each node: a graph isβ-sparse if the maximum degree
of a node inW is at mostβm and the maximum degree of
a node inV is at mostβn. In full generality, we can con-
sider directed graphs with multiedges, with weights or addi-
tional attributes. However, for clarity, we describe only the
unweighted, undirected, single edge case: this has sufficient
richness to capture many challenging problems.

In a relational database, a bipartite graphG = (V, W, E)

is naturally and concisely represented by three tables, corre-
sponding toV , W andE. In our example, we would have
a table of customersV , including attributes such as gender
and location (from a customer loyalty scheme, say); a ta-
ble of productsW , including attributes such as price, type,
and whether it is available Over the Counter (OTC) or by
Prescription Only (Rx); and a customer-product tableE en-
coding who bought what. Thusentitiesin the tablesV and
W correspond tonodesin the graph defined byE, in a 1:1
fashion.

Example 1Figure 1 shows a sample instantiation of this
schema with Figure 2 showing the graph representation of
the customer-product relation in Figure 1(c). Theα spar-
sity of this graph is 11/36 (there are 11 edges present out
of 36 possible edges), and theβ sparsity is 1/3 (no node is
connected to more than 2 out of the 6 possible nodes). Cus-
tomers have an additional attribute, state, indicating whether
they are based in New Jersey (NJ), North Carolina (NC)
or California (CA). The availability of a product indicates
whether it is Over the Counter or Prescription Only. Since
the graph accurately represents the relational data, we use
both graph and relational terminology.⊓⊔

4

2.2 Privacy Goals

Our objective is to publish an anonymized version of the
graphG, which still allows a broad class of queries to be
answered accurately, but which maintains privacy of the as-
sociations. To make this goal precise, we describe our pri-
vacy goals, and outline classes of queries which we aim to
answer.

Our privacy objective is based on the idea that in many
cases it is theassociationbetween two nodes which is pri-
vate and must be anonymized. As noted, the set of customers
of a pharmacy may not be considered particularly sensitive,
and the set of products which it sells may be considered
public knowledge. However, the set of products bought by
a particular customer is considered private, and should not
be revealed. We focus on preserving the privacy of associa-
tions, and assume that properties solely of entities (e.g. state
of a customer) are public. Clearly, there are situations with
differing privacy requirements, commented on in Section 7.

Since it is desirable to allow answering of ad hoc aggre-
gate queries over the data (e.g. how many customers from a
particular zip code buy cold remedies), we wish to release
some anonymized version of this data which gives accurate
answers to such queries but protects the individual associ-
ations. More strongly, we want the graph properties of the
data to be preserved. This corresponds to simple features,
such as the degree distribution of the nodes, but also more
long-distance properties, such as the distribution of nodes
reachable within two steps, three steps, etc.

Here, as in all work on anonymization, there is an inher-
ent tradeoff betweenprivacy andutility, although this can
be hard to quantify precisely. Various extreme approaches
maximize one over another: publishing the original data un-
changed clearly maximizes utility, but offers no privacy; re-
moving all identifying information and publishing only an
unlabeled (“fully censored”) graph gives high privacy, but
limited utility for aggregate queries over nodes satisfying
certain predicates.

Prior work has considered strong dynamic attack mod-
els (where nodes and edges can be inserted into the graph),
which can result in some small number of associations be-
ing revealed [1]. For many situations we consider, this rep-
resents a very powerful attacker, and weaker attack models
may suffice. It assumes that an attacker knows what data
will be covered by the release and can easily modify it in ad-
vance. But, in the pharmacy example, adding edges means
particular individuals must buy certain products in certain
stores at certain times, which requires a very coordinated at-
tacker. Adding nodes could involve creating new products
for sale in the stores, which may not be plausible. Similarly,
passive attacks require the attacker to collect complete and
accurate information for a set of individuals. Even then, such
attacks [1] only reveal information about entities for which

some information is already known. Entities not involved
in the attack remain secure. Clearly, there are cases where
such attacks are possible and the results of [1] give a strong
caveat; it is the responsibility of the data owners to deter-
mine against which attacks they should be secure.

In extreme cases, the unlabeled graph structure leaks in-
formation about individual edges: for example, if the under-
lying graph is complete then we know there is an edge be-
tween any pair from the censored graph structure alone. Or,
if there are a few nodes with unique degrees and these de-
grees are known to the attacker, these nodes can be reidenti-
fied. But in typical cases such as the examples we consider,
virtually nothing can be deduced from the graph structure
alone. Again, the data owners must determine whether this
level of disclosure is acceptable to them. Here we aim for
privacy guarantees relative to the baseline of the unlabeled
graph. In particular, we study what guarantees can be made
in the following scenarios:

Definition 1 In thestatic attackcase, the attacker analyzes
solely the information which is published by the scheme,
and tries to deduce explicit associations from this infor-
mation. Ideally, the number of associations which can be
correctly inferred (beyond what is implicit in the censored
graph) should be minimal if not zero.

In the learned link attackcase, the attacker may already
know a few associations — for example, that customer c1
bought product p2 (as in Figure 1). The additional associa-
tions that can be inferred should be minimal if not zero when
the number of link revelations is small.

We are principally concerned with an attacker being able
to makepositiveinferences, e.g. being able to deduce that
c6 bought p6. We are less concerned aboutnegativeinfer-
ences, e.g. deducing that c1 did not buy p1. Since the graphs
we analyze are sparse, and the maximum degree is at most
a constant fraction of the total number of nodes, we con-
sider such discovery to be entirely acceptable (the same as-
sumption is implicitly present in much of the prior work on
anonymizing tabular data, such ask-anonymity and permu-
tation based methods). We are still concerned when some
negative inferences eliminate enough possibilities to leave a
positive inference: learning c4 bought at least one item but
did not buy p1, p2, p3, p4, or p6 allows us to infer that c4
did buy p5. This form of positive inference is specifically
captured and shown to be limited by our analysis.

2.3 Query Types and Utility

As in prior work, given the difficulty of giving a precise pri-
vacy/utility tradeoff, we consider approaches which first fix
a given level of privacy and then try to optimize and mea-
sure the utility. In order to more precisely analyze utility,

5

 0

 0.2

 0.4

 0.6

 0.8

 1

10-6 10-5 10-4 10-3 10-2 10-1 100

F
ra

ct
io

n
of

 N
od

es

Node Density

Cumulative Node Degree Distribution

Author
Papers
Actress

Movie
Item

Transaction

(a) Node Degree Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

10-6 10-5 10-4 10-3 10-2 10-1 100

F
ra

ct
io

n
of

 N
od

es

Node Density

Cumulative Distribution of Co-nodes

Author
Paper

Actress
Movie

Item
Trans

(b) Co-relationship Distribution

Fig. 3 Cumulative distributions of the degree and second-order degree of the three bipartite data sets

we describe a set of sample aggregate query types which
we wish to support. We will measure the utility of our re-
sults by studying the accuracy with which these queries can
be answered using the anonymized data. The queries can be
based on predicates over solely graph properties of nodes
(such as degree), which we denotePn, and predicates over
attributes of the entities,Pa. In our customer-product exam-
ple,Pa could select out customers from NJ, or prescription
products, while a typicalPn might be that a customer buys
a single product. We separate these two types of predicates,
since when we publish a censored graph, we can still eval-
uatePn predicates exactly, while we have maximum uncer-
tainty in applyingPa predicates.

We list a set of types of queries of increasing complexity,
based on standard SQL aggregates (sum, count, avg, min,
max):

– Type 0—Graph structure only: Compute an aggregate
over all neighbors of nodes inV that satisfy somePn.
E.g.: Find the average number of products per customer;
Compute the average number of customers buying only
that product, per product.

– Type 1—Attribute predicate on one side only: Compute
an aggregate for nodes inV satisfyingPa; Compute an
aggregate on edges to nodes inV satisfyingPn from
nodes inW satisfyingPa.
E.g.: Find the average number of products for NJ cus-
tomers; Find total number of CA customers buying only
a single product.

– Type 2—Attribute predicate on both sides: Compute an
aggregate for nodes inV satisfyingPa to nodes inW
satisfyingP ′

a.
E.g.: Count total number of OTC products bought by NJ
customers; Total sales of Rx products to CA customers
who buy nothing else.

Naturally, one can define yet higher orders of queries
that are more complex, either through more constraints or
more steps through the graph. Join-style queries would com-
pute an aggregate of nodes fromV at distance 2 from other
nodes inV satisfyingPa connected via nodes inW satisfy-
ingP ′

a, and so on. Other graph properties can be included in
queries, such as measuring the diameter of an induced sub-
graph, or identifying particular patterns of interaction such
as complete embedded subgraphs. For this work, we con-
strain our interest principally to the classes of queries de-
fined above, since these are sufficiently rich to be challeng-
ing to answer accurately, while being sufficiently concise
to specify compactly and work with over realistic data sets.
In particular, note that while queries of type 0 can easily
be answered on the fully censored graph exactly, answering
queries of other types requires some more information about
attributes of the entities in order to give any reasonable ac-
curacy.

2.4 Datasets and Experimental Environment

All experiments for this paper were implemented in JDBC
and SQL Server 2000. Experiments are performed on a va-
riety of real and synthetic datasets representing bipartite
graphs with quite distinct properties. The first dataset is
from the Digital Bibliography and Library Project (DBLP),
and consists of data about all conference papers collected
by the project, and the authors of those papers. It was re-
trieved fromhttp://dblp.uni-trier.de/xml/ on
06/21/2007, and is available on request from the authors.
The data set contains|V | = 402023 distinct authors,|W | =
543065 distinct papers, and|E| = 1401349 (author, pa-
per) edges. The papers have additional attributes, such as
year of publication, and the name of the conference, while
the authors have attributes such as name (and, more gener-

6

ally, other attributes such as affiliation, although these are
not represented within the DBLP).

The second dataset is from the Internet Movie Database
(IMDB), and consists of data about all actresses referenced
in the database, and the movies in which they are listed
as appearing. It was retrieved fromhttp://www.imdb.
com/interfaces on 10/05/2007. The data set contains
|V | = 436727 distinct actress,|W | = 367874 distinct
movies, and|E| = 1847630 (actress, movie) edges. Here,
the movies have attributes such as title and year. The two
real data sets fit approximately the same schema, so we can
translate queries on (author, paper) data into queries on (ac-
tress, movie) data.

A third data set is a synthetic transaction dataset from
the Frequent Itemset Mining Dataset Repository (FIMI)
web site. It can be accessed athttp://fimi.cs.
helsinki.fi/data/T10I4D100K.dat. We use the
first 10,000 transactions in our simulation. In the FIMI data,
there are|W | = 866 items involved in|V | = 10, 000 trans-
actions, and|E| = 100550 (transaction, item) pairs (edges
in the graph). So it is anα = 0.01161-sparse graph, and
many items have very large degrees.

These datasets represent the kind of association we are
interested in, with typical features of such graphs (a graph
with varying sparsity, power-law degree distribution, non-
random structure of links). Although the first two data sets
have comparable numbers of nodes and edges, they display
rather different graph properties, as illustrated in Figure 3.
In Figure 3(a) we show the distribution of degrees of the
various types of nodes (authors and papers from DBLP, ac-
tresses and movies in IMDB, items and transactions). Here,
we represent the degree as the fraction of the largest possi-
ble degree, so an item which appears in 10 out of the 10,000
transactions has “density” 0.001. We show the cumulative
distribution, so approximately 80% of the actresses in the
IMDB have node density less than10−5 (i.e. they are con-
nected to at most a10−5 fraction of all movies). Plotting the
data in this way shows that the FIMI data, although smaller,
is dramatically more dense.

The highest degree of an author is 290 (i.e. one author
is associated with 290 conference papers), and the highest
number of authors per paper is 115, while in both cases the
total number of authors and papers is in the hundreds of
thousands, making the density quite low. The most prolific
actress has appeared in 744 movies, while the movie with
the largest cast (actually a long running TV show listed as
a single entity) has 1849 credited actresses. This indicates
that these graphs are substantially sparse: although thereare
hundreds of thousands of nodes, the maximum degree of any
node in DBLP is just a few hundred, and the maximum de-
gree of a node in IMDB is less than two thousand, meaning
that only a small fraction of the possible edges are present.
Further, nodes of degree 1 are very common: many actresses

are listed with only a single movie, many authors have only
a single paper, and many movies credit only a single actress.
Only for the papers is the number of single author papers
exceeded by the number of dual author papers.

The second plot, Figure 3(b), shows the cumulative dis-
tribution of nodes reachable using two steps. This corre-
sponds to, for example, the number of authors who are
linked to a given author by a common paper; the number
of movies linked to a given movie by a common actress; and
so on. Here we see a clearer separation between the DBLP
and IMDB data sets, indicating appreciably different struc-
tures. No author has more than 363 coauthors, while there is
an actress who has been credited alongside a total of 9717
others. The reason for this is understandable: authors tend
to choose their collaborations carefully, and may write sev-
eral papers with the same coauthors. Meanwhile, actresses
have less control over which other actresses they are cast
with, and there is less tendency for particular pairings to be
repeated. As a consequence, there is more local “clustering”
within the DBLP data, in comparison to the IMDB data. We
also see that the density of the FIMI data considering two
steps is higher, and means that an appreciable fraction of the
item nodes share a transaction in common with other nodes:
about half the items share transactions with half of the other
items, making this data set very dense indeed.

3 Applying Existing Techniques

A natural first approach to addressing these privacy ques-
tions is to apply prior work on table anonymization,
since tables can represent graph data. However, such prior
anonymization techniques only try to preserve the accuracy
of table-based queries, and do not consider any graph se-
mantics. As a result, we show that fundamental graph prop-
erties are quickly lost under such transformations, and we
will see that even many of our type 0 queries are answered
with intolerably high error. It is difficult to exhaustivelytry
all existing methods, so we show that for three popular rep-
resentative anonymization schemes the results are not usable
over graph data.

3.1 Representing as a relation

Representing the customer-product example in Figure 1 us-
ing tables, gives a customer relation (Figure 1(a)), a prod-
uct relation (Figure 1(b)), and a customer-product relation
(Figure 1(c)). We can join these to make a single table (Fig-
ure 4(a)), and try to anonymize it. In our example, each
row lists a customer, a product, the customer’s state, and
the product availability. How can we meet our goal of not
revealing any (customer, product) association by applyinga

7

Customer Product State Availability
c1 p2 NJ OTC
c1 p6 NJ OTC
c2 p3 NC OTC
c2 p4 NC OTC
c3 p2 CA OTC
c3 p4 CA OTC
c4 p5 NJ Rx
c5 p1 NC Rx
c5 p5 NC Rx
c6 p3 CA OTC
c6 p6 CA OTC

(a) Original data table

Customer Product State Availability
* * * OTC
* * * OTC
* * * OTC
* * * OTC
* * CA OTC
* * CA OTC
* * * Rx
* * * Rx
* * * Rx
* * CA OTC
* * CA OTC

(b) 3-anonymous data table

Fig. 4 Attempting to apply existingk anonymization to graph data

p1 p2 p3 p4 p5 p6
c1 0 1 0 0 0 1
c2 0 0 1 1 0 0
c3 0 1 0 1 0 0
c4 0 0 0 0 1 0
c5 1 0 0 0 1 0
c6 0 0 1 0 0 1

(a) Matrix representation

p1 p2 p3 p4 p5 p6
c1 * * 0 * * *
c2 0 0 * * * *
c3 * * 0 * * *
c4 0 0 * * * *
c5 * * 0 * * *
c6 0 0 * * * *

(b) 3-anonymized matrix

Fig. 5 Attempting to applyk-anonymization to data represented in adjacency matrix form

k-anonymization algorithm? Removing all customer IDs de-
stroys all association structure from customers to products.
Setting customer as a quasi-identifier and product as sensi-
tive attribute fails becausek-anonymization allowsk prod-
ucts bought by the same customer to be grouped together
(they share a quasi-identifier). Setting (customer, product) as
the sensitive attribute fails, becausek-anonymization does
not alter or mask sensitive attributes. Instead, we could add
a dummy sensitive attribute of “true” to each row to indicate
that the association is sensitive. Thek-anonymized version
of this table must use generalization and suppression to en-
sure each row is indistinguishable fromk−1 others [15,16].
Options for concealing customer and product identifiers are
limited: since they are arbitrary identifiers, there is no natu-
ral hierarchy for generalization so they can only be withheld.
A 3-anonymized version of our example data set shown in
Figure 4(b) provides very low utility: for example, there is
no natural way to obtain an accurate estimate of what frac-
tion of customers bought only a single product.

This attempt at anonymization loses the notion of indi-
vidual customers and products, and so is unable to give use-
ful answers to the query types outlined above. Augmenting
the anonymized data with some additional information risks
breaching privacy and does not guarantee to anticipate all
reasonable queries which could be formulated: recall that

the purpose of publishing anonymized data is to allow a
broad variety of ad hoc queries to be posed.

3.2 Representing as a matrix

A fundamental problem with the above approach is thatk-
anonymity is formally defined so that there should be at least
k individualswhose representation is identical; in this rep-
resentation, each individual is present in multiple places, so
for example in Figure 4(b), two rows in the anonymized ta-
ble refer to the same customer, giving them weaker privacy.
This leads us to represent the graph data instead as a binary
matrix: rows correspond to nodes inV , columns to nodes in
W , and an entry(i, j) is set to 1 if there is an edge between
vi ∈ V andwj ∈W , and 0 otherwise. We can now take such
a matrix, and try to apply existing anonymization techniques
on it. Similar to above, the only meaningful anonymization
of a 0 or 1 value is to generalize to “*”.

Applyingk-anonymization is similar to having customer
as a quasi-identifier and product as a sensitive attribute [15,
16]: now products with more thank buyers may be re-
vealed, while unpopular products may be fully masked. This
also virtually wipes out the utility of the data. For exam-
ple, Figure 5(a) shows the matrix representation of the sam-
ple data from Figure 1, and Figure 5(b) shows the result of

8

(a) Co-authorship Frequency (b) Co-Actress Frequency

Fig. 6 Effect of applying permutation methods on graph properties.

3-anonymizing it: only a few negative associations remain.
The fundamental problem here is that these approaches have
two equally unpalatable options: either an association is
fully revealed, or else it is withheld.

3.3 Anonymization Through Permutation

The previous two approaches were based on blind appli-
cation of tabular anonymization to graph data. A third ap-
proach to anonymizing tabular data is based on the idea of
“permutation”: breaking the links between quasi-identifier
attributes and sensitive attributes [20,23]. This seems more
suited to the graph setting: we have an association between
nodes in a graph that we wish to anonymize. This leads to
the following algorithm: form edges into groups, and within
each group, publish the pair of node (multi)sets that form
edges. Grouping the edges from Figure 1 into sets of size 3
and 4 based on customer pairs gives:

({c1, c1, c2, c2}, {p2, p3, p4, p6}),
({c3, c3, c4}, {p2, p4, p5}),

({c5, c5, c6, c6}, {p1, p3, p5, p6})

Equivalently, for a group containing edgese1 =

(v1, w1), e2 . . . eℓ we generateℓ permuted edges by pick-
ing a random permutationπ and publishing e′1 =

(v1, wπ(1)) . . . e′i = (vi, wπ(i)) . . . e′ℓ. Conceptually, imag-
ine taking every edge in the group and “breaking it in the
middle”, then forming new edges by joining half-edges from
V to half-edges fromW . This method initially seems more
promising than the above, since it guarantees to preserve
node degrees (i.e. the number of products linked to a cus-
tomer is the same before and after the permutation, and vice-
versa), and the true mapping from customers to products

seems well-masked. However, when we try to evaluate sim-
ple graph queries (type 0) over this data, we find that the
results are highly inaccurate.

To see this in practice, we compared a variety of meth-
ods of generating permuted data, and evaluated some simple
queries over the resulting data. The first method creates a
“global permutation” of the DBLP and IMDB data where all
edges are placed into a single group and permuted. A second
method first creates smaller groups of nodes on each side
of the bipartite graph, and then applies permutations within
each group. For DBLP data, we formed groups by first sort-
ing papers primarily by author count, conference and year. A
“paper grouping” results from forming groups based on all
edges relating to each consecutive pair of papers under this
ordering. A “tuple grouping” results from forming groups
based on each consecutive pair of edges under this order-
ing. For IMDB data, movies are first sorted by their actress
count and year. A “movie grouping” and “tuple grouping”
are found analogously to the DBLP case, by grouping all
edges relating to pairs of movies, and to pairs of consecutive
edges, respectively. Note that given the edge table, permuta-
tion of edges is the same as permuting the grouped ids, i.e.,
paper ids and movie ids, while keeping author ids or actress
ids fixed.

Figure 6 shows the one hop neighborhood for each re-
sulting permuted data set, over the original data set and three
different permutations of it, on log-log scales. The results
clearly demonstrate that permutation-based approaches do
not accurately maintain the coauthor and coactress relation-
ships for query answering. In particular, in the DBLP source
data 1.6M pairs of coauthors have written at least one paper
together, and Figure 6(a) shows that one pair has co-written
210 papers. In the global permutation, the maximum num-
ber of papers coauthored together is only three. The permu-
tation of small groups via either tuple or paper grouping is
closer to the source distribution, but the error is still signif-

9

icant: the frequency of coauthorship of a particular number
of papers is underestimated by up to an order of magnitude.
This is unsurprising since coauthors often collaborate over
long periods, writing multiple papers together. Permutation
of papers breaks this correlation and links unrelated authors.

In the IMDB data (Figure 6(b)), we observe the same
trend, although not as pronounced as for the DBLP data. Tu-
ple groupings tend to leave pairs of actresses linked through
the same movie, but the movie grouping and global permuta-
tion clearly alter the distribution. This indicates that there is
a higher correlation between pairings in the DBLP data than
in IMDB. In the global permutation, the maximum number
of movies in which a pair of actresses costar is 21, compared
with 95 in the original distribution.

Other similar experiments based on different grouping
criteria and different features of the distributions similarly
failed to preserve these basic graph properties. Likewise,ex-
periments based on grouping the other side of the graph (i.e.
studying the co-paper and co-movie distributions) yielded
equally low fidelity. Therefore we conclude that this permu-
tation approach gives very poor answers to simple type-0
queries, and so is not suitable for further consideration, since
we next propose a method which guarantees perfect answers
to type-0 queries.

4 Privacy through Grouping

All the above attempts to use existing techniques render
the data virtually unusable for the simple reason that they
change or mask the graph structure in ways that fundamen-
tally alter its properties. In contrast to the case of tabular
data, where modifying a row has relatively minor impact on
table properties, adding or deleting an edge can have signif-
icant impact on properties of a graph (for example, it can
change a graph from being connected to disconnected). So
we seek to avoid techniques which involve perturbing the
graph structure. Instead, we focus on techniques which re-
tain the entire graph structure but perturb themapping from
entities to nodes. That is, methods that publish a set of edges
E′ that are isomorphic to the original edgesE, but where
the mapping fromE to E′ is partially or fully masked. This
technique is applicable in situations where it is considered
safe to publish the unlabeled graph.

Outline. We define our grouping method in Section 4.1,
and give a “safety” condition in Section 4.2 which ensures
that privacy goals are met (proved in Section 4.3). We give
a greedy algorithm to find a “safe grouping” (Section 4.4)
and then show how to answer queries given the published
anonymized grouping (Section 4.5). Lastly, we consider a
special case where some groups are revealed exactly (Sec-
tion 4.6), and provide experimental results (Section 4.7).
Throughout, we introduce a variety of notation to represent

Table 1 Notation used in this paper

V Set of nodes, with|V | = m

W Set of nodes, with|W | = n

E Set of edges fromV × W

Pa Predicate on attributes of entities
Pn Predicate on (graph) properties of nodes
(k, ℓ)-grouping V split into sizek groups,W into sizeℓ groups
H Function mapping nodes into groups
FV , FW Functions renaming nodes given by Definition 3
RV , RW Remapping functions given by Definition 3
(k, ℓ)∗(q,r) Modified grouping given by Definition 5
U, L, µ Upper and lower bounds, and expected answer
Uj , Lj , µj Upper, lower bounds & expected answer for

groupj

Ui,j , Li,j , µi,j Upper, lower bounds and expected answer be-
tween groupsi andj

various concepts within the grouping. A summary of the
most important notation is presented in Table 1 for conve-
nience of reference.

4.1 Definition of Grouping

In this paper, we focus on masking the mapping viagroup-
ing the nodes of the graph. This technique preserves the un-
derlying graph structure perfectly, but masks the exact map-
ping from entities to nodes, so for each node we know aset
of possible entities that it corresponds to. The group sizek

is a parameter: largerk gives more privacy, but reduces the
utility. We first provide formal definitions of groupings, il-
lustrated by an example, and then show how these groupings
enable the masking.

Definition 2 Given a setV , a k-grouping is a functionH

mapping nodes to “group identifiers” (integers) so for any
v ∈ V , the subsetVv = {vi ∈ V : H(vi) = H(v)} has
|Vv| ≥ k. Formally,

∀v ∈ V : ∃Vv ⊆ V : |Vv| ≥ k∧(∀vi ∈ Vv : H(vi) = H(v))

That is, the functionH partitionsV into subsets of size at
leastk. Thek-grouping isstrict if every groupVv has size
exactlyk or k + 1.

In other words, ak-grouping partitionsV into non-
intersecting subsets of size at leastk. The strictness property
insists all groups in ak-grouping be close tok in size, since
smaller groups allow more accurate query answering. Given
a set of nodesV , it is not always possible to divide them into
groups of size exactlyk, since|V | may not be a multiple of
k; however, it is always possible to divide them into groups
so that all are sizek or sizek + 1, provided that|V | ≥ k2.
Therefore, we describe such groupings as “strict”, since they
keep the group sizes as close to the parameterk as possible.
As we add additional requirements to the grouping, we will
see whether it is still possible to find strict groupings which

10

x6 (c5)

y1 (p5)

y2 (p2)

y3 (p3)

y4 (p4)

y5 (p1)

y6 (p6)

x1 (c1)

x2 (c4)

x3 (c2)

x4 (c3)

x5 (c6)

(a) Grouped and Relabeled Graph

c6

}
}

{
{

p5

p3

p2

p6

p4

p1

c1

c2

c4

c3

c5

(b) Graph of Published Data

Fig. 7 Graphical Representation of grouped data

x1 y2
x1 y6
x2 y1
x3 y3
x3 y4
x4 y2
x4 y4
x5 y3
x5 y6
x6 y1
x6 y5

C
u

st
o

m
er

G
ro

u
p

c1 CG1
c2 CG1
c3 CG2
c4 CG1
c5 CG2
c6 CG2

P
ro

d
u

ct

G
ro

u
p

p1 PG2
p2 PG1
p3 PG1
p4 PG2
p5 PG1
p6 PG2

X
-n

o
d

e

G
ro

u
p

x1 CG1
x2 CG1
x3 CG1
x4 CG2
x5 CG2
x6 CG2

Y
-n

o
d

e

G
ro

u
p

y1 PG1
y2 PG1
y3 PG1
y4 PG2
y5 PG2
y6 PG2

E′ HV HW RV RW

Fig. 8 Published tables representing (3,3)-anonymization of example relation

satisfy these requirements. We next use the definition of
grouping to publish a modified version of the graph:

Definition 3 Let FV be a relabeling function to relabel el-
ements ofV injectively onto a new setFV (V); and let
FW be a relabeling function to relabel elements ofW in-
jectively onto a (disjoint) setFW (W). Given ak-grouping
on V , HV , and anℓ-grouping onW , HW , of a graph
G = (V, W, E), define the(k, ℓ)-grouped graphG′ as
G′ = (V, W, HV , HW , E′, RV , RW) where:

(a) V andW are the original sets of entitiesV andW , and
HV andHW are the grouping functions defined above.

(b) E′ is the relabeled edge set given by

E′ = {(FV (v), FW (w))|(v, w) ∈ E}.

(c) RV , RW are remappings defined by

RV (FV (v ∈ V)) = HV (v)

andRW (FW (w ∈W)) = HW (w).

When bothHV andHW are strict, this is a strict(k, ℓ)-
grouping.

Example 2For the example in Figure 1, set groups CG1,
CG2 (customer group 1 and 2) and PG1, PG2 (product group
1 and 2) as

H−1
C (CG1) = {c1, c2, c4}

H−1
C (CG2) = {c3, c5, c6}

H−1
P (PG1) = {p2, p3, p5}

H−1
P (PG2) = {p1, p4, p6}

whereH−1 denotes the pre-image of its parameter under the
functionH .
This is a strict(3, 3)-grouping since every customer group
and every product group has (exactly) three members. The
resulting grouped graph is shown in Figure 7(a), with the ar-
bitrary relabeling of nodes onxi’s andyi’s. The published
information can be derived from this: Figure 8 shows the
five published tables (in addition to the original customer
and product tables, Figure 1(a) and 1(b)). The result is com-
pactly represented as a graph in Figure 7(b): it shows the
edge structure, and which sets of nodes map to which sets of
entities, but hides the exact mapping.⊓⊔

The grouping functionsHV and HW contain most of
the necessary information to specify the modified graph
as a function of original graphG. This definition is well-
suited to storage within a relational database. For example,

11

in our customer-products example, we publish customer and
product relations as before (corresponding toV and W);
customer-group and product-group tables which encode the
mapping of each customer and product to groups (corre-
sponding toHV andHW); a masked-customer-product re-
lation, in which each customer and product is mapped to
a new node id (E′); and lastly masked-customer-group and
masked-product-group tables which map from the masked
identifiers to groups (RV andRW). Note that the base re-
lations corresponding toV andW should not contain any
information relating to the graph, such as the degree of the
node. Otherwise, an attacker could potentially use this to re-
link between rows ofV or W and nodes inE′. Two further
examples of groupings illustrate extremes of the privacy-
utility tradeoff:

Example 3Smallest groups. Setting HV (v) = v and
HW (w) = w, (the identity functions) gives a(1, 1)-grouped
graphG′. Here,E′ = E, and henceG′ encodes the original
graphG exactly. Every query onG′ can be answered with
the same accuracy as onG. So there is perfect utility, but no
more privacy than we began with.⊓⊔

Example 4Largest groups. SettingHV to map allm =

|V | members ofV to the same group, say0, andHW to
map all n = |W | members ofW to, say, group1 gives
the (m, n)-grouped graphG′. G′ has no useful informa-
tion mapping between entities inV, W and the nodeset of
E′. That is, we publish entity tables and the fully censored
graph. Recall that we are assuming it is acceptable to publish
a censored graph, and so we say that this grouping guaran-
tees the same level of privacy. This is the case where the
mapping from entities to nodes is completely hidden. In the
customer-product example, this entails publishing the cus-
tomers relation and products relation unchanged (since these
are not considered private). In addition, we apply an injec-
tive masking functionF on the customer-product relation so
that each(c, p) pair is mapped to(F (c), F (p)), and publish
the resulting censored table. This retains the graph struc-
ture, as required, but completely removes the mapping from
entities (e.g. customers and products) to nodes in the graph.
We cannot have any more privacy in our setting, when we in-
sist on publishing at least this much information. This offers
very limited utility in answering query types 1 and 2 listed
in Section 2.3, since we cannot apply any selective attribute
predicate with any certainty.⊓⊔

Privacy-Utility Tradeoffs. Between these two extremes lie
many possibilities that trade off utility and privacy. Given a
(k, ℓ)-grouped graph, where bothk andℓ are fairly small,
aggregate queries such as those described in Section 2.3 can
be answered approximately. Bounds can be placed on the an-
swers within which the true answer must fall (Section 4.5).
Whenk andℓ are small, these bounds are narrow; ask and

U (1,n)(1,k)

(1,1)

Utility

Privacy

(m,n)

(k,1)

(k,1)
U (1,k)

(m,1)(k,k)(1,n)

(m,1)

Fig. 9 Lattice over groupings and privacy/utility tradeoff

ℓ grow large, the bounds will widen accordingly. Clearly,
a (k, ℓ)-grouping offers more utility (and less privacy) than
a (k′, ℓ)-grouping if k < k′; the same holds true between
(k, ℓ)- and(k, ℓ′) groupings forℓ < ℓ′. But we cannot eas-
ily compare(k, ℓ)- and(k′, ℓ′)-groupings unlessk < k′ and
ℓ < ℓ′. Thus, choices ofk andℓ define alattice over pos-
sible groupings, bounded by(1, 1) and(m, n). We explore
several points in this space in more detail; Figure 9 shows
the lattice structure, including points of note that are defined
and discussed in subsequent sections. We will investigate
these points in greater detail in subsequent sections, as we
analyze how to choose groupings in order to give privacy
guarantees, and how to effectively answer aggregate queries
on grouped graphs.

4.2 Safe Groupings

There are many ways to form ak-grouping, but not all of
these offer the same level of privacy, due to the local graph
structure. We introduce the condition of “safety” which en-
sures privacy holds even under revelation of certain infor-
mation.

Example 5Consider a large graphG, which happens to con-
tain the complete subgraph between nodes{v1, v2, v3} and
{w1, w2, w3}. Suppose we form 3-groupings onV andW
so that{v1, v2, v3} forms the entirety of one group inHV ,
and{w1, w2, w3} forms the entirety of a group inHW . From
the publishedG′, it is possible to infer immediately all the
connections between these six nodes (a static attack). Such
inference is not possible on the fully censored version ofG′,
but the unfortunate choice of grouping allows information
to leak. ⊓⊔

Essentially, this is a problem of lack ofdiversity: since
the interaction pattern between the two groups is too uni-

12

(a) Structure of safe groups

vt

u w

(b) (t, v) and(u, w) imply (u, v)

c5

}
}

p5

p3

p2

p6

p4

p1

c1

c4

c2

c3

c6

(c) Safe(1, 3)-grouped graph

Fig. 10 Safe Grouping Algorithm and Examples

formly dense, such undesired inference is possible. Some
natural attempts to fix this, such as insisting that the density
of edges between any pair of groups is low, are not guar-
anteed to still hold as edges are learned by an adversary.
We define a stronger notion of “safe grouping”, which we
subsequently prove is robust against static and learned link
attacks.

Definition 4 HV is asafegrouping ofV in the context of a
graphG = (V, W, E), if the following condition holds:

∀vi 6= vj ∈ V : HV (vi) = HV (vj)⇒
6 ∃w ∈ W : (vi, w) ∈ E ∧ (vj , w) ∈ E

By extension, a(k, ℓ)-grouping of a graphG is safe if
HV andHW are both safe groupings.

That is, a safe grouping ensures that any two nodes in the
same group ofV have no common neighbors inW (the defi-
nition for a safe grouping ofW is symmetric, interchanging
the roles ofV andW). This ensures a level of sparsity be-
tween groups, but goes further in restricting the pattern of
allowed links. In the customer-products example, it means
that no two customers in the same group have bought the
same product if the grouping is safe. Hence, the groupings in
Figure 8 are safe. GivenG andk > 1, there is no guarantee
that there exists a safek-grouping (all1-groupings are triv-
ially safe), but in practice they are easy to find (Section 4.4).

A necessary condition for the existence of a safe(k, ℓ)-
grouping arises from thesparsityof the graph. A group of
size k in V and a group of sizeℓ together induce a sub-
graph ofG which could have at mostkℓ edges. However, if
the grouping is safe then (within the induced subgraph) any
node can have degree at most 1; otherwise, there are two
nodes with a common neighbor. Figure 10(a) shows a typi-
cal structure between two groups of sizek = 5 andℓ = 6.
So there can be at mostmin(k, ℓ) edges between these two
groups. This is true for every possible pair of groups. Since
every edge touches exactly two groups, theα-sparsity of
the subgraph, defined byα = |E|/|V ||W |, can be at most
min(k, ℓ)/(kℓ) = 1/ max(k, ℓ).

We next show that finding ak-grouping when all groups
are forced to be sizek can be hard even for small values of
k:

Theorem 1 Finding a safe, strict 3-grouping is NP-hard.

Proof DefineG2(V) = (V, E2) as the graph onV so that

(vi, vj) ∈ E2 ⇐⇒ 6 ∃w ∈ W : (vi, w) ∈ E ∧ (vj , w) ∈ E.

The requirement onHV to be safe is equivalent to requir-
ing that every pair of nodes in the same group must form
an edge inE2. That is, the group of nodes in the grouping
forms a clique in (non-bipartite)G2(V). Therefore, a strict
3-grouping ofV corresponds to a partition ofG2(V) into
triangles (forcing each group to be size 3). For any desired
graphG1 = (V1, E1), define a bigraphG = (V, W, E) such
thatG2(V) = G1: createV = V1 andW ⊆ V × V , and
for each(vi, vj) ∈ E1, insert(vi, (vi, vj)) and(vj , (vi, vj))

into E. Since partitioning a graph into triangles is NP-hard
(problem [GT11] in [5]), and we can encode this problem as
an instance of finding a safe, strict 3-grouping, we conclude
that this problem is NP-hard also.⊓⊔

However, safe groupings can be found easily when the
graph is sparse enough. For a bigraphG = (V, W, E)

where every node has degree 1 (i.e.E gives a matching
betweenV andW), every possible grouping is safe, triv-
ially. More generally, when the graph is sparse and does not
have nodes which have (almost) all possible neighbors, safe
k-groupings can be found for practical values ofk (100 –
102, say). Intuitively, the constraints posed by the edges of
the graph are easy to satisfy when not too many edges are
present.

Most of the graph types discussed already are quite
sparse and have few nodes of high degree: most shoppers
purchase only a small number of the items on sale in a
store, and most items are purchased by a fraction of all shop-
pers; most authors write only a small number of papers rel-
ative to the total number of papers written, and most pa-
pers have a small number of authors. Studying the data from

13

DBLP, we observe that the most prolific author has writ-
ten 290 papers (out of 500K), and the most authors on a
single paper is 115 (out of 400K). In total, there are only
1.4M edges in the author-paper graph, out of a possible
400K × 500K = 200, 000M , demonstrating that typical
association data is very sparse (α = 7 × 10−7-sparse, and
β = 0.00058-sparse, as defined above).

4.3 Security of(k, ℓ)-Groupings

Figure 8 shows a(3, 3) grouping. We analyze what can be
deduced by an attacker presented with a safe(k, ℓ)-grouping
of graph data, where at least one ofk andℓ are greater than
1. We first argue that safe groupings are secure against the
static attacks defined in Definition 1. Our arguments work
by enumerating all the possible configurations, orpossible
worldsthat are consistent with the data that is published.

Lemma 1 In a safe grouping, given nodesv ∈ V and
w ∈ W in groups of sizek andℓ respectively, there arekℓ

possible identifications of entities with nodes and the edge
(v, w) is in at most a1/ max(k, ℓ) fraction of such possible
identifications.

Proof Consider a groupVG of V containingk nodes, and
a groupWG of W containingℓ nodes. In the subgraph of
G induced byVG andWG, there aree ≤ min(k, ℓ) edges,
following from the definition of safe grouping. There is no
information available in what is published to break the sym-
metry between the nodes ofVG, or between the nodes of
WG. Hence, there is no published information which allows
an observer to distinguish among the nodes, and so no way
to prove thatv andw are linked. Recall, we insist that tables
V andW contain no data related to the graph itself, such as
degree or neighborhood, that could break this symmetry.

For any entitiesv ∈ VG andw ∈ WG, it is feasible that
(v, w) is an edge, and also feasible that(v, w) is not an edge.
More strongly, consider the number of ways of identifying
entities v and w with the anonymized nodes{x1 . . . xk}
and{y1 . . . yℓ}. Since allkℓ possibilities are feasible, then
there is an edge betweenv andw in exactly ane/kℓ frac-
tion of feasible configurations (possible worlds), i.e. at most
min(k, ℓ)/kℓ = 1/ max(k, ℓ), the bound on the density of
the whole graph derived in Section 4.2. Since this analysis
holds for every pair of groups, then the (static) attacker can-
not infer any associations with certainty.⊓⊔

Certainly, an attacker viewing the data can deduce the
set of possible worlds that are consistent with the pub-
lished data being an anonymization of that possible world.
Adopting a probabilistic view, if the attacker has no prior
beliefs about the entities involved, their beliefs mean that
each possible world can be considered equally likely. By the
above analysis, their probability of correctly guessing that

an edge(v, w) was present in the original data is bounded
by 1/ max(k, ℓ).

Under this measure, a(k, 1)-grouping offers the same
static guarantee as a(k, k)-grouping. However, as we dis-
cuss in more detail in Section 4.6, there are other factors
to consider. We remark on a connection to the concept of
ℓ-diversity [11]: here, the requirement is that between two
groups the fraction of sensitive information (associations
that are present) is bounded by1/ max(k, ℓ), which is sim-
ilar to theℓ-diversity requirement (it is also similar to other
measures proposed for maintaining privacy in tabular data,
such as them-invariance requirement in re-publishing data
[21]). If there are small groups, the attacker’s confidence
in a particular association can be higher. In particular, two
groups of size 1 with an edge between them corresponds to a
known association between entities. Although a safe(k, ℓ)-
grouping has no groups of size 1, in the active (learned link)
attack model, when an attacker learns the existence of an
edge(v, w), he may be able to refine the grouping in order
to create groups of size 1. We will show that this refinement
has bounded impact on the security of entities not directly
impacted by the edge revelation, after presenting an exam-
ple where an attacker may learn an association.

Example 6Consider the four groups shown in Figure 10(b),
and the three edges that connect them. Other nodes in the
same groups have edges to other groups (dashed lines)
which do not affect this example. In the static case, as proved
above, the attacker cannot make any strong inferences. How-
ever, in the link learning case, if the attacker learns(t, v) is
an edge, he can use the fact that there is only one edge be-
tween the group oft and the group ofv to identify t and
v with nodes in the anonymized graph. Likewise, learning
(u, w) allows u andw to be identified with the nodes that
represent them. As a consequence, the attacker can infer that
(u, v) is an edge, no matter how many other nodes are in the
groups. ⊓⊔

The example shows that revealing an edge may allow an
attacker to learn more about the nodes that it connects, and
so infer more about the connections between such nodes.
But the amount revealed about entities for which the attacker
doesnot have information is minimal. A relaxed grouping
definition allowing a few groups of size one enables this in-
tuition to be formalized.

Definition 5 Define a(k, ℓ)∗(p,q)-grouping as a grouping in
which removing at mostp nodes fromV leaves ak-grouping
of the remaining nodes ofV , and removing at mostq nodes
from W leaves anℓ-grouping of the remaining nodes ofW .

Observe that a(k, ℓ)-grouping is also a(k, ℓ)∗(0,0)-
grouping. Also, by applying Lemma 1, we note that a safe
(k, ℓ)∗(p,q)-grouping still gives a lot of privacy for nodes in
the grouping: between a group of sizek and one of sizeℓ,

14

each possible edge is present in at most a1/ max(k, ℓ) frac-
tion of possible configurations, as before. But also, between
a group of size 1 and one of sizeℓ, there can be at most one
edge in a safe grouping, and (also by Lemma 1) the edge is
present in at most a1/ℓ fraction of possible configurations.
Symmetrically, between a group of sizek and one of size 1,
the (at most one) edge is present in at most a1/k fraction
of possible configurations. Only between two groups of size
one can we infer the existence (or absence) of an edge with
certainty. As before, this fraction of possible configurations
translates into a probability of correctly guessing an edge,
under an appropriate probabilistic interpretation.

Theorem 2 In the learned link case, given a safe(k, ℓ)-
grouped graph andr < min(k, ℓ) true edges, the most an at-
tacker can infer corresponds to a(k−r, ℓ−r)∗(r,r)-grouped
graph.

Proof This is shown by induction over the revelation ofr

edges. The base caser = 0 yields the(k, ℓ)∗(0,0)-grouped
graph. In the inductive case, there is a(k − r, ℓ − r)∗(r,r)-
grouped graph, and an additional edge(v, w) is learnt. As
shown in the example above, in the worst case, this is enough
to identify which node in the anonymized graph isv and
which isw. This corresponds to refining of the groups: ifv
was in a group of size at leastk−r, it is effectively split into
a group of size 1 (containingv alone), and the remaining
nodes now form a group of size at leastk− r− 1. Likewise,
the group containingw is split into one of size 1 containing
w alone, and one of size at leastℓ − r − 1. The resulting
grouping is therefore at least a(k−r−1, ℓ−r−1)∗(r+1,r+1)-
grouping.

Observe however, that the identification ofv andw re-
veals nothing about any other nodes, even those connected
to v andw. More precisely, the resulting grouping is still
safe by Definition 4. The crucial observation is that any
refinement of a safe grouping by partitioning groups into
smaller pieces remains safe. By appealing to Lemma 1, the
attacker cannot infer any associations beyond those that are
revealed by the grouping directly (i.e. only those links be-
tween groups of size one). This is sufficient to bound the
new knowledge by the(k − r, ℓ− r)∗(r,r)-grouping. ⊓⊔

This is directly comparable to results on tabular datak-
anonymization where the aim is to ensure that individuals
are secure up to the revelation ofk − 1 pieces of informa-
tion about other individuals. Here, individuals and their as-
sociations are secure up to the revelation ofk − 1 pieces of
information (edges) about others.

4.4 Finding a safe grouping

We describe a greedy algorithm to find a safek-grouping
of V . Precomputing the self-join of the edge tableE on W

Algorithm 4.1: GROUP(V, W, E, k)
j ← k;

∀i : V Gi,j ← ∅;
repeat










































































































for u ∈ V

do























i← 1;

while (∃v ∈ V Gi,j , w ∈ W : (v, w)∈E
∧(u, w) ∈ E) ∨ |V Gi,j | > j

do i← i + 1;

V Gi,j ← V Gi,j ∪ u;

j ← j + 1;

V ← ∅;
i← 1;

l ← 1;

for i : (|V Gi,(j−1)| > 0)

do















if |V Gi,(j−1)| ≥ k

then
{

V Gl,j ← V Gi,(j−1);

l ← l + 1;

elseV ← V ∪ V Gi,(j−1);

until |V | = 0

Fig. 11 Pseudocode to find safek-grouping

allows quickly testing whether it is safe to put two nodes
in the same group. For each nodeu in turn, the algorithm
attempts to placeu in the first group of the partial grouping
with fewer thank nodes. If this would make the grouping
unsafe, it tries the next group, and so on. If there is no group
that meets these requirements, then a new group is started,
containingu alone. After processing all nodes, there may
be some (few) groups with fewer thank nodes in them. The
algorithm collects these nodes together, and reruns the above
loop allowing for groups of sizek + 1 instead ofk. If the
graph is sufficiently sparse, then a safe grouping in which
every group has eitherk ork+1 nodes in is produced, and so
the grouping is strict. Else, the algorithm continues but now
allows groups up to sizek + 2, and so on. Eventually, either
a safe grouping is found, or the algorithm terminates once
some large group size is reached. In this case, the method
fails, but can be run again by choosing a different ordering
of the nodes, or by picking a smaller value ofk.

Pseudo-code of this heuristic is shown in Figure 11. Ini-
tially, all groups in thejth iteration (V Gi,j) are set to empty.
Then for each nodeu in the current set of nodes not allo-
cated to groups,V , the algorithm tries each group in turn; if
adding the node to that group would violate the safety con-
dition, or cause the size of the group to exceed the current
size limit j, then it moves to the next group (eventually, it
will find an empty group, in which the item can be placed
safely). Once all nodes have been processed, the algorithm
then iterates over each non-empty group. If the group is not

15

too small, then it gets copied as a group for the next itera-
tion; else, the group is too small, and the nodes are returned
to the setV for processing in the next round. The process
terminates when all groups are at least sizek, and by their
formation must constitute a safe grouping.

In our experiments this heuristic easily found strict safe
k-groupings for small values ofk. There is the opportunity
to optimize by choosing an initial ordering for the nodes,
with the aim of giving better accuracy on queries. When a
selective predicate is evaluated over a group, tighter query
bounds are given when either (almost) all nodes in the group
are selected, or none are selected. When a handful of nodes
are selected from a group, there will be more uncertainty
in answering the query. Putting similar nodes in a group to-
gether will therefore give higher accuracy. It is tempting to
do this based on attributes of the entities. However, this can
permit attacks in the style of the minimality attack defined
in [19]: knowing that groups were formed in a particular way
allows an attacker to deduce the identity of nodes, and hence
infer associations.

Instead, if groups are chosen solely on graph properties,
then we can publish the grouping algorithm, and anyone will
find the same groups of nodes given the same unlabeled
graph, so no information relating to the mapping of nodes
to entities derives from the choice of which nodes to group
together. This still gives many possibilities. For example,
to improve accuracy on queries involving graph properties
such as node degree (e.g. selecting customers buying a sin-
gle product), sorting by node degree will greatly improve
query answering. The sorted list of degrees of neighbors can
break ties. Other arrangements are possible; in our experi-
mental evaluation we will compare the groupings found by
an arbitrary ordering of the nodes to one based on first sort-
ing in the manner outlined.

4.5 Query answering on(k, ℓ)-grouped graph

We show that aggregate queries of the type considered in
Section 2.3 can be answered accurately and efficiently from
a published(k, ℓ)-grouped graph. First, sinceE′ is isomor-
phic toE and queries of type 0 are solely on the underlying
graph structure, they can be answered exactly. Queries of
type 1 and 2 cannot guarantee perfect accuracy, since it is
not possible to determine exactly which nodes their predi-
cates select. However, they can be answered approximately,
by providing bounds and expected values on the aggregate
query. The core of our approach to query answering is to
consider the set of configurations that are consistent with
the published data: that is, from the anonymized data, con-
sider all possible inputs (or “possible worlds”) which could
have resulted in this anonymization being produced. The re-
sult of the grouping compactly encodes this set of possi-
ble worlds. Typically, there are exponentially many possible

worlds compared to the size of the published data, but by
carefully using the structure of the anonymized data it is pos-
sible to extract bounds on the answer to aggregate queries,
and expected values. We will also show that obtaining the
tightest bounds on the query answer is NP hard, and so there
is little prospect for doing better than materializing every
possible world. We later show empirically that the weaker
bounds obtained are quite usable in practice. It is beyond the
scope of this paper to cover all possible forms of aggregate
queries that could be posed, so we instead analyze various
typical cases that illustrate the main ideas.

A typical type 2 query is of the form “count the to-
tal number of OTC products bought in NJ”. Since the set
of products within each group is known, the number of
nodes selected by the product predicate in a group is easily
found. The same is true for any customer group. The tight-
est bounds follow from evaluating the query over all possi-
ble assignments of entities to nodes, but this would be very
costly, as the following theorem argues:

Theorem 3 Finding the best upper and lower bounds for
answering an aggregate query of type 2 is NP-Hard.

Proof The hardness of the tight upper bound problem
is shown by a reduction from the set covering prob-
lem [5]. Given subsetsS1, . . . , St, whose union isU =
{a1, . . . , au}, construct a bipartite graph(V, W, E). For
each subsetSi, create a nodevi in V . All nodes inV are
placed into a single group of sizet. For eachai ∈ Sj ,
create a nodewij in W , and an edge(vj , wij). W is parti-
tioned into groups corresponding to the sameai, i.e., group
Gi = ∪j{wi,j}. The grouping of the graph is safe, by con-
struction. To decide whether there existsk subsets that cover
U , we set our problem as follows: the query selectsk nodes
in V , and exactly one node from each group ofW . There
is a set cover of sizek if and only if the answer to the tight
upper bound problem is|U |.

The hardness of the tight lower bound problem is shown
by a reduction from the maximum independent set prob-
lem [5]. Given an undirected graphG1 = (V1, E1), con-
struct a bipartite graphG′ = (V, W, E′) similarly to the
proof of Theorem 1: for each edge(vi, vj) ∈ E1, insert
(vi, (vi, vj)) and (vj , (vj , vi)) into E′, and create a group
of size 2 containing the two nodes(vj , vi) and(vi, vj). All
nodes inV are put in a single group. Again, the grouping of
G′ is safe by construction. To decide if there exists an inde-
pendent set of sizek in G, set the query to selectk nodes
in V , and only one node in each group ofW . There is an
independent set of sizek if and only if the tight lower bound
for this query is 0. ⊓⊔

Instead, slightly weaker bounds are obtained by consid-
ering each pair of groups in turn to find bounds on the query
answer. The answers can then be combined to give the over-
all bounds. This approach certainly gives correct lower and

16

upper bounds, but may be loose: one part of the bound may
derive from one assignment of nodes to entities within a
group, while another part may result from a distinct assign-
ment within the same group. So the resulting bound is not
compatible with any realisable configuration, and so may be
loose.

Example 7Consider answering the query “Count the total
number of OTC products bought in NJ”. We analyze each
pair of groups in turn. Given a safe groupCGi of ki cus-
tomers, of whomai are NJ customers; a safe groupPGj of
ℓj products, of whichbj are OTC products; andcij edges
between the two groups, we can find the following bounds:
(i) Upper bound. Between the pair of groups, there can be
a contribution of at mostUi,j = min(ai, bj , cij) to the
query. For a given product groupPGj , the total contribu-
tion over all customer groupsCGi to the query is no more
thanUj = min(

∑

i Ui,j , bj). Summing this over all product
groups gives an upper bound ofU =

∑

j Uj .
(ii) Lower bound. For a given pair of customer groupCGi,
and product groupPGj , there is a contribution of no less
thanLi,j = max(0, ai + bj + cij − ki − ℓj) to the query.
For a given product groupPGj , the bound over all customer
groups isLj = maxi Li,j . We can sum this to get an overall
lower bound,L =

∑

i Li.
(iii) Expected answer. With no other information than what
is published, the best strategy is to treat all assignments
of nodes to entities as equally likely. Under this assump-
tion, the expected selectivity betweenCGi andPGi from
the product perspective isµij =

aibjcij

kiℓ
2

j

. Over all customer

groups, the estimated Expected Bound for thejth product
group isµj = ℓj(1 −

∏

i(1 − µi,j)), assuming indepen-
dence between the groups and using the inclusion-exclusion
principle. It can be argued that that this approach is well-
founded, since all possible assigments of nodes to entities
are possible. The expected answer for the query is then
µ =

∑

j µj . These can be verified by simple case analysis
over the structure in Figure 10(a).⊓⊔

Such queries can be answered in timeO(|E|), since each
edge in the original graph connects a single pair of groups,
and for groups with no edges between them (cij = 0),
Ui,j = Li,j = µi,j = 0.

Example 8The query “Find the maximum number of CA
customers buying a single Rx product” can be answered by
considering in turn each node that could possibly be a CA
customer (is in a group which contains at leastai ≥ 1 CA
customers), and finding exactly the products bought alone
associated with that node. Upper and lower bounds increase
if there arebj ≥ 1 Rx products or no fewer thanℓj Rx prod-
ucts in the product’s group of sizeℓj, respectively. These
imply upper and lower bounds on the global maximum. Sim-
ilarly, expected bounds follow by assuming a customer has

probability of being in CA with probabilityai/ki in a group
of ki customers; and that a product in a group ofℓj product
has probabilitybj/ℓj of being prescription only. ⊓⊔

As above, since we have to do a constant amount of work
for each edge in the original bigraph, the computational cost
is O(|E|).

4.6 (k, 1)- and(1, ℓ)-Groupings

A significant class of groupings arise when all groups of
one set of nodes are of size 1. These are(k, 1)- (or sym-
metrically,(1, ℓ)-) groupings. Here, more is revealed about
associations between entities of thesametype (our focus up
to now has been on associations between entities ofdiffer-
ing types), since the true mapping from one set of nodes
to entities is revealed. In the customer-products example,a
(1, ℓ)-grouping reveals exactly how many products a partic-
ular customer has bought, who has bought the same product,
etc., while still protecting the exact associations.

Example 9Figure 10(c) shows a safe(1, 3)-grouping of
our example data. The corresponding published tables are
HW andRW as shown in Figure 8;HV and RV are not
needed, sinceV maps directly onto the nodes ofE′. Despite
this information being revealed, the private associationsbe-
tween customers and products are still hidden: although Fig-
ure 10(c) shows that customers c1 and c3 bought the same
product, it could be any one of{p2, p3, p5}. ⊓⊔

This again resembles a diversity requirement similar to
ℓ-diversity: any customer is known to have bought one prod-
uct out of a group ofℓ. From Lemma 1 and Theorem 2,
given a safe(k, 1)-grouping, any edge still is between one
of k equally likely nodes ofV , and givenr edge revela-
tions, an attacker is still faced with a(k−r, 1)∗(r,0)-grouped
graph. While information is revealed about interactions be-
tween one set of nodes (customers, in the example above),
in many cases, this information release may be permissible.
Our above results show that there are still strong guarantees
on the privacy of associations, while revealing information
such as, from pharmacy sales, which medicines were bought
by the same person (without revealing who that person is).
If it is acceptable to release such information, some queries
are answered with higher accuracy.

Query answering on (1, ℓ) and (k, 1)-grouped data.
Queries are answered in much the same way as in the more
general(k, ℓ) case. However, many queries are answered
more accurately, since the amount of uncertainty is reduced,
and the anonymization entails fewer, more consistent possi-
ble worlds. The impact on our bounds is that in Examples 7
and 8,ai = ki = 1 or bj = ℓj = 1, simplifying the bounds.
In particular, some queries of type 1 can be answered ex-
actly: if the predicate is on the 1-grouping, the correct setof

17

entities can be found exactly, which allows the exact answer
to the aggregate query to be found. Type-2 queries can be
answered with tighter bounds:

Example 10For the query of Example 7 over a(k, 1)-
grouped graph, the set of OTC products is known precisely.
For each OTC product, we add 1 to the upper bound if they
have a buyer in a group which contains an NJ customer; and
add 1 to the lower bound if they have a buyer in a group in
which everyone is in NJ. For the expected bound, the ex-
pectation that a customer in a group of sizeki with ai NJ
customers isµi,j = ai/ki, so the probability of any buyer of
the product being from NJ is1−

∏

i(1−Eµi,j). Similarly,
for Example 8, we can consider all single products bought
by NJ customers exactly, and find the corresponding bounds
(upper, lower, and expected) on which are prescription only.
⊓⊔

4.7 Experimental Analysis of Utility

In this section, we evaluate the utility of the anonymized
data through experiments on the DBLP and IMDB data.
Specifically, we study the accuracy of three sample queries
with different properties. For each query, we compute a
lower bound estimationL, an upper bound estimationU ,
and an expected valueµ. If the correct answer to the query
is Q, we compute two error measurements: the error bounds
U−L
2Q

(the worst case error from using(U + L)/2 as an

estimate forQ), and the expected error|µ−Q|
Q

. To clearly
show the trends, we repeat each experiment over ten ran-
dom choices of predicates and show the mean error bounds.
We describe the experimental setup firstly in terms of the
DBLP data; since the datasets have essentially the same
schema structure, the equivalent queries on the IMDB data
are formed by replacing authors with actresses, and papers
with movies. The three queries are:

– Query A: Find the average number of authors of any
paper satisfying predicatePa (equivalently, find the av-
erage number of actresses in any movie satisfying the
predicate). This is a type-1 query with an attribute pred-
icate only. We vary the selectivity ofPa from 10% to
90%.

– Query B: Find the total number of single author pa-
pers satisfyingPa (single actress movies satisfyingPa).
This is also a type-1 query with both attribute predicates
and structural predicates. The selectivity ofPa is varied
as above, while the single author predicate is kept con-
stant. We can make use of the bounds derived in Sec-
tion 4.5. For each group, the query predicates will select
a matching entities (authors or actresses), andc match-
ing edges (edges incident on nodes with degree 1). We
obtain upper and lower bounds per groupj of sizek as

Lj = max(0, a + c− k), andUj = min(a, c). Then we
sum over all groups to get the final boundsL andU . For
the expected answer, for each paper (movie) in a group
of sizek, the probability that it is selected isa

k
c
k
. Thus

for each groupj, the expected number of matching enti-
ties isµj = a·c

k
. Then we can sum all groups and get the

final expected valueµ.
– Query C: Find the total number of papers satisfying

Pa having authors who satisfyP ′
a (movies satisfying

Pa starring actresses who satisfyP ′
a). This is a type-2

query, which is answered again by applying the methods
of Section 4.5. We vary the selectivity of bothPa and
P ′

a.

These fit exactly the form of the queries we have studied
in Example 7 and Example 8 (note that type-1 queries can be
thought of as type-2 queries where one of the attribute predi-
cates is always true). We do not consider any type-0 queries,
since our earlier analysis shows that they can be answered
exactly from the graph structure alone. We computed group-
ings over the papers and authors in the DBLP data described
in Section 2 using the method detailed in Section 4.4. We
built 20-groupings, 10-groupings, and 5-groupings over the
data. The first iteration of the algorithm was able to find safe
k-groupings covering almost every node: the 20-grouping of
papers had 43 papers (out of 540K) not in groups of size 20,
while there were just 3 authors not in groups of size 20. The
next iteration easily found a safe, strict 20-grouping.

The following parameters can impact query accuracy:

– Group size: We compare approaches from(k, 1)-, (1, ℓ)-
and(k, ℓ)-groupings. We expect smaller group sizes to
offer better accuracy for query answering.

– Selectivity of predicates: More highly selective queries
are more likely to touch just a few nodes within a single
group, and so lead to wider worst case bounds.

– Grouping formation: We will study the impact of build-
ing the groupings based on an arbitrary initial ordering
of the nodes, and based on sorting of degree and neigh-
borhood degree, as discussed in Section 4.4. We expect
sorted groupings to give better answers when queries
have structural predicates based on degree.

– Interaction of grouping and predicates: There may be
some implicit correlation between the groups and the
query predicates which will improve query answers: e.g.
selecting mathematical papers may skew towards fewer
authors, while selecting physical sciences papers may
skew towards more authors. Groupings based on sorting
by structural properties may give better results here.

In the following, we show a set of experiments and eval-
uate the impact on the query accuracy of all the above fac-
tors. For our experiments, we found a variety of groupings
based on different initial orderings of the data, as described
below.

18

(a) Query A on DBLP (b) Query A on IMDB

(c) Query B on DBLP (d) Query B on IMDB

(e) Query C on DBLP,P ′

a selectivity 0.8 (f) Query C on IMDB,P ′

a selectivity 0.8

Fig. 12 Impact of query selectivity and group size on three queries

19

(a) Expected Error on Query B, DBLP data (b) Expected Error on Query B, IMDB data

(c) Expected Error Query C,P ′

a selectivity 0.1, DBLP data (d) Expected Error Query C,P ′

a selectivity 0.1, IMDB data

Fig. 13 Query selectivity and group size, expected error

4.7.1 Worst Case Error Bounds.

In our first set of experiments, we formed groups of nodes
with an initial ordering based on grouping together nodes
with the same degree and second-order degree. However,
they were notsortedby degree, onlygroupedby degree.
Figure 12 shows the worst case error bounds for query an-
swering with(k, k)-groupings over the queries A, B, and C.
As expected, smaller groupings achieve smaller uncertainty.
There is also a clear trend for Queries A and B (Figures 12(a)
to 12(d)) that as the selectivity ofPa increases, the accuracy
improves. When only a single node in a group is touched
by a query, as happens when selectivity is low, it could be
any node, and so we have high uncertainty for the aggregate
value in the group. But when many nodes are selected in a
group, there is less relative uncertainty for an aggregate like
sum or average. Further, smaller groups improve the accu-
racy of the answer: a (5,5) grouping is always better than
a (10,10) grouping, which is better than a (20,20) group-
ing. However, the relation between accuracy and group size
is not linear: doubling the group size increases the error by

much less than twice. The trend across data sets is similar.
Error appears lower in general on the DBLP data, possibly
due to lower variation in the number of authors per paper
than actresses per movie for query A.

For Query C (Figures 12(e) and 12(f)), there is little vari-
ation asPa’s selectivity varies (in this plot, selectivity of
P ′

a is set to 0.8; similar experiments for other values ofP ′
a

showed the same results). Note that when we have a paper
group of size 1, as in the(10, 1)-grouping, we can directly
select out exactly those papers that meet the predicate, and
so have better accuracy compared to other groupings. There
is little difference between the(10, 10)-grouping and the
(1, 10)-grouping.This is becauseP ′

a selects most authors, so
there is not much benefit from the(1, 10)-grouping’s ability
to eliminate some candidates. WhenP ′

a selects fewer au-
thors, there is a clearer advantage of(1, 10) over (10, 10)

grouping. Behavior is fairly consistent over the data sets:
for this query, accuracy is slightly better on the IMDB data,
but the difference is marginal.

We also studied the time cost of query answering, and
the results are shown in Table 2. For all these experiments

20

(a) Impact of Grouping Order on DBLP (b) Impact of Grouping Order on IMDB

Fig. 14 Impact of Grouping Order

(a) Correlation between predicate and groups, DBLP (b) Correlation between predicate and groups, IMDB

Fig. 15 Correlation between predicate and groups

Table 2 Query running time (s)

Dataset Query A Query B
Query C

P ′

a = 0.8 P ′

a = 0.1

DBLP 38.8 13.7 144.6 36.0
IMDB 24.0 7.5 157.7 95.1

we use a (10, 10) grouping andPa = 0.5; other settings were
broadly similar. They show that the more complex queries
take more time to answer, and show some dependence on
the selectivity of the predicates (since groups containingno
nodes selected by the predicate can be ignored).

4.7.2 Expected Case Error Bounds.

Although the above worst case bounds show that there can
be a wide range between the upper and lower bounds on a
query, we show next that the expected bound can give a quite
accurate answer. Indeed, on query A, the observed error in

using the expected answer was so close to zero that we omit
plots since there is little to observe there. Figure 13 shows
the expected error on queries B and C. The general trend is
again that higher values of selectivity give better accuracy.
However, observe that the expected errors are much smaller
than the worst case bounds, and do not vary much based on
group size—in several cases a larger grouping achieves bet-
ter expectederror than a smaller one. This suggests that the
tradeoff between privacy and utility can be more complex in
practice. On query C, as in the worst case, the expected error
is much smaller on(10, 1) than(1, 10) or (10, 10), which are
about the same for this (more selective)P ′

a; similar results
occur for other values ofP ′

a. Between the two data sets, be-
havior on query B is quite similar, while for query C, there
is an appreciable variation: the error is higher on the IMDB
data for the(1, 10) and(10, 10) groupings.

21

4.7.3 Impact of ordering on grouping.

Query B involves a structural predicate (single author pa-
pers), so we compare different choices of grouping in Fig-
ure 14. The “sorted” case first sorts the data by degree and
second-order degree before finding a safe grouping, while
the “random” case picks an arbitrary ordering before find-
ing a safe grouping. We see that there is a very dramatic
benefit to having a grouping based on the sorted ordering:
two orders of magnitude improvement in the accuracy on
data sets. This is because most groups now contain papers
with the same number of authors, meaning the contribution
to the aggregate can be found exactly for those groups, and
only the few that remain contribute to the uncertainty. The
same behavior occurs for both data sets, with the same fac-
tor of improvement observed, although accuracy is consis-
tently better for DBLP than for IMDB. Lastly, note that the
best case occurs for the smaller groups ((5,5) compared to
(20,20)) when the input to the grouping procedure is sorted
by degrees.

We further investigate the impact of the correlation of
the predicate with the grouping. For query B, we construct
an artificial predicatePa which selects the same number of
total papers, but touches a variable number of papers in each
paper group within a(5, 5) grouping. Figure 15 shows that
as the number of papers touched in each group increases,
both the expected and worst case bounds improve up to the
point when all papers are selected in a group, the aggregate
query is answered with perfect accuracy. This shows that
if we can anticipate the kinds of structural predicates that
end users will want, then we can improve the utility of the
published data without compromising the privacy.

4.7.4 Grouping on Dense Data

As discussed in Section 4.2, a safe grouping is easy to find
for sparse datasets. The previous experiments were on rel-
atively sparse datasets. In this section we examine the per-
formance of our algorithms when the given dataset is more
dense. We study the FIMI dataset described in Section 2.4.

We first analyze the difficulty of forming a safe grouping
on the transactions. We ran the grouping algorithm, seek-
ing groups of size 8, 10 and 12. The running time was
828s, 936s, and 977s respectively. This demonstrates that
that even for such a dense graph, our algorithm can still find
a safe grouping efficiently. However, it is not possible to find
much larger groups, since there is one item which appears
in 823 transactions. Since the safety condition allows each
item to be linked to at most one transaction in any group of
transactions, each of these 823 transactions must be placed
in separate groups, which is not possible for group sizes
greater than 12. This is a limitation of demanding this level

of safety: alternate definitions of safety might allow larger
groupings, but would have different privacy implications.

As a second measure of the difficulty of finding safe
groupings, we also counted the number of transactions
which could not be placed in their “first choice” group:
that is, the number of cases where the transaction cannot
be placed in the first group which is tried, and a later group
has to be used. For groupings of size 8, 10, and 12, out of
the 10000 transactions, the numbers of nodes that failed the
first trial are 7524, 8420 and 9051 respectively. This demon-
strates that as group size grows larger, it becomes harder to
find a group which satisfies the safety condition.

We now discuss finding groupings of the items. Across
all transactions, one item appears in common with 768 oth-
ers. Moreover, there are many other such items with high
degree and highly dense interaction pattern. So it is not pos-
sible to find a grouping into groups of size 2 which meets the
safety condition. However, it can be argued that in this ex-
ample, it is more important to find groupings over the trans-
actions. Note that the implication for this is that however
we group the items, there is likely to be some transaction
where the grouping reveals that all items in the item group
are linked to that transaction. This is an inherent problem
with grouping this data, rather than with our approach to
grouping.

5 Unions of groupings

In this section, we consider the impact of publishing mul-
tiple groupings of the same graph. This allows a broader
class of queries to be answered with perfect accuracy, but
is open to stronger classes of attack based on the graph
structure. Recall that publishing the fully-censored(m, n)-
grouped graph allows type-0 queries to be answered exactly,
but gives us no handle to answer other query types with cer-
tainty. As observed in Section 4.6, publishing(1, ℓ) or (k, 1)
grouped graphs offers greater utility for a variety of queries
while preserving the privacy of associations.

We can give greater utility if we fully censor only one
side of the bigraph, leading to(1, n) and(m, 1)-groupings.
In this case,V (respectivelyW) is preserved perfectly, while
all of W (resp.V) is placed into a single group. This simpli-
fies the information we have to publish:

Definition 6 Given a bipartite graphG = (V, W, E),
its (m, 1)-grouping is defined byGV (V, W, HV (E))
where: H is an arbitrary injective function mapping
from V ∪ W onto the integers, andHV (E) =

{(H(vi), wj)|(vi, wj) ∈ E}. Similarly, its (1, n)-grouping
is defined by GW (V, W, HW (E)), where HW (E) =

{(vi, H(wj))|(vi, wj) ∈ E}.

Observe that if we apply a(1, n) grouping to a graph
that is already(m, 1) grouped, then the result is the (fully

22

(a) Identifiability of authors (b) Identifiability of actresses

Percentage of Transactions and Items within k-identifiable

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

K

P
e

rc
e

n
ta

g
e

transaction: 1 step transaction: 2 step item: 1 step item: 2 step

(c) Identifiability of transactions and items

Fig. 16 Attacking a(m, 1) ∪ (1, n)-grouping

censored)(m, n) grouped graph. Given a(m, 1)-grouping
of a graph, we can answer certain query types with perfect
accuracy. In particular, we can answer any query of type 1,
provided that the predicatePa is over nodes ofW . Simi-
larly, we can answer any query of type 1 where the predi-
catePa is over nodes ofV given the(1, n)-grouped version.
Privacy of either graph is also guaranteed: without any addi-
tional knowledge, one cannot infer the identity of any of the
censored nodes. However, we cannot give any high-quality
answer to such queries if we only have the(m, 1)-grouped
graph.

So it seems that publishing both, as a(1, ℓ) ∪ (k, 1)

grouping of a graph, is desirable, since any query of type
1 could be answered exactly. But while either version of the
graph in isolation is resilient against attack, publishingboth
allows an attacker to combine the information in the static
attack model (Definition 1), as they now have information
not previously available to them. If a customer has bought
more products than any other, she can be identifiedstati-
cally from the(1, ℓ) graph, i.e. with no background knowl-
edge about degrees or other data. From its unique degree,

the same node can be located in the(k, 1)-grouped graph,
revealing all the products bought by that customer. This at-
tack applies even over(m, 1)∪(1, n)-grouping, which gives
the most privacy in this class.

More strongly, if certain types of mappings between the
isomorphic(m, 1) ∪ (1, n)-grouped graphs can be found,
the original data can be recovered. This problem is related
to, but distinct from, the (well-studied) graph isomorphism
problem. Some information will remain private: for exam-
ple, when there are customers who have only ever bought a
single product unique to them, their associations cannot be
recovered from(k, 1)∪ (1, ℓ)-grouped graphs. In that exam-
ple, it is easy to find a valid isomorphism over these nodes,
but there are many other valid isomorphisms that associate
different customers with different products, so the attacker
cannot be sure which was the original mapping. But if the
attacker can find node or edge pairs that must beuniquely
mapped to each other ineveryisomorphism (i.e. every possi-
ble world that is consistent with the published information),
their privacy is compromised. Clearly, the amount of privacy
that remains is input dependent: data consisting solely of

23

nodes with degree 1 is secure; but if each node has a unique
degree then total re-identification is trivial. On realistic data,
the truth lies somewhere in between.

5.1 Experimental Analysis of Privacy.

We attack(m, 1) ∪ (1, n)-grouped graphs, based on find-
ing matching pairs of nodes between the two graphs. Each
node in the fully censored graph is given a compactsigna-
ture. Initially, the signature of every node is a default value,
say 0, since there is noa priori way of telling them apart.
We choose the 1-step signature of a node to be the degree of
that node. Given a node, itsnext-step signatureis formed by
concatenating its current signature with the signatures ofall
its neighbors in the graph, and sorting this set lexicograph-
ically. Once next-step signatures are found for all nodes in
the graph, they can be compactly relabeled (since there can
be at mostn different signatures forn nodes). By this con-
struction: (a) If two nodes have different signatures then they
cannot be matched in any isomorphism—since the signa-
ture canonically encodes features of the neighborhood of a
node, different signatures entail non-isomorphic neighbor-
hoods. (b) Since the process is entirely deterministic, each
node will obtain the same signature every time the procedure
is run on the graph. As a result, if a node receives a signature
that is not shared by any other node, then this node must be
uniquely matched in any isomorphism. Moreover, it can be
matched to the unique node with the same signature in an
isomorphic copy. Note that the implication is only one way:
the guarantee is that if signatures are unique then nodes can
be uniquely matched, and not vice-versa. Schemes which
build signatures for edges instead of for nodes are also feasi-
ble; the details are quite similar, and we present results only
for the node-based scheme for brevity.

We therefore study the effectiveness of this attack on
the anonymized data. We apply this signature scheme on
the(m, 1) ∪ (1, n)-grouped graphs, and measure how many
nodes are uniquely identified, and how many fall into equiv-
alence classes of size 2, 3, 4 etc. The cumulative distribu-
tion over such classes of authors in the DBLP dataset, ac-
tresses in the IMDB data, and transactions and items in the
FIMI data are shown in Figure 16. Multiple steps of sig-
nature computation were performed, but for all datasets, no
improvement was seen after the fourth iteration, and there is
only limited difference from the third to fourth step. A 4-step
signature is sufficient to identify half the authors and almost
half the actresses uniquely. Only about20% of authors and
actresses are in equivalence classes of 10 or larger. Such pri-
vacy levels are weak for many typical applications. For the
FIMI transaction data the result is even starker: although no
transactions are uniquely identified by a one step signature,
a 2-step signature is sufficient to uniquely identify 91.8% of
the nodes. With this signature, the largest equivalence class

has only twelve members. For the items, a two step signature
allows 862 out of the total 866 nodes can be uniquely iden-
tified. So we conclude that(1, ℓ) ∪ (k, 1)-groupings should
be avoided. The single groupings discussed in the previous
section offer much stronger privacy guarantees while allow-
ing queries to be answered accurately. This highlights that
much care is needed for problems of anonymization, and
that enhancements designed to improve utility run the risk
of opening themselves to very effective attacks on privacy.

6 Related Work

The problem of how to anonymize and publish data for oth-
ers to analyze and study has attracted much study in re-
cent years. Starting with the pioneering work of Sweeney
and Samarati onk-anonymization [16,15], the core problem
of anonymizing data tables has led to new techniques and
definitions such asℓ-diversity [11],(α, k)-anonymity [18],
t-closeness [10],(c, k)-safety [12], and anonymization via
permutation [23,20]. Our attempts to apply some of these
methods to our problem in Section 3 either failed to give the
required privacy or yielded results with very low utility.

There has been considerable recent interest in anonymiz-
ing data which can be represented as a graph, motivated by
wanting to publish social network data. Backstromet al. [1]
consider attacks on publishing such data with identifiers re-
moved (the “fully censored” case). They study both active
attacks, in which the attacker is allowed to insert a number
of nodes and edges into the graph before it is published, and
passive, where the attacker learns all the edges incident ona
set of linked nodes. In both cases, a large enough known sub-
graph can be located in the overall graph with high probabil-
ity, and hence information can be learnt about connections
between nodes. However, as here,nothing is learnt about
connections between nodes that arenot incident on edges
known to the attacker.

Hayet al. [8] analyze what privacy is present inherently
within the structure of typical social networks, by measur-
ing how many nodes have similar or identical neighbor-
hoods (based, e.g. on degrees of nearby nodes). This is
similar to the attack we studied in Section 5.1. They ana-
lyze what additional privacy is gained by deleting and then
randomly inserting up to 10% of edges, but observe that
such modification can significantly alter graph properties.
Similarly, Zhou and Pei [25] define privacy so that each
node must havek others with the same (one-step) neigh-
borhood characteristics, and measure the cost as the number
of edges added, and number of node label generalizations.
Korolova et al. [9] analyze attacks in a different model,
where the attacker can “buy” information about the neigh-
borhood of certain nodes, and wishes to minimize their cost
to learn the graph. Zheleva and Getoor [24] study the ef-
fectiveness of machine learning techniques to infer sensi-

24

tive links which have been erased, given a graph in which
non-sensitive links have been anonymized. They consider
anonymizations based on grouping nodes: randomly delet-
ing some non-sensitive edges; reporting only the number of
edges between groups (similar to Section 3.3); and just re-
porting whether two groups have any edges. They do not
consider our approach of retaining the graph structure but
hiding the mapping from entities to nodes. Our work differs
from prior work essentially because we focus on a different
region of the privacy-utility tradeoff: we consider settings
where releasing the unlabeled graph is permitted, but lacks
utility, whereas prior work does not allow such release.

More recently, Hayet al. [7] extended their study of
reidentification of graph data, and proposed forming nodes
into groups and revealing only the number of edges between
pairs of groups. Given the same sets of groups of nodes,
their approach would entail a much larger number of pos-
sible worlds that could correspond to the published data.
This approach is similar to the initial permutation approach
considered and rejected due to its inability to retain funda-
mental graph properties; the work of Hayet al. differs in
the way that groups are formed and edges are permuted,
and so seems able to attain better, but still degraded, fidelity
for (simple) graphs. Extending this approach, Campan and
Truta propose building “clusters” (groups) of nodes, and re-
vealing only the number of edges within a group and be-
tween pairs of groups [4]. The nodes have additional prop-
erties, which are generalized so that all nodes in the same
cluster have the same generalized representation.

Also relevant is work which considers relations with
many sensitive attributes, since such data is often effectively
represented in graph form. Nergizet al. [14] mention the
shortcomings of representing and anonymizing bitmap rep-
resentations of relational data, which we argue is also in-
sufficient for graph data in Section 3.2. Closest to our work
in setting is recent work by Ghinitaet al. [6] on anonymiz-
ing sparse high-dimensional data (since a bipartite graph can
be seen as defining such a sparse relation). Their approach
is to extend known permutation based methods [23,20] to
improve utility. In their data, sensitive attributes are rare,
so they can ensure at most one sensitive attribute in each
group ofk individuals; in contrast, in our setting, every at-
tribute (association) is sensitive and so we cannot apply their
method. Moreover, [6] does not consider graph properties of
the data, which we take care to preserve. Work onℓ-diversity
briefly considers the issue of multiple sensitive attributes,
and concludes that much larger groups would be needed to
guarantee privacy [11]. The crucial difference that allows
our techniques to succeed is that although we have a large
number of sensitive attributes (e.g. all customers) in graph
data, the graph is sparse, so these can be hidden amongst
many possible associations.

Lastly, our work can be compared to that designed to
anonymize transactional or set data, such as recent contri-
butions by Terrovitiset al. [17], and Xuet al. [22]. There,
the problem is to apply a suitable anonymization to a dataset
of transactions, where each transaction is a set of items con-
nected to an individual. Clearly, this scenario can also be
modeled as a bipartite graph, as shown with our continued
example of customers and products. However, the power of
the adversary, and hence the goal of the anonymization is
different in [17,22]. There, it is assumed that an attacker is
able to observe some number of items belonging to an in-
dividual, and wishes to infer other (private) items in their
transaction. Our methods were not designed with this model
of attack, and as a result are not comparable (likewise, the
methods of [17,22] were not designed for bipartite graph
data, and as such do not adequately preserve graph structure
information). Nevertheless, due to the similar motivations, it
will be of interest to find a common framework for these re-
sults, and to extend the grouping approach we develop here
to give guarantees against this model of adversary.

7 Concluding Remarks

We have considered the problem of anonymizing data in the
form of bipartite graphs, and shown that methods based on
finding safe(k, ℓ)-groupings are effective at securing pub-
lished data against a variety of attacks. We have shown how
to answer queries for various natural classes of aggregates,
but it remains to automatically rewrite arbitrary queries to
give upper, lower and expected bounds on safely grouped
graphs. It is also of interest to study advanced query types,
such as join-style queries over longer edge paths.

We have assumed that full information can be revealed
about entities, but the mapping from entities to nodes in a
graph must be masked. Other models may be needed if we
wish to anonymize both entitiesand the associations be-
tween them. Our focus has been on data that can be rep-
resented as a bipartite graph linking two types of entity. Itis
natural to also study arbitrary graphs over a single type of
entity, i.e. social network graphs [1,8,9]. There have been
large increases in the quantity of data representing interac-
tions in social networks being collected in recent years. This
has led to greater interest in applying anonymization tech-
niques to such data to allow sharing and analysis without
compromising the privacy of the individuals whose data is
stored by the networks. In our ongoing work, we plan to
study the extent to which our methods can be generalized
and extended to accurately model and anonymize this kind
of data. Some initial results in this direction are presented in
[3].

25

References

1. L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore are thou
R3579X? Anonymized social networks, hidden patterns and struc-
tural steganography. InInternational Conference on World Wide
Web (WWW), 2007.

2. J. Bennett and S. Lanning. The Netflix prize. InKDDCup Work-
shop, 2007.

3. S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava.
Class-based graph anonymization for social network data. Tech-
nical report, AT&T Labs–Research, 2008.

4. A. Campan and T. M. Truta. A clustering approach for data and
structural anonymity in social networks. InInternational Work-
shop on Privacy, Security and Trust in KDD (PinKDD), 2008.

5. M. R. Garey and D. S. Johnson.Computers and Intractability,
a Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, 1979.

6. G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of sparse
high-dimensional data. InIEEE International Conference on Data
Engineering, 2008.

7. M. Hay, D. Jensen, G. Miklau, D. Towsley, and P. Weis. Resist-
ing structural re-identification in anonymized social networks. In
International Conference on Very Large Data Bases, 2008.

8. M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava.
Anonymizing social networks. Technical Report 07-19, Univer-
sity of Massachusetts Amherst, 2007.

9. A. Korolova, R. Motwani, S. Nabar, and Y. Xu. Link privacy in
social networks. InACM Conference on Information and Knowl-
edge Management (CIKM), 2008.

10. N. Li, T. Li, and S. Venkatasubramanian.t-closeness: Privacy be-
yondk-anonymity andl-diversity. InIEEE International Confer-
ence on Data Engineering, 2007.

11. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubrama-
niam. ℓ-diversity: Privacy beyondk-anonymity. InIEEE Interna-
tional Conference on Data Engineering, 2006.

12. D. J. Martin, D. Kifer, A. Machanavajjhala, and J. Gehrke. Worse-
case background knowledge for privacy-preserving data publish-
ing. In IEEE International Conference on Data Engineering,
2007.

13. A. Narayanan and V. Shmatikov. How to break anonymity of
the Netflix prize dataset. Technical Report arXiv:cs/0610105v1,
arXiv, 2006.

14. M. E. Nergiz, C. Clifton, and A. E. Nergiz. Multirelational k-
anonymity. InIEEE International Conference on Data Engineer-
ing, 2007.

15. P. Samarati. Protecting respondents’ identities in microdata re-
lease. IEEE Transactions on Knowledge and Data Engineering,
13(6):1010–1027, 2001.

16. L. Sweeney.k-anonymity: a model for protecting privacy.Inter-
national Journal on Uncertainty, Fuzziness and Knowledge-based
systems, 10(5):557–570, 2002.

17. M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving
anonymization of set-valued data. InInternational Conference on
Very Large Data Bases, 2008.

18. R. Wong, J. Li, A. Fu, and K. Wang.(α, k)-anonymity: An en-
hancedk-anonymity model for privacy-preserving data publish-
ing. In ACM SIGKDD, 2006.

19. R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimalityat-
tack in privacy preserving data publishing. InInternational Con-
ference on Very Large Data Bases, 2007.

20. X. Xiao and Y. Tao. Anatomy: Simple and effective privacypreser-
vation. In International Conference on Very Large Data Bases,
2006.

21. X. Xiao and Y. Tao. M-invariance: towards privacy preserving re-
publication of dynamic datasets. InACM SIGMOD International
Conference on Management of Data, 2007.

22. Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu. Anonymizing trans-
action databases for publication. InACM SIGKDD, 2008.

23. Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate query
answering on anonymized tables. InIEEE International Confer-
ence on Data Engineering, 2007.

24. E. Zheleva and L. Getoor. Preserving the privacy of sensitive re-
lationships in graph data. InInternational Workshop on Privacy,
Security and Trust in KDD (PinKDD), 2007.

25. B. Zhou and J. Pei. Preserving privacy in social networksagainst
neighborhood attacks. InIEEE International Conference on Data
Engineering, 2008.

