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Abstract— Communications between individuals can be repre-
sented by (weighted, multi-) graphs. Many applications operate
on communication graphs associated with telephone calls, emails,
Instant Messages (IM), blogs, web forums, e-business relation-
ships and so on. These applications include identifying repetitive
fraudsters, message board aliases, multiusage of IP addresses, etc.
Tracking electronic identities in communication networks can be
achieved if we have a reliable “signature” for nodes and activities.
While many examples of ad hoc signatures can be proposed for
particular tasks, what is needed is a systematic study of the
principles behind the usage of signatures for any task.

We develop a formal framework for the use of signatures in
communication graphs and identify three fundamental properties
that are natural to signature schemes: persistence, uniqueness
and robustness. We argue for the importance of these properties
by showing how they impact a set of applications. We then
explore several signature schemes — previously defined and new
— in our framework and evaluate them on real data in terms
of these properties. This provides insights into suitable signature
schemes for desired applications. Finally, as case studies, we focus
on two concrete applications in enterprise network traffic. We
apply signature schemes to these problems and demonstrate their
effectiveness.

I. INTRODUCTION

In the everyday world, instances of interaction or commu-
nication between individuals are everywhere. For example,
individuals speak to each other via telephone; IP traffic is
passed between hosts; authors write documents together; and
so on. There are other examples in which individuals interact
with other entities, such as when users pose search queries;
post and comment on messages on bulletin boards or blog
sites; or when stock traders transact stocks, bonds and other
goods. In an indirect sense, users “communicate” with each
other via the common objects. In all cases the communication
between individuals can be repeated at different times (such as
in the case of telephone calls) and weighted (say, the quantity
of stock bought, or the duration of a call).

Given this abundance of communication between individu-
als, many applications rely on analyzing the patterns behind
the communications, for example:

• Anti-Aliasing: is an individual behind multiple presences
in the communication network? This happens e.g. when
an individual has multiple connection points (home, of-
fice, hotspot) to the Internet.

• Security: has some individual’s ‘identity’ been taken over
by someone else? This happens when a person is given
access to another’s laptop, or when a cellphone is stolen
and used by someone else. Is a new user who arrives at
a particular time really the reappearance of an individual
who has been observed earlier?

• Analysis of Data Anonymization: can we identify nodes
from an anonymized graph given outside information
about known communication patterns per individual?
This happens in author identification of double-blind
submissions.

Each of the questions above and others of this nature that
rely on communication patterns can naturally be solved by
designing suitable signatures for the individuals. Informally,
signatures capture the distinctive or discriminatory communi-
cation behavior of an individual (telephone user, IP address,
trader or user of a search service, etc). While the concept
of signatures is self-evident, formalizing and applying sig-
natures to a specific task is really an art. Typically, in any
particular task, “signatures” are defined based on intuition
and experimentally validated against a labeled set. This ap-
proach has been instantiated successfully for certain specific
communication settings and applications. It was done for
telephone networks in [5], [10] where the authors defined
a community of interest to be the top-k numbers called by
a given telephone number. With appropriate age weighting
and a suitable k, this was argued to be highly discriminatory
for detecting repetitive debtors. A second example is when
a signature formed from bibliographic citations is used to
identify authors of double-blind submissions [11]. There are
many other examples in areas including Security [18], [6], [4],
[5], Collaborative Filtering [25], Computer Networking [22],
[27], [16], [21], and Social Network Analysis [8], [1].

In this paper, we adopt the signature-based approach to
analyzing the patterns of communication exhibited by individ-
uals. However, we focus on the process of how signatures are
developed and applied. In particular, we propose a framework
in which we first agree on a set of properties of signatures
that are natural and, when faced with an application, determine
which of these properties of signatures are needed, and then,



seek out examples of signatures already known or design new
ones which will have those properties. Hence, the process will
focus on abstract properties that are needed, and “shopping”
for signatures with those properties.

We develop a framework for the formal use of signatures
for tasks that involve analyzing communication patterns, for
very general notions of communication. We model the com-
munications between entities using a suitably weighted graph,
and define a signature of a node abstractly in terms of the
graph. Our contributions are:

• We identify basic properties of signatures such as persis-
tence, uniqueness and robustness, and for several tasks
that involve analyzing communication patterns, study
which of these properties are needed. For example, a
task such as finding multiple presences of the same
individuals in a time window does not need signatures to
be persistent; likewise, analyzing the changing behavior
of a single individual over time may not need signatures
to be discriminating.

• We consider specific signatures — some previously
known, others new — for communication graphs and
study what basic properties they have, using extensive
experiments with real data. This helps identify which
signatures are suitable for each of the tasks.

• We complement our conceptual results with a detailed
experimental study on two concrete applications in en-
terprise network traffic. We adopt the framework for
respective tasks. Our results show that signatures based on
the combination of a few application-desired properties is
quite effective.

In what follows, we first introduce our framework for
analyzing signatures in Section II, the properties we desire,
and an analysis of their values for a variety of applications. In
Section III, we describe various signature schemes based on
expected features of communication graphs, and their charac-
teristics. We evaluate signatures empirically, first studying the
general characteristics in Section IV, and then for particular
applications in Section V. We lastly discuss scalability issues
in Section VI, then survey related work and give concluding
remarks.

II. FRAMEWORK

Here we describe our framework for designing and evaluat-
ing topological signatures for communication graphs. We de-
fine the domain of our signatures, and three general properties
for evaluating them. Finally, we discuss how these properties
relate to specific applications of signatures.

A. Individuals and Labels

A communication graph is defined by the observed patterns
of communications between nodes representing individual
users. However, we observe only the labels of these nodes
rather than the actual identities of the individuals who are
communicating. For example, we may see traffic on a network
between pairs of IP addresses, or calls between pairs of
telephone numbers. These may be unique to individuals, but

not necessarily: an IP address may be dynamically reassigned
to another user, a cell phone may be loaned to a friend, etc.1

What we can do is to analyze the observed communication
between nodes in the graph, and infer the behavior of indi-
viduals. We need the assumption that the hidden mapping of
individuals to node labels in the graph is for the most part
consistent over time: if the mapping of every label is randomly
reassigned at every time step, then the task of building good
signatures becomes appreciably harder, especially if only basic
information about the communications is available. Indeed,
many of the applications we discuss here concern finding
examples where the mapping from users to labels is slightly
perturbed. In subsequent sections, we concentrate on building
signatures based on the observable labels, while understanding
that our purpose is to use the signatures to identify the behavior
of individuals.2

B. Signature Space

Let Gt = 〈V,Et〉 be a communication graph that has
been aggregated over some time interval at t.3 The graph
may be revealed as a sequence of directed edges (v, u), and
then aggregated, or may arrive as a set of aggregated edges.
An edge (v, u) ∈ Et represents communication exchanges
from node v to u in Gt, and the weight of edge (v, u),
denoted C[v, u], reflects the “volume” (e.g., frequency) of this
communication. For each node v ∈ V , we denote by I(v) and
O(v) the set of v’s in-neighbors and out-neighbors during the
time interval, respectively. That is, I(v) = {u|(u, v) ∈ Et}
and O(v) = {u|(v, u) ∈ Et}. In many common cases the
nodes are partitioned into two distinct classes, such as clients
and servers, and so the induced graph is bipartite. A bipartite
communication graph Gt = 〈V1 + V2, Et ⊆ V1 × V2〉, with
nodes partitioned into disjoint sets V1 and V2, has directed
edges (v, u) ∈ Et with v ∈ V1 and u ∈ V2.

To define our signatures, we make use of a relevancy
function, w, so that wvu indicates the relevance of u to v.
Initially, assume w is given; we later discuss choices of w.

Definition 1: (Graph Signature) We define a communica-
tion graph signature σt(v) for node v ∈ V at time t as a subset
of V with top-k associated weights4, that is,
σt(v) := {(u, wvu)|u 6= v ∈ V,wvu ≥ w

(|V |−k)
v , wvu ∈ <+},

where k < |V |; w
(i)
v is the ith order statistic of {wvu|u ∈ V },

that is, w
(1)
v ≤ w

(2)
v ≤ . . . ≤ w

(i)
v ≤ . . . ≤ w

(|V |)
v .

When the graph is bipartite, we may restrict the signature
for nodes in V1 to consist only of nodes in V2, especially if
the size of the sets is unbalanced, i.e. |V1| � |V2|. Otherwise,

1However, we consider a group of people sharing a node, e.g., a family with
a shared Internet connection, or even a computer program with a particular
communication pattern, to represent an “individual” in our setting if the group
membership is consistent over time.

2We use the terms “individuals” and “users” interchangeably; likewise,
“labels” and “nodes”.

3In practice, V = Vt may vary between windows, but only by a small
amount.

4The top weights follow naturally since w quantifies node relevance, and
thus filters out noise while pruning storage space.



the treatment of bipartite graphs is the same as that for general
graphs.

We deliberately restrict the scope of the signature space to
include only graph features. Although some prior work on
related questions has used features which do not fit into this
setting, such as the maker of the cellphone or the age of the
blog user associated with a node, and those based on interar-
rival distributions [13], this definition is sufficiently broad to
capture a large class of possible signature schemes. In many
common settings only communication “flows” are revealed, in
the form of graph edges aggregated over multiple occurrences
and summarized as total volumes, such as Call Detail Records
in telephony [5] and NetFlow for summarizing IP traffic at a
router [20]. In addition, this definition conforms with prior
work in [5]. Thus, this restriction allows us to thoroughly
explore signature schemes in a well-defined, useful space.
Moreover, this definition lends to more human comprehensible
signatures, and simple descriptions of causes for differences.

The above definitions leave room for many alternatives.
Designing a good signature requires much insight and care.
We discuss how to select an appropriate set of nodes with
associated weights (“signature scheme”) in Section III. Next
we introduce some general properties that are desirable for any
signature, and discuss how they apply to a variety of problems.

C. Signature Properties

The traditional function of a signature is to authenticate
an individual’s identity via handwritten depictions of his or
her name. In our context, signatures are based on profiling
interactions specific to the individual. As with the handwritten
case, a useful communication signature should satisfy the
following properties:

Definition 2: (General Properties)
• Persistence: an individual’s signature should be fairly sta-

ble across time, that is, not differ much when comparing
similarities at consecutive time intervals. Slowly evolv-
ing signatures may be acceptable but abruptly changing
signatures are not; otherwise, it will not give a reliable
way to identify the individual.

• Uniqueness: one individual’s signature should not
“match” another’s (defined below). That is, if two sig-
natures match, then they should belong to the same
individual.

• Robustness: the ability to identify an individual from a
signature should not be sensitive to small perturbations.
Any noise introduced in the process of providing a
signature should not interfere with its effectiveness.

To measure these properties and so be able to compare
different signature schemes, we need a way to match identities
based on signatures. A natural approach involves defining
distance functions Dist(σ1, σ2) between two signatures σ1

and σ2. Then we can more precisely define and measure
persistence in terms of the distance between a node’s signature
at two different time steps; uniqueness in terms of the distance
between a given node’s signature and that of another node in
the graph; and robustness as the distance between a node’s

Applications Persistence Uniqueness Robustness
Multiusage Detection Low High High
Label Masquerading High High Medium
Anomaly Detection High Low High

TABLE I
DIFFERENT APPLICATIONS AND THEIR REQUIREMENTS

signature with and without small perturbations. That is, for
a fixed v we measure the three graph properties, given some
node u 6= v, as follows (w.l.o.g., fix 0 ≤ Dist(·, ·) ≤ 1):

• Persistence: 1−Dist(σt(v), σt+1(v))
• Uniqueness: Dist(σt(v), σt(u))
• Robustness: 1−Dist(σt(v), σ̂t(v)), where σ̂t(v) has been

slightly perturbed from σt(v).
These definitions can accommodate different choices for Dist
and σ̂t(v). We can now compare different signature schemes
with respect to persistence, uniqueness and robustness using
distance measures. These are defined so that a larger value in
each case indicates greater presence of these properties, up to
1 (perfect).

Because of the hidden mapping from individuals to labels,
some trivial signature schemes do not suffice. We could assign
each node v the signature σ(v) = {(v, 1)}: the signature
is the node label. This is insufficient for persistence and
uniqueness, since the signature relates only to the node, and
not the individual: if the user changes, the signature of the
node remains the same and so it fails.

D. Applying Signatures

We now specify some example tasks that involve analyzing
communication patterns, and discuss which properties of a sig-
nature (listed above) are needed to solve it. Table I summarizes
these observations.

Multiusage Detection. Multiusage occurs when a single in-
dividual exhibits similar behavior via multiple node labels
during the same time period; detecting such multiusage has
also been called “Anti-Aliasing” [23]. This could be the
result of malicious behavior such as in link spam where
websites attempt to manipulate search engine rankings through
aggressive interlinking to simulate popular content, or benign
behavior such as a single individual communicating from
multiple distinct node labels. The key signature property
needed is uniqueness, since the assumption is that if nodes
have distinct users then they have dissimilar signatures. To
detect multiusage, we compute Dist(σt(v), σt(u)) for node
pairs within the tth time window, and look for high degrees
of pairwise similarity.

Label Masquerading. Label masquerading occurs when one
user switches all his or her communication from one node to
originate from another. An example of this is the repetitive
debtors problem [10], where a consumer switches accounts
with no intention of paying for his or her usage. This has im-
plications for data anonymization as a user who is effectively
unable to masquerade is susceptible to anonymity intrusion.



Characteristics Properties
Engagement persistence, robustness
Novelty uniqueness
Locality uniqueness
Transitivity persistence, robustness

TABLE II
COMMUNICATION GRAPH CHARACTERISTICS AND PROPERTIES

The key signature properties required here are persistence and
uniqueness. On the assumption that such masquerades are
relatively rare within the whole graph, to find instances we
seek node pairs where there is very little or no similarity within
one time window of interest, but very similar behavior in
subsequent windows. Formally, the detection process involves
computing the persistence values 1−Dist(σt(v), σt+1(u)), for
each v, and uniqueness values of a fixed v Dist(σt(v), σt(u)),
for each u 6= v. A masquerader who switches from v to u
is likely to be detected when corresponding persistence and
uniqueness values are both high.

Anomaly Detection. We define an anomaly as an abrupt
and discernible change in the behavior of a fixed label v
observed in consecutive time windows. This change could be
the result of malicious behavior such as fraud, or could be due
to benign factors such as one individual going on vacation
(resulting in a change in communication patterns). The key
signature property that will be useful for detecting anomalies
is persistence. Robustness is also needed, as we expect some
noise and variation over time. Uniqueness is not as important
here: we can tolerate some nodes have similar signatures, since
we only compare signatures of the same node over time. A
simple algorithm to detect anomalies from signatures is to
compute value given by the above definition of persistence,
1−Dist(σt(v), σt+1(v)), for each v, and reporting those v with
unusually small values. Consequently, signatures that exhibit
higher persistence over a longer term will be more effective
at detecting anomalies.

III. EXAMPLE SIGNATURE SCHEMES

The framework in Section II leaves a lot of scope for
different signature schemes that satisfy the desired properties.
In this section, we study different features of communication
graphs that help us build useful signatures.

• Engagement/Communication strength: the edge weights
in communication graphs indicate the amount of interac-
tion between each pair. So a heavier edge should make
the participating pair of nodes “closer” to each other, and
hence more likely to figure in each other’s signatures.
Basing signatures on these larger weights should make
the signatures robust to small perturbations. Further, we
can assume that high interaction in one time period
predicts high interaction in future time periods, and so
will improve persistence.

• “Novelty” of neighbors: typically communication graphs
exhibit a “power-law”-like distribution of node degrees,
so a few nodes have very high degree, but the majority

have smaller (constant) degree. A node with high in-
degree in a graph may be a poor member of a signature,
since it is not very discriminating. For example, a direc-
tory assistance number in the phone graph or a search
engine in the web traffic graph may be used by many
people, and hence be poor in distinguishing between
them. So nodes with lower in-degree are more “specific”,
and may be preferable for uniqueness.

• Locality: because of the degree distribution, communi-
cation graphs are far from complete, and instead some
nodes are much closer (in terms of graph hop distance)
than others. For a given node, choosing nearby nodes may
be more relevant than those that are far away, leading
to increased distinguishability and hence uniqueness. In
addition, a signature may be more human interpretable
if it relates to nodes in the immediate neighborhood
than seemingly arbitrary nodes scattered across the whole
graph.

• Transitivity/Path Diversity: communication graphs, al-
though not dense, are also far from being skeletal trees;
between pairs of nodes there are typically many paths. We
assume that the more connecting paths, the “closer” these
two nodes are (even if they are not directly connected).
That is, a signature is likely to be more persistent and
robust if it relates node pairs with multiple connecting
paths.

Table II summarizes the links between graph characteristics
and our desired signature properties.

We now describe a variety of signature schemes. Most
are quite simple to state, and based on extensions of prior
work. We emphasize that our concern is not the novelty or
otherwise of these signatures, but rather the evaluation within
our framework, and the extensive experimental comparison
which follows.

A. One-hop Neighbors Based Approaches

We first consider signature schemes that only pick from
the immediate (one-hop) neighbors in the graph. For each
neighbor j of i ∈ V , we compute a relevance measure
wij , indicating the computed importance of j to i. Following
Definition 1, we retain the k nodes j with the largest values
of wij . For bipartite graphs, for each i ∈ V1, we retain the k
nodes j among V2 with the largest values of wij . Ties may
be broken arbitrarily, and if there are fewer than k nodes with
non-zero values of wij , we retain only this subset.

Definition 3: The Top Talkers (TT) scheme sets wij =
C[i, j]/

∑
(i,v)∈Et

C[i, v]. That is, the signature of i consists of
the (at most) k nodes adjacent to i with the highest incoming
edge weights wij from i.
This might correspond to the most called telephone numbers,
or the most visited web sites, for i. The definition only
takes into account Communication Strength, and is implicit in
the “Communities of Interest” work, for detecting fraudulent
activity [5]. A feature of that work was that it additionally
created a signature from the combination of multiple time-
steps by using an exponential decay function applied to older



data. It is straightforward to apply these definitions over a set
of modified edge weights C ′[i, j], which reflect an appropriate
exponential decay or other combination of historical data.
Hence, we treat such time decay as orthogonal to our main
line of inquiry, and do not consider it explicitly any further.

Definition 4: The Unexpected Talkers (UT) scheme sets
wij = C[i, j]/|I(j)|. Thus the signature for i consists of the
(at most) k nodes j with the largest incoming edge weights
from i, scaled by the number of j’s incoming edges.

By factoring in “Novelty” of neighbors, this definition
downweights nodes which might be universally popular and
dominate signatures, leading to false matches and hence low
uniqueness. The prevalence of such nodes will depend on
characteristics of the setting inducing the communication
graph. For example, there are relatively few nodes of this kind
in the telephone call graph: although people may regularly
call directory assistance, they will typically call friends and
family more often, hence such nodes are unlikely to dominate
their signature. However, in the web traffic graph, one can
observe sites which attract a lot of incoming traffic, from
many different users, such as search, web mail, and video
sites. Having such nodes in a signature is unlikely to provide
a good signature. One could remove such nodes altogether.
However, there can be many such nodes, and the list evolves
over time as new nodes attract interest. Secondly, there is
still some information in the set, to create some signature
even if these are the only destinations a node i communicates
with. Other functions of |I(j)| and C[i, j] are possible (e.g.,
C[i, j] log(|V |/|I(j)|), by analogy with the TF-IDF measure).
In our detailed experiments, we did not see much variation in
results for different scaling functions.

B. Multi-hop Neighbors Based Approach

The one-hop approach is highly appropriate for certain
graphs, e.g. the telephone call graph. But there are other
communication graph settings where no one-hop signature can
do well. Consider the (bipartite) communication graph induced
by customers hiring movies. It is unlikely that any customer
will rent the same title in two subsequent time periods. Thus,
no matter how one-hop neighbors are weighted, signatures
will have poor persistence. But we can at least hope for
somewhat better signatures if we look beyond the immediate
neighborhood.

For a multi-hop signature based approach to be successful,
we need to be able to find nodes and weights outside the
immediate (one-hop) neighborhood of node i that neverthe-
less accurately represent i. So, even if i communicates with
completely different sets of nodes in each time period, our
hypothesis is that there is sufficient information in the broader
link structure of the graph so that we will find a set of
nodes and weights for i that are similar in both time periods
(persistence) while being different to those found for other
nodes (uniqueness). Clearly, the validity of this will depend
on the nature of the communication graph. We propose an
example signature scheme, and validate it experimentally on
a variety of graphs.

Scheme Characteristics Properties
TT locality, engagement uniqueness, robustness
UT novelty, locality uniqueness
RWR transitivity, engagement persitence, robustness
RWRh locality, transitivity persistence, uniqueness, robustness

TABLE III
PROPERTIES USED BY SIGNATURE SCHEMES

Definition 5: The Random Walk with Resets (RWR) sig-
nature scheme is defined as follows: starting from node i,
we define ~wi = [wij ]|V |×1 as the steady-state probability
vector, where wij is the probability that a random walk from
i occupies node j ∈ V . Each step in the random walk either
selects an edge to follow with probability proportional to the
edge weight or, with probability c, returns to node i.
As before, we take the k largest wijs in ~wi to define the
signature for i. Although this is the stationary distribution of
a random walk, it is can be computed exactly. The definition
of wij is equivalent to the personalized PageRank [9] with an
input set of preferences equal to the single node i and can be
computed as follows.

Computation of RWR. Recall that C is the adjacency
matrix of the graph Gt from which we compute the transition
matrix P . Here P (i, j) = C[i, j]/

∑|V |
j=1 C[i, j] denotes the

probability of taking edge (i, j) from node i. Let ~si be the
start-node vector with 1 in position i and 0 elsewhere. Then
the steady-state probability vector ~ri can be solved by using
the iterative approach ~rl

i = (1 − c)P~rl−1
i + c~si, where ~ri

is initialized to ~si and c is the probability of resetting. This
quickly converges [2], in time O(|E|) per iteration.

Computation of RWRh
c . RWRh

c modifies the above scheme
by restricting the random walk to nodes at most h hops from
i. To compute RWRh

c , we take the iterative algorithm defined
above, and proceed for only h iterations. When c = 0 and
h = 1, RWRh is identical to the Top Talkers scheme. By
increasing h, we tradeoff between the local (TT) scheme and
the global (RWR) scheme.

Table III summarizes the schemes in terms of communica-
tion graph characteristics exploited and the resulting signature
properties from Section II-C that are captured. Based on our
analysis of application requirements, we reason that RWR
will perform well at anomaly detection; RWRh will succeed
at label masquerading, and TT will be good for multiusage
detection.

IV. EVALUATIONS OF SIGNATURE PROPERTIES

In this section, we evaluate the quality of signature schemes
on various data sets with respect to persistence, uniqueness
and robustness. In particular, we focus on two real data sets:
flow data from an enterprise network; and database query
logs. All experiments were performed on a dual 2.8GHz
desktop machine with 2GB RAM. From each graph, we select
signatures for each individual using the TT, UT and RWR
schemes outlined in Section III.
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(a) Network flow data
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(b) User query logs

Fig. 1. Signature persistence and uniqueness on two real data sets.

A. Data Sets

Enterprise network data. We collected six weeks’ worth of
flow records from a large enterprise network. LAN switches
and a Network Interface Card were configured to monitor
all traffic from more than 300 local hosts including desktop
machines, laptops and some servers; these hosts are the focal
point of our analysis. We captured all outgoing flows from the
local hosts to external hosts in the network. No communica-
tions between local hosts are visible on the monitored links.
In this study we used TCP traffic only, and removed weekend
data from our data set for purpose of a more consistent per-day
traffic mix. The total six week collection yielded more than 1.2
GB of network flow records, and contains about 400K distinct
IPs. The flows were aggregated over regular time windows to
form communication graphs. We used an interval of five days
to present results; the results were similar with other window
sizes. The weight of a directed edge was measured as the
total number of TCP sessions during the time interval. In all
experiments, we used the signature length of k = 10,5 which
is half of the average local host’s out-degree.

User query logs. Our second data set consisted of 820K
tuples summarizing a set of queries issued by users to a data
warehouse. The logs recorded which tables were queried, but
not the attributes accessed within each table. The data contains
851 distinct users and 979 distinct tables. Given a sequence
of (userID, tableID) “edges”, we split the trace into windows
covering five consecutive time periods. Here, the edge weight
is the number of times that the user accessed the table within
the time period. In all experiments, we used a signature length
of k = 3, half the average number of tables a user accessed

5Due to space limitations, we omit discussion about how we chose k. This
issue was investigated in [10], and is beyond the scope of this paper.

per period.

B. Distance Functions
In our evaluation, we employed a variety of distance

functions to compare signatures.6 They are generalized from
known measures, and take into account both set overlap as
well as weighted occurrence. Formally, given two signatures
σ1 and σ2, where σi = {(uij , wij)|j = 1..ki} is of length ki,
let Si = {uij |j = 1..ki} be the set of u’s in σi. We considered
four distance functions:

DistJac(σ1, σ2) = 1− S1 ∩ S2

S1 ∪ S2
;

DistDice(σ1, σ2) = 1−
∑

j∈S1∩S2
(w1j + w2j)∑

j∈S1∪S2
(w1j + w2j)

;

DistSDice(σ1, σ2) = 1−
∑

j∈S1∩S2
min(w1j , w2j)∑

j∈S1∪S2
max(w1j , w2j)

;

DistSHel(σ1, σ2) = 1−
∑

j∈S1∩S2

√
w1j · w2j∑

j∈S1∪S2
max(w1j , w2j)

.

It is easy to verify that all these distance functions yield
values in [0, 1]. DistJac is based on Jaccard coefficient, where
the node weights are not taken into account; it is minimized
when S1 = S2, and it equals 1 when their overlap is empty.
DistDice is an extension of the Dice criterion [10], which
factors in node weights; DistSDice can be thought of as a
scaled version of DistDice: it gives an added premium if the
individual weights in S1 and S2 are similar. By using min
in the numerator, however, we may be penalizing too much
for non-equal individual weights, since all that matters is the
smaller one rather than some combination of the two. DistSHel

overcomes this based on Hellinger distance [10].

6These functions were chosen based on their simplicity and naturalness,
though other functions are certainly suitable.
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Fig. 2. ROC curves from network data.

AUC TT UT RWR3
0.1 RWR5

0.1 RWR7
0.1

DistJac 0.9086 0.8827 0.9177 0.9087 0.9052
DistDice 0.9093 0.8826 0.9256 0.9172 0.9167
DistSDice 0.9035 0.8812 0.9207 0.9086 0.9066
DistSHel 0.9094 0.8827 0.9238 0.9162 0.9173

(a) AUC from network flow data.

AUC TT UT RWR3
0.1 RWR5

0.1 RWR7
0.1

DistJac 0.9935 0.9969 0.9901 0.9882 0.9877
DistDice 0.9935 0.9969 0.9901 0.9882 0.9877
DistSDice 1.0000 1.0000 1.0000 1.0000 1.0000
DistSHel 1.0000 1.0000 1.0000 1.0000 1.0000

(b) AUC from user query logs.

Fig. 3. AUC across different signature schemes.

C. Experimental Results

Signature persistence and uniqueness. For each t, we
summarize the persistence (resp. uniqueness) values us-
ing µp(t), sp(t) — the mean and standard deviation of
{persistencev(t)|v ∈ V } (resp. µu(t), su(t) — the mean and
standard deviation of {uniquenessv,u |v, u ∈ V, v 6= u}). We
display the “span” of persistence and uniqueness values as an
ellipse: its center is at (µp(t), µu(t)); sp(t) and su(t) are the
respective (x and y) diameters. Over all different time periods
we observed very similar results. Figure 1 illustrates results
from one time window in depth. We present results from TT,
UT and RWRh

0.1 with h = 3, 5, 7 and observe that TT lies
between UT and RWRh

0.1 in the plots, for both data sets and
all distance functions. 7 This is consistent with our intuition
that UT downweights universally popular nodes to enhance
uniqueness; RWRh

0.1 selects most relevant nodes to i from
beyond i’s immediate neighborhood to represent it persistently.

The above figures compare the signature schemes separately
in terms of persistence and uniqueness but do not capture the
trade-off between the two in a single statistic. For this, we use

7When c is as large as 0.9, RWRc scheme converges to TT, so we focus
on small c values, such as RWRh

0.1.
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Fig. 4. Robustness on network data

ROC Curves, a standard measure in statistics [17]. Given Gt

and Gt+1, for each node v we computed Dist(σt(v), σt+1(u))
for all u ∈ V , and returned a ranked list, where u with a
smaller Dist-value to v was ranked higher. Our hypothesis is
that across time, a node behaves more similar to itself than
to others. Therefore in v’s ranked list, v should ideally be
ranked the first. The ROC curve starts at the origin (0, 0) and
traverses the ranked list of nodes from the top. If the element
is v, the ROC curve goes up by a step of 1; otherwise, the
ROC curve goes to the right by a step of 1/(|V | − 1). That
is, the x-axis is false positives and y-axis is true positives. We
can then compute the Area Under the ROC Curve (AUC). If
the AUC is 0.5, the signature scheme is no better than random
selection; higher AUC values indicate better accuracy, up to
1 (perfect). We report the average AUC over all v’s. Figure 2
shows the results on the flow data using DistSHel; ROC curves
from other distance measures look very similar.

Figure 3(a) summarizes AUC across different signature
schemes per distance measure for the flow data. The multi-
hop neighbors based schemes achieved better AUCs than
their one-hop counterparts. Among RWRh

0.1 schemes, RWR3
0.1

outperformed the other two. A further observation is that the
difference between the AUC from RWR5

0.1 and RWR7
0.1 is

small enough to be ignored. Other experiments (not shown)
with RWRh

0.1 for h > 7 all converged to RWR7
0.1, suggesting

that having more than 5 hops does not bring in drastically “new
information”. This is due in part to the graph having a small
diameter: for all h larger than the diameter of the graph, RWRh

coincides with RWR∞, the unbounded random walk. We
repeated the experiments on user query logs, and summarize
AUC values in Figure 3(b). All signature schemes behave
almost equally well on this data set (almost perfectly), with
UT being slightly better than the others. In what follows we
use RWR3

0.1 as the best representative of the RWR schemes,
and do not show results for other parameter settings.

Signature robustness. To evaluate the robustness of the
signature schemes, we randomly inserted and deleted edges
to obtain a perturbed graph G′

t. Let σ(v) and σ̂(v) denote v’s



TT UT RWR
persistence medium low high
uniqueness medium high low
robustness high low medium

TABLE IV
RELATIVE BEHAVIOR OF THE SIGNATURE SCHEMES.

signatures constructed from Gt and G′
t, respectively. Given a

bipartite graph Gt and parameter α, we inserted α|Et| new
edges. First, a node v′ ∈ V1 was sampled proportional to its
outdegree, that is, with probability |O(v′)|/

∑
v |O(v)|. Then

a node u′ ∈ V2 was sampled proportional to its indegree, that
is, with probability |I(u′)|/

∑
u |I(u)|. The weight of (v, u)

(initially 0 if edge (v, u) did not previously exist) was assigned
independently of C[v, u], but from the total distribution of
all edge weights rather than uniformly. For deletions, we
sampled existing edges proportional to their edge weights and
decremented the weight by one unit, repeating β|Et| times.

Since our interest in this paper is in identity matching, we
are interested in whether a signature is more similar to its
perturbed self than to signatures of other nodes. We again
used ROC curves to investigate this and used each v ∈ V in
Gt as a query against V in G′

t, reporting the AUC values in
Figure 4 for two different parameter settings: α = β = 0.1
and α = β = 0.4. TT was the most robust, followed by RWR.
UT was the least robust, which is to be expected due to nodes
with high indegree (and thus high frequency) being discounted,
although the relative difference between all methods is very
small.
Summary. Table IV summarizes the relative behavior of the
signature schemes. We observe an interesting trade off between
the three considered schemes: none strictly dominates any
other over all three properties. Next we see a clearer separation
when applying signatures, which emphasize the properties to
differing degrees.

V. APPLICATION EVALUATION

We discuss two applications in detail, and evaluate them
empirically on enterprise network flow data.

Multiusage Detection. Recall the discussion of multiusage
detection in Section II-D. With network flow data, the problem
is to find the set of IPs being multiple connection points (home,
office, wireless hotspot) per individual. Our algorithm to detect
such an IP set containing v computes the uniqueness values
Dist(σ(v), σ(u)) for all nodes u observed within the same
time window. We report those nodes u with low Dist-values
(high similarity).

To evaluate the use of signatures for this task, we obtained
additional data mapping users to their registered IP addresses,
and identified the set of users U who made use of multiple
addresses within the enterprise network (of course, this ground
truth is not available to the signature-based algorithms). For
each user u ∈ U , we denote its set of registered IPs as Su. We
expect a signature with high uniqueness and robustness to be
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Fig. 5. Multiusage detection: ROC curves

best. Therefore, our hypothesis is that in one communication
graph, signatures for IPs belonging to the same user look more
similar to each other, compared to the pairwise similarities
between IPs of different users.

For each v ∈ Su (u ∈U ), we computed Dist(σ(v), σ(w))
for all w ∈ V , and derived a ranked list of V sorted by these
distances. From these we produced an average ROC curve
over all v ∈

⋃
u∈U Su, starting at the origin (0, 0). When

we traverse the ranked list from the top, if a node is in Su,
the ROC curve goes up by a step of 1/|Su|; otherwise, the
ROC curve goes to the right by a step of 1/|V − Su|. So the
x-axis measures false positives and y-axis true positives. If
the hypothesis is correct, and we can use signatures for this
task, then the IPs in Su should be ranked higher than others.
We plot the results across the various schemes in Figure 5.
Across all distance functions, TT consistently dominates the
other two schemes. This agrees with our prediction in Section
III that multiusage detection calls for TT, due to its emphasis
on uniqueness and robustness.

Label Masquerading. For this problem, we simulated mas-
querading by perturbing f |V | randomly selected nodes (de-
noted P ) in V , for some fraction f . We created a bijective
mapping between nodes in P , and applied this mapping
to the communications. We denote the mapping as EP =
{(v, u)|v, u ∈ P}, where (v, u) means that v (and all of v’s
communications) are relabelled with u. Given graphs Gt and
Gt+1 from consecutive time periods, a pair (v, u) ∈ EP means
that node v in Gt+1 is relabelled with u, while v’s label in Gt

remains unchanged. We evaluate our methods on how well
they are able to recover EP .

Based on the discussion in Section II-D, the detection
algorithm is given in pseudo-code in Algorithm 1. Here M
returns the set of local hosts not identified as masqueraders;
OP is the estimate for EP . We see that an output (v, u)



Algorithm 1 DETECTLABELMASQUERADING(Gt, Gt+1)
1: Init M := ∅, Op := ∅
2: for each v ∈ V do
3: if 1−Dist(σt(v), σt+1(v)) > δ then
4: M := M ∪ {v}
5: else
6: ∀u ∈ V , A[u, v] := 1−Dist(σt(v), σt+1(u))
7: if ∃u 6= v, A[v, u] is among v’s top-` largest and A[u, u] ≤ δ then
8: OP := OP ∪ {(v, u)}
9: else

10: M := M ∪ {v}
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Fig. 6. Accuracy of label masquerading detection.

satisfies two conditions: (1) both v and u look different from
themselves across time (i.e., low persistence values, from Step
3 and 7 in Algorithm 1); but (2) they look more similar
to each other than to others (i.e., high persistence between
themselves, from Step 7). We evaluate the various signature
schemes for this problem based on the standard information
retrieval criterion of accuracy |M∩(V−P )|+|OP∩EP |

|V | , which
measures the percentage of correctly classified hosts, labeled
either as “non-suspect” (i.e., v /∈P ) or with the new label of
the node. This combines notions of false positives and false
negatives.

In our algorithm, the persistency threshold δ should be
a good cutoff between local hosts whose signatures look
persistent and those who are not. Based on empirical results,
we set δ to

P
v∈V (1−Dist(σt(v),σt+1(v)))

c|V | , c ∈ N, as a fraction
of the average self-similarity across time (scaled by c). In
particular, we considered c = 3, 5, 7 in our experiments, and
observed very similar results. Figure 6 compares the accuracy
of various schemes with c = 5, for various `-values, as a
function of fraction of the nodes perturbed.

As expected, accuracy increase as ` increases. Label mas-
querading should only affect a small fraction of nodes, so
we focus our discussion and conclusions on lower values of
f . In this range, the RWR scheme outperforms TT and UT.
This coincides with our expectations, since our analysis of
this application indicated that label masquerading requires a
signature with high persistence and high uniqueness. Accord-

ing to Figure 2, which evaluates signature schemes on these
measures with network data, RWR is the method of choice.

VI. EXTENSIONS

In general, communication graphs can become extremely
large (e.g., the graph of all phone calls or internet connections
made over the course of a week). Here, we outline some of
the scalability issues that arise under such massive data.
Scalable signature computation. When the communication
graphs are large, even storing the graph can become infeasible.
Instead we need compact data structures that can process an
observed sequence of communications (defining edges in the
graph), from which we can extract (approximate) signatures.
Our assumption is that although the total volume of edges
is too massive, we can at least record some constant amount
of information about each node in turn: this is the “semi-
streaming” model of graph stream processing [19]. Any given
signature scheme will need a different approach in this re-
stricted model, here we outline methods for the signature
schemes used here for illustration. For the Top Talkers, we
need to find the approximate heaviest-weight neighbors of
node i. If the communication is pre-aggregated, we can just
keep a heap of heavy edges; but more realistically, we see
each individual communication, and want to recover the most
frequent. We can use summary structures such as a CM sketch
for each node to find its heaviest outgoing edges, and hence
its signature [3]. For Unexpected Talkers, the situation is more
complex. Here, we can additionally keep an FM sketch for
each node, to find its incoming degree [7]. To find the signature
for a node i, we can use the CM sketch to estimate C[i, j], and
the FM sketch to estimate |I(j)| for each node j; combining
these gives an approximation of C[i, j]/|I(j)| as required. For
schemes based on Random Walk with Reset, there is less prior
work to draw on. Techniques in [25] give approaches to make
the comptuations more scalable, based on appropriate block-
wise decompositions of the graph; extending these to the full
semi-streaming model remains an open problem.
Scalable signature comparison. When there are large num-
ber of nodes with signatures, applications based on compar-
ing many signatures together become expensive (potentially
quadratic in the number of nodes). At the heart of many
applications discussed above is the problem of, given a sig-
nature, finding the most similar signature(s) from a particular
(sub)set. This fits the set up of the nearest neighbor problem.
Even for moderately small signature sizes, this can become
expensive, and so we can turn to approximate nearest neighbor
algorithms. Here, different approaches are needed for each
different distance function, rather than signature scheme. For
example, efficient solutions exist where the distance function
is the Jacard distance, by using an approach based on Locality
Sensitive Hashing [14].

VII. RELATED WORK

Signatures (and fingerprints) were classically studied as
an application of statistical pattern recognition, an area of
study with a long history of techniques for feature selection



and classification [15]. However, communication graphs give
more contextual information to work with over such generic
techniques.

Usage profiling in graphs (and networks) has been studied
in multiple settings [22], [27], [16], [25], [13], [21]. However,
the goal of these works is to model behavior aggregated at the
level of the entire graph to detect network-wide anomalies.
In [26], the so-called usage entropy of each IP address is
computed, but this is for identifying dynamic IP address
ranges rather than profiling single users. Usage profiling at
the granularity of the individual has been studied for activity
monitoring [6], for user recognition [24], and for enterprise
security [18]. The approach uses complex rules on records of
individual activity requiring detailed data storage.

Cortes et al. initiated the study of “COI-based” signatures,
which makes use of communication graph topology to design
individual’s signatures in a concise way for detecting fraudu-
lent users [4], [5], identifying repetitive debtors [10] and pre-
dicting links for viral marketing [12]; similar techniques were
also applied to identify authors from bibliographical citations
in [11]. However, they only focused on particular signatures
and their applicability to the motivating tasks. We do not know
of any prior work that proposed a principled approach such
as ours for a detailed classification of properties of signatures
and studying applications based on what properties they need
for signatures to be useful.

VIII. CONCLUSIONS AND FUTURE WORK

We have attempted to take a very general approach to
problems of defining and analyzing signatures in communica-
tion graphs. We proposed a framework for understanding and
analyzing such signatures based on the three fundamental and
natural properties of persistence, uniqueness and robustness.
We justified these properties by showing how they impact
a broad set of applications. We explored several signature
schemes in our framework and evaluated them on real data
in terms of these properties. In particular, our study on
two concrete applications demonstrate their effectiveness in
practice. This study underlined the fact that there is not one
single signature scheme which is good for all applications, but
rather that different signatures are needed, depending on what
balance of the three properties they provide. We believe that
a larger suite of properties of signatures are needed for the
space of all applications that signatures will be useful for.

We have highlighted issues of scalability for building and
applying signatures as an important extension; as communi-
cation graphs grow ever larger, it will be increasingly vital
to ensure that these schemes scale to such massive settings.
It remains the case that finding suitable signatures for any
task is more of an art than a science, with effectiveness
determined experimentally. In this sense, our proposal of
specific signatures for communication graphs and their ap-
plication to the specific tasks is such a study. But beyond
this, our framework is general and can be applied broadly.
One significant challenge of practical importance will be to
automate this process to the extent possible.

ACKNOWLEDGMENT

We would like to thank Theodore Johnson and Oliver
Spatscheck at AT&T for their help to collect data.

REFERENCES

[1] J. Baumes, M. Goldberg, M. Hayvanovych, M. Magdon-Ismail, W. Wal-
lace, and M. J. Zaki. Finding hidden group structure in a stream of
communications. In ISI, 2006.

[2] P. Berkhin. A survey on pagerank computing. Internet Mathematics,
2(1):73–120, 2005.

[3] G. Cormode and S. Muthukrishnan. An improved data stream summary:
The count-min sketch and its applications. In LATIN, 2004.

[4] C. Cortes and D. Pregibon. Signature-based methods for data streams.
Data Min. Knowl. Discov., 5(3):167–182, 2001.

[5] C. Cortes, D. Pregibon, and C. Volinsky. Communities of interest.
Lecture Notes in Computer Science, 2189, 2001.

[6] T. Fawcett and F. Provost. Activity monitoring: Noticing interesting
changes in behavior. In SIGKDD, 1999.

[7] P. Flajolet and G.N. Martin. Probabilistic counting. In FOCS, 1983.
[8] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense

subgraphs in massive graphs. In VLDB, 2005.
[9] T. H. Haveliwala. Topic-sensitive pagerank. In WWW, 2002.

[10] S. Hill, D. Agarwal, R. Bell, and C. Volinsky. Building an effective
representation for dynamic network. Computational and Graphical
Statistics, 15(3):584–608(25), 2006.

[11] S. Hill and F. Provost. The myth of the double-blind review? Author
identification using only citations. SIGKDD Explorations, 5(2):179–184,
2003.

[12] S. Hill, F. Provost, and C. Volinsky. Network-based marketing: Iden-
tifying likely adopters via consumer networks. Statistical Science,
21(2):256–276, 2006.

[13] A. Hussain, J. Heidemann, and C. Papadopoulos. Identification of
repeated DOS attacks. In INFOCOM, 2006.

[14] P. Indyk, and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In STOC, 1998.

[15] A. Jain, R. Duin, and J. Mao. Statistical pattern recognition: A
review. IEEE Transaction on Pattern Analysis and Machine Intelligence,
22(1):4–37, 2000.

[16] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic
anomalies. In SIGCOMM, 2004.

[17] S. Mason and N. Graham. Areas beneath the relative operating char-
acteristics (ROC) and relative operating levels (ROL) curves: Statistical
significance and interpretation. Q. J. R. Meteorol. Soc, 30:291–303,
1982.

[18] P. McDaniel, S. Sen, O. Spatscheck, J. van der Merwe, B. Aiello,
and C. Kalmanek. Enterprise security: A community of interest based
approach. In NDSS, 2006.

[19] S. Muthukrishnan. Data streams: Algorithms and applications. Founda-
tions and Trends in Theoretical Computer Science, 1(2), 2005.

[20] Cisco netflow. http://www.cisco.com/warp/public/cc/
pd/iosw/ioft/neflct/tech/napps wp.htm.

[21] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating
signatures for polymorphic worms. In Symposium on Security and
Privacy, 2005.

[22] C. Noble and D. Cook. Graph-based anomaly detection. In SIGKDD,
2003.

[23] J. Novak, P. Raghavan, and A. Tomkins. Anti-aliasing on the web. In
WWW, 2004.

[24] D. Song, P. Venable, and A. Perrig. User recognition by keystroke
latency pattern analysis. Technical Report, 1997.

[25] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Relevance search and
anomaly detection in bipartite graphs. SIGKDD Explorations Special
Issue on Link Mining, 7(2):48–55, 2005.

[26] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt and T. Wobber How
Dynamic are IP Addresses In SIGCOMM, 2007.

[27] K. Xu, Z. Zhang, and S. Bhattacharyya. Profiling internet backbone
traffic: behavior models and applications. SIGCOMM Comput. Commun.
Rev., 35(4):169–180, 2005.


