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Abstract Private data often comes in the form of asso-the anonymized version, and the impact of publishing al-

ciations between entities, such as customers and produdernate groupings of the same graph data. Our experiments
bought from a pharmacy, which are naturally represented idemonstrate that, ¢)-groupings offer strong tradeoffs be-
the form of a large, sparse bipartite graph. As with tabulatween privacy and utility.

data, it is desirable to be able to publish anonymized ver: . . .
sions of such data, to allow others to perform ad hoc analyl—<eyworOIS Privacy- Microdata- Graph- Query Answering
sis of aggregate graph properties. However, existing &abul
anonymization techniques do not give useful or meaningfu} |htroduction
results when applied to graphs: small changes or masking

of the edge structure can radically change aggregate gragtivate data often arises in the formasfsociationdetween
properties. entities. A first example is represented by the products
We introduce a new family of anonymizations for bi- bought by customers at a pharmacy. The set of products be-
partite graph data, callgd, £)-groupings. These groupings ing sold and their properties is public knowledge, and it may
preserve the underlying graph structure perfectly, and inbe no secret which customers visit a particular pharmacy.
stead anonymize the mapping from entities to nodes of thelowever, the association between a particular individodl a
graph. We identify a class of “safgk, £)-groupings that a particular medication is often considered sensitivaesin
have provable guarantees to resist a variety of attacks, anglindicative of a disease or health issue that they have. A
show how to find such safe groupings. We perform expersecond example of association data is the Netflix prize data
iments on real bipartite graph data to study the utility ofset, released in 2006, which was anonymized based on an
unspecified heuristic method [2]. This led to speculation on
Yu and Zhang were partially sponsored by the NSF throughtgité®  how easy it would be to break the privacy [13]. A third ex-
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ample is that of authors and papers: for a conference such
as SIGMOD, reviewers learn information about submitted
papers (title, area, abstract), and could (in future) atso s
detailed information about authors who have submitted pa-
pers, in order to verify conflicts of interest. But, since SIG
MOD is a double-blind conference, the association between
authors and papers should not be revealed to reviewers.
The most natural way to model such data is as a graph
structure: nodes represent entities, and edges indicate an
association between them; much analysis can then be per-
formed on structural properties of this graph. In this work,
we study data that can be modeled as bipartite graphs—there
are two types of entity, and associations link together one e
tity of each type. In the pharmacy, customers buy products,
and in SIGMOD, authors write papers, building (customer,



product) and (author, paper) associations respectivaghE fers by making different assumptions about the strength of
entity can be involved in few or many associations, but inthe attacker and the utility of the graph data. Prior work [1,
most common situations, only a tiny fraction of all possi-8] tends to assume a lot of knowledge or power on behalf of
ble associations are present. No customer buys more tharttze attacker (in particular, knowledge of node degreesf or o
small fraction of the available products, and no product igarticular subgraphs, and the ability to insert new nodds an
bought by more than a small fraction of the total customersedges into the graph), and shows that under such assump-
Similar observations hold for publication data about atgho tions some associations can be inferred. In contrast, we ad-
and the papers they have written. In other words, the inducedress a different but equally important range of the privacy
graph is quite sparse, and we must ensure that these assadility tradeoff. We give a new approach for anonymizing as-
ations are not easily revealed. sociations which can be represented as bipartite graphs and

Although the data is private, it is still desirable to allow show it to be resilient against certain attack models.
aggregate analysis based on the structure of the graph. Phar
maceutical companies wish to understand which pattern of
products are bought by people in particular age ranges; pub-
lic health organizations want to watch for disease outlseakl.1 Our Contributions.
affecting particular demographics based on certain types o
medicine being purchased; SIGMOD may encourage anaBur methodology is based on the idea that rather than mask-
ysis of hot topics in databases, or better understanding afg or altering the graph structure, we should preserve the
coauthorship patterns. Publishing the raw data would allovgraph structure exactly, and instead focus on masking the
these questions to be answered directly, but would fail tanapping from entities to nodes of the graph. This approach
meet the privacy concerns outlined above. The model wherensures that the complex and sensitive graph structure is
the data owner accepts queries and either adds noise to mest affected, and so we can be sure that any analysis based
sults or refuses to answer some questions requires the dagencipally on the graph structure will be correct. Privacy
owner to be an active participant and may limit what analy-is ensured byroupingthe nodes and entities: we partition
sis is possible. Instead, we adopt the approach of pubiishinthe nodes in the graph, and the corresponding entities, into
some anonymized version of the data, and ensuring that tigroups so that, given a group of nodes, there is a (secret)
scope for inferring any given association from this data isnapping from these nodes to the corresponding group of
limited while the key properties, in particular the struetu entities. There is no information published that wouldallo
of the underlying graph, are preserved. This approach akn attacker to work out, within a group, which node corre-
lows a wide variety of ad hoc analyses and novel valid usesponds to which entity. This gives a tradeoff between pyivac
of the data, while ensuring our privacy goals are met. and utility: intuitively, larger groups give more privadyt

The problem of publishing anonymized data has atless certainty when answering queries which select a subset
tracted significant interest in recent years [10-12,1@a8, of entities.
23]. However, the focus has mostly been on tabular data, We give a simple condition for a grouping to bafe
rather than the associations we study here. As a conseich precisely limits the ability of an attacker to make any
quence, applying existing anonymization techniques tendsference from the published information alone. We provide
to erase almost all structure, so that little use can be madm algorithm which is successful at finding safe groupings
of the resulting data. Moreover, a tabular approach ignoreis practice, and go on to describe how to answer a variety of
the inherent graph properties which hold a lot of the value ofjuery types efficiently given the published anonymized.data
the data: e.g. structure such as number of customers buyivge also give formal analysis of how little can be deduced
the same product, collaboration “hop” distance between &y an attacker who has additional background knowledge
pair of authors, pattern of other common products betweeim the form of known associations between particular pairs
customers using the same product, and so on. These aséentities, and show that there is high security for ertitie
all important features of interest for aggregate analysis, about whom no information is known by the attacker.
are radically altered by simply treating the data as a table e demonstrate the efficacy of our approach with a care-
and masking or perturbing the data. In Section 3, we worky| experimental analysis of the ease of building safe group
through several detailed examples to show that existing afings, and the accuracy with which a variety of queries can
proaches for tabular data are insufficient for anonymizinge answered over such anonymized data. We also study the
associations. effect of variations of our approach, and demonstrate that

Some recent work has begun to address anonymizinggchniques based on publishing two versions of the same
graph data, motivated by the structures present in sodial nedata, while significantly increasing the utility and acayra
work data. But rather than proposing ways to modify theof query answering, can also expose more associations to
pattern of links in the graph to ensure privacy, our work dif-unintended revelation.



Customer| State| | Product| Availability Customer| Product|| Customer| Product
cl NJ pl Rx cl p2 c4 p5
c2 NC p2 OTC cl p6 c5 pl
c3 CA p3 OTC c2 p3 c5 p5
c4 NJ p4 OTC c2 p4 c6 p3
c5 NC p5 Rx c3 p2 c6 p6
c6 CA p6 OTC c3 p4

(a) Customer table (b) Product table (c) Customer-Product table

Fig. 1 Example data set in tabular form

al pl p € P.Observe that here, as in many of the examples above,
the graph is relativelgparse each customer typically buys

a2 p2 ; .
only a small fraction of all products, and each product is

a3 p3 bought by only a few customers (with a few exceptions, e.qg.

ad 04 many customgrs buy aspirin). As a consequence, the num-
ber of edges is small compared to the numberpdssible
ab p5 edges, which is x m. More formally, we say that a graph
is a-sparse ife < anm; we will subsequently provide a
ab p6 necessary bound on thesparseness for our method to suc-
Fig. 2 Example data set in graph representation ceed. A second measure of sparseness looks at the degree
of each node: a graph j8-sparse if the maximum degree

Outline. The paper proceeds as follows: We describe thé)f a node an is at mostim and the maximum degree of
data model, privacy model, query model and experimentaef_ node_ v is at mostﬂp. In fu-II generall|ty, Wwe can con-
model in Section 2. We show explicitly that prior work on §|der d|re(_:ted graphs with multledges, with welghts or addi
tabular data fails to give useful results when applied to thémnal_attrlbutes. H owever,_ for clarity, we dess:nbe orﬂy.\_t .
kind of data that we study in Section 3. We propose our nevbj,nwe'ghted' undirected, single edge case: this has suificie
approach based on grouping in Section 4, and analyze if§ChneSS to capture many challenging problems.
properties, proving security against a natural class atk, In arelational database, a bipartite grapk= (V, W, E)
and giving experimental evidence of its utility. We conside IS naturally and concisely represented by three tablesecor
variations based on publishing multiple anonymizations ofPonding toV’, W and E. In our example, we would have
the same data in Section 5, and analyze the resulting prit table of customer¥, including attributes such as gender

vacy. Related work is reviewed in Section 6, and concludingnd location (from a customer loyalty scheme, say); a ta-
remarks are given in Section 7. ble of productd¥, including attributes such as price, type,

and whether it is available Over the Counter (OTC) or by
Prescription Only (Rx); and a customer-product talilen-

2 Preliminaries coding who bought what. Thuentitiesin the tables/” and
W correspond tmodesin the graph defined by, in a 1:1
2.1 Graph Model fashion.

Throughout, we focus on problems of anonymizing bipartite

graphsG = (V, W, E) (bigraph for short). That is, the bi- Example 1Figure 1 shows a sample instantiation of this
graphG consists ofn = |V| nodes of one type; = |W|  schema with Figure 2 showing the graph representation of
nodes of a second type, and a set/éfedgesz C V x W. the customer-product relation in Figure 1(c). Thespar-
Such graphs can encode a large variety of data, in partigity of this graph is 11/36 (there are 11 edges present out
ular, the set of existing links between two sets of objectsof 36 possible edges), and ti¥esparsity is 1/3 (no node is
For example, we can encode which papers were co-writtefonnected to more than 2 out of the 6 possible nodes). Cus-
by a set of authors; which products at a pharmacy Werg)mers have an additional attribute, State, Indlcatlngthﬁhe
bought by a set of customers; which websites were visiteghey are based in New Jersey (NJ), North Carolina (NC)
by users; which courses were taken by students; and so off. California (CA). The availability of a product indicates
Throughout, we shall work with an illustrative example of Whether it is Over the Counter or Prescription Only. Since
a set of customer§' = V and a set of product® = .  the graph accurately represents the relational data, we use
An edge(c, p) indicates customet € C bought product both graph and relational terminologyti



2.2 Privacy Goals some information is already known. Entities not involved
in the attack remain secure. Clearly, there are cases where

Our objective is to publish an anonymized version of thesuch attacks are possible and the results of [1] give a strong
graphG, which still allows a broad class of queries to becaveat; it is the responsibility of the data owners to deter-
answered accurately, but which maintains privacy of the asmine against which attacks they should be secure.
sociations. To make this goal precise, we describe our pri- In extreme cases, the unlabeled graph structure leaks in-
vacy goals, and outline classes of queries which we aim téormation about individual edges: for example, if the uader
answer. lying graph is complete then we know there is an edge be-

Our privacy objective is based on the idea that in manyween any pair from the censored graph structure alone. Or,
cases it is thassociatiorbetween two nodes which is pri- if there are a few nodes with unique degrees and these de-
vate and must be anonymized. As noted, the set of customeggees are known to the attacker, these nodes can be reidenti-
of a pharmacy may not be considered particularly sensitivéied. But in typical cases such as the examples we consider,
and the set of products which it sells may be consideredirtually nothing can be deduced from the graph structure
public knowledge. However, the set of products bought byalone. Again, the data owners must determine whether this
a particular customer is considered private, and should ndével of disclosure is acceptable to them. Here we aim for
be revealed. We focus on preserving the privacy of associ@fivacy guarantees relative to the baseline of the unlabele
tions, and assume that properties solely of entities (fate s graph. In particular, we study what guarantees can be made
of a customer) are public. Clearly, there are situationf wit in the following scenarios:

differing privacy requirements, commented on in Section 7.

Since it is desirable to allow answering of ad hoc aggrepeflnltlon 1 Inthestatic attackcase, the attacker analyzes

gate queries over the data (e.g. how many customers from™ lely _the information wh?c_h Is pub_Iis_hed by the s_ch_eme,
particular zip code buy cold remedies), we wish to releasgnd tries to deduce explicit associations from this infor-

some anonymized version of this data which gives accural@at'on' Ideally, the number of associations which can be

answers to such queries but protects the individual assocﬁ:_orrectly inferred (beyond what is implicit in the censored

ations. More strongly, we want the graph properties of theqralph)hshlould bg lr.nllr(umal |f|cnot zer:o. K read
data to be preserved. This corresponds to simple features, n thelearned link attacicase, the attacker may aiready

such as the degree distribution of the nodes, but also mo#@ow a few associations — for example, that customer c1

long-distance properties, such as the distribution of aode?oug;: plroducbt sz(as 'g I:r:gulrgbl). T_h(_e adqumo?al assor:na-
reachable within two steps, three steps, etc. ions that can be inferred should be minimal if not zero when

. o : . the number of link revelations is small.
Here, as in all work on anonymization, there is an inher-

ent tradeoff betweeprivacy and utility, although this can We are principally concerned with an attacker being able
be hard to quantify precisely. Various extreme approacheg, makepositiveinferences, e.g. being able to deduce that
maximize one over another: publishing the original data ungg bought p6. We are less concerned albwagativeinfer-
changed clearly maximizes utility, but offers no priva®:; r - gnces, e.g. deducing that c1 did not buy p1. Since the graphs
moving all identifying information and publishing only an e analyze are sparse, and the maximum degree is at most
unlabeled (*fully censored”) graph gives high privacy, buty constant fraction of the total number of nodes, we con-
limited utility for aggregate queries over nodes satislyin sjger such discovery to be entirely acceptable (the same as-
certain predicates. sumption is implicitly present in much of the prior work on
Prior work has considered strong dynamic attack modanonymizing tabular data, such fasinonymity and permu-
els (where nodes and edges can be inserted into the grapkation based methods). We are still concerned when some
which can result in some small number of associations benegative inferences eliminate enough possibilities todea
ing revealed [1]. For many situations we consider, this reppositive inference: learning c4 bought at least one item but
resents a very powerful attacker, and weaker attack modet§id not buy p1, p2, p3, p4, or p6 allows us to infer that c4
may suffice. It assumes that an attacker knows what daigid buy p5. This form of positive inference is specifically

will be covered by the release and can easily modify it in adcaptured and shown to be limited by our analysis.
vance. But, in the pharmacy example, adding edges means

particular individuals must buy certain products in certai

stores at certain times, which requires a very coordinated a2.3 Query Types and Utility

tacker. Adding nodes could involve creating new products

for sale in the stores, which may not be plausible. SimijarlyAs in prior work, given the difficulty of giving a precise pri-
passive attacks require the attacker to collect complade arvacy/utility tradeoff, we consider approaches which first fi
accurate information for a set of individuals. Even theghsu a given level of privacy and then try to optimize and mea-
attacks [1] only reveal information about entities for whic sure the utility. In order to more precisely analyze utjlity
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Fig. 3 Cumulative distributions of the degree and second-ordgredeof the three bipartite data sets

we describe a set of sample aggregate query types which Naturally, one can define yet higher orders of queries
we wish to support. We will measure the utility of our re- that are more complex, either through more constraints or
sults by studying the accuracy with which these queries camore steps through the graph. Join-style queries would com-
be answered using the anonymized data. The queries can pete an aggregate of nodes frdmat distance 2 from other
based on predicates over solely graph properties of nodemdes inV satisfyingP, connected via nodes iV satisfy-
(such as degree), which we dendtg, and predicates over ing P., and so on. Other graph properties can be included in
attributes of the entities?, . In our customer-product exam- queries, such as measuring the diameter of an induced sub-
ple, P, could select out customers from NJ, or prescriptiongraph, or identifying particular patterns of interactiarcis
products, while a typicaP,, might be that a customer buys as complete embedded subgraphs. For this work, we con-
a single product. We separate these two types of predicatestrain our interest principally to the classes of queries de
since when we publish a censored graph, we can still evafined above, since these are sufficiently rich to be challeng-
uate P, predicates exactly, while we have maximum uncering to answer accurately, while being sufficiently concise
tainty in applyingP, predicates. to specify compactly and work with over realistic data sets.

We list a set of types of queries of increasing complexity/n particular, note that while queries of type 0 can easily

based on standard SQL aggregates (sum, count, avg, mi#pe answered on the fully censored graph exactly, answering
max): queries of other types requires some more information about

attributes of the entities in order to give any reasonable ac

curacy.
— Type 0—Graph structure only: Compute an aggregate

over all neighbors of nodes i that satisfy somé,.
E.g.: Find the average number of products per customep. 4 Datasets and Experimental Environment
Compute the average number of customers buying only
that product, per product. All experiments for this paper were implemented in JDBC

— Type 1—Attribute predicate on one side only: Computeand SQL Server 2000. Experiments are performed on a va-
an aggregate for nodes In satisfyingP,; Compute an riety of real and synthetic datasets representing bigartit
aggregate on edges to nodeslinsatisfying P,, from  graphs with quite distinct properties. The first dataset is
nodes inl¥ satisfyingP,. from the Digital Bibliography and Library Project (DBLP),
E.g.: Find the average number of products for NJ cusand consists of data about all conference papers collected
tomers; Find total number of CA customers buying onlyby the project, and the authors of those papers. It was re-
a single product. trieved fromht t p: // dbl p. uni -trier.de/ xm / on

— Type 2—Attribute predicate on both sides: Compute ar06/21/2007, and is available on request from the authors.
aggregate for nodes i satisfying P, to nodes inlWW  The data set contain®| = 402023 distinct authors|i¥/| =
satisfyingP,. 543065 distinct papers, antlE| = 1401349 (author, pa-
E.g.: Count total number of OTC products bought by NJper) edges. The papers have additional attributes, such as
customers; Total sales of Rx products to CA customergear of publication, and the name of the conference, while
who buy nothing else. the authors have attributes such as name (and, more gener-



ally, other attributes such as affiliation, although these a are listed with only a single movie, many authors have only
not represented within the DBLP). a single paper, and many movies credit only a single actress.
The second dataset is from the Internet Movie Databas@nly for the papers is the number of single author papers
(IMDB), and consists of data about all actresses referencegkceeded by the number of dual author papers.
in the database, and the movies in which they are listed The second plot, Figure 3(b), shows the cumulative dis-
as appearing. It was retrieved frdmt p: / / www. i mdb. tribution of nodes reachable using two steps. This corre-
coni i nterfaces on 10/05/2007. The data set containssponds to, for example, the number of authors who are
|[V| = 436727 distinct actress|W| = 367874 distinct linked to a given author by a common paper; the number
movies, andE| = 1847630 (actress, movie) edges. Here, of movies linked to a given movie by a common actress; and
the movies have attributes such as title and year. The twso on. Here we see a clearer separation between the DBLP
real data sets fit approximately the same schema, so we cand IMDB data sets, indicating appreciably different struc
translate queries on (author, paper) data into queriesmn (atures. No author has more than 363 coauthors, while there is
tress, movie) data. an actress who has been credited alongside a total of 9717
A third data set is a synthetic transaction dataset fron@thers. The reason for this is understandable: authors tend
the Frequent ltemset Mining Dataset Repository (FIMI)to choose their collaborations carefully, and may write-sev
web site. It can be accessed attp://finmi.cs. eral papers with the same coauthors. Meanwhile, actresses
hel si nki . fi/data/ T10l 4DL0OOK. dat . We use the have less control over which other actresses they are cast

first 10,000 transactions in our simulation. In the FIMI data With, and there is less tendency for particular pairingsgo b

there ardW| = 866 items involved inV| = 10,000 trans- repeated. As a consequence, there is more local “clustering
actions, andE| = 100550 (transaction, item) pairs (edges Within the DBLP data, in comparison to the IMDB data. We

in the graph). So it is am = 0.01161-sparse graph, and also see that the density of the FIMI data considering two
many items have very large degrees. steps is higher, and means that an appreciable fractiorof th

These datasets represent the kind of association we aitem nodes shgre atransaction in common with other nodes:
interested in, with typical features of such graphs (a grapﬁbOUt half t_he |tems share transactlons_wnh half of therothe
with varying sparsity, power-law degree distribution, non t€Ms, making this data set very dense indeed.
random structure of links). Although the first two data sets
have comparable numbers of nodes and edges, they display
rather different graph properties, as illustrated in Fig8r 3 Applying Existing Techniques
In Figure 3(a) we show the distribution of degrees of the
various types of nodes (authors and papers from DBLP, acA natural first approach to addressing these privacy ques-
tresses and movies in IMDB, items and transactions). Herdions is to apply prior work on table anonymization,
we represent the degree as the fraction of the largest possince tables can represent graph data. However, such prior
ble degree, so an item which appears in 10 out of the 10,008nonymization techniques only try to preserve the accuracy
transactions has “density” 0.001. We show the cumulativef table-based queries, and do not consider any graph se-
distribution, so approximately 80% of the actresses in thénantics. As a result, we show that fundamental graph prop-
IMDB have node density less thaf—° (i.e. they are con- erties are quickly lost under such transformations, and we
nected to at most 8)~° fraction of all movies). Plotting the  Will see that even many of our type 0 queries are answered
data in this way shows that the FIMI data, although smalleryith intolerably high error. It is difficult to exhaustivetyy
is dramatically more dense. all existing methods, so we show that for three popular rep-

The highest degree of an author is 290 (i.e. one authdgsentative anonymization schemes the results are ndeusab
is associated with 290 conference papers), and the highedyer graph data.
number of authors per paper is 115, while in both cases the
total number of authors and papers is in the hundreds of
thousands, making the density quite low. The most prolific3.1 Representing as a relation
actress has appeared in 744 movies, while the movie with
the largest cast (actually a long running TV show listed afkepresenting the customer-product example in Figure 1 us-
a single entity) has 1849 credited actresses. This indicaténg tables, gives a customer relation (Figure 1(a)), a prod-
that these graphs are substantially sparse: althoughahere uct relation (Figure 1(b)), and a customer-product refatio
hundreds of thousands of nodes, the maximum degree of affffigure 1(c)). We can join these to make a single table (Fig-
node in DBLP is just a few hundred, and the maximum dewure 4(a)), and try to anonymize it. In our example, each
gree of a node in IMDB is less than two thousand, meaningow lists a customer, a product, the customer’s state, and
that only a small fraction of the possible edges are presenthe product availability. How can we meet our goal of not
Further, nodes of degree 1 are very common: many actressesvealing any (customer, product) association by applging



Customer| Product| State| Availability Customer| Product| State| Availability
cl p2 NJ oTC * * * oTC
cl p6 NJ oTC * * * oTC
c2 p3 NC | OTC * * * oTC
c2 p4 NC | OTC * * * oTC
c3 p2 CA | OTC * * CA | OTC
c3 p4 CA | OTC * * CA | OTC
c4 p5 NJ Rx * * * Rx
c5 pl NC | Rx * * * Rx
c5 p5 NC | Rx * * * Rx
c6 p3 CA | OTC * * CA | OTC
c6 p6 CA | OTC * * CA | OTC

(a) Original data table (b) 3-anonymous data table

Fig. 4 Attempting to apply existing anonymization to graph data

pl p2 p3 p4d p5 pfq pl p2 p3 pd4 p5 pfq
cl| O 1 0 0 0 1 cl| * * 0 * * *
c2| 0 0 1 1 0 0 c2| 0 0 * * * *
c3| 0 1 0 1 0 0 c3| * * 0 * * *
c4| 0 0 0 0 1 0 c4| 0 0 * * * *
c5| 1 0 0 0 1 0 c5| * * 0 * * *
c6| 0 0 1 0 0 1 c6| 0 0 * * * *
(a) Matrix representation (b) 3-anonymized matrix

Fig. 5 Attempting to applyk-anonymization to data represented in adjacency matrir for

k-anonymization algorithm? Removing all customer IDs dethe purpose of publishing anonymized data is to allow a
stroys all association structure from customers to praductbroad variety of ad hoc queries to be posed.
Setting customer as a quasi-identifier and product as sensi-
tive attribute fails because-anonymization allows prod-
ucts bought by the same customer to be grouped togethgr2 Representing as a matrix
(they share a quasi-identifier). Setting (customer, proydisc
the sensitive attribute fails, becausenonymization does A fundamental problem with the above approach is that
not alter or mask sensitive attributes. Instead, we couttl adanonymity is formally defined so that there should be at least
a dummy sensitive attribute of “true” to each row to indicatek individualswhose representation is identical; in this rep-
that the association is sensitive. Th@nonymized version resentation, each individual is present in multiple plases
of this table must use generalization and suppression to efer example in Figure 4(b), two rows in the anonymized ta-
sure each row is indistinguishable fram- 1 others [15,16].  ble refer to the same customer, giving them weaker privacy.
Options for concealing customer and product identifiers ar@his leads us to represent the graph data instead as a binary
limited: since they are arbitrary identifiers, there is ntura matrix: rows correspond to nodeslify columns to nodes in
ral hierarchy for generalization so they can only be witlhel W, and an entryi, 5) is set to 1 if there is an edge between
A 3-anonymized version of our example data set shown in; € V andw; € W, and 0 otherwise. We can now take such
Figure 4(b) provides very low utility: for example, there is a matrix, and try to apply existing anonymization technigjue
no natural way to obtain an accurate estimate of what fraoan it. Similar to above, the only meaningful anonymization
tion of customers bought only a single product. of a0 or 1 value is to generalize to “*".
Applying k-anonymization is similar to having customer

This attempt at anonymization loses the notion of indi-as a quasi-identifier and product as a sensitive attrible [1
vidual customers and products, and so is unable to give us&6]: now products with more thahk buyers may be re-
ful answers to the query types outlined above. Augmentingealed, while unpopular products may be fully masked. This
the anonymized data with some additional information risksalso virtually wipes out the utility of the data. For exam-
breaching privacy and does not guarantee to anticipate ghle, Figure 5(a) shows the matrix representation of the sam-
reasonable queries which could be formulated: recall thgtle data from Figure 1, and Figure 5(b) shows the result of
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Fig. 6 Effect of applying permutation methods on graph properties

3-anonymizing it: only a few negative associations remainseems well-masked. However, when we try to evaluate sim-

The fundamental problem here is that these approaches haple graph queries (type 0) over this data, we find that the

two equally unpalatable options: either an association isesults are highly inaccurate.

fully revealed, or else it is withheld. To see this in practice, we compared a variety of meth-
ods of generating permuted data, and evaluated some simple
queries over the resulting data. The first method creates a

3.3 Anonymization Through Permutation “global permutation” of the DBLP and IMDB data where all
edges are placed into a single group and permuted. A second

The previous two approaches were based on blind app|method first creates smaller groups of nodes on each side
cation of tabular anonymization to graph data. A third ap-of the bipartite graph, and then applies permutations withi
proach to anonymizing tabular data is based on the idea &@ch group. For DBLP data, we formed groups by first sort-
“permutation”: breaking the links between quasi-identifie ing papers primarily by author count, conference and year. A
attributes and sensitive attributes [20,23]. This seemsemo “Paper grouping” results from forming groups based on all
suited to the graph setting: we have an association betwe&§lges relating to each consecutive pair of papers under this
nodes in a graph that we wish to anonymize. This leads tgrdering. A “tuple grouping” results from forming groups
the following algorithm: form edges into groups, and within based on each consecutive pair of edges under this order-
each group, publish the pair of node (multi)sets that forning. For IMDB data, movies are first sorted by their actress
edges. Grouping the edges from Figure 1 into sets of size @ount and year. A “movie grouping” and “tuple grouping”
and 4 based on customer pairs gives: are found analogously to the DBLP case, by grouping all
edges relating to pairs of movies, and to pairs of conseeutiv
edges, respectively. Note that given the edge table, parmut

({el, 1, €2, ¢2}, {p2, p3, p4, p6}), tion of edges is the same as permuting the grouped ids, i.e.,
({3, ¢3, ¢4}, {p2, p4,p5}), paper ids and movie ids, while keeping author ids or actress
({c5, c5, 6,6}, {pl, p3,p5,p6}) ids fixed.
Figure 6 shows the one hop neighborhood for each re-
Equivalently, for a group containing edges =  sulting permuted data set, over the original data set aee thr
(v1,w1),e2...e, We generate permuted edges by pick- different permutations of it, on log-log scales. The result
ing a random permutationr and publishinge; =  clearly demonstrate that permutation-based approaches do

(i, wr1y) ... €f = (vi,wr() - - - €p. Conceptually, imag- not accurately maintain the coauthor and coactress rafatio
ine taking every edge in the group and “breaking it in theships for query answering. In particular, in the DBLP source
middle”, then forming new edges by joining half-edges fromdata 1.6M pairs of coauthors have written at least one paper
V to half-edges froniV. This method initially seems more together, and Figure 6(a) shows that one pair has co-written
promising than the above, since it guarantees to presern®&10 papers. In the global permutation, the maximum num-
node degrees (i.e. the number of products linked to a cuser of papers coauthored together is only three. The permu-
tomer is the same before and after the permutation, and viceéation of small groups via either tuple or paper grouping is
versa), and the true mapping from customers to productsloser to the source distribution, but the error is stilingfig



icant: the frequency of coauthorship of a particular numbeTable 1 Notation used in this paper
of papers is underestimated by up to an order of magnitude=;

Set of nodes, withV| = m

This is unsurprising since coauthors often collaborate ove w Set of nodes, withi/'| = n
long periods, writing multiple papers together. Permotati | £ Set of edges fronv” x W
P, Predicate on attributes of entities

of papers breaks this correlation and links unrelated astho

. P, Predicate on (graph) properties of nodes

In the IMDB data (Figure 6(b)), we observe the same ;. ¢)grouping | V split into sizek groups,¥” into size¢ groups
trend, although not as pronounced as for the DBLP data. Ty-H Function mapping nodes into groups
ple groupings tend to leave pairs of actresses linked throug v, Fw Functions renaming nodes given by Definition 3
the same movie, but the movie grouping and global permuta-v> fiw Remapping functions given by Definition 3
. L T . (k, £)*(a:7) Modified grouping given by Definition 5
t|0q clearly alter _the dlstrlbutlon._ ThIS |_nd|cates thattl is UL, Upper and lower bounds, and expected answer
a higher correlation between pairings in the DBLP data thapu;, 1.;, »; Upper, lower bounds & expected answer for
in IMDB. In the global permutation, the maximum number groupj

Upper, lower bounds and expected answer pe-

of movies in which a pair of actresses costar is 21, comparad” 4 Lijsmisj )
tween groups and;

with 95 in the original distribution.
Other similar experiments based on different grouping

criteria and different features of the distributions sarly ~ various concepts within the grouping. A summary of the

failed to preserve these basic graph properties. Likewise, most important notation is presented in Table 1 for conve-

periments based on grouping the other side of the graph (i.@ience of reference.

studying the co-paper and co-movie distributions) yielded

equally low fidelity. Therefore we conclude that this permu-

tation approach gives very poor answers to simple type-@.1 Definition of Grouping

queries, and so is not suitable for further consideratioees

we next propose a method which guarantees perfect answdfsthis paper, we focus on masking the mappinggriaup-
to type-0 queries. ing the nodes of the graph. This technique preserves the un-

derlying graph structure perfectly, but masks the exact-map
ping from entities to nodes, so for each node we knseta

of possible entities that it corresponds to. The group &ize
is a parameter: largér gives more privacy, but reduces the

All the above attempts to use existing techniques renddttility. We first provide formal definitions of groupings; il

the data virtually unusable for the simple reason that thelf'Strated by an example, and then show how these groupings
change or mask the graph structure in ways that fundameffnable the masking.

tally alter its properties. In contrast to the case of tabulapgfinition 2 Given a sefl’ a k-groupingis a function
data, where modifying a row has relatively minor impact ONmapping nodes to “group identifiers” (integers) so for any

table properties, adding or deleting an edge can have signif, € V, the subseV, = {v; € V : H(v;) = H(v)} has
icant impact on properties of a graph (for example, it cagv | > k: Formally
O iy 1

change a graph from being connected to disconnected).
we seek to avoid techniques which involve perturbing thevv € V : 3V, CV : |V,| > kA(Vv; € V,, - H(v;) = H(v))
graph structure. Instead, we focus on techniques which re- ) ) . ) )

tain the entire graph structure but perturb thapping from That is, the funcuor_H p_art|t.|on.sV into subsets of size at
entities to nodesThat is, methods that publish a set of edged®aStk- Thek-grouping isstrict if every groupV,, has size
E' that are isomorphic to the original edg&s but where ~€Xactlyk ork + 1.

the mapping fronFE to E’ is partially or fully masked. This
technique is applicable in situations where it is considere
safe to publish the unlabeled graph.

4 Privacy through Grouping

In other words, ak-grouping partitionsV into non-
intersecting subsets of size at lelsiThe strictness property
insists all groups in &-grouping be close té in size, since
Outline. We define our grouping method in Section 4.1,smaller groups allow more accurate query answering. Given
and give a “safety” condition in Section 4.2 which ensuresa set of node¥, it is not always possible to divide them into
that privacy goals are met (proved in Section 4.3). We givgroups of size exactly, since|V| may not be a multiple of
a greedy algorithm to find a “safe grouping” (Section 4.4)k; however, it is always possible to divide them into groups
and then show how to answer queries given the publishesb that all are sizé or sizek + 1, provided thatV| > k2.
anonymized grouping (Section 4.5). Lastly, we consider & herefore, we describe such groupings as “strict”, sineg th
special case where some groups are revealed exactly (Séeep the group sizes as close to the paramietarpossible.
tion 4.6), and provide experimental results (Section 4.7)As we add additional requirements to the grouping, we will
Throughout, we introduce a variety of notation to represensee whether it is still possible to find strict groupings vhic
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Fig. 8 Published tables representing (3,3)-anonymization afngta relation

satisfy these requirements. We next use the definition dExample 2For the example in Figure 1, set groups CG1,
grouping to publish a modified version of the graph: CG2 (customer group 1 and 2) and PG1, PG2 (product group
land?2)as

Definition 3 Let Iy be a relabeling function to relabel el- _
ements ofV injectively onto a new sefy (V); and let 9
Fw be a relabeling function to relabel elementslifin- 9
jectively onto a (disjoint) sefy, (W). Given ak-grouping
on V, Hy, and an{-grouping onW, Hy, of a graph
G = (V,W,E), define the(k, ¢)-grouped graphG’ as whereH ~! denotes the pre-image of its parameter under the
G' = (V,W,Hy,Hw,E', Ry, Rw) where: functionH.

o N This is a strict(3, 3)-grouping since every customer group
(&) V andWV are the original sets of entitiés andW, and  and every product group has (exactly) three members. The
Hy andHy are the grouping functions defined above.  resyiting grouped graph is shown in Figure 7(a), with the ar-
bitrary relabeling of nodes omi's andyi’s. The published
information can be derived from this: Figure 8 shows the
E' = {(Fv(v), Fw (w))|(v,w) € E}. five published tables (in addition to the original customer
and product tables, Figure 1(a) and 1(b)). The result is com-
pactly represented as a graph in Figure 7(b): it shows the
edge structure, and which sets of nodes map to which sets of
entities, but hides the exact mappinga

HCG1) = {c1, 2, c4}
HCG2) = {e3, b, c6}
Hp'(PG1) = {p2,p3,p5}
H (PG2) = {p1, pd, p6}

(b) E’ is the relabeled edge set given by

(c) Ry, Ry are remappings defined by

Rv(Fv(’U S V)) = Hv(’l})

andRw (Fw (w € W)) = Hw (w). The grouping functions?y, and Hy contain most of
the necessary information to specify the modified graph

When bothiy and Hy, are strict, this is a striatk, £)-  as a function of original graply. This definition is well-
grouping. suited to storage within a relational database. For example
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in our customer-products example, we publish customer and
product relations as before (correspondingitaand IW);
customer-group and product-group tables which encode the

(m,n)

mapping of each customer and product to groups (corre- i
sponding toHy and Hyy); a masked-customer-product re- [ (1,n)j [ (k’k)] [(m,l)j Privacy
lation, in which each customer and product is mapped to

a new node id£’); and lastly masked-customer-group and

masked-product-group tables which map from the masked [ (1,k)] [(m’l) ] [(k,l)] Utility

identifiers to groupsRy and Ry). Note that the base re-
lations corresponding t& and W should not contain any
information relating to the graph, such as the degree of the
node. Otherwise, an attacker could potentially use thisto r
link between rows ol or W and nodes ir2’. Two further
examples of groupings illustrate extremes of the privacy-
utility tradeoff:

)
U (LK)

(1,1)

Example 3Smallest groups. Setting Hy (v) = v and Fig. 9 Lattice over groupings and privacy/utility tradeoff

Hy (w) = w, (the identity functions) gives@d, 1)-grouped
graphG’. Here,E’ = E, and hencé&’ encodes the original ¢ grow large, the bounds will widen accordingly. Clearly,

graphG exactly. Every query o’ can be answered with
the same accuracy as 6h So there is perfect utility, but no
more privacy than we began withJ

Example 4Largest groups. Setting Hy to map allm =
|V| members ofl to the same group, say, and Hy to
map alln = |WW| members ofW to, say, groupl gives
the (m, n)-grouped graphG’. G’ has no useful informa-

a (k, ¢)-grouping offers more utility (and less privacy) than
a (k’,¢)-grouping ifk < k’; the same holds true between
(k,¢)- and(k, ¢') groupings for¢ < ¢'. But we cannot eas-
ily compare(k, ¢)- and(k’, ¢’)-groupings unless < k' and

¢ < (. Thus, choices ok and/ define alattice over pos-
sible groupings, bounded Ky, 1) and (m, n). We explore
several points in this space in more detail; Figure 9 shows
the lattice structure, including points of note that arerdsdi

tion mapping between entities i, 11 and the nodeset of and discussed in subsequent sections. We will investigate
E'. That is, we publish entity tables and the fully censoreghese points in greater detail in subsequent sections, as we
graph. Recall that we are assuming it is acceptable to gublisgnalyze how to choose groupings in order to give privacy

a censored graph, and so we say that this grouping guaraggarantees, and how to effectively answer aggregate guerie
tees the same level of privacy. This is the case where thgn grouped graphs.

mapping from entities to nodes is completely hidden. In the

customer-product example, this entails publishing the cus

tomers relation and products relation unchanged (sincethe4.2 Safe Groupings

are not considered private). In addition, we apply an injec-

tive masking functior” on the customer-product relation so There are many ways to form/agrouping, but not all of
that eacH(c, p) pair is mapped t6F (c), F(p)), and publish these offer the same level of privacy, due to the local graph
the resulting censored table. This retains the graph strugfructure. We introduce the condition of “safety” which en-
ture, as required, but completely removes the mapping frorfures privacy holds even under revelation of certain infor-
entities (e.g. customers and products) to nodes in the grapffiation.

We cannot have any more privacy in our setting, when we inExampIe 5Consider a large graghi, which happens to con-
sist on publishing at least this much information. This &ffe  5in the complete subgraph between nofles v, v3} and

very limited utility in answering query types 1 and 2 listed wr, wa, w3 }. Suppose we form 3-groupings 6h and W
in Section 2.3, since we cannot apply any selective at&ibutg that{v;, vo, v3} forms the entirety of one group iy,

predicate with any certainty.O0

Privacy-Ultility Tradeoffs. Between these two extremes lie

many possibilities that trade off utility and privacy. Giva
(k, £)-grouped graph, where bothand ¢ are fairly small,

aggregate queries such as those described in Section 2.3

and{w, we, w3} forms the entirety of a group ify. From

the published?’, it is possible to infer immediately all the
connections between these six nodes (a static attack). Such
inference is not possible on the fully censored versio@'of

but the unfortunate choice of grouping allows information

% eak. O

be answered approximately. Bounds can be placed on the an-

swers within which the true answer must fall (Section 4.5).

Whenk and/ are small, these bounds are narrowkand

Essentially, this is a problem of lack dfversity. since
the interaction pattern between the two groups is too uni-
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Fig. 10 Safe Grouping Algorithm and Examples

formly dense, such undesired inference is possible. Some We next show that finding &grouping when all groups
natural attempts to fix this, such as insisting that the dgnsi are forced to be sizk can be hard even for small values of
of edges between any pair of groups is low, are not guark:

anteed to still hold as edges are learned by an adversa
We define a stronger notion of “safe grouping”, which we

subsequently prove is robust against static and learnkd linpygof DefineG2(V) = (V, E?) as the graph o7 so that
attacks.

ry,
¥heorem 1 Finding a safe, strict 3-grouping is NP-hard.

(Ui,’Uj) S E2 < /Hw eW: (Ui,’LU) e EA (’Uj,’LU) e k.
Definition 4 Hy is asafegrouping ofV in the context of a
graphG = (V, W, E), if the following condition holds: The requirement ot to be safe is equivalent to requir-
ing that every pair of nodes in the same group must form
Vui # vj € Vi Hy(vi) = Hy (v;) = an edge inE2. That is, the group of nodes in the grouping
AweW : (v, w) € EN(vj,w) €E forms a clique in (non-bipartite} (V). Therefore, a strict
By extension, gk, £)-grouping of a graplts is safe if ~ 3-grouping ofV corresponds to a partition @¥?(V) into
Hy and Hyy are both safe groupings. triangles (forcing each group to be size 3). For any desired

_ _ . graphG;, = (14, Ey), define a bigrapli = (V, W, E') such
That is, a safe grouping ensures that any two nodesmtimatGg(V) — Gy: createV = V; andW C V x V, and

same group oV have no common neighborsi (the defi- for each(v;, v;) € Ex, insert(vs, (v;, v;)) and(v;, (vi, v;))

nition for a safe grouping oY’ is symmetric, interchanging into E. Since partitioning a graph into triangles is NP-hard

the roles ofl” andW). This ensures a Igvgl of sparsity be- problem [GT11] in [5]), and we can encode this problem as
tween groups, but goes further in restricting the pattern o n instance of finding a safe, strict 3-grouping, we conclude
allowed links. In the customer-products example, it meansg -+ this problem is NP-hard alsor]

that no two customers in the same group have bought the

same product if the grouping is safe. Hence, the groupingsin However, safe groupings can be found easily when the
Figure 8 are safe. Givei andk > 1, there is no guarantee graph is sparse enough. For a bigraph= (V,W, E)

that there exists a safegrouping (alll-groupings are triv- where every node has degree 1 (ife.gives a matching
ially safe), but in practice they are easy to find (Section.4.4 betweenV and W), every possible grouping is safe, triv-

A necessary condition for the existence of a 4@fe/)-  ially. More generally, when the graph is sparse and does not
grouping arises from thsparsityof the graph. A group of have nodes which have (almost) all possible neighbors, safe
sizek in V and a group of sizé together induce a sub- k-groupings can be found for practical valueskof10° —
graph ofG which could have at mogt¢ edges. However, if 102, say). Intuitively, the constraints posed by the edges of
the grouping is safe then (within the induced subgraph) anthe graph are easy to satisfy when not too many edges are
node can have degree at most 1; otherwise, there are twresent.
nodes with a common neighbor. Figure 10(a) shows a typi- Most of the graph types discussed already are quite
cal structure between two groups of size= 5 and/ = 6.  sparse and have few nodes of high degree: most shoppers
So there can be at mostin(k, ¢) edges between these two purchase only a small number of the items on sale in a
groups. This is true for every possible pair of groups. Sincestore, and most items are purchased by a fraction of all shop-
every edge touches exactly two groups, theparsity of  pers; most authors write only a small number of papers rel-
the subgraph, defined by = |E|/|V||W]|, can be at most ative to the total number of papers written, and most pa-
min(k, £)/(k¢) = 1/ max(k, ?). pers have a small number of authors. Studying the data from
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DBLP, we observe that the most prolific author has writ-an edge(v, w) was present in the original data is bounded

ten 290 papers (out of 500K), and the most authors on hy 1/ max(k, ¢).

single paper is 115 (out of 400K). In total, there are only  Under this measure, g, 1)-grouping offers the same

1.4M edges in the author-paper graph, out of a possiblstatic guarantee as(&, k)-grouping. However, as we dis-

400K x 500K = 200,000M, demonstrating that typical cuss in more detail in Section 4.6, there are other factors

association data is very sparse £ 7 x 10~ 7-sparse, and to consider. We remark on a connection to the concept of

8 = 0.00058-sparse, as defined above). ¢-diversity [11]: here, the requirement is that between two
groups the fraction of sensitive information (association

) ) that are present) is bounded bymax(k, ¢), which is sim-

4.3 Security of(k, £)-Groupings ilar to the¢-diversity requirement (it is also similar to other

measures proposed for maintaining privacy in tabular data,

i i such as then-invariance requirement in re-publishing data
deduced by an attacker presented with a §af€)-grouping [21]). If there are small groups, the attacker’'s confidence

of graph data, where at least onekodind? are greater than in a particular association can be higher. In particulag tw

L. We first argue .that gafe gro_u.pmgs are secure against tr(}ﬁ“oups of size 1 with an edge between them correspondsto a
static attacks defined in Definition 1. Our arguments Workknown association between entities. Although a $afé)-

by Tgur:]\eratmg all t.he posgﬁli cc;nflgurr]atlgnspglgs;]blz grouping has no groups of size 1, in the active (learned link)
worldsthat are consistent with the data that is published. attack model, when an attacker learns the existence of an

Lemma 1 In a safe grouping, given nodes € V and edge(v, w), he may be able to refine the grouping in order
w € W in groups of sizé and ¢ respectively, there ark¢ 0 create groups of size 1. We will show that this refinement
possible identifications of entities with nodes and the edgBas bounded impact on the security of entities not directly

(v, w) is in at most al / max(k, £) fraction of such possible impacted by the edge revelation, after presenting an exam-
identifications. ple where an attacker may learn an association.

Figure 8 shows &3, 3) grouping. We analyze what can be

Proof Consider a group/;; of V containingk nodes, and Example 6Consider the four groups shown in Figure 10(b),

a groupWe of W containing? nodes. In the subgraph of and the three edges that connect them. Other nodes in the

G induced byVg andWy, there are: < min(k, () edges, Same groups have edges to other groups (dashed lines)

following from the definition of safe grouping. There is no which do not affect this example. In the static case, as grove

information available in what is published to break the sym-2P0ve, the attacker cannot make any strong inferences. How-

metry between the nodes ®%;, or between the nodes of €Ver, in the link learning case, if the attacker leai®) is

We. Hence, there is no published information which allowsan edge, he can use the fact that there is only one edge be-

an observer to distinguish among the nodes, and so no wdyeen the group of and the group ob to identify ¢ and

to prove that andw are linked. Recall, we insist that tables v With nodes in the anonymized graph. Likewise, learning

V andW contain no data related to the graph itself, such agu, w) allows v andw to be identified with the nodes that

degree or neighborhood, that could break this symmetry. represent them. As a consequence, the attacker can infer tha
For any entities) € Vg andw € W, it is feasible that (u,v) is an edge, no matter how many other nodes are in the

(v,w) is an edge, and also feasible thatw) is notan edge. 9roups. U

More strongly, consider the number of ways of identifying

", . _ The example shows that revealing an edge may allow an
entitiesv and w with the anonymized node§r; ... xx}

X N ; attacker to learn more about the nodes that it connects, and
and {y_1 .- ye}. Since allk? poss@lmes are feasible, then so infer more about the connections between such nodes.
there IS an.edge bgtwe@randw in gxactly ane/k-é frac- But the amount revealed about entities for which the attacke
tion of feasible configurations (possible worlds), i.e. atsin doesnot have information is minimal. A relaxed grouping

min(k, £)/k¢ = 1/ max(k, ), the bound on the density of oinition allowing a few groups of size one enables this in-
the whole graph derived in Section 4.2. Since this analys"?uition to be formalized

holds for every pair of groups, then the (static) attacker ca
not infer any associations with certaintyd Definition 5 Define a(k, £)*(*9)-grouping as a grouping in
) o which removing at mogi nodes fronl/ leaves &-grouping
Certainly, an attacker viewing the data can deduce th8f the remaining nodes df, and removing at mogtnodes

set of possible worlds that are consistent with the pUbfromW leaves arf-grouping of the remaining nodes tf
lished data being an anonymization of that possible world. '

Adopting a probabilistic view, if the attacker has no prior ~ Observe that ak,¢)-grouping is also a(k,¢)*(%-0)-
beliefs about the entities involved, their beliefs meart thagrouping. Also, by applying Lemma 1, we note that a safe
each possible world can be considered equally likely. By thék, £)*(P9)-grouping still gives a lot of privacy for nodes in
above analysis, their probability of correctly guessingtth the grouping: between a group of sizeand one of sizé,
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each possible edge is present in at mast max(k, ¢) frac-
tion of possible configurations, as before. But also, betwee| Algorithm 4.1: GRouR(V, W, E. k)
a group of size 1 and one of siZgthere can be at mostone | j « k;

edge in a safe grouping, and (also by Lemma 1) the edge isVi : VG, j < 0;

present in at most &/¢ fraction of possible configurations. | repeat

Symmetrically, between a group of sizeand one of size 1, forueV

the (at most one) edge is present in at mosy & fraction i—1;

of possible configurations. Only between two groups of size¢ while (v € VG, j,w e W : (v,w)eE

one can we infer the existence (or absence) of an edge with | do ANu,w) € E)V|VG | > j

certainty. As before, this fraction of possible configurat doi«— i+ 1;

translates into a probability of correctly guessing an edge VG;; — VG, ; Uu;

under an appropriate probabilistic interpretation. Je—J+1L

Theorem 2 In the learned link case, given a saf#, ¢)- Z‘-/:l?’

grouped graph and < min(k, ¢) true edges, the most an at- [ —1;

tacker can infer corresponds to(&—r, £ —r)*("")-grouped for i : (VG j_p| > 0)

graph' if |VGZ-,(J-_1)| >k

Proof This is shown by induction over the revelationof do { then {VGIJ = VGi-1);

edges. The base case= 0 yields the(k, ¢)*(%%-grouped =i+ 1L

graph. In the inductive case, there igla— r, ¢ — r)*("")- il v (()alseV = VUVG(-1;
unti =

grouped graph, and an additional edgew) is learnt. As
shown in the example above, in the worst case, this is enoug
to identify which node in the anonymized graphuvisand
which isw. This corresponds to refining of the groupswif
was in a group of size at least-r, it is effectively split into

a group of size 1 (containing alone), and the remaining ajlows quickly testing whether it is safe to put two nodes
nodes now form a group of size atleast r — 1. Likewise,  jn the same group. For each nodén turn, the algorithm
the group containing is split into one of size 1 containing attempts to place in the first group of the partial grouping
w alone, and one of size at least- » — 1. The resulting  with fewer thank nodes. If this would make the grouping
groupingis therefore atleasta—r—1, (—r—1)*"FLrHD-nsafe, it tries the next group, and so on. If there is no group
grouping. that meets these requirements, then a new group is started,
Observe however, that the identificationiofindw re-  containingu alone. After processing all nodes, there may
veals nothing about any other nodes, even those connectgd some (few) groups with fewer thamodes in them. The
to v andw. More precisely, the resulting grouping is still ggorithm collects these nodes together, and reruns thesabo
safe by Definition 4. The crucial observation is that any |oop allowing for groups of sizé + 1 instead ofk. If the
refinement of a safe grouping by partitioning groups intograph is sufficiently sparse, then a safe grouping in which
smaller pieces remains safe. By appealing to Lemma 1, theyery group has eithéror k+1 nodes in is produced, and so
attacker cannot infer any associations beyond those taat aghe grouping is strict. Else, the algorithm continues bwt no
revealed by the grouping directly (i.e. only those links be-a|jows groups up to size + 2, and so on. Eventually, either
tween groups of size one). This is sufficient to bound they safe grouping is found, or the algorithm terminates once
new knowledge by thék — r, £ — r)*("")-grouping. O some large group size is reached. In this case, the method
fails, but can be run again by choosing a different ordering

Fig. 11 Pseudocode to find sategrouping

This is directly comparable to results on tabular data Y
anonymization where the aim is to ensure that individualé)f the nodes, or by plgklng a §ma!lervaluelpf ) .
are secure up to the revelation/of- 1 pieces of informa- Pseudo-codg of th's _heun;tm is shown in Figure 11. Ini-
tion about other individuals. Here, individuals and their a tially, all groupsin th@_th iteration 'G:; ;) are set to empty.
sociations are secure up to the revelatiort of 1 pieces of Then for each node in the_currept set of nodes_not a”‘?'
information (edges) about others. cate_d to groupdy, the algorithm tries ef_zlch group in turn; if

adding the node to that group would violate the safety con-

dition, or cause the size of the group to exceed the current
4.4 Finding a safe grouping size limit j, then it moves to the next group (eventually, it

will find an empty group, in which the item can be placed
We describe a greedy algorithm to find a safgrouping safely). Once all nodes have been processed, the algorithm
of V. Precomputing the self-join of the edge taldlleon W then iterates over each non-empty group. If the group is not
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too small, then it gets copied as a group for the next iteraworlds compared to the size of the published data, but by
tion; else, the group is too small, and the nodes are returnezhrefully using the structure of the anonymized data it & po
to the setV for processing in the next round. The processsible to extract bounds on the answer to aggregate queries,
terminates when all groups are at least dizand by their and expected values. We will also show that obtaining the
formation must constitute a safe grouping. tightest bounds on the query answer is NP hard, and so there
In our experiments this heuristic easily found strict safeis little prospect for doing better than materializing gver
k-groupings for small values df. There is the opportunity possible world. We later show empirically that the weaker
to optimize by choosing an initial ordering for the nodes,bounds obtained are quite usable in practice. It is beyomd th
with the aim of giving better accuracy on queries. When acope of this paper to cover all possible forms of aggregate
selective predicate is evaluated over a group, tighteryquerqueries that could be posed, so we instead analyze various
bounds are given when either (almost) all nodes in the groutypical cases that illustrate the main ideas.
are selected, or none are selected. When a handful of nodes A typical type 2 query is of the form “count the to-
are selected from a group, there will be more uncertaintyal number of OTC products bought in NJ”. Since the set
in answering the query. Putting similar nodes in a group toef products within each group is known, the number of
gether will therefore give higher accuracy. It is tempting t nodes selected by the product predicate in a group is easily
do this based on attributes of the entities. However, this cafound. The same is true for any customer group. The tight-
permit attacks in the style of the minimality attack definedest bounds follow from evaluating the query over all possi-
in [19]: knowing that groups were formed in a particular wayble assignments of entities to nodes, but this would be very
allows an attacker to deduce the identity of nodes, and henamstly, as the following theorem argues:
mferassomgtmns. ._Theorem 3 Finding the best upper and lower bounds for
Instead, if groups are chosen solely on graph properties, . .
then we can publish the grouping algorithm, and anyone Wm';\nswerlng an aggregate query of type 2 is NP-Hard.
find the same groups of nodes given the same unlabelderoof The hardness of the tight upper bound problem
graph, so no information relating to the mapping of nodess shown by a reduction from the set covering prob-
to entities derives from the choice of which nodes to grougem [5]. Given subsets, ..., S;, whose union isU =
together. This still gives many possibilities. For example {a1,...,a,}, construct a bipartite graptV, W, E). For
to improve accuracy on queries involving graph propertiegach subse$;, create a node; in V. All nodes inV are
such as node degree (e.g. selecting customers buying a splaced into a single group of size For eacha; € §j,
gle product), sorting by node degree will greatly improvecreate a nodev;; in W, and an edgév;, w;;). W is parti-
query answering. The sorted list of degrees of neighbors caioned into groups corresponding to the same.e., group
break ties. Other arrangements are possible; in our expeli; = U;{w; ; }. The grouping of the graph is safe, by con-
mental evaluation we will compare the groupings found bystruction. To decide whether there exigtsubsets that cover
an arbitrary ordering of the nodes to one based on first sort/, we set our problem as follows: the query seldctodes
ing in the manner outlined. in V, and exactly one node from each groupl&t There
is a set cover of sizg if and only if the answer to the tight
upper bound problem ig/|.
The hardness of the tight lower bound problem is shown

We show that aggregate queries of the type considered @ma[sridéti:\:g)nn ;;OTn;Tree;qea; |£]nr;%l|nd:erz$/r3dgl; sce;nrfrob-

Sectlo_n 2.3 can be answered accu_rately_ and/ _eff!mently frorrs1truct a bipartite grapks’ — (V, W, E') similarly to the
a published k, ¢)-grouped graph. First, sindgé’ is isomor- i A
. . . proof of Theorem 1: for each edde;,v;) € Ei, insert
phic to E and queries of type 0 are solely on the underlyin . L
. i» (Vi,v)) and (vy, (vj,v;)) into E’, and create a group
graph structure, they can be answered exactly. Queries . - A
. . Of size 2 containing the two nodé¢s;, v;) and(v;, v;). All
type 1 and 2 cannot guarantee perfect accuracy, since it IS . ; . - : .
: . : . .nodes inV are put in a single group. Again, the grouping of
not possible to determine exactly which nodes their predi-., - ) C X )
. is safe by construction. To decide if there exists an inde-
cates select. However, they can be answered approximate N
- endent set of sizg in G, set the query to seleét nodes
by providing bounds and expected values on the aggregate . .
==""2n V, and only one node in each group1df. There is an
query. The core of our approach to query answering is to o . :
y X . . ..Independent set of siZeif and only if the tight lower bound
consider the set of configurations that are consistent Wltfor this querv s 0. O
the published data: that is, from the anonymized data, con- queryis o.
sider all possible inputs (or “possible worlds”) which coul Instead, slightly weaker bounds are obtained by consid-
have resulted in this anonymization being produced. The resring each pair of groups in turn to find bounds on the query
sult of the grouping compactly encodes this set of possianswer. The answers can then be combined to give the over-

ble worlds. Typically, there are exponentially many poksib all bounds. This approach certainly gives correct lower and

4.5 Query answering ofk, ¢)-grouped graph
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upper bounds, but may be loose: one part of the bound mayrobability of being in CA with probability:; /k; in a group
derive from one assignment of nodes to entities within &f k; customers; and that a product in a grougd pproduct
group, while another part may result from a distinct assignhas probability; /¢, of being prescription only. O

ment within the same group. So the resulting bound is not
compatible with any realisable configuration, and so may b?or
loose.

As above, since we have to do a constant amount of work
each edge in the original bigraph, the computational cos
isO(|E|).
Example 7Consider answering the query “Count the total
number of OTC products bought in NJ”. We analyze each .
pair of groups in turn. Given a safe grodp; of k; cus- 4.6 (k,1)-and(1, £)-Groupings
tomers, of whormu,; are NJ customers; a safe groB; of
¢; products, of whichb; are OTC products; and;; edges
between the two groups, we can find the following bounds:
(i) Upper bound. Between the pair of groups, there can b
a contribution of at mosU, ; = min(a;, bj,c¢;;) to the
query. For a given product grouBG;, the total contribu-
tion over all customer groupSG;, to the query is no more
thanU; = min(}_, U; ;, b;). Summing this over all product
groups gives an upper bound@f= Zj Uj.
(i) Lower bound. For a given pair of customer groqié-;,
and product groug’G}, there is a contribution of no less
than’; ; = max(0,a; + b; + ¢;j — k; — £;) to the query. Example 9Figure 10(c) shows a safel, 3)-grouping of
For a given product groupG,, the bound over all customer our example data. The corresponding published tables are
groups isL; = max; L; ;. We can sum this to get an overall Hy and Ry, as shown in Figure 8y and Ry are not
lower bound L = )", L;. needed, sinc® maps directly onto the nodes af. Despite
(i) Expected answer. With no other information than whatthis information being revealed, the private associatimss
is published, the best strategy is to treat all assignmentsveen customers and products are still hidden: although Fig
of nodes to entities as equally likely. Under this assumpure 10(c) shows that customers c1 and ¢3 bought the same
tion, the expected selectivity betweéiG; and PG, from  product, it could be any one ¢p2,p3,p5}. O

: : a;bjcij
the product pergpectlve 1B = k:f?J - Over all customer This again resembles a diversity requirement similar to
groups, the estimated Expected Bound for jtfeproduct  ;_giversity: any customer is known to have bought one prod-
group isp; = £;(1 = J[;(1 — pi;)), assuming indepen- ¢t oyt of a group of. From Lemma 1 and Theorem 2,
dence between the groups and using the inclusion—exclusi%en a safgk, 1)-grouping, any edge still is between one
principle. It can be argued that that this approach is well ;. equally likely nodes of’, and givenr edge revela-
founded, since all possible assigments of nodes to entitiqﬁ)ns, an attacker is still faced with(@—r, 1)*("9)-grouped

are possible. The expected answer for the query is thegraph. While information is revealed about interactions be
p = >, hj- These can be verified by simple case analysig,een one set of nodes (customers, in the example above),
over the structure in Figure 10(a)00 in many cases, this information release may be permissible.

. - : Our above results show that there are still strong guarantee
Such queries can be answered in tith@E | ), since each . L . L :
on the privacy of associations, while revealing informatio

edge in the ongmgl graph connects a single pair of grouF)Ss’uch as, from pharmacy sales, which medicines were bought
and for groups with no edges between thesy (= 0),

U =L — 1 =0 by the same person (without revealing who that person is).
I w3 = Mg = If it is acceptable to release such information, some gserie

Example 8 The query “Find the maximum number of CA are answered with higher accuracy.

customers buying a single Rx product” can be answered b@uery answering on (1,¢) and (k,1)-grouped data
considering in turn each node that could possibly be a CAueries are answered in much the same way as in the more
customer (is in a group which contains at least> 1 CA  general(k, ¢) case. However, many queries are answered
customers), and finding exactly the products bought alonmore accurately, since the amount of uncertainty is reduced
associated with that node. Upper and lower bounds increased the anonymization entails fewer, more consistent possi
if there areb; > 1 Rx products or no fewer thaf) Rx prod-  ble worlds. The impact on our bounds is that in Examples 7
ucts in the product’s group of siz§, respectively. These and 8,a; = k; = 1 orb; = ¢; = 1, simplifying the bounds.
imply upper and lower bounds on the global maximum. Sim4n particular, some queries of type 1 can be answered ex-
ilarly, expected bounds follow by assuming a customer haactly: if the predicate is on the 1-grouping, the correctéet

A significant class of groupings arise when all groups of
one set of nodes are of size 1. These @rel)- (or sym-
metrically, (1, £)-) groupings. Here, more is revealed about
8ssociations between entities of gametype (our focus up

to now has been on associations between entitiekffef-

ing types), since the true mapping from one set of nodes
to entities is revealed. In the customer-products exanaple,
(1, ¢)-grouping reveals exactly how many products a partic-
ular customer has bought, who has bought the same product,
etc., while still protecting the exact associations.
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entities can be found exactly, which allows the exact answer L; = max(0,a + ¢ — k), andU; = min(a, c). Then we
to the aggregate query to be found. Type-2 queries can be sum over all groups to get the final boundandU. For

answered with tighter bounds: the expected answer, for each paper (movie) in a group
of sizek, the probability that it is selected i57. Thus
Example 10For the query of Example 7 over @, 1)- for each group, the expected number of matching enti-

grouped graph, the set of OTC products is known precisely. jeg isu; = <. Then we can sum all groups and get the
For each OTC product, we add 1 to the upper bound if they  fina| expected valug.

have a buyer in a group which contains an NJ customer; and_ Query C: Find the total number of papers satisfying
add 1 to the lower bound if they have a buyerin agroupin  p having authors who satisfy?, (movies satisfying
which everyone is in NJ. For the expected bound, the ex- p starring actresses who satisfy). This is a type-2

pectation that a customer in a group of sizewith a; NJ query, which is answered again by applying the methods
customersigi; ; = a;/k;, so the probability of any buyer of of Section 4.5. We vary the selectivity of boff, and
the product being from NJ is— [ [,(1 — Ep, ;). Similarly, p

a*

for Example 8, we can consider all single products bought _ _ )
by NJ customers exactly, and find the corresponding bounds These fit exactly the form of the queries we have studied

(upper, lower, and expected) on which are prescription.only" Example 7 and Example 8 (note that type-1 queries can be
0 thought of as type-2 queries where one of the attribute predi

cates is always true). We do not consider any type-0 queries,

since our earlier analysis shows that they can be answered
4.7 Experimental Analysis of Utility exactly from the graph structure alone. We computed group-

ings over the papers and authors in the DBLP data described
In this section, we evaluate the utility of the anonymizedin Section 2 using the method detailed in Section 4.4. We
data through experiments on the DBLP and IMDB databuilt 20-groupings, 10-groupings, and 5-groupings over th
Specifically, we study the accuracy of three sample queriedata. The first iteration of the algorithm was able to find safe
with different properties. For each query, we compute &-groupings covering almost every node: the 20-grouping of
lower bound estimatiorl,, an upper bound estimatidii,  papers had 43 papers (out of 540K) not in groups of size 20,
and an expected valye If the correct answer to the query while there were just 3 authors not in groups of size 20. The
is @, we compute two error measurements: the error boundsext iteration easily found a safe, strict 20-grouping.

UZ—EQL (the worst case error from usin@/ + L)/2 as an The following parameters can impact query accuracy:
estimate for@), and the expected errd!l‘é—@. To clearly — Group size: We compare approaches fI(M)'a (Lg)_

show the trends, we repeat each experiment over ten ran- and (k, ¢)-groupings. We expect smaller group sizes to
dom choices of predicates and show the mean error bounds. offer better accuracy for query answering.

We describe the experimental setup firstly in terms of the _ selectivity of predicates: More highly selective queries
DBLP data; since the datasets have essentially the same gre more likely to touch just a few nodes within a single
schema structure, the equivalent queries on the IMDB data group, and so lead to wider worst case bounds.

are formed by replacing authors with actresses, and papers. Grouping formation: We will study the impact of build-

with movies. The three queries are: ing the groupings based on an arbitrary initial ordering
of the nodes, and based on sorting of degree and neigh-
borhood degree, as discussed in Section 4.4. We expect
sorted groupings to give better answers when queries
have structural predicates based on degree.

— Interaction of grouping and predicates: There may be
some implicit correlation between the groups and the
query predicates which will improve query answers: e.g.
selecting mathematical papers may skew towards fewer
authors, while selecting physical sciences papers may
skew towards more authors. Groupings based on sorting
by structural properties may give better results here.

— Query A: Find the average number of authors of any
paper satisfying predicat®, (equivalently, find the av-
erage number of actresses in any movie satisfying the
predicate) This is a type-1 query with an attribute pred-
icate only. We vary the selectivity aP, from 10% to
90%.

— Query B: Find the total number of single author pa-
pers satisfyingP, (single actress movies satisfyirg).

This is also a type-1 query with both attribute predicates
and structural predicates. The selectivityFgfis varied

as above, while the single author predicate is kept con-
stant. We can make use of the bounds derived in Sec- In the following, we show a set of experiments and eval-
tion 4.5. For each group, the query predicates will selectiate the impact on the query accuracy of all the above fac-
a matching entities (authors or actresses), anthtch-  tors. For our experiments, we found a variety of groupings
ing edges (edges incident on nodes with degree 1). Wbased on different initial orderings of the data, as desckib
obtain upper and lower bounds per groupf sizek as  below.
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Error Bounds

Query A Error Bounds on IMDB
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Fig. 12 Impact of query selectivity and group size on three queries
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(f) Query C on IMDB, P selectivity 0.8
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Query B Expected Error on DBLP Query B Expected Error on IMDB
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Fig. 13 Query selectivity and group size, expected error

4.7.1 Worst Case Error Bounds. much less than twice. The trend across data sets is similar.
Error appears lower in general on the DBLP data, possibly

] . due to lower variation in the number of authors per paper
In our first set of experiments, we formed groups of nodesgnan actresses per movie for query A.

with an initial ordering based on grouping together nodes ) o _
with the same degree and second-order degree. However, FOF Query C (Figures 12(e) and 12(f)), there is little vari-
they were notsortedby degree, onlygroupedby degree. ation asP,’s selectivity varies (in this plot, selectivity of
Figure 12 shows the worst case error bounds for query arf-o iS set to 0.8; similar experiments for other valuesf
swering with(k, k)-groupings over the queries A, B, and C. showed the same results). Note that when we have a paper

As expected, smaller groupings achieve smaller unceytaintgrOUp of size 1, as in thel0, 1)-grouping, we can dlrectly
There is also a clear trend for Queries A and B (Figures 12(a3elect out exactly those papers that meet the pre_d|cate, and
to 12(d)) that as the selectivity 81, increases, the accuracy SC Nave better accuracy compared to other groupings. There
improves. When only a single node in a group is toucheds little difference between th€l0, 10)-grouping and the

by a query, as happens when selectivity is low, it could be 1+ 10)-grouping. This s becaud€; selects most a,utho_r'_s, SO
any node, and so we have high uncertainty for the aggregatB€re is not much benefit from ttie, 10)-grouping’s ability
value in the group. But when many nodes are selected in @ eliminate Some candidates. Whéij selects fewer au-
group, there is less relative uncertainty for an aggredgjte | thors,.there ISa glegrer *'?‘d"a“tage(bﬂo) over (10, 10)

sum or average. Further, smaller groups improve the acc@©UPIing. Behavior is f?.ll’|¥ consistent over the data sets:
racy of the answer: a (5,5) grouping is always better thafor this query, accuracy |s_sl|ghtly better on the IMDB data,

a (10,10) grouping, which is better than a (20,20) groupPut the difference is marginal.

ing. However, the relation between accuracy and group size We also studied the time cost of query answering, and
is not linear: doubling the group size increases the error bthe results are shown in Table 2. For all these experiments
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Impact of Grouping Order, DBLP
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Table 2 Query running time (s)

Dataset| Query A | Query B Query €

P, =08 | P. =01
DBLP 38.8 13.7 144.6 36.0
IMDB 24.0 7.5 157.7 95.1

we use a (10, 10) grouping aity = 0.5; other settings were

Expected Error

Relative Error

broadly similar. They show that the more complex querie
take more time to answer, and show some dependence

the selectivity of the predicates (since groups containimg
nodes selected by the predicate can be ignored).

4.7.2 Expected Case Error Bounds.

Impact of Grouping Order, IMDB
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using the expected answer was so close to zero that we omit
plots since there is little to observe there. Figure 13 shows
the expected error on queries B and C. The general trend is
again that higher values of selectivity give better accyrac
However, observe that the expected errors are much smaller
than the worst case bounds, and do not vary much based on
group size—in several cases a larger grouping achieves bet-
ter expecteckrror than a smaller one. This suggests that the

§radeoff between privacy and utility can be more complexin
Qﬁactice. On query C, as in the worst case, the expected error

is much smaller 010, 1) than(1, 10) or (10, 10), which are
about the same for this (more selectiv&); similar results
occur for other values aP.. Between the two data sets, be-
havior on query B is quite similar, while for query C, there
is an appreciable variation: the error is higher on the IMDB
data for the(1, 10) and(10, 10) groupings.

Although the above worst case bounds show that there can
be a wide range between the upper and lower bounds on a
query, we show next that the expected bound can give a quite
accurate answer. Indeed, on query A, the observed error in
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4.7.3 Impact of ordering on grouping. of safety: alternate definitions of safety might allow large
groupings, but would have different privacy implications.
Query B involves a structural predicate (single author pa- As a second measure of the difficulty of finding safe
pers), so we compare different choices of grouping in Figgroupings, we also counted the number of transactions
ure 14. The “sorted” case first sorts the data by degree anglhich could not be placed in their “first choice” group:
second-order degree before finding a safe grouping, whilthat is, the number of cases where the transaction cannot
the “random” case picks an arbitrary ordering before find-be placed in the first group which is tried, and a later group
ing a safe grouping. We see that there is a very dramatibas to be used. For groupings of size 8, 10, and 12, out of
benefit to having a grouping based on the sorted orderindghe 10000 transactions, the numbers of nodes that failed the
two orders of magnitude improvement in the accuracy odirst trial are 7524, 8420 and 9051 respectively. This demon-
data sets. This is because most groups now contain papeatsates that as group size grows larger, it becomes harder to
with the same number of authors, meaning the contributiofind a group which satisfies the safety condition.
to the aggregate can be found exactly for those groups, and We now discuss finding groupings of the items. Across
only the few that remain contribute to the uncertainty. Theall transactions, one item appears in common with 768 oth-
same behavior occurs for both data sets, with the same faers. Moreover, there are many other such items with high
tor of improvement observed, although accuracy is consisdegree and highly dense interaction pattern. So it is net pos
tently better for DBLP than for IMDB. Lastly, note that the sible to find a grouping into groups of size 2 which meets the
best case occurs for the smaller groups ((5,5) compared tafety condition. However, it can be argued that in this ex-
(20,20)) when the input to the grouping procedure is sorte@mple, it is more important to find groupings over the trans-
by degrees. actions. Note that the implication for this is that however

We further investigate the impact of the correlation ofwe group the items, there is likely to be some transaction
the predicate with the grouping. For query B, we constructvhere the grouping reveals that all items in the item group
an artificial predicate®, which selects the same number of are linked to that transaction. This is an inherent problem
total papers, but touches a variable number of papers in eatith grouping this data, rather than with our approach to
paper group within &5, 5) grouping. Figure 15 shows that grouping.
as the number of papers touched in each group increases,
both the expected and worst case bounds improve up to t Uni ¢ .
point when all papers are selected in a group, the aggregate nions ot groupings

query is answered with perfect accuracy. This shows th% this section, we consider the impact of publishing mul-

if we can anticipate the kinds of structural predicates tha{iple groupings of the same graph. This allows a broader
end users will want, then we can improve the utility of the .

blished data without isina the ori class of queries to be answered with perfect accuracy, but
publisned data without compromising the privacy. is open to stronger classes of attack based on the graph

structure. Recall that publishing the fully-censofed n)-
. grouped graph allows type-0 queries to be answered exactly,
4.7.4 Grouping on Dense Data but gives us no handle to answer other query types with cer-
tainty. As observed in Section 4.6, publishifig?) or (k, 1)
As discussed in Section 4.2, a safe grouping is easy to fingrouped graphs offers greater utility for a variety of qasri
for sparse datasets. The previous experiments were on rgfhile preserving the privacy of associations.
atively sparse datasets. In this section we examine the per- \we can give greater utility if we fully censor only one
formance of our algorithms when the given dataset is morgjge of the bigraph, leading td, ) and (m, 1)-groupings.
dense. We study the FIMI dataset described in Section 2.4 this case})’ (respectivelyiV) is preserved perfectly, while
We first analyze the difficulty of forming a safe grouping all of 1 (resp.V) is placed into a single group. This simpli-
on the transactions. We ran the grouping algorithm, seelfies the information we have to publish:
ing groups of size 8, 10 and 12. The running time was___ .. : N
828s, 936s, and 977s respectively. This demonstrates thgfeﬁmtlon 6 G|vgn a_b|part!te grapht;. = (V, W, B),
that even for such a dense graph, our algorithm can still fin S (Wf’ 1)—group|ng IS deflr_1e_d pva(K W’ HV(E)).
a safe grouping efficiently. However, it is not possible talfin where: H is an arbitrary _|nject|ve function mapping
much larger groups, since there is one item which appeafrom V.U W onto the integers, andiy(E) =

r L _ .
in 823 transactions. Since the safety condition allows eac?f(H(v?)’ w;)|(vi, wy) € E}. Similarly, its (1, n)-grouping
defined by Gw (V,W, Hw(E)), where Hy (E) =

item to be linked to at most one transaction in any group of®
transactions, each of these 823 transactions must be placé@’i’ H(w;))|(vi, w;) € E}.

in separate groups, which is not possible for group sizes Observe that if we apply &l,n) grouping to a graph
greater than 12. This is a limitation of demanding this levelhat is already(m, 1) grouped, then the result is the (fully
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Fig. 16 Attacking a(m, 1) U (1, n)-grouping

censored)m, n) grouped graph. Given én, 1)-grouping the same node can be located in fel)-grouped graph,

of a graph, we can answer certain query types with perfeaevealing all the products bought by that customer. This at-
accuracy. In particular, we can answer any query of type ltack applies even ovém, 1)U(1, n)-grouping, which gives
provided that the predicatB, is over nodes of//. Simi-  the most privacy in this class.

larly, we can answer any query of type 1 where the predi- \,6 strongly, if certain types of mappings between the
cateP, is over nodes oV given the(1, n)-grouped version. isomorphic(m, 1) U (1,)-grouped graphs can be found,

Prlvacy of either graphis also _guarante_ed: V\_"thOUt any'addlthe original data can be recovered. This problem is related
tional knowledge, one cannot infer the |d_ent|ty of any of th?to, but distinct from, the (well-studied) graph isomorphis
censored nodes. Hoyvevgr, we cannot give any hlgh'qua“t?froblem. Some information will remain private: for exam-
answer to such queries if we only have e, 1)-grouped 0 '\ hen there are customers who have only ever bought a
graph. single product unique to them, their associations cannot be
So it seems that publishing both, as(g¢) U (k,1)  recovered fronik, 1) U (1, ¢)-grouped graphs. In that exam-
grouping of a graph, is desirable, since any query of typele, it is easy to find a valid isomorphism over these nodes,
1 could be answered exactly. But while either version of théout there are many other valid isomorphisms that associate
graph in isolation is resilient against attack, publishgh  different customers with different products, so the attack
allows an attacker to combine the information in the staticcannot be sure which was the original mapping. But if the
attack model (Definition 1), as they now have informationattacker can find node or edge pairs that mustiiguely
not previously available to them. If a customer has boughinapped to each other@veryisomorphism (i.e. every possi-
more products than any other, she can be identstati- ble world that is consistent with the published informajion
cally from the(1, ¢) graph, i.e. with no background knowl- their privacy is compromised. Clearly, the amount of privac
edge about degrees or other data. From its unique degrebat remains is input dependent: data consisting solely of



23

nodes with degree 1 is secure; but if each node has a unigb@s only twelve members. For the items, a two step signature
degree then total re-identification is trivial. On reatistata, allows 862 out of the total 866 nodes can be uniquely iden-
the truth lies somewhere in between. tified. So we conclude thdt, ¢) U (k, 1)-groupings should

be avoided. The single groupings discussed in the previous
section offer much stronger privacy guarantees while allow
ing queries to be answered accurately. This highlights that

We attack(m, 1) U (1, n)-grouped graphs, based on find- much care is needed for problems of anonymization, and

. . . hat enhancements designed to improve utility run the risk
ing matching pairs of nodes between the two graphs. Eac : . .

) . . of opening themselves to very effective attacks on privacy.
node in the fully censored graph is given a compsagha-
ture. Initially, the signature of every node is a default value,
say 0, since there is r@ priori way of telling them apart. 6 Related Work
We choose the 1-step signature of a node to be the degree of
that node. Given a node, itext-step signaturis formed by  The problem of how to anonymize and publish data for oth-
concatenating its current signature with the signaturedlof ers to analyze and study has attracted much study in re-
its neighbors in the graph, and sorting this set lexicographcent years. Starting with the pioneering work of Sweeney
ically. Once next-step signatures are found for all nodes imnd Samarati oh-anonymization [16, 15], the core problem
the graph, they can be compactly relabeled (since there carf anonymizing data tables has led to new techniques and
be at most: different signatures for nodes). By this con-  definitions such ag-diversity [11], (a, k)-anonymity [18],
struction: (a) If two nodes have different signatures theyt ¢-closeness [10](c, k)-safety [12], and anonymization via
cannot be matched in any isomorphism—since the signggermutation [23,20]. Our attempts to apply some of these
ture canonically encodes features of the neighborhood of methods to our problem in Section 3 either failed to give the
node, different signatures entail non-isomorphic neighbo required privacy or yielded results with very low utility.
hoods. (b) Since the process is entirely deterministicheac  There has been considerable recent interest in anonymiz-
node will obtain the same signature every time the procedur@g data which can be represented as a graph, motivated by
is run on the graph. As aresult, if a node receives a signatusganting to publish social network data. Backstrehal.[1]
that is not shared by any other node, then this node must lmnsider attacks on publishing such data with identifiers re
uniquely matched in any isomorphism. Moreover, it can bemoved (the “fully censored” case). They study both active
matched to the unique node with the same signature in asttacks, in which the attacker is allowed to insert a number
isomorphic copy. Note that the implication is only one way:of nodes and edges into the graph before it is published, and
the guarantee is that if signatures are unigue then nodes cpassive, where the attacker learns all the edges incidemt on
be uniquely matched, and not vice-versa. Schemes whicset of linked nodes. In both cases, a large enough known sub-
build signatures for edges instead of for nodes are alsé feagjraph can be located in the overall graph with high probabil-
ble; the details are quite similar, and we present resulis onity, and hence information can be learnt about connections
for the node-based scheme for brevity. between nodes. However, as henethingis learnt about

We therefore study the effectiveness of this attack ortonnections between nodes that acd incident on edges

the anonymized data. We apply this signature scheme dinown to the attacker.
the (m, 1) U (1,n)-grouped graphs, and measure how many Hayet al. [8] analyze what privacy is present inherently
nodes are uniquely identified, and how many fall into equivwithin the structure of typical social networks, by measur-
alence classes of size 2, 3, 4 etc. The cumulative distribung how many nodes have similar or identical neighbor-
tion over such classes of authors in the DBLP dataset, adtoods (based, e.g. on degrees of nearby nodes). This is
tresses in the IMDB data, and transactions and items in th&milar to the attack we studied in Section 5.1. They ana-
FIMI data are shown in Figure 16. Multiple steps of sig-lyze what additional privacy is gained by deleting and then
nature computation were performed, but for all datasets, ntandomly inserting up to 10% of edges, but observe that
improvement was seen after the fourth iteration, and tteere isuch modification can significantly alter graph properties.
only limited difference from the third to fourth step. A4ept  Similarly, Zhou and Pei [25] define privacy so that each
signature is sufficient to identify half the authors and adtno node must havé others with the same (one-step) neigh-
half the actresses uniquely. Only ab@at% of authors and  borhood characteristics, and measure the cost as the number
actresses are in equivalence classes of 10 or larger. Such pof edges added, and number of node label generalizations.
vacy levels are weak for many typical applications. For theKorolova et al. [9] analyze attacks in a different model,
FIMI transaction data the result is even starker: although nwhere the attacker can “buy” information about the neigh-
transactions are uniquely identified by a one step signaturborhood of certain nodes, and wishes to minimize their cost
a 2-step signature is sufficient to uniquely identify 91.8%6 o to learn the graph. Zheleva and Getoor [24] study the ef-
the nodes. With this signature, the largest equivalenasclafectiveness of machine learning techniques to infer sensi-

5.1 Experimental Analysis of Privacy.
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tive links which have been erased, given a graph in which  Lastly, our work can be compared to that designed to
non-sensitive links have been anonymized. They consideanonymize transactional or set data, such as recent contri-
anonymizations based on grouping nodes: randomly delebutions by Terrovitiset al. [17], and Xuet al. [22]. There,
ing some non-sensitive edges; reporting only the number dhe problem is to apply a suitable anonymization to a dataset
edges between groups (similar to Section 3.3); and just resf transactions, where each transaction is a set of items con
porting whether two groups have any edges. They do natected to an individual. Clearly, this scenario can also be
consider our approach of retaining the graph structure bunhodeled as a bipartite graph, as shown with our continued
hiding the mapping from entities to nodes. Our work differsexample of customers and products. However, the power of
from prior work essentially because we focus on a differenthe adversary, and hence the goal of the anonymization is
region of the privacy-utility tradeoff: we consider segf;n  different in [17,22]. There, it is assumed that an attacger i
where releasing the unlabeled graph is permitted, but lackable to observe some number of items belonging to an in-
utility, whereas prior work does not allow such release.  dividual, and wishes to infer other (private) items in their
transaction. Our methods were not designed with this model
More recently, Hayet al. [7] extended their study of qf aitack, and as a result are not comparable (likewise, the
reidentification of graph data, and proposed forming nodeg,ethods of [17,22] were not designed for bipartite graph
into groups and revealing only the number of edges betweefaa and as such do not adequately preserve graph structure
pairs of groups. Given the same sets of groups of nodegtormation). Nevertheless, due to the similar motivasidn
their approach would entail a much larger number of posyjj| pe of interest to find a common framework for these re-
sible worlds that could correspond to the published datagts and to extend the grouping approach we develop here

This approach is similar to the initial permutation appifoac give guarantees against this model of adversary.
considered and rejected due to its inability to retain funda

mental graph properties; the work of Hay al. differs in

the way that groups are formed and edges are permuted,

and so seems able to attain better, but still degradedtfideli

for (simple) graphs. Extending this approach, Campan ang Concluding Remarks
Truta propose building “clusters” (groups) of nodes, and re

vealing only the number of edges within a group and be; . - .
tween pairs of groups [4]. The nodes have additional pro We have considered the problem of anonymizing data in the

p: . .
erties, which are generalized so that all nodes in the sa form of bipartite graphs, and shown that methods based on

cluster have the same generalized representation n}_?nding safe(k, é_)-groupings are effective at securing pub-
' lished data against a variety of attacks. We have shown how

Also relevant is work which considers relations with 10 @nswer queries for various natural classes of aggrggates
many sensitive attributes, since such data is often effelgti but it remains to automatically rewrite arbitrary queries t
represented in graph form. Nergiz al. [14] mention the give upper, lower and expected bounds on safely grouped
shortcomings of representing and anonymizing bitmap repgraphs. It is also of interest to study advanced query types,
resentations of relational data, which we argue is also inSUch as join-style queries over longer edge paths.
sufficient for graph data in Section 3.2. Closest to our work  We have assumed that full information can be revealed
in setting is recent work by Ghinitet al. [6] on anonymiz- about entities, but the mapping from entities to nodes in a
ing sparse high-dimensional data (since a bipartite graph ¢ graph must be masked. Other models may be needed if we
be seen as defining such a sparse relation). Their approaealish to anonymize both entitiesnd the associations be-
is to extend known permutation based methods [23,20] tbween them. Our focus has been on data that can be rep-
improve utility. In their data, sensitive attributes areera resented as a bipartite graph linking two types of entitig It
so they can ensure at most one sensitive attribute in eactatural to also study arbitrary graphs over a single type of
group ofk individuals; in contrast, in our setting, every at- entity, i.e. social network graphs [1,8,9]. There have been
tribute (association) is sensitive and so we cannot apply th large increases in the quantity of data representing iotera
method. Moreover, [6] does not consider graph properties dfons in social networks being collected in recent yearss Th
the data, which we take care to preserve. Work-diversity  has led to greater interest in applying anonymization tech-
briefly considers the issue of multiple sensitive attrisute niques to such data to allow sharing and analysis without
and concludes that much larger groups would be needed tmmpromising the privacy of the individuals whose data is
guarantee privacy [11]. The crucial difference that allowsstored by the networks. In our ongoing work, we plan to
our techniques to succeed is that although we have a larggudy the extent to which our methods can be generalized
number of sensitive attributes (e.g. all customers) in lgrapand extended to accurately model and anonymize this kind
data, the graph is sparse, so these can be hidden amongétiata. Some initial results in this direction are preseirie
many possible associations. [3].
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