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Abstract. Motivated by the trend to outsource work to commercial
cloud computing services, we consider a variation of the streaming paradigm
where a streaming algorithm can be assisted by a powerful helper that
can provide annotations to the data stream. We extend previous work
on such annotation models by considering a number of graph streaming
problems. Without annotations, streaming algorithms for graph prob-
lems generally require significant memory; we show that for many stan-
dard problems, including all graph problems that can be expressed with
totally unimodular integer programming formulations, only constant mem-
ory is needed for single-pass algorithms given linear-sized annotations.
We also obtain a protocol achieving optimal tradeoffs between annota-
tion length and memory usage for matrix-vector multiplication; this re-
sult contributes to a trend of recent research on numerical linear algebra
in streaming models.

1 Introduction

The recent explosion in the number and scale of real-world structured data sets
including the web, social networks, and other relational data has created a press-
ing need to efficiently process and analyze massive graphs. This has sparked the
study of graph algorithms that meet the constraints of the standard streaming
model: restricted memory and the ability to make only one pass (or few passes)
over adversarially ordered data. However, many results for graph streams have
been negative, as many foundational problems require either substantial working
memory or a prohibitive number of passes over the data [1]. Apparently most
graph algorithms fundamentally require flexibility in the way they query edges,
and therefore the combination of adversarial order and limited memory makes
many problems intractable.

To circumvent these negative results, variants and relaxations of the standard
graph streaming model have been proposed, including the Semi-Streaming [2],
? This work was supported in part by NSF grants CCF-0915922 and CNS-0721491,

and in part by grants from Yahoo! Research, Google, and Cisco, Inc.
?? Supported by the Department of Defense (DoD) through the National Defense Sci-

ence & Engineering Graduate Fellowship (NDSEG) Program.



W-Stream [3], Sort-Stream [4], Random-Order [1], and Best-Order [5] models.
In Semi-Streaming, memory requirements are relaxed, allowing space propor-
tional to the number of vertices in the stream but not the number of edges.
The W-Stream model allows the algorithm to write temporary streams to aid
in computation. And, as their names suggest, the Sort-Stream, Random-Order,
and Best-Order models relax the assumption of adversarially ordered input. The
Best-Order model, for example, allows the input stream to be re-ordered arbi-
trarily to minimize the space required for the computation.

In this paper, our starting point is a relaxation of the standard model, closest
to that put forth by Chakrabarti et al. [6], called the annotation model. Motivated
by recent work on outsourcing of database processing, as well as commercial
cloud computing services such as Amazon EC2, the annotation model allows
access to a powerful advisor, or helper who observes the stream concurrently
with the algorithm. Importantly, in many of our motivating applications, the
helper is not a trusted entity: the commercial stream processing service may have
executed a buggy algorithm, experienced a hardware fault or communication
error, or may even be deliberately deceptive [5, 6]. As a result, we require our
protocols to be sound : our verifier must detect any lies or deviations from the
prescribed protocol with high probability.

The most general form of the annotation model allows the helper to provide
additional annotations in the data stream at any point to assist the verifier, and
one of the cost measures is the total length of the annotation. In this paper,
however, we focus on the case where the helper’s annotation arrives as a single
message after both the helper and verifier have seen the stream. The helper’s
message is also processed as a stream, since it may be large; it often (but not
always) includes a re-ordering of the stream into a convenient form, as well as
additional information to guide the verifier. This is therefore stronger than the
Best-Order model, which only allows the input to be reordered and no more;
but it is weaker than the more general online model, because in our model the
annotation appears only after the input stream has finished.

We argue that this model is of interest for several reasons. First, it requires
minimal coordination between helper and verifier, since it is not necessary to
ensure that annotation and stream data are synchronized. Second, it captures the
case when the verifier uploads data to the cloud as it is collected, and later poses
questions over the data to the helper. Under this paradigm, the annotation must
come after the stream is observed. Third, we know of no non-trivial problems
which separate the general online and our “at-the-end” versions of the model,
and most prior results are effectively in this model.

Besides being practically motivated by outsourced computations, annotation
models are closely related to Merlin-Arthur proofs with space-bounded verifiers,
and studying what can (and cannot) be accomplished in these models is of
independent interest.
Relationship to Other Work. Annotation models were first explicitly stud-
ied by Chakrabarti et al. in [6], and focused primarily on protocols for canoni-
cal problems in numerical streams, such as Selection, Frequency Moments, and
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Frequent Items. The authors also provided protocols for some graph problems:
counting triangles, connectedness, and bipartite perfect matching. The Best-
Order Stream Model was put forth by Das Sarma et al. in [5]. They present proto-
cols requiring logarithmic or polylogarithmic space (in bits) for several problems,
including perfect matching and connectivity. Historical antecedents for this work
are due to Lipton [7], who used fingerprinting methods to verify polynomial-time
computations in logarithmic space. Recent work verifies shortest-path computa-
tions using cryptographic primitives, using polynomial space for the verifier [8].

Our Contributions. We identify two qualitatively different approaches to pro-
ducing protocols for problems on graphs with n nodes and m edges. In the
first, the helper directly proves matching upper and lower bounds on a quan-
tity. Usually, proving one of the two bounds is trivial: the helper provides a
feasible solution to the problem. But proving optimality of the feasible solution
can be more difficult, requiring the use of structural properties of the problem.
In the second, we simulate the execution of a non-streaming algorithm, using
the helper to maintain the algorithm’s internal data structures to control the
amount of memory used by the verifier. The helper must provide the contents
of the data structures so as to limit the amount of annotation required.

Using the first approach (Section 3), we show that only constant space and
annotation linear in the input size m is needed to determine whether a directed
graph is a DAG and to compute the size of a maximum matching. We describe
this as an (m, 1) protocol, where the first entry refers to the annotation size
(which we also call the hcost) and the second to the memory required for the
verifier (which we also call the vcost). Our maximum matching result signif-
icantly extends the bipartite perfect matching protocol of [6], and is tight for
dense graphs, in the sense that there is a lower bound on the product of hcost and
vcost of hcost · vcost = Ω(n2) bits for this problem. Second, we define a stream-
ing version of the linear programming problem, and provide an (m, 1) protocol.
By exploiting duality, we hence obtain (m, 1) protocols for many graph problems
with totally unimodular integer programming formulations, including shortest
s-t path, max-flow, min-cut, and minimum-weight bipartite perfect matching.
We also show all are tight by proving lower bounds of hcost · vcost = Ω(n2)
bits for all four problems. A more involved protocol obtains optimal tradeoffs
between annotation cost and working memory for dense LPs and matrix-vector
multiplication; this complements recent results on approximate linear algebra in
streaming models (see e.g. [9, 10]).

For the second approach (Section 4), we make use of the idea of “memory
checking” due to Blum et al. [11], which allows a small-space verifier to outsource
data storage to an untrusted server. We present a general simulation theorem
based on this checker, and obtain as corollaries tight protocols for a variety of
canonical graph problems. In particular, we give an (m, 1) protocol for verifying
a minimum spanning tree, an (m + n log n, 1) protocol for single-source shortest
paths, and an (n3, 1) protocol for all-pairs shortest paths. We provide a lower
bound of hcost · vcost = Ω(n2) bits for the latter two problems, and an identical
lower bound for MST when the edge weights can be given incrementally. While
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powerful, this technique has its limitations: there does not seem to be any generic
way to obtain the same kind of tradeoffs observed above. Further, there are
some instances where direct application of memory checking does not achieve
the best bounds for a problem. We demonstrate this by presenting an (n2 log n, 1)
protocol to find the diameter of a graph; this protocol leverages the ability to use
randomized methods to check computations more efficiently than via generating
or checking a deterministic witness. In this case, we rely on techniques to verify
matrix-multiplication in quadratic time, and show that this is tight via a nearly
matching lower bound for diameter of hcost · vcost = Ω(n2).

In contrast to problems on numerical streams, where it is often trivial to ob-
tain (m, 1) protocols by replaying the stream in sorted order, it transpires that
achieving linear-sized annotations with logarithmic space is more challenging for
many graph problems. Simply providing the solution (e.g. a graph matching or
spanning tree) is insufficient, since we have the additional burden of demonstrat-
ing that this solution is optimal. A consequence is that we are able to provide
solutions to several problems for which no solution is known in the best-order
model (even though one can reorder the stream in the best-order model so that
the “solution” edges arrive first).

2 Model and Definitions

Consider a data stream A = 〈a1, a2, . . . , am〉 with each ai in some universe U .
Consider a probabilistic verifier V who observes A and a deterministic helper H
who also observes A and can send a message h to V after A has been observed
by both parties. This message, also referred to as an annotation, should itself
be interpreted as a data stream that is parsed by V, which may permit V to
use space sublinear in the size of the annotation itself. That is, H provides an
annotation h(A) = (h1(A), h2(A), . . . h`(A)).

We study randomized streaming protocols for computing functions f(A) →
Z. Specifically, assume V has access to a private random string R and at most
w(m) machine words of working memory, and that V has one-way access to the
input A · h , where · represents concatenation. Denote the output of protocol P
on input A, given helper h and random string R, by out(P,A,R, h). We allow
V to output ⊥ if V is not convinced that the annotation is valid. We say that
h is valid for A with respect to P if PrR(out(P,A,R, h) = f(A)) = 1, and we
say that h is δ-invalid for A with respect to P if PrR(out(P,A,R, h) 6=⊥) ≤ δ.
We say that h is a valid helper if h is valid for all A. We say that P is a valid
protocol for f if

1. There exists at least one valid helper h with respect to P and
2. For all helpers h ′ and all streams A, either h ′ is valid for A or h ′ is 1

3 -invalid
for A.

Conceptually, P is a valid protocol for f if for each stream A there is at least one
way to convince V of the true value of f(A), and V rejects all other annotations
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as invalid (this differs slightly from [6] to allow for multiple h ’s that can convince
V). The constant 1

3 can be any constant less than 1
2 .

Let h be a valid helper chosen to minimize the length of h(A) for all A. We
define the help cost hcost(P) to be the maximum length of h over all A of length
m, and the verification cost vcost(P ) = w(m), the amount of working memory
used by the protocol P . All costs are expressed in machine words of size Θ(log m)
bits, i.e. we assume any quantity polynomial in the input size can be stored in a
constant number of words; in contrast, lower bounds are expressed in bits. We
say that P is an (h, v) protocol for f if P is valid and hcost(A) = O(h + 1),
vcost(A) = O(v + 1). While both hcost and vcost are natural costs for such
protocols, we often aim to achieve a vcost of O(1) and then minimize hcost. In
other cases, we show that hcost can be decreased by increasing vcost, and study
the tradeoff between these two quantities.

In some cases, f is not a function of A alone; instead it depends on A and
h. In such cases, V should simply accept if convinced that the annotation has
the correct properties, and output ⊥ otherwise. We use the same terminology
as before, and say that P is a valid protocol if there is a valid helper and any h ′

that is not valid for A is 1
3 -invalid for A.

In this paper we primarily consider graph streams, which are streams whose
elements are edges of a graph G. More formally, consider a streamA = 〈e1, e2, . . . , em〉
with each ei ∈ [n]× [n]. Such a stream defines a (multi)graph G = (V,E) where
V = {v1, ..., vn} and E is the (multi)set of edges that naturally corresponds
to A. We use the notation {i : m(i)} for the multiset in which i appears with
multiplicity m(i). Finally, we will sometimes consider graph streams with di-
rected edges, and sometimes with weighted edges; in the latter case each edge
ei ∈ [n]× [n]× Z+.

2.1 Fingerprints

Our protocols make careful use of fingerprints, permutation-invariant hashes
that can be efficiently computed in a streaming fashion. They determine in
small space (with high probability) whether two streams have identical frequency
distributions. They are the workhorse of algorithms proposed in earlier work on
streaming models with an untrusted helper [5–7, 13]. We sometimes also need
the fingerprint function to be linear.

Definition 1 (Fingerprints). A fingerprint of a multiset M = {i : m(i)}
where each i ∈ [q] for some known upper bound q is defined as a computation
over the finite field with p elements, Fp, as fp,α(M) =

∑q
i=1 m(i)αi, where α is

chosen uniformly at random from Fp. We typically leave p, α implicit, and just
write f(M).

Some properties of f are immediate: it is linear in M , and can easily be computed
incrementally as elements of [q] are observed in a stream one by one. The main
property of f is that Pr[f(M) = f(M ′)|M 6= M ′] ≤ q/p over the random choice
of α (due to standard properties of polynomials over a field). Therefore, if p
is sufficiently large, say, polynomial in q and in an (assumed) upper bound on
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the multiplicities m(i), then this event happens with only polynomially small
probability. For cases when the domain of the multisets is not [q], we either
establish a bijection to [q] for an appropriate value of q, or use a hash function
to map the domain onto a large enough [q] such that there are no collisions with
high probability (whp). In all cases, p is chosen to be O(1) words.

A common subroutine of many of our protocols forces H to provide a “label”
l(u) for each node upfront, and then replay the edges in E, with each edge (u, v)
annotated with l(u) and l(v) so that each instance of each node v appears with
the same label l(v).

Definition 2. We say a list of edges E′ is label-augmented if (a) E′ is preceded
by a sorted list of all the nodes v ∈ V , each with a value l(v) and deg(v), where
l(v) is the label of v and deg(v) is claimed to be the degree of v; and (b) each edge
e = (u, v) in E′ is annotated with a pair of symbols l(e, u) and l(e, v). We say a
list of label-augmented edges E′ is valid if for all edges e = (u, v), l(e, u) = l(u)
and l(e, v) = l(v); and E′ = E, where E is the set of edges observed in the stream
A.

Lemma 1 (Consistent Labels). There is a valid (m, 1) protocol that accepts
any valid list of label-augmented edges.

Proof. V uses the annotation from Definition 2 (a) to make a fingerprint of
the multiset S1 := {(u, l(u)) : deg(u)}. V also maintains a fingerprint f1 of all
(u, l(e, u)) pairs seen while observing the edges of L. If f1 = f(S1) then (whp)
each node u must be presented with label l(e, u) = l(u) every time it is reported
in an edge e (and moreover u must be reported in exactly deg(u) edges), else the
multiset of observed (node, label) pairs would not match S1. Finally, V ensures
that E′ = E by checking that f(E) = f(E′). ut

3 Directly Proving Matching Upper and Lower Bounds

3.1 Warmup: Topological Ordering and DAGs

A (directed) graph G is a DAG if and only if G has a topological ordering, which
is an ordering of V as v1, . . . vn such that for every edge (vi, vj) we have i < j
[14, Section 3.6]. Hence, if G is a DAG, H can prove it by providing a topological
ordering. If G is not a DAG, H can provide a directed cycle as witness.

Theorem 1. There is a valid (m, 1) protocol to determine if a graph is a DAG.

Proof. If G is not a DAG, H provides a directed cycle C as (v1, v2), (v2, v3) . . .
(vk, v1). To ensure C ⊆ E, H then provides E \ C, allowing V to check that
f(C ∪ (E \ C)) = f(E).
If G is a DAG, let v1, . . . vn be a topological ordering of G. We require H to
replay the edges of G, with edge (vi, vj) annotated with the ranks of vi and vj

i.e. i and j. We ensure H provides consistent ranks via the Consistent Labels
protocol of Lemma 1, with the ranks as “labels”. If any edge (vi, vj) is presented
with j > i, V rejects immediately. ut
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3.2 Maximum Matching

We give an (m, 1) protocol for maximum matching which leverages the combina-
torial structure of the problem. Previously, matching was only studied in the bi-
partite case, where an (m, 1) protocol and a lower bound of hcost · vcost = Ω(n2)
bits for dense graphs were shown [6, Theorem 11]. The same lower bound applies
to the more general problem of maximum matching, so our protocol is tight up
to logarithmic factors.

The protocol shows matching upper and lower bounds on the size of the
maximum matching. Any feasible matching presents a lower bound. For the
upper bound we appeal to the Tutte-Berge formula [15, Chapter 24]: the size
of a maximum matching of a graph G = (V,E) is equal to 1

2 minVS⊆V (|VS | −
occ(G−VS) + |V |), where G−VS is the subgraph of G obtained by deleting the
vertices of VS and all edges incident to them, and occ(G− VS) is the number of
components in the graph G − VS that have an odd number of vertices. So for
any set of nodes VS , 1

2 (|VS |−occ(G−VS)+ |V |) is an upper bound on the size of
the maximum matching, and there exists some VS for which this quantity equals
the size of a maximum matching M . Conceptually, providing both VS and M , H
proves that the maximum matching size is M . Additionally, H has to provide a
proof of the value of occ(G−VS) to V. We omit a full proof; the main technique
needed is careful application of fingerprints.

Theorem 2. There is a valid (m, 1) protocol for maximum matching. Moreover,
any protocol for max-matching requires hcost · vcost = Ω(n2) bits.

3.3 Linear Programming and TUM Integer Programs

We present protocols to solve linear programming problems in our model lever-
aging the theory of LP duality. This leads to non-trivial schemes for a variety of
graph problems.

Definition 3. Given a data stream A containing entries of vectors b ∈ Rb,
c ∈ Rc, and non-zero entries of a b × c matrix A in some arbitrary order,
possibly interleaved. Each item in the stream indicates the index of the object it
pertains to. The LP streaming problem on A is to determine the value of the
linear program min{cT x | Ax ≤ b}.

We present our protocol as if each entry of each object appears at most once
(if an entry does not appear, it is assumed to be zero). When this is not the
case, the final value for that entry is interpreted as the sum of all corresponding
values in the stream.

Theorem 3. There is a valid (|A|, 1) protocol for the LP streaming problem,
where |A| is the number of non-zero entries in the constraint matrix A of A.

Proof. The protocol shows an upper bound by providing a primal-feasible so-
lution x, and a lower bound by providing a dual-feasible solution y. When the
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value of both solutions match, V is convinced that the optimal value has been
found.

From the stream, V fingerprints the sets SA = {(i, j, Ai,j)}, SB = {(i,bi)}
and SC = {(i, cj)}. Then H provides all pairs of values cj ,xj , 1 ≤ j ≤ c, with
each xj additionally annotated with |A·j |, the number of non-zero entries in
column j of A. This allows V to fingerprint the multiset SX = {(j,xj) : |A·j |}
and calculate the solution cost

∑b
j=1 cjxj .

To prove feasibility, for each row i of A, Ai·, H sends bi, then (the non-zero
entries of) Ai· so that Aij is annotated with xj . This allows the ith constraint
to be checked easily in constant space. V fingerprints the values given by H for
A, b, and c, and compares them to those for the stream. A single fingerprint of
the multiset of values presented for x over all rows is compared to f(SX). The
protocol accepts x as feasible if all constraints are met and all fingerprint tests
pass.

Correctness follows by observing that the agreement with f(A) guarantees
(whp) that each entry of A is presented correctly and no value is omitted. Since
H presents each entry of b and c once, in index order, the fingerprints f(SB) and
f(SC) ensure that these values are presented correctly. The claimed |A·j | values
must be correct: if not, then the fingerprints of either SX or SA will not match
the multisets provided by H. f(SX) also ensures that each time xj is presented,
the same value is given (similar to Lemma 1).

To prove that x is primal-optimal, it suffices to show a feasible solution y
to the dual AT so that cT x = bT y. Essentially we repeat the above protocol
on the dual, and check that the claimed values are again consistent with the
fingerprints of SA, SB , SC . ut

For any graph problem that can be formulated as a linear program in which
each entry of A, b, and c can be derived as a linear function of the nodes and
edges, we may view each edge in a graph stream A as providing an update to
values of one or more entries of A, b, and c. Therefore, we immediately obtain
a protocol for problems of this form via Theorem 3. More generally, we obtain
protocols for problems formulated as totally unimodular integer programs (TUM
IPs), since optimality of a feasible solution is shown by a matching feasible
solution of the dual of its LP relaxation [16].

Corollary 1. There is a valid (|A|, 1) protocol for any graph problem that can
be formulated as a linear program or TUM IP in which each entry of A, b, and
c is a linear function of the nodes and edges of graph.

This follows immediately from Theorem 3 and the subsequent discussion: note
that the linearity of the fingerprinting builds fingerprints of SA, SB and SC , so H
presents only their (aggregated) values, not information from the unaggregated
graph stream.

Corollary 2. Shortest s− t path, max-flow, min-cut, and minimum weight bi-
partite perfect matching (MWBPM) all have valid (m, 1) protocols. For all four
problems, a lower bound of hcost · vcost = Ω(n2) bits holds for dense graphs.
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Proof. The upper bound follows from the previous corollary because all the
problems listed possess formulations as TUM IPs and moreover the constraint
matrix in each case has O(m+n) non-zero entries. For example, for max-flow, x
gives the flow on each edge, and the weight of each edge in the stream contributes
(linearly) to constraints on the capacity of that edge, and the flow through
incident nodes.

The lower bound for MWBPM, max-flow, and min-cut holds from [6, Theo-
rem 11] which argues hcost · vcost = Ω(n2) bits for bipartite perfect matching,
and straightforward reductions of bipartite perfect matching to all three prob-
lems, see e.g. [14, Theorem 7.37]. The lower bound for shortest s− t path follows
from a straightforward reduction from index, for which a lower bound linear in
hcost · vcost was proven in [6, Theorem 3.1]. Given an instance (x, k) of index

where x ∈ {0, 1}n2
, k ∈ [n2], we construct graph G, with VG = [n + 2], and

EG = EA ∪ EB . Alice creates EA = {(i, j) : xf(i,j)=1} from x alone, where f is
a 1-1 correspondence [n] × [n] → [n2]. Bob creates EB = {(n + 1, i), (j, n + 2)}
using f(i, j) = k. The shortest path between nodes n+1 and n+2 is 3 if xk = 1
and is 4 or more otherwise. This also implies that any approximation within√

4/3 requires hcost · vcost = Ω(n2) (better inapproximability constants may be
possible). ut

Conceptually, the above protocols for solving the LP streaming problem are
straightforward: H provides a primal solution, potentially repeating it once for
each row of A to prove feasibility, and repeats the protocol for the dual. There
are efficient protocols for the problems listed in the corollary since the constraint
matrices of their IP formulations are sparse. For dense constraint matrices, how-
ever, the bottleneck is proving feasibility. We observe that computing Ax reduces
to computing b inner-product computations of vectors of dimension c. There are
(cα, c1−α) protocols to verify such inner-products [6]. But we can further improve
on this since one of the vectors is held constant in each of the tests. This reduces
the space needed by V to run these checks in parallel; moreover, we prove a lower
bound of hcost · vcost = Ω(min(c, b)2) bits, and so obtain an optimal tradeoff for
square matrices, up to logarithmic factors. We omit the proof for space reasons.

Theorem 4. Given a b× c matrix A and a c dimensional vector x, the product
Ax can be verified with a valid (bcα, c1−α) protocol. Moreover, any such protocol
requires hcost · vcost = Ω(min(c, b)2) bits for dense matrices.

Corollary 3.For c≥b there is a valid (c1+α, c1−α) protocol for the LP streaming problem.

Proof. This follows by using the protocol of Theorem 4 to verify Ax ≤ b and
AT y ≥ c within the protocol of Theorem 3. The cost is (bcα + cbα, c1−α + b1−α),
so if c ≥ b, this is dominated by (c1+α, c1−α) (symmetrically, if b > c, the cost is
(b1+α, b1−α)). ut

Our protocol for linear programming relied on only two properties: strong
duality, and the ability to compute the value of a solution x and check feasibility
via matrix-vector multiplication. Such properties also hold for more general con-
vex optimization problems, such as quadratic programming and a large class of
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second-order cone programs. Thus, similar results apply for these mathematical
programs, motivated by applications in which weak peripheral devices or sensors
perform error correction on signals. We defer full details from this presentation.

Theorem 4 also implies the existence of protocols for graph problems where
both hcost and vcost are sublinear in the size of the input (for dense graphs).
These include:
− An (n1+α, n1−α) protocol for verifying that λ is an eigenvalue of the

adjacency matrix A or the Laplacian L of G: H provides the corresponding
eigenvector x, and V can use the protocol of Theorem 4 to verify that Ax = λx
or Lx = λx.
− An (n1+α, n1−α) protocol for the problem of determining the effective

resistance between designated nodes s and t in G where the edge weights are
resistances. The problem reduces to solving an n× n system of linear equations
[17].

4 Simulating Non-Streaming Algorithms

Next, we give protocols by appealing to known non-streaming algorithms for
graph problems. At a high level, we can imagine the helper running an algo-
rithm on the graph, and presenting a “transcript” of operations carried out by
the algorithm as the proof to V that the final result is correct. Equivalently, we
can imagine that V runs the algorithm, but since the data structures are large,
they are stored by H, who provides the contents of memory needed for each step.
There may be many choices of the algorithm to simulate and the implementa-
tion details of the algorithm: our aim is to choose ones that result in smaller
annotations.

Our main technical tool is the off-line memory checker of Blum et al. [11],
which we use to efficiently verify a sequence of accesses to a large memory.
Consider a memory transcript of a sequence of read and write operations to
this memory (initialized to all zeros). Such a transcript is valid if each read of
address i returns the last value written to that address. The protocol of Blum
et al. requires each read to be accompanied by the timestamp of the last write
to that address; and to treat each operation (read or write) as a read of the
old value followed by the write of a new value. Then it suffices to ensure that
a fingerprint of all write operations (augmented with timestamps) matches a
fingerprint of all read operations (using the provided timestamps), along with
some simple local checks on timestamps. Consequently, any valid (timestamp-
augmented) transcript is accepted by V, while any invalid transcript is rejected
by V with high probability.

We use this memory checker to obtain the following general simulation result.

Theorem 5. Suppose P is a graph problem possessing a non-randomized algo-
rithm M in the random-access memory model that, when given G = (V,E) in
adjacency list or adjacency matrix form, outputs P (G) in time t(m,n), where
m = |E| and n = |V |. Then there is an (m + t(m,n), 1) protocol for P .
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Proof (sketch). H first repeats (the non-zero locations of) a valid adjacency list
or matrix representation G, as writes to the memory (which is checked by V); V
uses fingerprints to ensure the edges included in the representation precisely cor-
respond to those that appeared in the stream, and can use local checks to ensure
the representation is otherwise valid. This requires O(m) annotation and effec-
tively initializes memory for the subsequent simulation. Thereafter, H provides
a valid augmented transcript T ′ of the read and write operations performed by
algorithm M; V rejects if T ′ is invalid, or if any read or write operation executed
in T ′ does not agree with the prescribed action of M. As only one read or write
operation is performed by M in each timestep, the length of T ′ is O(t(m,n)),
resulting in an (m + t(m,n), 1) protocol for P . ut

Although Theorem 5 only allows the simulation of deterministic algorithms,
H can non-deterministically “guess” an optimal solution S and prove optimal-
ity by invoking Theorem 5 on a (deterministic) algorithm that merely checks
whether S is optimal. Unsurprisingly, it is often the case that the best-known al-
gorithms for verifying optimality are more efficient than those finding a solution
from scratch (see e.g. the MST protocol below); therein lies much of the power
of the simulation theorem.

Theorem 6. There is a valid (m, 1) protocol to find a minimum cost spanning
tree; a valid (m + n log n, 1) protocol to verify single-source shortest paths; and
a valid (n3, 1) protocol to verify all-pairs shortest paths.

Proof. We first prove the bound for MST. Given a spanning tree T , there exists a
linear-time algorithm M for verifying that T is minimum (see e.g. [18]). Let M′

be the linear-time algorithm that, given G and a subset of edges T in adjacency
matrix form, first checks that T is a spanning tree by ensuring |T | = n−1 and T
is connected (by using e.g. breadth-first search), and then executes M to ensure
T is minimum. We obtain an (m, 1) protocol for MST by having H provide a
minimum spanning tree T and using Theorem 5 to simulate algorithm M′.

The upper bound for single-source shortest path follows from Theorem 5
and the fact that there exist implementations of Djikstra’s algorithm that run
in time m + n log n. The upper bound for all-pairs shortest paths also follows
from Theorem 5 and the fact that the Floyd-Warshall algorithm runs in time
O(n3). ut

We now provide near-matching lower bounds for all three problems.

Theorem 7. Any protocol for verifying single-source or all pairs shortest paths
requires hcost · vcost = Ω(n2) bits. Additionally, if edge weights may be specified
incrementally, then an identical lower bound holds for MST.

Proof. The lower bounds for single-source and all-pairs shortest paths are inher-
ited from shortest s− t path (Corollary 2).

To prove the lower bound for MST, we present a straightforward reduction
from an instance of index, (x, k), where x ∈ {0, 1}n2

, k ∈ [n2]. Alice will con-
struct a graph G, with VG = [n], and EG = EA. Bob will then construct two
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graphs, G1 and G2, with EG1 = EA ∪ EB1 and EG2 = EA ∪ EB2 . If edge (i, j)
is in EA ∩ EB1 , then we interpret this to mean that the weight of edge (i, j) in
EG1 is the sum of its weights in EA and EB1 . Below, we will write (i, j, w) to
denote an edge between nodes i and j with weight w.

Alice creates EA = {(i, j, 1) : xf(i,j)=1} from x alone, where f is a bijection
[n] × [n] → [n2]. Bob creates EB1 = {(u, v, 3) : f(u, v) 6= k}, and EB2 = EB1 ∪
{(i, j, 1)}, where (i, j) is the edge satisfying f(i, j) = k. Edge (i, j), if it exists, is
the lowest-weight edge in EG1 , and hence (i, j) is in any min-cost spanning tree
of G1 if and only if xk = 1. In contrast, (i, j) is always in the min-cost spanning
tree of G2. Therefore, if xk = 1, then the minimum spanning tree of G2 will be
of higher cost than that of G1, because the weight of (i, j) is 1 in EG1 and 2 in
EG2 . And if xk = 0, then the mininmum spanning tree of G2 will be of lower
cost than that of G1, because the weight of edge (i, j) will be ∞ in G1 and 1 in
G2. Thus, by comparing the cost of the MSTs of G1 and G2, Bob can extract
the value of xk. The lower bound now follows from the hardness of index [6,
Theorem 3.1]. ut

Diameter. The diameter of G can be verified via the all-pairs shortest path
protocol above, but the next protocol improves over the memory checking ap-
proach.

Theorem 8. There is a valid (n2 log n, 1) protocol for computing graph diame-
ter. Further, any protocol for diameter requires hcost · vcost = Ω(n2) bits.

Proof. [6, Theorem 5.2] gives an (n2 log l, 1) protocol for verifying that Al = B
for a matrix A presented in a data stream and for any positive integer l. Note
that if A is the adjacency matrix of G; then (I + A)l

ij 6= 0 if and only if there is
a path of length at most l from i to j. Therefore, the diameter of G is equal to
the unique l > 0 such that (I + A)l

ij 6= 0 for all (i, j), while (I + A)l−1
ij = 0 for

some (i, j). Our protocol requires H to send l to V, and then run the protocol
of [6, Theorem 5.2] twice to verify that l is as claimed. Since the diameter is at
most n− 1, this gives an (n2 log n, 1) protocol.

We prove the lower bound via a reduction from an instance of index, (x, k),
where x ∈ {0, 1}n2/4, k ∈ [n2/4]. Alice creates a bipartite graph G = (V,E)
from x alone: she includes edge (i, j) in E if and only if xf(i,j) = 1, where f is
a bijection from edges to indices. Bob then adds to G two nodes L and R, with
edges from L to each node in the left partite set, edges from R to each node in
the right partite set, and an edge between L and R. This ensures that the graph
is connected, with diameter at most 3. Finally, Bob appends a path of length 2
to node i, and a path of length 2 to node j, where f(i, j) = k. If xk = 0, then the
diameter is now 7, while if xk = 1, the diameter is 5. The lower bound follows
from the hardness of index [6, Theorem 3.1] (this also shows that any protocol
to approximate diameter better than

√
1.4 requires hcost · vcost = Ω(n2) bits;

no effort has been made to optimize the inapproximability constant). ut
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5 Conclusion and Future Directions

In this paper, we showed that a host of graph problems possess streaming pro-
tocols requiring only constant space and linear-sized annotations. For many ap-
plications of the annotation model, the priority is to minimize vcost, and these
protocols achieve this goal. However, these results are qualitatively different from
those involving numerical streams in the earlier work [6]: for the canonical prob-
lems of heavy hitters, frequency moments, and selection, it is trivial to achieve
an (m, 1) protocol by having H replay the stream in sorted (“best”) order. The
contribution of [6] is in presenting protocols obtaining optimal tradeoffs between
hcost and vcost in which both quantities are sublinear in the size of the input.
There are good reasons to seek these tradeoffs. For example, consider a verifier
with access to a few MBs or GBs of working memory. If an (m, 1) protocol re-
quires only a few KBs of space, it would be desirable to use more of the available
memory to significantly reduce the running time of the verification protocol.

In contrast to [6], it is non-trivial to obtain (m, 1) protocols for the graph
problems we consider, and we obtain tradeoffs involving sublinear values of hcost
and vcost for some problems with an algebraic flavor (e.g. matrix-vector multi-
plication, computing effective resistances, and eigenvalues of the Laplacian). We
thus leave as an open question whether it is possible to obtain such tradeoffs for
a wider class of graph problems, and in particular if the use of memory checking
can be adapted to provide tradeoffs.

A final open problem is to ensure that the work ofH is scalable. In motivating
settings such as Cloud computing environments, the data is very large, and H
may represent a distributed cluster of machines. It is a challenge to show that
these protocols can be executed in a model such as the MapReduce framework.

Acknowledgements. We thank Moni Naor for suggesting the use of memory
checking.
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