
Finding Hierarchical Heavy Hitters
in Streaming Data

GRAHAM CORMODE
AT&T Labs–Research
and
FLIP KORN
AT&T Labs–Research
and
S. MUTHUKRISHNAN
Rutgers University
and
DIVESH SRIVASTAVA
AT&T Labs–Research

Data items that arrive online as streams typically have attributes which take values from one or more hierarchies
(time and geographic location; source and destination IP addresses; etc.). Providing an aggregate view of such
data is important for summarization, visualization, and analysis. We develop an aggregate view based on certain
organized sets of large-valued regions (“heavy hitters”) corresponding to hierarchically discounted frequency
counts. We formally define the notion ofHierarchical Heavy Hitters(HHHs). We first consider computing
(approximate) HHHs over a data stream drawn from a single hierarchical attribute. We formalize the problem
and give deterministic algorithms to find them in a single pass over the input.

In order to analyze a wider range of realistic data streams (e.g., from IP traffic monitoring applications), we
generalize this problem to multiple dimensions. Here, the semantics of HHHs are more complex, since a “child”
node can have multiple “parent” nodes. We present online algorithms that find approximate HHHs in one pass,
with provable accuracy guarantees. The product of hierarchical dimensions form a mathematical lattice structure.
Our algorithms exploit this structure, and so are able to to track approximate HHHs using only a small, fixed
number of statistics per stored item, regardless of the number of dimensions.

We show experimentally, using real data, that our proposed algorithms yield outputs which are very similar
(virtually identical, in many cases) to offline computations of the exact solutions whereas straightforward heavy
hitters based approaches give significantly inferior answer quality. Furthermore, the proposed algorithms result
in an order of magnitude savings in data structure size whileperforming competitively.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data Mining

General Terms: Algorithms, Experimentation, Performance, Theory

Additional Key Words and Phrases: data mining, approximation algorithms, network data analysis

Author’s addresses:{graham,flip,divesh}@research.att.com; muthu@cs.rutgers.edu.
Work carried out while first author was at the Center for Discrete Mathematics and Computer Science (DIMACS);
Bell Laboratories; and AT&T Labs–Research. The work of the first and third authors was partially supported by
NSF ITR 0220280 and NSF EIA 02-05116.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2007 ACM 0362-5915/2007/0300-0001 $5.00

2 · Graham Cormode et al.

1. INTRODUCTION

Emerging applications in which data isstreamedtypically have hierarchical attributes. The
quintessential example of data streams is IP traffic data such as packets in an IP network,
each of which defines a tuple (Source address, Source Port, Destination Address, Des-
tination Port, Packet Size). IP addresses are naturally arranged into hierarchies: indi-
vidual addresses are arranged into subnets, which are within networks, which are within
the IP address space. For example, the address 66.241.243.111 can be represented as
66.241.243.111 at full detail, 66.241.243.* when generalized to 24 bits, 66.241.* when
generalized to 16 bits, and so on. Ports can be grouped into hierarchies, either by nature
of service (“traditional” Unix services, known P2P file sharing port, and so on), or in some
coarser way: in [Estan et al. 2003] the authors propose a hierarchy where the points in the
hierarchy are “all” ports, “low” ports (less than 1024), “high” ports (1024 or greater), and
individual ports. So port 80 is an individual port which is inlow ports, which is in all ports.

Data warehouses also frequently consist of data items whoseattributes take values from
hierarchies. For example, data warehouses accumulate dataover time, so each item (e.g.,
sales) has a time attribute of when it was recorded. We can view hierarchical attributes
such as time at various levels of detail: given transactionswith a time dimension, we can
view totals by hour, by day, by week and so on. There are attributes such as geographic
location, organizational unit and others that are also naturally hierarchical. For example,
given sales at different locations, we can view totals by store, city, state, country and so on.

Our focus is on aggregating and summarizing such data. A standard approach is to
capture the value distribution at the finest detail in some succinct way. For example, one
may use the most frequent items (“heavy hitters”), or histograms to represent the data
distribution as a series of piece-wise constant functions.We call theseflat methods since
they focus on one (typically, the finest) level of detail. Flat methods are not suitable for
describing the hierarchical distribution of values. For example, an item at a certain level
of detail (e.g., first 24 bits of a source IP address) made up byaggregating many small
frequency items may be a heavy hitter item even though its individual constituents (the full
32-bit addresses) are not. In contrast, one needs ahierarchy-awarenotion of heavy hitters.
Simply determining the heavy hitters ateach levelof detail will not be the most effective:
if any node is a heavy hitter, then all its ancestors are heavyhitters too. For example, if a
32-bit IP address were a heavy hitter, then all its prefixes would be, too.

1.1 One Dimensional Hierarchical Heavy Hitters

We begin by introducing the concept of Hierarchical Heavy Hitters (HHHs) over data
drawn from a single hierarchical attribute, before we consider the more general problem
on data with multiple hierarchical attributes. Figure 1 shows an example distribution of
N = 100 items over a simple hierarchy in one dimension, with the counts for each internal
node representing the total number of items at leaves of the corresponding subtree. The
traditional heavy hitters definition is, given a thresholdφ, to find all items with frequency
at leastφN . Figure 1 (a) shows that settingφ = 0.1 yields two items with frequency above
10. However, this does not adequately cover the full distribution, and so we seek a defini-
tion which also tells us about heavy hitters at points in the hierarchy other than the leaves.
A natural approach is to apply the heavy hitters definition ateach level of generalization: at
the leaves, but also for each internal node. The effect of this definition is shown in Figure 1
(b). But this fails to convey the complexity of the distribution: is a node marked as signifi-

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 3

(a) Leaf Heavy Hitters (b) All Heavy Hitters

(c) Hierarchical Heavy Hitters

Fig. 1. Illustration of HHH concept(N = 100, φ = 0.1)

cant merely because it contains a child which is significant,or because the aggregation of
its children makes it significant?

This leads us to our definition of HHHs given a fractionφ: find nodes in the hierarchy
such that their HHH count exceedsφN , where the HHH count is the sum of all descendant
nodes which have no HHH ancestors. This is best seen through an example, as shown in
Figure 1 (c). Observe that the node with total count 25 is not an HHH, since its HHH count
is only 5 (less than the threshold of 10): the child node with count 20 is an HHH, and so
does not contribute. But the node with total count 60 is an HHH, since its HHH count is
15. Thus we see that the set of HHHs forms a superset of the heavy hitters consisting of
only data stream elements, but a subset of the heavy hitters over all prefixes of all elements
in the data stream. The formal definition of this problem is given in Section 2.3.

A naive way of computing HHHs, using existing techniques formaintaining heavy hit-
ters, would be to find heavy hitters over all prefixes of all elements in the data stream and
then discard extraneous nodes in a post-processing step. Weargue that this approach can
be considerably improved in practice (in terms of the space used and the answer quality)
by incorporating knowledge of the hierarchy into algorithms for computing heavy hitters.
We present algorithms that maintain sample-based summary structures, and provide deter-
ministic error guarantees for finding HHHs in data streams.

1.2 Multi-dimensional Hierarchical Heavy Hitters

In practice, data warehousing applications and IP traffic data streams have several hierar-
chical dimensions. In the IP traffic data, for example, Source and Destination IP addresses
and port numbers together with the time attribute yield5 dimensions, although typically
the Source and Destination IP addresses are the two most popular hierarchical attributes.
So, in practice, one needs summarization methods that work for multiple hierarchical di-

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

4 · Graham Cormode et al.

(*,*)

(a,1) (b,1) (b,2)
6 2 3 2

(a,*) (*,1) (*,2)(b,*)

(a,2)

(a) Frequency distribution withN = 13

5

(a,1) (b,1) (b,2)

(a,*) (*,1) (*,2)(b,*)

(a,2)

(*,*)

3
4 2

(b) Heavy hitters withφ = 0.35

2

(a,1) (b,1) (b,2)

(a,*) (*,1) (*,2)(b,*)

(a,2)

(*,*)

(c) HHHs under overlap rule

(a,1) (b,1) (b,2)

(a,*) (*,1) (*,2)(b,*)

(a,2)

(*,*)

(d) HHHs under split rule

Fig. 2. Illustration of HHH in two dimensions

mensions. This calls for generalizing HHHs to multiple dimensions. As is typical in many
database problems, generalizing from one dimension to two or more dimensions presents
many challenges.

Multidimensional HHHs are a powerful construct for summarizing hierarchical data. To
be effective in practice, the HHHs have to betruly multidimensional. Heuristics like ma-
terializing HHHs along one of the dimensions will not be suitable in applications. For ex-
ample, as described by Estan et al. [2003], aggregating traffic by IP address might identify
a set of popular domains and aggregating traffic by port mightidentify popular application
types, but to identify popular combinations of domains and the kinds of applications they
run requires aggregating by the two fieldssimultaneously.

A major challenge is conceptual: there are sophisticated ways for the product of hier-
archies on two (or more) dimensions to interact and how precisely to define the HHHs in
this context is not obvious. In the previous example, note that traffic generated by a partic-
ular application running on a particular server will be counted towards both the total traffic
generated by that port as well as the total traffic generated by that server. Hence, there is
implicit overlap. Alternatively, one may wish to count the traffic along one but not both of
these generalizations (e.g., traffic on low ports is generalized to total port traffic whereas
traffic on high ports is generalized to total server traffic).In this case, the traffic is split
among its ancestors such that the resulting aggregates are on disjoint sets. This so-called
“split case” was studied by Cormode et al. [2004]; here we focus on the “overlap” case.

As with summarization of data with a single hierarchical attribute, flat methods are inad-
equate because they do not capture heavy hitters at higher details, say traffic from a24-bit
subnet to another24 bit subnet. One could try to run these flat methods at every possible

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 5

combination in the hierarchies, but this rapidly becomes too expensive. For example, deter-
mining a heavy hitter at every combination of detail of each hierarchy would be ineffective:
any heavy hitter of 32-bit Source and Destination IP addresses means that all32 × 32 of
thei bit Source IP prefix andj bit Destination IP prefix for eachi andj are heavy hitters.
As in one dimensional HHHs, we need to discount the “descendant” heavy hitters while
determining HHHs at any given level of detail. However, unlike the one dimensional case,
it is not even clear how to discard nodes that do not qualify asHHHs in a post-processing
step.

We show a simple example in Figure 2. Consider a two-dimensional domain, where
the first attribute can take on valuesa andb, and the second1 and2. Figure 2(a) shows
a distribution where(a, 1) has count 6,(a, 2) has count 3,(b, 1) has count 2, and(b, 2)
has count 2. Moving up the hierarchy on one or other of the dimensions yields internal
nodes:(a, ∗) covers both(a, 1) and(a, 2) and has count 9;(∗, 2) covers both(a, 2) and
(b, 2), and has count 5. Settingφ = 0.35 means that a count of 5 or higher suffices, thus
there is only one Heavy Hitter over the leaves of the domain. In the one-dimensional case,
we can think of the count of a non-HHH node being propagated upto its ancestors. If we
allow a node to count the contributions of all its non-HHH descendants, then we get the
overlap case (since one input item may contribute to multiple ancestors becoming HHHs).
Figure 2(c) shows the result on our example: the node(∗, 2) becomes an HHH, since it
covers a count of 5.(∗, 1) is not an HHH, because the count of its non-HHH descendants
is only 2. Note that the root node is not a HHH since, after subtracting off the contributions
from (a, 1) and(∗, 2), its remaining count is only 2. The contrasting split case ismore
procedural: we ‘split’ the count of non-HHH node evenly between its ancestors, so there is
no double-counting. Thus the split count of(∗, 2) in Figure 2(d) is only 2.5, and the count
of (∗, 1) is 1. Under this definition, the only non-leaf HHH is(∗, ∗). Since this case turns
out to be somewhat more straightforward [Cormode et al. 2004], we focus exclusively on
the overlap definition from now on.

1.3 Contributions

We address the challenge of defining and computing Hierarchical Heavy Hitters (HHHs),
and our contributions are as follows:

(1) We introduce HHHs over one and multiple dimensions and give formal definitions
of them. For online scenarios, we define an approximate notion of HHHs as well as
accuracy and coverage guarantees required for correctness.

(2) We present online algorithms that find approximate HHHs in one pass, with accuracy
guarantees, and provide proofs of their correctness. The algorithms use a small amount
of space and can be updated to keep pace with high-speed data streams. The algorithms
keep upper- and lower-bounds on the counts of items. Here, the items exist at various
nodes in the hierarchy, and we must keep additional information to avoid over- and
under-counting in the presence of parent(s) and descendants.
In multiple dimensions, the lattice property of the productof hierarchical dimensions
is crucially exploited in our online algorithms to track approximate HHHs using only
a small, fixed number of statistics per candidate node, regardless of the number of
dimensions. We present two general online strategies for calculating HHHs over one
and multiple hierarchical dimensions: one that maintains the full hierarchy down to
a fringe (“Full Ancestry”), and one that allows intermediate node deletions (“Partial

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

6 · Graham Cormode et al.

Ancestry”). We present a complete analysis of the space and time requirements of our
algorithms.
In comparison with our prior work [Cormode et al. 2003; 2004], here we provide
additional algorithms, give full proofs of important properties of these algorithms, and
carefully analyze their space and time requirements.

(3) We do extensive experiments with data from real IP applications and show that our
proposed online algorithms yield outputs that are very similar (virtually identical, in
many cases) to their offline counterparts. Our experiments demonstrate that (a) the
proposed “hierarchy-aware” online algorithms yield high quality outputs with respect
to the exact answer (almost identical) and significantly better than Heavy Hitters based
approaches that do not account for descendant Heavy Hitters, based on a variety of
precision-recall measures; (b) they have competitive performance and save an order
of magnitude with respect to both space usage and output size, compared to finding
Heavy Hitters on all prefixes; (c) our proposed Partial Ancestry strategy is better when
space usage is of importance whereas our proposed Full Ancestry strategy is better
when update time and output size is more crucial; and (d) the performance of the
proposed algorithms in a data stream system is implementation-sensitive, and must
be lightweight (e.g., based on hashing rather than a pointer-based data structure) and
non-blocking to keep up with fast streaming rates, which we describe herein how to
do.
Our prior work [Cormode et al. 2003; 2004] did not evaluate the accuracy of proposed
online algorithm outputs with respect to the exact answers using precision-recall anal-
ysis, and did not evaluate the performance of these algorithms in a real data stream
management system.

1.4 Outline

Section 2 formally defines hierarchical heavy hitters, for 1-d as well as 2-d, and their ap-
proximate online variants. Section 3 provides streaming algorithms to solve the approxi-
mation problems defined in Section 2. Section 4 experimentally evalutes these algorithms.
Section 5 describes how the algorithms can be extended for distributed processing and
handling deletions.

2. PROBLEM DEFINITIONS AND BOUNDS

2.1 Notation

Formally, we model the data asN d-dimensional tuples. Each attribute in the tuple is drawn
from a hierarchy, and the attribute dimensions are numbered1 to d. Let the (maximum)
height of the hierarchy, or depth, of theith dimension behi. For concreteness, we give ex-
amples consisting of pairs of 32-bit IP addresses, with the hierarchy induced by considering
each octet (i.e., 8 bits) to define a level of the hierarchy. For our illustrative examples then,
d = 2 andh1 = h2 = 4; our methods and algorithms apply to any arbitrary hierarchy. The
generalizationof an element on some attribute means that the element is rolled-up one level
in the hierarchy of that attribute: the generalization of the IP address pair (1.2.3.4, 5.6.7.8)
on the second attribute is (1.2.3.4, 5.6.7.*). We denote bypar(e, i) the parent of elemente
formed by generalizing on theith dimension:par((1.2.3.4, 5.6.7.∗), 2) = (1.2.3.4, 5.6.∗).
In one-dimension, we may abbreviate this topar(e). An element isfully generalon some
attribute if it cannot be generalized further, and this is denoted “*”: the pair (*, 5.6.7.*)

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 7

1.2.3.*, 5.6.7.*

1.2.3.4, 5.6.7.8

1.2.3.4, 5.6.7.*1.2.3.*, 5.6.7.8

1.2.*, 5.6.7.8

1.2.3.4, 5.*1.2.3.*, 5.6.*1.2.*, 5.6.7.*1.*, 5.6.7.8

, 5.6.7.8 1., 5.6.7.* 1.2.*, 5.6.* 1.2.3.*, 5.* 1.2.3.4, *

1.2.3.*, *1.2.*, 5.*1.*, 5.6.**, 5.6.7.*

, 5.6. 1.*, 5.* 1.2.*, *

1.*, *

*

, 5.

1.2.3.4, 5.6.*

Fig. 3. The lattice induced by the element (1.2.3.4, 5.6.7.8)

is fully general on the first attribute but not the second. Conversely, an element isfully
specifiedon some attribute if it is not the generalization of any element on that attribute.
We denote the generalization relation by≺: if p is generalizable toq, then we write this as
p ≺ q, with p � q defined as(p ≺ q)∨ (p = q). The generalization relation over a defined
set of hierarchies generates alattice structure that is the product of the 1-d hierarchies.
Elements form the lattice nodes, and edges in the lattice link elements and their parents.
The node in the lattice corresponding to the generalizationof elements on all attributes
we denote as “*”, or ALL, and has countN . We will overload this notation to define the
sublattice of asetof elementsP as(e � P) ⇐⇒ (∃p ∈ P.e � p). The total number of
nodes in the lattice,H is computed asH =

∏d
i=1(hi + 1).

An example is shown in Figure 3, where we show how the leaf element(1.2.3.4, 5.6.7.8)
appears at each point in the lattice. Modeling the structureof products of generalizations
of items as a lattice is standard on work on computing data cubes [Agarwal et al. 1996] and
iceberg cubes [Ng et al. 2001]. It is worth noting that structures induced by elements can
partially overlap with each other. For example,(1.2.∗, 5.6.7.∗), and all its generalizations,
are also common to the structure induced by the element(1.2.2.1, 5.6.7.7).

In order to facilitate referring to specific points in the lattice, we may label each element
in the lattice with a vector of lengthd whoseith entry is a non-negative integer that is at
mosthi, indicating the level of generalization of the element. Thepair (1.2.3.4, 5.6.7.8)
is at generalization level [4,4] in the lattice of IP addresspairs, whereas (*, 5.6.7.*) is at

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

8 · Graham Cormode et al.

[0,3]. Theparentsof an element at[a1, a2, . . . , ad] are the elements where one attribute
has been generalized in one dimension; hence, the parents ofelements at [4,4] are at [3,4]
and [4,3]; items at [0,3] have only one parent, namely at [0,2], since the first attribute is
fully general. Two elementsx andy arecomparableunder the� relation if the label ofy
is less than or equal to that ofx on every attribute: items at [3,4] are comparable to ones
at [3,2], but [3,4] and [4,3] have no comparable elements. WedefineLevel(i), the ith
level in the lattice as the set of labels where the sum of all values in the vector isi: hence
Level(8) = {[4, 4]}, whereasLevel(5) = {[1, 4], [2, 3], [3, 2], [4, 1]} andLevel(0) =
{[0, 0]}. We may overload terminology and refer to an element being a member of the
setLevel(l), meaning that the item has a label which is a member of that set. No pair
of elements with distinct labels inLevel(i) are comparable: formally, they form an anti-
chain in the lattice.1 Equivalently, ifx andy are at the same level, thenx 6≺ y andy 6≺
x. The levels in the lattice range from0 to L =

∑

i hi, and hence the total number of
levels in the lattice isL + 1. We define the functionGeneralizeTo which takes an
item and a label, and returns the item generalized to that particular label. For example,
GeneralizeTo((1.2.3.4, 5.6.7.8),[0,3]) returns (*, 5.6.7.*).

2.2 Heavy Hitters

We first review the definition of heavy hitters, before formally defining hierarchical heavy
hitters later in this section.

DEFINITION 1 HEAVY HITTER. Given a (multi)setS of sizeN and a thresholdφ, a
Heavy Hitter(HH) is an element whose frequency inS is no smaller thanφN . Let fe

denote the frequency of each elemente in S. ThenHH = {e | fe ≥ φN}.

The heavy hitters problemis that of finding all heavy hitters, and their associated fre-
quencies, in a data set. In any data set, there can be no more than1/φ heavy hitters, by the
definition of heavy hitters. This problem is solved exactly over a stored data set, using the
SQL query:

SELECT S.elem, COUNT(*)
FROM S
GROUP BY S.elem
HAVING COUNT(*) >= φN

In the data stream model of computation, where each data element in the stream can be
examined only once, it is not possible to keep exact counts for each data element without
using a large amount of space. To use only small space, the paradigm of approximation
is adopted, to output only items that occur with a proportionbetween(φ − ǫ) andφ. The
problem of finding HHs in data streams has been studied extensively (see [Cormode and
Muthukrishnan 2003] for a brief survey), based on the maintenance of summary structures
that allow element frequencies to be estimated.

2.3 Hierarchical Heavy Hitters over One Dimension

The preceding description of a lattice also applies when thedata is drawn from a single
hierarchical attribute, but the structure is simplified significantly. In particular, the lattice is
simply a tree, because each (non-fully general) item has exactly one parent. We can define
the Hierarchical Heavy Hitters over such a domain in an inductive fashion.

1An anti-chain is a set of elements from the lattice such that no two elementsin the set are comparable.

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 9

DEFINITION 2 HIERARCHICAL HEAVY HITTER. Given a (multi)setS of elements from
a hierarchical domainD of depthh, and a thresholdφ, we define the set ofHierarchical
Heavy Hittersof S inductively.

—HHHh, the hierarchical heavy hitters at levelh (the leaf level of the hierarchy), are
simply the heavy hitters ofS.

—Given a prefixp from Level(l), 0 ≤ l < h in the hierarchy, defineFp =
∑

f(e) : (e ∈
S) ∧ (e � p) ∧ (e 6� HHHl+1). The setHHHl is defined as the set

HHHl+1 ∪ {p : (p ∈ Level(l)) ∧ (Fp ≥ φN)}

—The set of Hierarchical Heavy Hitters,HHH, is the setHHH0.

Note that, because we can attribute each item from the input to at most one of the Hi-
erarchical Heavy Hitters, and each HHH requires at leastφN items from the input, then
there can be at most1/φ HHHs in this setting.

Thehierarchical heavy hitters problemwe study is that of finding all hierarchical heavy
hitters, and their associated frequencies, in a data stream. The HHH problem cannot be
solved exactly over data streams in general without using space linear in the input size.
Hence, we will study the following (approximate) problem:

DEFINITION 3 HHH PROBLEM. Given a data streamS of N elements from a hierar-
chical domainD, a thresholdφ ∈ (0, 1), and an error parameterǫ ∈ (0, φ), theHierar-
chical Heavy Hitter Problemis to output a set of prefixesP ⊆ D, and approximate bounds
on the frequency of eachp ∈ P , fmin andfmax: such that the following conditions are
satisfied:

(1) accuracy:fmin(p) ≤ f∗(p) ≤ fmax(p), wheref∗(p) is the true frequency ofp in S,
i.e.,f∗(p) =

∑

e�p f(e); andfmax(p) − fmin(p) ≤ ǫN .

(2) coverage:For all prefixesq 6∈ P , φN >
∑

f(e) : (e � q) ∧ (e 6� P).

LEMMA 1. In one dimension, the size of the smallest set of Hierarchical Heavy Hitters
that satisfies the Coverage constraint is equal to the size ofthe exact HHHs,|HHH|.

PROOF. First, observe thatHHH satisfies the coverage constraint, by following the
definition ofFp. Now letX be a set satisfying coverage that is smaller thanHHH, the set
of HHHs computed by the exact algorithm. IfX andHHH differ, then letp be a prefix that
is in the symmetric difference of the two sets, and occurs at the deepest level,l, of those
items (if there are many such items, one can be chosen arbitrarily). There are two cases to
consider. (1)p ∈ HHH\X . This cannot be the case, since it means thatX violates the
coverage condition.HHH andX agree on all levels greater thanl and the exact algorithm
was “forced” to pickp, sincef(p) ≥ φN , and soX must includep as well or else it will
violate coverage. (2)p ∈ X\HHH. Then, becauseX andHHH agree on all items at
levels greater thanl, we can removep from X and replace it withpar(p) without violating
the coverage condition (becauseHHH does not violate coverage). This does not increase
the size ofX , and may in fact reduce its size ifpar(p) is already inX . Applying these two
arguments repeatedly, we show that by repeatedly “pushing up” (that is, applying case (2))
items inX , we will end up with a set that is identical toHHH, since eventually there will
be no itemsp that are in the symmetric difference of the two sets, and theywill be identical.
As every step did not increase the size of the setX , we must conclude that|HHH| ≤ |X |,
contradicting the initial assumption thatX was smaller.

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

10 · Graham Cormode et al.

This means that we will evaluate the quality of our solutions, which will guarantee to
meet the accuracy and coverage constraints, by the size of their output. We will use the
size of the setHHH (computed offline) to compare against.

2.4 Hierarchical Heavy Hitters in Multiple Dimensions

The general problem of findingMulti-Dimensional Hierarchical Heavy Hitters(HHHs)
is to find all items in the lattice whose count exceeds a given fraction, φ, of the total
count of all items, after discounting the appropriate descendants that are themselves HHHs.
This still needs further refinement, since in this setting itis not immediately clear how to
compute the count of items at various nodes in the lattice. Inthe previous section, with
just a single hierarchy, the semantics of what to do with the count of a single element
when it was rolled up was clear: simply add the count of the rolled up element to that of
its (unique) parent. In this more general multi-dimensional case, each item has multiple
parents — up tod of them. So this problem will vary significantly depending onhow
the count of an element is allocated to its parents. There aretwo fundamental variations to
consider, which differ in how we allocate the count of a lattice node that is not a hierarchical
heavy hitter when it is rolled up into its parents. Informally, the “overlap rule” allocates
the full count of an item to each of its parents and, therefore, counted multiple times,
in nodes that overlap. The overlap rule appears implicit in prior work on network data
analysis [Estan et al. 2003], to show patterns of traffic overa multidimensional hierarchy
of source and destination ports and addresses in what the authors call “compressed traffic
clusters”. Meanwhile, the “split rule” means that the countof an item is divided between
its parents in some way. The split rule is considered by Cormode et al. [2004], and we do
not discuss it further here, since it is less involved, and appears to have fewer applications.

For simplicity and brevity, we will describe the case where all the input data consists of
elements which are fully specified on every attribute, i.e.,leaf elements in the lattice. Our
methods naturally and obviously extend to the case where theinput can arrive as a mix of
partially and fully specified items, although we do not discuss this case in detail.

By analogy with the semantics for computing iceberg cubes, the overlap case says that
the count for an item should be given to each of its parents when the item is rolled up [Beyer
and Ramakrishnan 1999]. The HHHs in the overlap case are those elements whose count
is at leastφN whereN is the total count of all items, and0 < φ ≤ 1. When an item is
identified as an HHH, its count is not passed up to either of itsparents. This is one mean-
ingful extension of the 1-d case, where the count of an item being rolled up is allocated to
its onlyparent, unless the item is an HHH.

This seems intuitive, but there are many subtleties of this approach that will need to be
handled in any algorithm to compute the HHHs under this rule.Suppose we kept only
lists of elements at each level of generalization in the hierarchy, and updated these as we
roll up items. Then the iteme = (1.2.3.4, 5.6.7.8) with a count of one (we will write
fe to denote the count ofe, so herefe = 1), would be rolled up to (1.2.3.*, 5.6.7.8)
and (1.2.3.4, 5.6.7.*), each with a count of one. Rolling up each of these to the common
grandparent of (1.2.3.4, 5.6.7.8) would give (1.2.3.*, 5.6.7.*) with a count of two. This is
a problem, since this results from a single descendent with acount of one; we should like
each item to contribute at most once to the count. So additional information is needed to
avoid over-counting errors like this, and similar problems, which can grow worse as the
number of attributes increases. To formally define the problem, we introduce the notion of
the overlap count of an item, and will then show how to computethis exactly.

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 11

DEFINITION 4. Hierarchical Heavy Hitters with Overlap Rule Let the inputS con-
sist of a set of elementse and their respective countsf(e). LetL =

∑

i hi. The Hierarchi-
cal Heavy Hitters are defined inductively based on a threshold 0 < φ < 1.

—HHHL contains all heavy hitters at levelL: e ∈ S such thatfe ≥ φN .

—The overlap sublattice count of an elementp at Level(l) in the lattice wherel < L is
given byfl(p) =

∑

f(e) : (e ∈ S) ∧ (e � p) ∧ (e 6� HHHl+1). The setHHHl is
defined as the set

HHHl+1 ∪ {p : (p ∈ Level(l)) ∧ (fl(p) ≥ φN)}

—The Hierarchical Heavy Hitters with the overlap rule for the setS is the setHHH =
HHH0.

LEMMA 2. Consider the lattice induced by an element (as in Figure 3, and letA denote
the length of the longest anti-chain in this lattice. (i) In one dimension,A = 1; in two
dimensions,A = 1 + min(h1, h2). In higher dimensions, we haveA ≤ (

∏d
i=1(1 +

hi))/ maxi(1 + hi). (ii) The size of the setHHH under the overlap rule is at mostA/φ.

PROOF. (i) In a one-dimensional hierarchy and the induced lattice, clearly for any two
elements, one must be the ancestor of (or equal to) the other,hence the anti-chain has
size at mostA = 1. For two dimensions, we have a product of hierarchies. From an
element(x, y), we can find all its generalizations atLevel(min(h1, h2), which contains
1+min(h1, h2) items, none of which are comparable. For example, in Figure 3, Level(4)
contains(∗, 5.6.7.8), (1.∗, 5.6.7.∗), (1.2.∗, 5.6.∗), (1.2.3.∗, 5.∗), (1.2.3.4, ∗). To see that
this is the maximum possible, suppose w.l.o.g. thath1 < h2 and that we had more than
1 + h1 items: then at least two of them must be have the same value on the first attribute,
and are therefore comparable. The same logic shows the upperbound onA for higher
dimensions: two items are comparable if they share values inall but one of the dimensions,
and so the tightest bound comes from letting this last dimension be the one with greatest
depth.

(ii) The total number of HHHs is bounded in terms of the depth of the hierarchies. Each
item in the input can be counted towards multiple members ofHHH, but these HHHs
must be incomparable, else the item could not be counted towards all of them. Then these
HHHs must form an anti-chain in the lattice, and so we bound this count by the size of
the largest anti-chain. Hence, the sum of counts of HHHs can be at mostAN . Since each
HHH has count at leastφN , we conclude the number of HHHs under the overlap rule can
be at mostA/φ.

This gives evidence of the “informativeness” of the set of HHHs, and their conciseness.
By contrast, if we propagated the counts of each item to everyancestor and found the
Heavy Hitters at every level, then there could be as many asH/φ HHHs, whereH =
∏d

i=1(hi + 1). Even in low dimensions,H can be many times larger thanA.
In the data stream model of computation, where each data element in the stream can be

examined only once, it is not possible to keep exact counts for each data element without
using a large amount of space. To use only small space, the paradigm of approximation is
adopted, as formalized in the following definition.

DEFINITION 5. Online HHH Problem: Overlap Case The Multi-Dimensional Hier-
archical Heavy Hitters problem with the overlap rule on input S with thresholdφ is to

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

12 · Graham Cormode et al.

output a set of itemsP from the lattice, and their approximate countsfp, such that they
satisfy two properties:

(1) accuracy:fmin(p) ≤ f∗(p) ≤ fmax(p), wheref∗(p) is the true sublattice count ofp
in S, i.e.,f∗(p) =

∑

e�p f(e); andfmax(p) − fmin(p) ≤ ǫN .
(2) coverage:For all prefixesq 6∈ P ,

∑

f(e) : (e � q) ∧ (e 6� P) < φN.

This definition is identical to the definition of HHHs in one-dimension, extended to a
multidimensional setting. Note that for accuracy, we ask for an accurate sublattice count
for each output item, rather than the count discounted by removing the HHHs. This is a
useful quantity that we can estimate with high accuracy. By appropriate rescaling ofǫ,
one could find the discounted count accurately, however thiscomes at a high price for the
required space, multiplying by a factor proportional to thelargest possible number of HHH
descendants. It was shown by Hershberger et al. [2005] that such a factor is essentially
unavoidable, hence our focus on only providing accurate sublattice counts.

The “goodness” of an approximate solution is measured by howclose it is in size to that
of the exact solution. In the 1-d setting we proved in Lemma 1 the exact solution is the
smallest satisfying correctness and, hence, a smaller approximate answer size is preferred.
In the multi-dimensional problem, one can contrive examples where the approximate out-
put can be smaller than the exact one.

EXAMPLE 1. Suppose (1.2.*,5.6.*) has count 3
(1.3.*,5.6.*) has count 3
(1.4.*,5.6.*) has count 9
(1.4.*,5.7.*) has count 3
(1.4.*,5.8.*) has count 3
and set the thresholdφN to be 10, and errorǫN to be 2.

Suppose an approximate algorithm includes (1.4.*,5.6.*) in the output. Under the over-
lap semantics, the counts for (1.4.*,5.*) and (1.*,5.6.*) are 6, so the approximate algorithm
does not have to include these in the output. However, the exact definition would not output
(1.4.*,5.6.*) and so would lead to counts of 15 for (1.4.*,5.*) and (1.*,5.6.*). Thus both of
these items are HHHs under the exact definition. By repeatingthis structure several times,
replacing{2, 3, 4, 6, 7, 8} with distinct values, the exact algorithm can be forced to output
many more items than an approximate algorithm.

In the worst case, the output may beA times bigger than the smallest possible, where
A is the size of the longest anti-chain in the lattice, as defined before. Nevertheless, such
contrived examples seem rare in practice, and on real data wehave observed that the output
size of the exact algorithm always lower bounds the size of the approximate output. Exact
algorithms to compute HHHs in multiple dimensions were given by Cormode et al. [2004];
we do not repeat them here, since they follow almost directlyfrom the definition.

3. ONLINE ALGORITHMS

We develophierarchy-awaresolutions for the one- and multi-dimensional HHH prob-
lems, where new data stream elements only arrive and there are no deletions of previously
seen items. For this data stream model, we propose deterministic algorithms that main-
tain sample-based summary structures, with deterministicworst-case error guarantees for
finding HHHs. Here the user supplies error parameterǫ in advance and can supply any
thresholdφ at query time to outputǫ-approximate HHHs above this threshold.

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 13

Insert(element e, count c):
/* par(e) is the parent of e */
01 forall (p : e � p) do
02 if tp exists in T then
02 fp+ = c;
03 else
04 create tp;
05 fp = c;
06 ∆p = bcurrent − 1;

Compress():
01 for each te ∈ T do
02 if (fe + ∆e ≤ bcurrent)) then
03 delete te;

Output(threshold φ):
01 for each te in postorder do
02 if (fe + ∆e > φN) then
03 print(e, fe, fe + ∆e);

Fig. 4. Algorithm for Naive Strategy in arbitrary number of dimensions

3.1 Naive Algorithm

We first discuss a naive algorithm based on existing work thatwe will use as a baseline to
compare our various results. At a high level, this algorithmkeeps information for every
label in the lattice, that is, it keepsH independent data structures. Each one of these returns
the (approximate) Heavy Hitters for that point in the lattice. This will be a superset of the
Hierarchical Heavy Hitters, and it will satisfy the accuracy and coverage requirements for
any of our definitions of HHHs (one dimensional, or multi-dimensional overlap); however
it will be very costly in terms of space usage. It also becomesvery slow to process updates
as the dimensionality and depths of the hierarchies increase. We evaluate the output on the
metrics of the space used by the data structures, and the sizeof the output (i.e., number
of items output). We expect this naive algorithm to do badly by these measures. Hence,
we propose algorithms which keep one data structure to summarize the whole lattice, and
show that they are empirically better in terms of space and output size.

In detail, the naive method works as follows: for every update e, we compute all gen-
eralizations of this item and insert each one separately into a different data structure for
computing approximate counts of items. We ensure that thereis one data structure for each
different label. TheLossyCounting algorithm due to Manku and Motwani [2002] can
be used as a “black box” independently, one copy to summarizeall items with the same
label in the lattice structure.LossyCounting keeps track of a set of items seen in the
stream with lower and upper bounds on their counts. When an item is observed in the
stream which is recorded in the data structure, its bounds are updated accordingly; else, it
is inserted with a lower bound of 1 and an upper bound ofǫN . Periodically, a “compress”
operation is performed on the data structure, which removesall items whose upper bound
is less thanǫN . It can be shown that this algorithm guarantees accuracy ofǫN for all item
counts and requiresO(1

ǫ
log ǫN) space.

Since we useH independent instances of this algorithm, and place each update into each
of theseH instances, the naive algorithm has anO(H

ǫ
log ǫN) overall space bound. Note

that we could replace this algorithm with any approximate counting algorithm which finds
all items occurring more than a specified fractionφ of the time with accuracyǫ, such as the
Misra-Gries [1982] algorithm or that of Metwally et al. [2005]. We use Lossy Counting

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

14 · Graham Cormode et al.

here since it has good practical performance on the realistic data sets that we use, and
because it is the basis of the more advanced algorithms that we develop here, meaning we
can directly compare the space savings of our approach.

The desired HHHs can be extracted in post-processing as follows. The tuples are scanned
in postorder across levels. At each level, we output all Heavy Hitters that exceed theφN
threshold. It is a simple observation that this approach will satisfy the necessary accuracy
and coverage constraints in one dimension, and in higher dimensions; however, since it
makes no adjustment to reduce the count based on descendant HHHs, then the size of the
output will likely be much larger than the smallest possible. This naive algorithm can be
thought of as running “heavy hitters for every label”. The algorithm is given in Figure 4.

The time required to process each update isO(H) plus the periodic pruning of the data
structure every1/ǫ updates, which requires a linear scan of the data structure.The amor-
tized cost is therefore worst caseO(H log ǫN). Since the space used by Lossy Counting
is observed to be closer toO(1

ǫ
) [Manku and Motwani 2002], the amortized costs may be

dominated more by the insertion cost, which isO(H) per insertion.

3.2 One Dimensional Case

Our algorithms maintain a trie data structureT consisting of a set of tuples which corre-
spond to samples from the input stream; initially,T is empty. Each tuplete consists of
a prefixe that corresponds to elements in the data stream. Associatedwith each value is
a bounded amount of auxiliary information used for determining the lower- and upper-
bounds on the frequencies for elements whose prefix ise (fmin(e) andfmax(e), respec-
tively). The input stream is conceptually divided into buckets ofw =

⌈

1
ǫ

⌉

consecutive
insertions; we denote the current bucket number asbcurrent =

⌈

N
w

⌉

. There are two alter-
nating phases of the algorithms: insertion and compression. For every updatee received,
theInsert routine is called with parameterse and count 1. After everyw updates (i.e.,
on the bucket boundaries), theCompress routine is called to prune away unnecessary
information from the data structure, and keep it to a boundedsize. During compression,
the space is reduced via merging auxiliary values into the parent node and then deleting
these nodes. We will show worst case space bounds that do not depend on the sequence
of updates processed. The procedures for insertion and compression vary from strategy to
strategy and are described in more detail below. At any point, we can extract and output
HHHs given user-suppliedφ by calling theOutput routine. This framework is closely
based on theLossyCounting algorithm [Manku and Motwani 2002], which keeps sim-
ilar information and uses similar routines to find HHs. It forms the basis of our naive
algorithm, as described above. Next, we describe two strategies using this framework and
give the algorithms forInsert, Compress andOutput for each.

3.2.1 Full Ancestry Algorithm.Our first algorithm is a “hierarchy aware” version of
the naive algorithm. It extends the naive algorithm by tracking information across levels
of the hierarchy, rather than treating each level independently. The data structure tracks
information about a set of nodes that vary over time, but which always form a subtree of
the full hierarchy. When a new node is inserted, informationstored by its ancestors is used
to give more accurate information about the possible frequency count of the node. This has
the twin benefits of yielding more accurate answers and keeping fewer nodes in the data
structure (since we can more quickly determine if a node cannot be frequent and so does
not need to be stored). Thus we are able to prove that the algorithm maintains the required

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 15

Insert(element e, count c):
/* par(e) is the parent of e */
01 if te exists in T then
02 ge+ = c;
03 else
04 create te;
05 ge = c;
06 if (e 6=′ ∗′)
07 Insert(par(e), 0);
08 ∆e = me = mpar(e);
09 else
10 ∆e = me = bcurrent − 1;

Compress():
01 for each te ∈ T in postorder do
02 if ((te has no descendants)

∧(ge + ∆e ≤ bcurrent)) then
03 gpar(e)+ = ge;
04 mpar(e) = max(mpar(e), ge + ∆e);
05 delete te;

Output(threshold φ):
01 let Fe = fe = 0 for all e;
02 for each te in postorder do
03 if (ge + ∆e + Fe > φN) then
04 print(e, fe + ge, fe + ge + ∆e);
05 else
06 Fpar(e)+ = Fe + ge;
07 fpar(e)+ = fe + ge;

Fig. 5. Algorithm for Full Ancestry Strategy in one dimension

accuracy guarantees in space no worse than that used by the naive algorithm.
More formally, consider the set of nodes whose (unadjusted for HHH descendants) count

exceeds the fractionǫN for the current value ofN . This induces a proper subtree of the
hierarchical domain. The leaves of this subtree consist of nodes whose count exceeds this
threshold, but none of their children do. This set of leaves we refer to as “the fringe”,
and they form an anti-chain under the≺ relation. The goal of our first strategy is to (ap-
proximately) maintain the fringe as items arrive. In order to guarantee approximation, we
may keep information about some nodes which are not in the fringe, but we will prune our
data structure to remove as many nodes as possible that are not in the fringe. We enforce
the property that if we store information about any node in our algorithm, then all of its
ancestors are also stored. Hence, we denote this approach asthe “full ancestry” method.

We maintain auxiliary information(gp, ∆p) associated with each itemp, where thegp’s
arefrequency differencesbetweenp and its descendants{e}. That is,gp bounds the number
of nodes with prefixp that are not counted in descendant nodes ofp. This allows for fewer
insertions because, unlike the naive approach where we insert all prefixes for each stream
element, here we only need to insert prefixes until we encounter an existing node inT
corresponding to the inserted prefix. This is an immediate benefit due to being “hierarchy-
aware”.∆p represents an upper bound on our uncertainty in the count, which is set when
we insert the nodete. Naively, we could set∆p = bcurrent, by analogy withLossy
Counting [Manku and Motwani 2002], but we keep extra information in ancestor nodes
to give a tighter bound. Let{d(e)} denote the deleted children of a nodete. We observe
that one can improve the bounds on the∆e’s by keeping track ofme = maxd∈d(e)(gd +
∆d). This is easy to maintain: following the deletion of a child,updateme of its parent if

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

16 · Graham Cormode et al.

necessary. Thus, the auxiliary information associated with each elemente that is stored in
T is (ge, ∆e, me), wherege and∆e are defined above. We extend the definition ofm to
nodes that are not materialized in the data structure by setting mq = mpar(q) for nodesq
not inT . By applying this definition recursively, a value ofmq can always be found.

3.2.1.1 Computation of fmin and fmax.. For any prefixp, we compute

fmin(p) =
∑

e�p

ge

fmax(p) = fmin(p) + ∆p

if p is stored inT , and if not, we setfmax(p) = fmin(p) + mp = mp.
Insertion operation. To process a new update ofe, with an update weight ofc, we test to
see whethere is present inT . If so, then we just have to incrementge by c. Else, if not,
we recursively callInsert with (par(e), 0) (this ensures that the parent of the node is
inserted in the data structure), and create a node to represent e. We use theme from the
parent node to set∆e = mpar(e). Each insertion operation requires us to examine up to
H nodes inT in the worst case; however, in practice we expect this to be smaller since the
process only needs to find the closest ancestor ofe that is present inT .
Compress operation. During compression, we scan through the tuples in postorderand
find nodes satisfying(ge +∆e ≤ ⌊ǫN⌋). These correspond to nodes whose contribution is
sufficiently small that they can be removed without loss of accuracy. For each such node,
if it has no descendants, then it is deleted from the data structure (andmpar(e) is updated).
Consequently,T is a complete trie down to a “fringe”. Allq not stored inT must be
below the fringe. Any pruned nodestq must have satisfied(fmax(q) ≤ ⌊ǫN⌋) due to the
algorithm. If there are|T | tuples inT , then the cost to perform aCompress operation is
O(|T |). Below we show that|T | = O(H

ǫ
log ǫN).

Output operation. The Output function for this strategy takesφ as a parameter and
chooses a subset of the prefixes inT satisfying correctness. That is, we compute an over-
estimate of the adjusted sublattice count for each node by proceeding level by level from
the leaves (see Definition 4). We initializeFe, our estimate of the sublattice count of non-
HHH nodes, to zero for all nodes. We proceed up the hierarchy and updateFe as we go. If
a node is not an HHH, then we updateFpar(e) of its parent by adding onFe. However, if
the nodee is an HHH, then we do not propagate theFe count upward. We test whethere
is an HHH by comparingFe + ge +∆e to φN : this compares an upper bound on the count
of e to the threshold for being an HHH.

Figure 5 gives the algorithm. Below, we show that this correctly maintains the necessary
constraints.

THEOREM 1. The routines in Figure 5 guarantee the accuracy and coverageproperties
from Definition 3.

PROOF. Accuracy requires that the estimated count of a node is within anǫN additive
factor of the true count of the node. Our output routine computesfp as

∑

e≺p ge and
outputsfp + gp as the approximate sublattice count fore (in line 04 of the Output routine).
This is exactly equal to our earlier definition offmin(p). Observe thatfmin(p) counts only
insertions to nodes in the subtree defined byp, and is therefore no more thanf∗(p). We
argue thatfmax(p) is an upper bound onf∗(p) by induction over the sequence of insertion

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 17

and compression operations. Clearlyfmax(p) = 0 at the start of the stream is a valid
upper bound. When we compress, we delete nodes that satisfyfmax(p) ≤ ǫN (line 02 of
Compress), and we update them value ofp’s parent to be max ofmpar(p), fmax(p) (line
04). This ensures thatmpar(p) ≥ fmax(p) for deletedp values at all times (this is true even
if par(p) gets deleted: we derive a value ofmp for nodes that are not materialized in the
data structure because we definedmp = mpar(p)). When we (re)insert a node we set∆
based onmpar(p) (line 08 of Insert). Sincempar(p) ≥ fmax(p) whenp was deleted, and
no further insert operations have occurred to nodes inp’s subtree (elsep would have been
reinserted earlier), whilempar(p) can only have increased, thenfmax(p) continues to be
an upper bound onf∗

p , the true count ofp.
For the bounds on the uncertainty in our estimate off , we show that for any nodep,

fmax(p) − fmin(p) ≤ ǫN as follows. Ifp is present in the data structure, then it has a
value of∆p representing an upper bound onfmax(p)−fmin(p) that was instantiated when
p was inserted.∆p is instantiated based onmp, which is the maximum over a subset of
deleted nodes of theirfmax. The value ofmp is never more thanbcurrent, since this is the
requirement for a node to be deleted. Hence, because∆p in a tuple inT is never changed,
we concludefmax(p) − fmin(p) ≤ bcurrent ≤ ǫN . Similarly, for a nodep not present in
the lattice, it hasfmax(p) − fmin(p) = mp, where againmp is bounded bybcurrent by
the condition for compressing.

For coverage, we need to show that the output function is conservative, that is, based on
the information available in the summary, it outputs any node when it is possible that it is
above the threshold. We decide whether to output based on ourcomputation ofFp (line
03 in Output): this is computed similarly tofp, but does not include any contribution from
nodes that are included in the output set of nodes,P . We see that for any prefixq,

Fq + gq + ∆q = fmin(q) + ∆q −
∑

(e�q)∧(e�P)

ge

≥ (
∑

f(e) : e � q −
∑

f(e) : (e � q) ∧ (e � P))

=
∑

f(e) : (e � q) ∧ (e 6� P)

That is, our computed value is always an overestimate of the condition from Definition 3,
and so the algorithm guarantees coverage.

THEOREM 2. For a givenǫ, the Full Ancestry strategy finds HHHs inO(H
ǫ

log(ǫN))
space.

PROOF. Our proof proceeds in several steps. First, we show that thespace used by our
strategy is no more than that used by the same algorithm running on a modified version of
the input stream. Then we argue that the space used to find HHHson this modified stream
is no more than the space used by the Lossy Counting algorithmof Manku and Motwani
over this same stream [Manku and Motwani 2002]. We can then apply the space bounds
of that algorithm.

Consider the space used by our algorithm afterN updates have been seen. Then some
nodes are materialized in our summary. Let the set of nodes inour summary that have no
descendants that are also materialized define the fringe nodes (at timeN): FR = {p ∈
T |∀q ∈ T.q � p ⇒ q = p}. Observe that every element from the inputS is either a
fringe node itself, or it has exactly one fringe node as an ancestor. Given a leafe and

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

18 · Graham Cormode et al.

a set of fringe nodesFR, we rewrite the original stream of updates as a new stream, by
replacing every nodee in the update stream by thep ∈ FR such thate � p. We argue that
if we run our algorithm on this modified stream, then we will generate a virtually identical
data structure at timeN as when we run our algorithm on the original stream. In order
to do this, we will show that two invariants are preserved by the algorithm. We denote by
Sfull the algorithm running on the original stream, andS′

full the algorithm running on the
modified stream.

Property 1. For any nodee stored byS′
full with g, m and∆, the node representinge in

Sfull has the same values ofg, m and∆.
Property 2. For any nodee stored by our algorithms, all ancestorsp of e satisfy

fmax(e) ≤ fmax(p).

LEMMA 3. If both these properties are satisfied, then after processing the same input,
every node stored bySfull is also stored byS′

full, and further, that for every nodee stored
by S′

full, eithere is stored bySfull or, if e is below the fringe, thenp is stored bySfull,
wheree ≺ p andp ∈ FR.

PROOF. This we prove by contradiction: suppose first thate is stored bySfull but not
S′

full. Fore to have been deleted inS′
full, it must be the case that at some pointfmax(e)

was less thanbcurrent. But at the same timee should have been deleted inSfull, since
by Property 1, it has the same value offmax(e) = g + ∆. Note that all its descendants
would also have been deleted, since by Property 2, all theirfmax values were no bigger
than that ofe. Hence, we argue that this case cannot happen. Now, suppose thate is stored
by S′

full but not bySfull. Then a similar argument based on Property 1 shows thate must
be deleted by both algorithms at the same point. One difference to note is thatSfull may
store somee that is “below” the fringe of nodesFR. In this case, we argue that ifSfull

storese thenS′
full must store the fringe node that containse, i.e., thep ∈ FR such that

e � p.

This means that the sets of nodes stored by both versions of the algorithm are not com-
pletely identical, since several nodes may be stored bySfull corresponding to only one in
S′

full. However, at timeN , then since there are no nodes stored bySfull below the fringe
(since the state at this time defines the fringe), and so the set of prefixes stored inSfull and
S′

full are identical after seeing the whole input.

LEMMA 4. Our algorithm always maintains Properties 1 and 2.

PROOF. We now show that Properties 1 and 2 always hold, by inductionover the se-
quence of operations (Insert andCompress). The base case is to observe that initially
the data structures are empty, and so trivially both properties hold. For an insert case, there
are two cases to consider, depending on whethere is currently stored byS′

full or not.
Case 1. Insertion ofe which is already stored byS′

full. By Lemma 3, thene is also
stored bySfull, and by the inductive hypothesis,e has the same value offmax in both
versions. We update theg value for nodee and do not alter∆ or m, sofmax(e) increases
by the same amount in both versions, preserving Property 1. Similarly, for all descendants
of e, theirfmax all increase by the same amount, so Property 2 is preserved.

Case 2. Insertion ofe which is not stored byS′
full. By the above argument, thene is

not stored bySfull either, and consequently all descendants ofe are not stored by either
version. We inserte with g = c and∆ = mpar(e) in both versions of the algorithm, which

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 19

ensures Property 1. Thefmax of all ancestors increases by c, whilefmax(e) takes the value
of c+mpar(e). We observe for any nodep, thenmp < gp+∆p by the way them values are
created:mp represents the maximumg+∆ of a deleted descendant ofp. If mp ≥ gp +∆p

whenmp is set, thenp would also be deleted at the same time, so this is not possible. Then
mp is not modified (until another deletion occurs), whilegp + ∆p cannot increase, and so
we maintain the conditionmp < gp + ∆p. So, when we insert a new node and initialize
∆e = mpar(e), then we have∆e + ge = ∆e + 1 ≤ gpar(e) + ∆par(e) ≤ fmax(par(e)),
which thus ensures that Property 2 is met.

Case 3. Deletion ofe which is stored byS′
full. We know thate is stored by bothSfull

andS′
full, and has the same value offmax in both. However, in order to deletee from

S′
full, we must be sure that it has no descendants. Ife is one of the fringe nodes, then

descendants ofe may be present inS′
full correspond toe in Sfull. However, by Property

2, since these havefmax no greater than their ancestor, then ife can be deleted inSfull,
by Property 1 and 2, these descendants can all be deleted, andthene itself can be deleted.
We update the values ofmpar(e) identically in both cases, ensuring the preservation of
Property 1.

To complete the proof, we argue that the set of prefixes fromFR stored byS′
full is

a subset of the set of prefixes that would be stored by the LossyCounting algorithm of
Manku and Motwani [2002] run on the same stream.

LEMMA 5. Given the same input, our full ancestry algorithm will neverstore more
(leaf) elements thanLossyCounting.

PROOF. We argue that if an item is stored by our algorithm, then it isalso retained by
Lossy Counting. We consider the sequence of insertions of elements. Suppose our algo-
rithm encounters some element that it is not currently storing. We use∆e = mpar(e) to
insert the item with, noting that triviallyme ≤ bcurrent − 1 (this property is preserved by
every operation that affectsme in the algorithm given in Figure 5). Then there are two
cases to consider:
(i) the iteme is already being stored by Lossy Counting algorithm. Then, in Lossy Count-
ing, the item hasg′e + ∆′

e ≥ bcurrent (else it would have been compressed at the previous
bucket boundary), while we insert the item withc = 1 so ge + ∆e = mpar(e) + 1 ≤
bcurrent − 1 + 1 ≤ g′e + ∆′

e.
(ii) the item e is not already being stored by Lossy Counting. Then, we insert the items
e with ∆e = mpar(e) ≤ bcurrent − 1 = ∆′

e, andge = g′e = 1. In this case also,
ge + ∆e ≤ g′e + ∆′

e.
From this point on, we do not change∆′

e or ∆e, and we updateg′e andge by the same
amount for every insertion. Hence, the inequalityge + ∆e ≤ g′e + ∆′

e remains. We
therefore conclude that for as long as the iteme is stored by our algorithm it is also stored
by Lossy Counting: since the occurrence of the prefix in the Lossy Counting algorithm
has a higher value ofg + ∆, it will never get deleted before the copy in the full ancestry
algorithm (both algorithms use the same condition for deletion, testing whetherg + ∆ is
less thanbcurrent). Hence, the space required to store the fringe is at most that used by
Lossy Counting to represent the input.

The space used by Lossy Counting is at mostO(1
ǫ
log ǫN) [Manku and Motwani 2002].

Lastly, we observe that for each fringe node, there are at most H − 1 non-fringe nodes
also stored by our algorithm inT (these are the set of all ancestors of the element). So, we

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

20 · Graham Cormode et al.

Insert (element e, count c):
/* anc(e) is the closest ancestor of e */
/* par(e) is the immediate prefix of e */
01 if te exists in T then
02 ge+ = c;
03 else
04 create te;
05 ge = c;
06 if tanc(e) exists in T then
07 ∆e = me = manc(e);
08 else
09 ∆e = me = bcurrent − 1;

Compress():
01 for each te ∈ T do
02 if (ge + ∆e ≤ bcurrent) then
03 if (e 6=′ ∗′) then
04 Insert(par(e), ge);
05 mpar(e) = max(mpar(e), ge + ∆e);
06 delete te;

Output(threhold φ):
/* Fe =

P

x fx of non-HHH descendants of e */
01 let Fe = fe = 0 for all e;
02 Enqueue every fringe node;
03 while queue not empty do
04 Dequeue e;
05 if e not in T then
06 ∆e = ma(e);
07 if (ge + ∆e + Fe > φN) then
08 print(e, fe + ge, fe + ge + ∆e);
09 else
10 Fpar(e)+ = Fe + ge;
11 fpar(e)+ = fe + ge;
12 Enqueue par(e) if not already in queue;

Fig. 6. Algorithm for Partial Ancestry Strategy in one dimension

conclude that the space used by our algorithm is bounded byO(H
ǫ

log ǫN).

LEMMA 6. Each update in the full ancestry algorithm in one dimension takes amor-
tized timeO(H log ǫN).

PROOF. Each insertion takes time at mostO(H), in the case that none of the ancestors
of the inserted item are materialized. The amortized cost ofcompress dominates the over-
all cost of updates. Each compress requires a linear pass over the data structure, to remove
and push up counts of deleted nodes. Since we have just shown that the data structure is
bounded byO(H

ǫ
log ǫN), and if we run compress after everyO(1

ǫ
) insertions, then the

amortized cost isO(H log ǫN). Note that this amortized cost can be made into a worst
case cost by some careful use of buffers and incremental computation: essentially, instead
of doing a full compress after some number of insertions, onedoes a small amount of com-
pression work (processingO(H log ǫN) items) after every insertion. We omit the details
from this presentation, since they are mostly straightforward from this description.

3.2.2 Partial Ancestry Algorithm.We observe that the previous strategy can be waste-
ful of space, since it retains all ancestors of the fringe nodes, even when these have low
(even zero) count. In this strategy, we allow such low count nodes to be removed from the
data structure, thus potentially using less space. Thus, itis no longer the case that every

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 21

1.2.*, 5.6.7.8

1.2.3.*, 5.6.7.8

lpar

rpar

rpar

lpar lparrpar

1.2.*, 5.6.7.*

1.2.3.*,5.6.7.*

......

Fig. 7. The diamond property: Each item has at most one “common grandparent” in the lattice.

prefix that is stored has all its ancestors stored as well; hence, we only keep a partial an-
cestry. The boundme is obtained from the closest existing ancestor of the newly inserted
element. Figure 6 presents the algorithms for theInsert, Compress andOutput
operations,

The auxiliary information associated with each elemente is (ge, ∆e, me), which are
defined as before. When a new elemente is inserted, its∆e andme are initialized using the
auxiliary information of its closest ancestoranc(e) in T usingmanc(e). Once the closest
ancestor inT has been found, no further operations are required, in contrast to the full
ancestry case where intermediate ancestors must also be inserted into the data structure.
We computefmin andfmax in the same way as for the complete ancestry case. We can
show this algorithm, illustrated in Figure 6, is correct as follows.

THEOREM 3. The algorithm in Figure 6 maintains the accuracy and coverage proper-
ties from Definition 3.

PROOF. The proof of correctness is very similar to that for Theorem1. For accuracy,
observe that as beforefmin(p) is indeed a lower bound onf∗(p) since it counts a subset of
the updates that affectedp. By the definition of the condition for deleting inCompress,
we maintain the uncertainty in counts is bounded byǫN . The only difference is that we
get the boundmp for inserting a new prefix from some ancestor ofp rather than its parent.
However, once again we can show thatmp is always less thanbcurrent, because them
values are set based ong + ∆ values from a deleted node, and for these nodesg + ∆ ≤
bcurrent. This gives the accuracy condition. For coverage, we again use the bounds on the
counts of items to act conservatively: because we computeFp based on the upper bound
of the count forp, less the lower bound on the count of the HHHs already output,then we
never underestimate the count forp, and consequently never fail to outputp when we need
to.

It seems that the partial ancestry algorithm should always use less space than the full
ancestry version, but this is not an immediate consequence.When a new item is inserted,
all its ancestors are forced to be present in the full ancestry algorithm, so this appears to use
more space; however, it also means that they are inserted with the same value of∆. In the
partial ancestry case, when a prefix is deleted from the data structure, its count is passed
on to its parent, which may be inserted if it is not present with a larger value of∆ than
in the full ancestry case, and consequently this entry has a higher value ofg + ∆ than in
the full ancestry case, making it harder to delete. So we do not try to argue that the partial
ancestry algorithm will always use less space than the full ancestry, although we observe

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

22 · Graham Cormode et al.

in our experiments that this is the case on the data that we test on.

3.3 Multi-dimensional Algorithms

In this section, we consider the multidimensional (overlap) case, where the count of an
item being rolled up is given toeachof its parents. As discussed in Section 2.4, there are
many subtleties of this approach that would need to be addressed by an online algorithm. A
straightforward rolling up of an element’s count to each of its parent elements, iteratively
up the levels of the lattice, would result inovercountingerrors, which are only worsened
as the number of hierarchical attributes increases. To givea correct algorithm, we instead
update the counts of not only the immediate parents of the deleted element, but also those
of “grandparents”, “great grandparents” (i.e., parents ofparents, their parents) etc., but in a
bounded fashion that depends on the dimensionality of the data. Our approach essentially
applies the inclusion-exclusion principle, meaning that we add the count of the deleted
node to parents, but subtract it from grandparents, add it togreat-grandparents, until we
reach the unique ancestor of the deleted item, corresponding to the generalization on each
of thed attributes. We refer to this as the “diamond” property, since illustrated on a Hasse
diagram, it resembles a diamond. This is shown in Figure 7 for2-d; here the count for node
(1.2.*, 5.6.7.*) can be obtained using inclusion-exclusion by adding the count of nodes
(1.2.*, 5.6.7.8) and (1.2.3.*, 5.6.7.*), and subtracting the count of (1.2.3.*, 5.6.7.8). More
generally, on ad-dimensional lattice, the diamond structure is an embeddedd-dimensional
hypercube.

More specifically, our algorithms for the overlap case maintain a summary structureT
consisting of a set of tuples that correspond to samples fromthe input stream. Each tuple
te ∈ T consists of an elemente from the lattice, and a bounded amount of auxiliary infor-
mation. The algorithms we present for insertion intoT , compression ofT , and output are
non-trivial extensions of the full and partial ancestry algorithms for the 1-d case, to care-
fully account for the problem of overcounting. With each elemente, in thed-dimensional
case, we maintain the auxiliary information(ge, ∆e, me), where:

—ge is a lower-bound on the total count that is straightforwardly rolled up (directly or
indirectly) intoe,

—∆e is the difference between an upper-bound on the total count that is straightforwardly
rolled up intoe and the lower-boundfe,

—me = max(|gd(e)|+∆d(e)), over all descendantsd(e) of e that have been rolled up into
e.

3.3.0.1 Computation of fmin and fmax.. For any prefixp, we compute

f(p) =
∑

e�p

ge

and from this we set

fmin(p) = f(p) − ∆p andfmax(p) = f(p) + ∆p

if p is stored inT , and if not, we set

fmin(p) = f(p) − mp andfmax(p) = f(p) + mp

where, as usual, we computemp by finding the minimumm value over all closest ancestors
of p.

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 23

Insert(element e, count c):
01 if te exists in T then
02 ge+ = c;
03 else
04 create te with (ge = c, me = bcurrent − 1);
05 for p in ancestors of e in T

06 ∆e = me = min(me, mp);

Compress()
01 for l = L downto 0 do
02 for each node te at level l do
03 if (|ge| + ∆e ≤ bcurrent) then
04 for j = 1 to 2d − 1 do
05 p = e; parcount = 0;
06 for i = 1 to d do
07 if (bit(i, j) = 1) then
08 p = par(p, i);
09 parcount+ = 1;
10 if (p in domain) then
11 factor = 2 ∗ bit(1, parcount) − 1;
12 insert(p, ge ∗ factor)
13 if (parcount = 1) then
14 mp = max(mp, |ge| + ∆e);
15 delete(te);

Output(threshold φ):
01 Fe = fe = 0 for all e;
02 for l = L downto 0 do
03 forall label ∈ Level(l) do
04 forall e ∈ D, level(e) ≥ l do
05 p = GeneralizeTo(e, label);
06 fp+ = ge;
07 if (6 ∃h ∈ P : (e � h) ∧ (h � p))
08 Fp+ = ge;
09 forall h ∈ P, level(h) ≤ l do
10 p = GeneralizeTo(h, label);
11 if (6 ∃q ∈ P : (h � q) ∧ (q � p))
12 Fp+ = ∆h;
13 forall h, h′ ∈ P, level(h) ≥ l, level(h′) ≥ l do
14 p = GeneralizeTo(glb(h, h′), label);
15 if (6 ∃q ∈ P : ((h � q) ∨ h′(� q)) ∧ (q � p))
16 Fp+ = ∆h;
17 forall p ∈ Level(l) with fp > 0 do
18 if (Fp + ∆p ≥ φN)
19 P = P ∪ {p};
20 print(p, fp, fp + ∆p);

Fig. 8. Multidimensional Algorithm with Partial Ancestry

In Figure 8, we present the online algorithm for thed-dimensional case. Here we show
the algorithm with Partial Ancestry. The Full Ancestry caseis almost identical; the differ-
ence is that we insert each parent ofe with count 0 when a new elemente is inserted, and
in the compress phase, we only delete items that have no descendants. As in the algorithms
for the one dimensional case, the input stream is conceptually divided into buckets of width
w =

⌈

1
ǫ

⌉

, and the current bucket number is denoted asbcurrent = ⌊ǫN⌋. The insertion
phase is very similar to that of previous cases.

During compression, the algorithm scans through the tuplesin the summary structure,
and deletes elements whose upper bound on the total count is no larger than the current
bucket number. When we find an item that can be deleted, we needto allocate its count to
ancestors. In the one dimensional case, this meant simply allocating the count to its imme-
diate parent. To generalize this to multiple dimensions requires us to apply the inclusion-

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

24 · Graham Cormode et al.

exclusion technique mentioned above: we add the count to allparents, subtract it from
(common) grandparents, and so on. Concretely, supposee is to be deleted. We consider
the common ancestora, defined by generalizinge on each of its non-general dimensions:
a = par(par(. . . (e, 1), 2), . . . d). For this discussion, assumee was non-general on all
dimensions (dimensions that are general will, in effect, beignored). Takinga ande to-
gether, we induce a sublattice of the lattice structure, consisting of all prefixesp such that
e � p � a.

This sublattice is also a lattice, and contains2d prefixes, forming the structure of ad-
dimensional hypercube. Each prefix in the lattice can be associated with a bit string ofd
bits, where theith bit is 0 if e has not been generalized on dimensioni, and 1 if it has.
Thus,e is associated with0d, a with 1d, and10d−1 is par(e, 1). If e is at levell in the
lattice, thena is at levell − d. The weight function,wt, applied to a bitstring, counts the
number of 1s in the string. Therefore, the level of a prefix in the sublattice with binary
labelb is l − wt(b).

Depending on the distance of a prefix in the sublattice, we either add or subtract the count
of the deleted prefixe: we subtractge from the counts of prefixes withwt(b) = 1 (i.e.,
the parents), addge to the counts of prefixes withwt(b) = 2 (the common grandparents),
and continue to alternately subtract (odd weight labels) and add (even weight labels) to
all prefixes in the sublattice defined bya ande. This is performed in lines 4 to 12 of the
Compress algorithm in Figure 8. The counterj cycles through all the binary labels, and
the loop in lines 6–9 creates the prefix corresponding to the current value ofj, and also
computeswt(j) asparcount. We use the functionbit(i, j), which returns theith bit of the
integerj when written in binary. Thege count is added if the binary label has odd weight
(i.e. if its least significant bit is 1), and subtracted if even (least significant bit is 0). Lastly,
we update them values for the immediate parents ofe (we only update immediate parents:
if these are subsequently deleted, then them values of their parents will get updated in
turn). This is carried out in lines 13–14: a prefix is an immediate parent ofe if the weight
of its binary label is 1.

LEMMA 7. fmin and fmax give correct upper and lower bounds on the sub-lattice
count of all prefixes.

PROOF. Fix an arbitrary prefixp and consider howfmin(p) and fmax(p) vary over
the sequence of operations. Initiallyfmin(p) = fmax(p) = f∗(p) = 0. We proceed
inductively over the sequence of insert and compress operations. For an insert operation,
supposee is inserted. Ife � p, thenf(p) increases by 1, either because the existing node
te has its value ofge increased, or because a new nodete is inserted, with its value of
ge initialized to 1. By analogy with previous cases, the value we compute forfmax(p) is
an upper bound, because we bound the largest possible uncertainty in the sublattice count
by ourm and∆ values, which are in turn bounded bybcurrent = ǫN . Because we may
delete some entries whosege value is small and negative,fp is not a lower bound, but
since we ensure that any deleted value satisfies|ge|+ ∆e ≤ bcurrent, we can lower bound
the sublattice count byf(p) − ∆e, i.e. fmin(p) is a lower bound onf∗(p). Lastly, if
e 6� p, thenfmin(p), fmax(p) andf∗(p) all remain the same. Hence, the insert operation
correctly maintains the bounds on the true count.

We now focus on the compress operation. Here we must make critical use of the struc-
ture of the lattice and hypercubes to show that our counts remain accurate. Lete be a
node that is deleted in a compress operation. ife 6� p thenfmin(p) andfmax(p) do not

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 25

change, since the onlyg values that are altered belong to nodesq such thate � q. But
e 6� p ⇒ q 6� p, and so the computation off(p) is unaffected. We now argue in the case
whene � p, unlesse = p, thatf(p) is also unchanged and sofmin(p) andfmax(p) remain
the same. The reason for this is that although counts are increased and decreased within
the sublattice defined bya ande, the net effect on any sublattice defined byp remains the
same.

Consider the effect onf(p) whene is deleted. By the above analysis,e ≺ p. Therefore,
there must exist at least one dimensioni of e such thatpar(e, i) � p. Take anye′ such
thate � e′ � p ande′ agrees withe on dimensioni. Then we argue thatpar(e′, i) � p,
because of the lattice properties: the least upper bound (or“lub” in lattice terminology)
of e′ andpar(e, i) is par(e′, i), and we are guaranteed that the lub exists in the lattice.
Thus we can establish a bijection between alle′ � p that agree withe on dimensioni, and
par(e′, i). Whene is deleted, the effect is to addge to e′ and subtractge from par(e′, i),
or vice-versa. Hence, for eache′, par(e′, i) the net effect onf(p) is zero. Summing over
all e′, we see that there is no overall change inf(p) (unlesse = p).

Thus, the only way thatf(p) can change in a compress operation is whenp itself is
deleted. In this case, we establish that|gp| + ∆ ≤ bcurrent. Hence, our uncertainty in the
count of the sublattice ofp remains bounded bybcurrent, which in turn is bounded byǫN ,
giving the required accuracy bounds.

3.3.1 Output Procedure.At any point, we can extract and output HHHs given a user-
supplied thresholdφ. In multiple dimensions, the task of outputting the Hierarchical Heavy
Hitters is rather more involved than in the one-dimensionalcase. This is because certain
nodes may have multiple of their ancestors declared to be HHHs, meaning that manipula-
tion of counts has to be handled with more care in order to meetthe coverage requirements
of the definition of the problem. Recall that the coverage requirement is one sided: we must
guarantee that any node that is not output has a sublattice count (adjusted for descendant
HHHs) that is at mostφN . As long as we take a conservative approach, we can guaran-
tee correctness; our goal is to produce an output that is as small as possible but that has
this guarantee. Therefore, the better approximation we cangive to the adjusted sublattice
counts, the fewer unnecessary nodes will be output.

For example, consider the naive algorithm. This outputs anyprefix p whose sublattice
count exceeds the thresholdφN . This makes no adjustment for HHH descendants, and
consequently outputs potentially many more nodes than are strictly necessary (in particular,
if any node is output, then so too are all its ancestors). Thisclearly satisfies correctness,
but since we have much more information available (we can compute accurate bounds on
the sublattice count of any given node), we can hope to do muchbetter.

Our approach is based on estimating the adjusted sublatticecount itself. We can apply
the inclusion/exclusion principle in order to get an accurate answer. As in the one dimen-
sional case, we must proceed bottom up through the lattice progressively computing the
HHHs level-by-level. At any point, we will have created a setP of nodes that have been
output as HHHs. For any nodep currently under consideration, we must compute a count
that discounts the counts of any items that we have already output as HHHs in the setP .
We defineHp ⊆ P as the set ofh ∈ P such that6 ∃h′ ∈ P : h ≺ h′ ≺ p. This is the
subset of the output HHHs that affects the computation of theadjusted count. We can then
compute the adjusted sublattice count ofp by takingfmax(p) −

∑

h∈Hp
fmin(p). Note

that because we are trying to compute an upper bound on this count, we always add upper

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

26 · Graham Cormode et al.

bounds and subtract lower bounds. This first approximation of the result is potentially too
low, since for nodes that are covered by two or more members ofthe setHp, we have
subtracted their count twice. Thus we need to compensate by adding their counts back on
to the sum, which will result in an overestimate of the sublattice count (i.e., a conservative
estimate, as required).

This procedure could be continued, applying further stagesof inclusion/exclusion. How-
ever, we will see that proceeding further will only increasethe upper bound. The bound
we produce consists of the sum ofg values not covered by the elements inHp, plus some
additional∆ values. Applying further rounds of inclusion/exclusion while maintaining
conservative counts keeps the same set ofg values, but adds additional∆ values. Hence,
the tightest upper bound comes from applying a single round of inclusion/exclusion. This
corresponds to computing

fmax(p) −
∑

h∈Hp

fmin(h) +
∑

q=glb(h∈Hp,h′∈Hp)

fmax(q)(|Dom(q, Hp)| − 1)

This makes use of two lattice theoretic notions, the greatest lower bound (glb) of two
nodes in the lattice, and the dominating set of a node relative to a set of nodes in the
lattice. We writeq = glb(h, h′) if q is the unique element in the lattice that satisfies
∀p : (q � p) ∧ (p � h) ∧ (p � h′) ⇒ p = q . We define the Dominating set ofq relative
to Hp as the setDom(q, Hp) = {h ∈ Hp|q ≺ h}, the subset ofHp that dominatesq
under≺. In the second term of the computation, the count ofq is subtracted once for each
member of its dominating set; however, it only needs to be subtracted off once. The last
term then compensates for this over-reduction by adding on sufficiently many copies of the
sublattice count.

We can take advantage of the structure of our counts in order to implement this com-
pensation efficiently. Because the sublattice count of a node corresponds to summing the
g values of all nodes within the sublattice, then computing the sublattice count of a node
p and subtracting the sublattice count of a nodep that is contained within it, corresponds
to summing theg values of all nodesq such thatq � p but q 6� h. Hence, computing
the adjusted sublattice count for a nodep can be done efficiently over our data structures
by computing the sumg values for all nodes not dominated by members ofP . We then
compute the necessary compensations by (i) adding the∆ values for all membersh of P
that are belowp and not dominated by other members ofP , which corresponds to subtract-
ing the lower bounds; and (ii) adding∆ values for allglb values of pairs of undominated
members ofP , corresponding to adding on the upper bounds of the values subtracted twice.
Note that some of theseglb nodes may not be explicitly materialized in the data structure,
and hence we will have to instantiate their∆ values by use of them values as when we
insert a new node. Formally, for nodep we compute the conservative upper boundFp as

Fp =
∑

(e�p)∧(∀h∈P.e6�h)

ge +
∑

h∈P,h�p

∆h +
∑

(h,h′∈P)∧(h�p)∧(h′�p)∧(q=glb(h,h′))

∆q

This routine is implemented in the pseudo-code foroutput in Figure 8. We make use
of the functionGeneralizeTo defined in Section 2.1. For each prefixp we compute two
values:fp is used to give the upper and lower bounds on the sublattice count, as required
for accuracy.Fp is used to test whether to outputp as one of the HHH nodes. If the upper
bound on the count ofp usingFp exceeds the threshold, we outputp and its sublattice

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 27

(a,1) (a,2) (a,3) (b,1) (b,2)

(*,*)

(*,1)(b,*)(a,*) (*,3)(*,2)

Fig. 9. Example lattice with elements(a.1), (a.2), (b, 1), (b, 2), (b, 3)

p

h

e

p

q

h

p

q q

h h’
(a) Line 07 (b) Line 11 (c) Line 15

Fig. 10. Illustration of output routine shown in Fig 6.

counts.
The correctness of theoutput algorithm follows from the above descriptions. The

pseudocode computesfp for every node by passing over the data structureT and summing
thege values of alle � p. For those nodes that are output, it printsfmin andfmax. As
shown in Lemma 7, these give tight bounds on the sublattice count for any prefix. We
satisfy the coverage criterion by pursuing the “conservative” approach: the algorithm also
computes the quantityFp defined above which corresponds to an upper bound on the sub-
lattice count after removing the HHHs that have already beenoutput. This we compute
similarly to fp, except that nodes already covered by someh ∈ HHH do not contribute;
we also have to include the adjustment for potential overcounting of the HHH nodes, by
including their∆ values. Lines 04-08 compute thefp and first term of theFp values; lines
09-12 compute the second term of theFp values and lines 13-16 compute the final term of
theFp values. Lastly, lines 17-20 consider the materialized nodes at the current level and
determine which to include as HHHs.
Example. Figure 9 illustrates a toy example lattice to demonstrate during the output rou-
tine how the discounted frequencyFp is calculated at the root nodep = (∗, ∗). Initially,
Fp was set to zero and the nodes for(a, 2), (b, 2) and(a, ∗) were marked as HHHs. Fig-
ure 10(a) illustrates the predicate in line 07, which is satisfied only by leafe = (b, 1);
therefore, after lines 04–08,F(∗,∗)+ = g(b,1), and that is the only leaf count added to
F(∗,∗). Figure 10(b) illustrates the predicate in line 11, which issatisfied only by leaf
e = (b, 1); therefore, after lines 09–12,F(∗,∗)+ = ∆(b,2) (note that∆(a,2) is notadded to
F(∗,∗)). Figure 10(c) illustrates the predicate in line 15. After lines 13–16, nothing is added

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

28 · Graham Cormode et al.

to F(∗,∗) becauseh = (a, 2) andh′ = (b, 2) is the only pair of HHHs and there exists aq
between one of these HHHs and the root, namely,q = (a, ∗).

THEOREM 4. The algorithm given in Figure 8 computes HHHs accurately toǫN . The
space used by the online algorithm for the overlap case with full ancestry is bounded by
O((H/ǫ) log(ǫN)).

PROOF. We demonstrate the space used by the full ancestry is never more than that used
by the naive algorithm. First, we show a monotonicity property about counts in the naive
algorithm, which means that the full ancestry property is enforced in the naive algorithm.
From this property then we can easily show the claimed result.

LEMMA 8. For any elemente stored by the naive algorithm, and forp such thate � p,
thenge + ∆e ≤ gp + ∆p.

PROOF. We show this by induction over the sequence of operations that alter informa-
tion aboute andp. The base case is when the data structure is empty, and the inductive
hypothesis is trivially satisfied. For insertions, there are four cases to consider:
Case 1: bothe andp are present in the data structure. If the insertion affects some node
q � e, thenge andgp increase by the same amount, and∆e and∆p are unchanged. Else,
if the insertion affectsq � p but q 6� e, thenge stays the same whilegp increases. Either
way, the hypothesis remains true.
Case 2: e andp are both absent. If the insertion affects bothe andp, then both are created
with identical values ofg = 1 and∆; if it affects onlyp then the hypothesis does not apply,
since it only considers nodese stored in the data structure.
Case 3: e is present butp is absent. We argue that this cannot occur if the induction
hypothesis was always true up to this time: forp to be absent bute present thenp must
have been subject to a deletion (since it would have been inserted at the same timee was
inserted). But forp to have been deleted means thatgp + ∆p < bcurrent at the time of
deletion, whereasge + ∆e ≥ bcurrent at the same time of deletion. This contradicts the
inductive hypothesis, so it cannot have happened.
Case 4: p is present bute is absent. Becausep is present in the data structure, we know
thatgp + ∆p ≥ bcurrent, else it would have been deleted on the last bucket boundary.The
naive algorithm insertse with ge = 1, ∆e ≤ bcurrent − 1 and so the inductive hypothesis
is satisfied.
Lastly, for compression operations, observe that ife is not deleted, then its counts do not
change; ife is deleted, then it is no longer present in the data structure, and so the statement
does not apply.

Since every operation maintains the truth of the inductive hypothesis, we conclude that
the claim is true.

Note that an important part of the case analysis showed that if e is present in the data
structure for the naive algorithm then, relying on the monotonicity of theg+∆ values, any
ancestorp of e must also be stored. We now conclude the proof by arguing thatany node
e stored by our algorithm is also stored by the naive algorithm.

Consider some nodee that is stored by the full ancestry algorithm. Ife is a fringe node
— that is, no descendants ofe are stored — then by the argument of Lemma 5 it is also
stored by the naive algorithm. Ife is not a fringe node, then there exists someq ≺ e which
is a fringe node. By the same argument, this node is also stored by theLossyCounting

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 29

algorithm, and because we have argued that if the naive algorithm stores anyq then it also
stores all ancestors ofq, thene is also stored by the naive algorithm. Hence, the space
required by the full ancestry algorithm is never more than that used by the naive algorithm,
and can be much less.

LEMMA 9. The amortized update cost for the full ancestry algorithm inmultiple di-
mensions isO(H log ǫN).

PROOF. The proof of this follows from the analysis in Lemma 6 for theone dimen-
sional algorithm. Each insertion takes worst case timeO(H) if we have to create every
ancestor of the inserted node. If compressions take place after everyO(1

ǫ
) insertions, and

require a linear pass over the data structure then, since thedata structure is bounded by
O(H

ǫ
log ǫN), the overall cost is dominated by this amortizedO(H log ǫN) cost. As be-

fore, this amortized cost can be made worst case with a suitable implementation.

4. EXPERIMENTS

In this section we evaluate both the effectiveness and efficiency of our proposed online
strategies, Full Ancestry and Partial Ancestry, for 1-d (trie) and 2-d (lattice) prefix hier-
archies. The space usage was quantified using two measures: the size of the output sets
generated by the algorithm and the amount of memory used during execution. As a yard-
stick, we consider the size of the (exact) output from offlinecomputation of HHHs. We
compared the performance of these algorithms in various ways: in terms of the number
of insertion and deletion operations to the data structure;in terms of the quality of the
approximate output compared to the exact algorithm; and using timings based on their
implementations in a live data stream management system. For each strategy, we tested
several implementation alternatives including (a) the choice of data structure; (b) amor-
tized vs. non-amortized compression; and (c) recursive vs.non-recursive insertion.

For comparison purposes, we also tested the naive algorithm, based onLossyCount [Manku
and Motwani 2002]2, to find heavy hitters on the set of all multi-dimensional prefixes of
all stream items. Whereas this algorithm uses two auxiliaryvariables (the minimum fre-
quency,f , and the difference between the maximum and minimum frequencies,∆) and
the proposed algorithm uses three (g, ∆, andm), the overall storage ratio between these
data structures depends on the overhead of storing item identifiers, which dominates the
total space usage. Hence, we do not normalize by the individual tuple sizes but instead
report results in terms of the number of tuples.

We used real IP traffic data in our experiments, containing source and destination IP
addresses (among other fields) from network “flow” measurements (FLOW), and packet
traces (PACKET). For the experiments on two-dimensional hierarchies, we projected on
source-destination IP address pairs; for those on a single dimension we projected only on
the source address. To examine the effect of the “bushiness”of the hierarchy, we varied
the granularities of the hierarchies: the IP address spaceswere viewed on the byte-level
(“octets”) for some experiments, and on the bit-level for others. The source used for the
performance experiments was a live IP packet stream monitored at a network interface
inside the AT&T Customer Backbone. On average, the streaming rate at this interface was

2While the asymptotics of other heavy hitter algorithms [Misra and Gries 1982; Demaine et al. 2002; Karp et al.
2003; Metwally et al. 2005] are better,LossyCount has exhibited the best performance in practice, especially
on skewed data sets, as noted by Manku and Motwani [2002] (last para of Sec 4).

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

30 · Graham Cormode et al.

about 100,000 packets/sec, or about 400 Mbits/sec. Although the traffic rate fluctuates
slightly over the course of a day, such changes are gradual and occur in regular (diurnal)
cycles.

We compared the candidate strategies using the User-DefinedAggregate Function (UDAF)
facility in Gigascope, a highly optimized system for monitoring very high speed data
streams [Cranor et al. 2003]. Gigascope has a two-level query architecture: at the low
level, data is taken from the Network Interface Card (NIC) and is placed in a ring buffer;
queries at the high level then run over the data from the ring buffer. Gigascopecreates
queries from an SQL-like language (called GSQL) by generating C and C++ code, which
is compiled and linked into executable queries. To integrate a UDAF into Gigascope, the
UDAF functions (also in C/C++) are added to the Gigascope library and query generation
is augmented to properly handle references to UDAFs; for more details, see [Cormode
et al. 2004].

4.1 Implementation Details

Translating a complicated algorithm into a fast implementation is rarely trivial, and re-
quires particular care when running it in real-time on a liveIP traffic stream. We focus on
the details pertaining to implementation of these algorithms in the context of Gigascope
UDAFs. Below we describe the data structures and optimizations used for our proposed
strategies (for both 1-d as well as 2-d prefixes), as well as for the naive approach of com-
puting heavy hitters on all prefixes of all items, which was used as a basis of comparison.
We focus on implementation choices at the high-level query within Gigascope. At the low-
level, we employed two different basic processing alternatives: (a) buffering items in an
array for blocks transfers; and (b) buffering items as a weighted set using a hash table.

The performance of the algorithms depends partly on the frequency with which the
Compress routine is run. This can be as often as after everyInsert operation; after ev-
ery1/ǫ tuples; or with some other frequency. Note that the frequency of compressing does
not affect the correctness, just the aggressiveness with which we prune the data structure.

We now describe how the individual strategies were implemented:

—Naive: This method is based onLossyCount and maintains a set of tuples(e, f, ∆) in
a hash table on item identifierse. For each incoming stream itemand all of its prefixes, a
lookup is issued to find an existing tuple for that item. If oneexists,f is incremented by
1; otherwise, new tuples are created for all prefixes. For amortized compression, at each
stepǫs tuples are visited by traversing the hash table sequentially (note that traversal
order does not matter for this algorithm), to determine which nodes can be pruned.

—Full Ancestry: This method, henceforth called FullAnces, maintains tuples(e, g, ∆, m)
in a hash table on identifier valuese. Hence, this data structure effectively implements
a trie for one-dimensional hierarchies (resp. lattice for two-dimensional hierarchies).
We implemented two variants of this strategy: one that stores pointers to the parent(s)
of each node and one that requires hash lookup to retrieve parents based on the node
identifier. For each incoming stream item, a lookup is issuedto find an existing node for
that item. If one exists,g is incremented by 1; otherwise, new lattice nodes are created
(with g = 0 for nonleaf nodes) up to a closest ancestor(s). Unlike the naive method,
which updates every ancestor in every path frome leading up to the root, this method
stops updating along a path whenever the closest ancestor isencountered.
This method also maintains afringe, which is the set of nodes without children. The

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 31

fringe is used for efficient bottom-up pruning by focusing compression at only the nodes
that need to be visited (recall that this strategy only considers nodes having no children
for deletion). The fringe must be dynamically maintained during insertion and compres-
sion; hence, we employ a hash table for access. During the compress phase, a queue
is employed to enforce a proper traversal order, since a nodeshould not be visited until
all its children have been visited) by enqueuing parents of visited nodes; compression
iterates until the queue is empty. For amortized compression, ǫs nodes are dequeued at
each time step.

—Partial Ancestry: This method, henceforth called PartialAnces, maintains the nodes as
L distinct sets of tuples(e, g, ∆, m), one for each level of the trie/lattice, with a separate
hash table on each level. For each stream item a single lookupis issued, resulting in
either an increment or creation; prefix nodes are not created. Since intermediate nodes
(i.e., nodes with children) are considered for deletion, there is no performance benefit to
maintaining the fringe as with FullAnces. Bottom-up traversal therefore proceeds level-
by-level. During the compress phase, nodes across each level are visited sequentially by
hash value (note that nodes at the same level can be visited inany order). For amortized
compression,ǫs nodes are visited at each time step, in level order.

These methods were implemented in C++ and attempts were madeto make the three im-
plementations as uniform as possible for a fair comparison.The C++ STLhash multiset
container type was used for efficient hash access to the tuples. Insertions for naive and
FullAnces strategies, which require all prefixes, were implemented both recursively and
iteratively. We considered several other implementation possibilities but eliminated them
since the ones described above performed better.

4.2 Experiments on One-dimensional Data

Space Usage..In the first set of experiments, we compared the output sizes of the online
strategies, and included the exact (offline) output size as aframe of reference. Figure 11
summarizes the results using FLOW at time step 100K with (a)φ = 0.2 (ǫ = 0.1) and
(b) φ = 0.02 (ǫ = 0.01). The naive strategy clearly gives the largest output size and the
difference from the output sizes of the proposed strategiesgrows in cardinality with smaller
φ andǫ. Note how close the output size from the Full Ancestry strategy is to the exact
output size. The output size of the Partial Ancestry strategy is significantly less than that
of the naive one, but also noticeably larger than that of FullAncestry. Figure 12 presents
the results based on PACKET. Here the differences in output sizes are more pronounced.

In the second set of experiments, we report thea posteriorispace utilization in terms of
the number of tuples at each timestep. Figure 13 gives a comparison of the three strategies
on PACKET. The left column considered byte-level prefixes (granularity = 8) and the right
column bit-level prefixes (granularity = 1). The top row was run with ǫ = 0.01; the bottom
row was run withǫ = 0.001.3 (The graphs using FLOW were very similar and are omitted
for brevity.) The main observation is that PartialAnces used the least space in all cases,
especially whenǫ is small and the prefix granularity is small. It is clearly thesuperior
strategy with respect to data structure size.

Update Efficiency..Figure 14 compares the speed of the strategies by measuring the
total number of insertion and deletion operations to the summary structure. The data sets

3Note thatφ affects output size but not the space usage during execution.

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

32 · Graham Cormode et al.

 0

 5

 10

 15

 20

 25

partialfullnaiveexact

ou
tp

ut
 c

ar
di

na
lit

y

 0

 20

 40

 60

 80

 100

 120

partialfullnaiveexact

ou
tp

ut
 c

ar
di

na
lit

y

(a)φ = 0.2, ǫ = 0.1 (b) φ = 0.02, ǫ = 0.01

Fig. 11. Comparison of output sizes from the online algorithms on 1-d data, and the exact
answer size, using FLOW with bit-level hierarchies.

 0

 5

 10

 15

 20

 25

partialfullnaiveexact

ou
tp

ut
 c

ar
di

na
lit

y

 0

 50

 100

 150

 200

partialfullnaiveexact

ou
tp

ut
 c

ar
di

na
lit

y

(a)φ = 0.2, ǫ = 0.1 (b) φ = 0.02, ǫ = 0.01

Fig. 12. Comparison of output sizes from the online algorithms on 1-d data, and the exact
answer size, using PACKET with bit-level hierarchies.

used were (a) FLOW and (b) PACKET; the operations were totaled after 140K timesteps,
with bit-level granularity andǫ = 0.01. It presents this breakdown as histogram bars where
the height gives the sum of all operations. The naive strategy requires slightly more updates
than the other strategies because every prefix of every element is inserted. The differences
between the proposed strategies are small.

4.3 Experiments on Two-dimensional Data

Space Usage for 2-d Case..The data structure size of PartialAnces with bit-level gran-
ularity was about 7 times more space-efficient than the naivestrategy, for different values
of φ andǫ (φ = 0.2, ǫ = 0.1 andφ = 0.02, ǫ = 0.01). The space differences were even
greater using PACKET: PartialAnces gave up to a 40-fold space savings over the naive
strategy.

Update Efficiency for 2-d Case..We have already seen that both proposed strategies
yield smaller output sizes and use less space than the naive strategy, with FullAnces having
a smaller output than PartialAnces but PartialAnces being more space-efficient with respect

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 33

 0

 50

 100

 150

 200

20 40 60 80 100 120 140

sp
ac

e
(#

tu
pl

es
)

time step (10^3)

Space Usage versus Time for tcpsrc Data
 (eps=0.01, gran=8)

naive
full

partial

0

200

400

600

800

1000

1200

1400

20 40 60 80 100 120 140

sp
ac

e
(it

em
s)

timestep (10^3)

Space Usage versus Time for tcpsrc Data
(eps=.01, gran=1)

naive
full

partial

(a) (b)

0

200

400

600

800

1000

20 40 60 80 100 120 140

sp
ac

e
(it

em
s)

timestep (10^3)

Space Usage versus Time for tcpsrc Data
(eps=.001, gran=8)

naive
full

partial

0

1000

2000

3000

4000

5000

6000

20 40 60 80 100 120 140

sp
ac

e
(it

em
s)

timestep (10^3)

Space Usage versus Time for tcpsrc Data
(eps=.001, gran=1)

naive
full

partial

(c) (d)

Fig. 13. Comparison of data structure size from the online strategies on 1-d prefixes us-
ing PACKET. The left column is at byte-level granularity; the right column is at bit-level
granularity. The top row is withǫ = 0.01; the bottom row is withǫ = 0.001.

to data structure size. We now consider the performance of the proposed strategies in
achieving such benefits.

First, to get an implementation-independent comparison, we counted the number of in-
sertion and deletion operations from each strategy over a full pass of the data; see Figure 15.
The graphs indicate that, for all strategies, the difference between the number of insertions
and deletions is relatively small, which is due to the data structure size remaining fairly
constant over time. The graphs also show that the strategiesdiffer in the total number of
runtime operations performed, with the naive strategy requiring the least using both FLOW
and PACKET data. FullAnces performs slightly more operations than the naive strategy;
PartialAnces performs an even greater number. The differences are slightly more apparent
with PACKET, though compared to FLOW the number of operations is less for all strate-
gies. It appears that, while PartialAnces was consistentlyand definitively the best strategy
in terms of minimizing space usage, this comes with a performance penalty, due to the
extra pruning.

Output Quality..Next, we study thequality of the output. Since we are using approxi-
mate algorithms, we cannot hope to find the exact set of HHHs, and so there will be some
of these items missing from the output, and some extra. However, the quality and useful-
ness of this output will vary: for example, we might argue that outputting the parent of an

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

34 · Graham Cormode et al.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

naive full partial

nu
m

be
r

of
 o

pe
ra

tio
ns

strategy

Runtime Costs

deletions
insertions

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

naive full partial

nu
m

be
r

of
 o

pe
ra

tio
ns

strategy

Runtime Costs

deletions
insertions

(a) FLOW (b) PACKET

Fig. 14. Comparing the update efficiency of the 1-d strategies, withǫ = 0.01 and bit-level
prefixes.

0
2e+07
4e+07
6e+07
8e+07
1e+08

1.2e+08
1.4e+08
1.6e+08
1.8e+08

naive full partial

nu
m

be
r

of
 o

pe
ra

tio
ns

strategy

Runtime Costs

deletions
insertions

0
2e+07
4e+07
6e+07
8e+07
1e+08

1.2e+08
1.4e+08
1.6e+08
1.8e+08

naive full partial

nu
m

be
r

of
 o

pe
ra

tio
ns

strategy

Runtime Costs

deletions
insertions

(a) FLOW (b) PACKET

Fig. 15. Comparing the update efficiency of the 2-d strategies, withǫ = 0.01 and bit-level
prefixes.

“exact” HHH instead of the HHH itself is more useful than outputting a distant ancestor.
We will introduce a sequence of progressively more refined ways to study the quality of
the output.

Firstly, we compared the output sizes of the online strategies, and included the exact
(offline) output size as a frame of reference. In practice, this indicates of how valuable the
answer is: too large, and there may be too much information towade through. However,
unlike with the 1-d case, a smaller output size is not necessarily better. Therefore, we go
on to present precision-recall analysis of the answer sets (with respect to the exact answer)
using a variety of scoring functions.

In general, the naive strategy yielded output set cardinalities that were an order of mag-
nitude larger than that of our proposed strategies, for a variety of φ-values whenφ = 20ǫ
(a factor of 20 rather than 2 was chosen because of the greatersensitivity toφ in 2-d). At
the same time, our proposed strategies yielded outputs thatwere close in size to that of the
exact answers computed offline. The output sizes of PartialAnces were larger than those
of FullAnces, due to the insertion of intermediate nodes during the output routine (see Fig-

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 35

0
10
20
30
40
50
60
70
80
90

100
110

exact naive full partial

nu
m

be
r

of
 p

re
fix

es

strategy

Output Size

0

500

1000

1500

2000

2500

3000

3500

4000

exact naive full partial

nu
m

be
r

of
 p

re
fix

es

strategy

Output Size

(a)φ = 0.2, ǫ = 0.01 (b) φ = 0.02, ǫ = 0.001

Fig. 16. Comparison of output sizes from the online algorithms for the 2-d overlap case,
and the exact answer size, using FLOW with bit-level hierarchies.

ure 8), but this difference is eclipsed by that from the naivestrategy. The pruning power
of the proposed methods appeared to be proportional to the ratio φ/ǫ and, though for this
data set the order of magnitude difference in output size didnot occur for ratios less then 5,
there were still benefits at these small ratios. Figure 16 plots the output sizes, at time step
100K, using FLOW with (a)φ = 0.2 (ǫ = 0.01); and (b)φ = 0.02 (ǫ = 0.001), where the
hierarchies are induced by considering bit-level prefixes of the IP addresses. Here there
is a clear difference between the naive strategy and the others, with PartialAnces yielding
slightly larger output sizes than FullAnces, which gave almost the same sizes as the exact
query answers. The reduction in output size by the proposed strategies on the PACKET
data, using the same parameter values, was even greater: thefactors were roughly 35 and
75 for φ = 0.2 andφ = 0.02, respectively. Clearly, the proposed hierarchy-aware strate-
gies are able to filter out a considerable number of prefixes.

To measure the quality of output sets obtained from the various online algorithms with
respect to the exact answer, we first use two standard set-based measures of similarity:
the Jaccard coefficient|A∩E|

|A∪E| ; and the Dice coefficient2|A∩E|
|A|+|E| , which is the harmonic

mean of precision and recall.4 However, the output objects are multidimensional prefixes
at potentially different levels in the lattice, so “flat” setmeasures are not suitable. For
example, how does one compare two prefixes when one is a parentof another? Hence,
we used a measure designed for hierarchical domains, the Optimistic Genealogy Measure
(OGM) due to Ganesan et al. [2003], and modified it slightly tomake more sense for our
setting where objects are not all leaf nodes. Thus, we give absolute differences rather than
relative ratios and made OGM symmetric as follows:

1 − sim(A, E) =
∑

a∈A

| depth(LCA) − depth(a)| −
∑

e∈E

| depth(LCA) − depth(e)|

That is, for each prefixa in the approximate answerA, we find its best matche in the exact
answerE, compute the lowest common ancestorLCA(a, e), and retain the difference
with respect toa. Symmetrically, we find the best match for eache ∈ E and compute

4We do not consider bag-based measures since the HHH (discounted) frequencies in practice are typically all
roughlyφN .

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

36 · Graham Cormode et al.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.05 0.1 0.15 0.2

sc
or

e

φ

proposed
naive
fringe

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.05 0.1 0.15 0.2

sc
or

e

φ

proposed
naive
fringe

Jaccard, flow data Jaccard, packet data

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.05 0.1 0.15 0.2

sc
or

e

φ

proposed
naive
fringe

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.05 0.1 0.15 0.2

sc
or

e

φ

proposed
naive
fringe

Dice, flow data Dice, packet data

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0.05 0.1 0.15 0.2

sc
or

e

φ

proposed
naive
fringe

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.05 0.1 0.15 0.2

sc
or

e

φ

proposed
naive
fringe

OGM, flow data OGM, packet data

Fig. 17. Comparison of output scores of naive, fringe and proposed online algorithms,
with respect to the exact answer, using different similarity measures: flow (left column),
and packet (right column) data at bit-level granularity.

LCA(e, a)’s. In addition to the naive all-NN output, we show results for the fringe (the
subset of all-NN nodes which do not have a HHH descendant), since it is not cleara priori
which will have a better score under the above measures, which combine both precision
and recall.

Figure 17 compares the output of the proposed algorithm withthat of all-HH (“naive”)
and the fringe, using the different score functions at variousφ-values. Bit-level granularity

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 37

Strategy CPU user time (µs)
utilization per packet

Lossy Counting 49% 7.5
FullAnces 51% 7.62
PartialAnces 44% 6.6

Strategy CPU user time (µs)
utilization per packet

Lossy Counting 48% 6.85
FullAnces 63% 9.18
PartialAnces 63% 10.96

(a) 1-d prefixes (bit-level) (b) 2-d prefixes (byte-level)

Fig. 18. Average performance for the different methods overlive IP packet streams.

prefixes were computed and our proposed algorithm was instantiated with the FullAnces
version. The Jaccard and Dice coefficients clearly distinguish that the naive algorithm gives
very poor outputs. They also indicate that the proposed algorithm finds better answers than
the fringe, but this comparison is better evaluated using the OGM hierarchical measure
(rightmost column). Here we observe that, whereas the fringe output was better than naive
using flow data, the opposite is true using packet data. So both naive and fringe have bad
cases, while the proposed algorithms are consistently good.

4.4 Performance on a Live Data Stream

We measured the performance of the strategies on a live IP traffic stream using Gigascope.
We wrote GSQL queries in Gigascope which reported the HHH with the longest prefix
length (both prefix label and frequency) at intervals of every minute, for a total duration of
30 minutes. For the 1-d prefix queries, we projected ontosrcIP over all packets; for the
2-d prefix queries, we selected out only TCP packets projected onto(srcIP, destIP).

We first compared the two low-level alternative implementations described in Section 4.1
and found that, though neither was a bottleneck, hash-basedbuffering of items as a weighted
set was consistently faster than using an array to buffer themultiset, due to the temporal
clustering of IP addresses (e.g., during a TCP session). Therefore, the results reported
below use the hash-based strategy at the low-level.

At the high-level, we ran the methods over similar live workloads and measured the av-
erage CPU utilization and user processing times at 1-minuteintervals. Figure 18(a) sum-
marizes the results for HHH on 1-d prefixes at bit-level granularity, with ǫ = 0.001 and
φ = .05. The numbers did not vary considerably among the methods, with PartialAnces
achieving the fastest processing times, followed by the naive method, followed by Ful-
lAnces. For these experiments, thecompress() operations were amortized rather than
doing them all at once at block boundaries; experiments withbatchcompress() gave
only slightly slower speeds.

For HHH on 2-d prefixes, none of the algorithms could keep up when using bit-level
granularity, so we set the granularity to byte-level in the following experiments. Fig-
ure 18(b) summarizes these results. Here we see a differencein the processing speeds
of the methods, with the naive method running fastest and theproposed methods doing
comparably. There did not appear to be any packet loss for anyof the above methods.
Emboldened by this, we tried running HHH on 2-d prefixes with agranularity of 2 bits and
found that it could just barely keep up with the stream (CPU utilization of all methods were
close to 99%). However, the differences in both data structure and output sizes increased
dramatically.

We also tested the non-amortized versions of the strategies, where a full compress is
performed only at block boundaries, using the same query butthe packet loss was so great
that we were unable to obtain any measurements. Hence, not only does spreading out the

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

38 · Graham Cormode et al.

processing for compression improve performance but, at high CPU utilization, it can make
the difference between whether or not the method can keep up with the streaming rate.

Another factor which impacted performance was the error bound. Although larger val-
ues ofǫ result in smaller space, more pruning will occur. In fact, for the same query as
above, increasing the value ofǫ from 0.001 to 0.01 resulted in packet loss, despite the com-
press operation being amortized. Indeed, the benefits of amortization decrease at higher
values ofǫ due to non-amortized compress processing being more regular and less spiked.
There were other optimizations we tried (e.g., removing recursion, reducing hash lookups
by storing pointers, etc.) but these had very minor impact sowe do not describe them in
detail.

4.5 Summary of Experimental Results

With respect to performance, the proposed strategies were competitive with the naive one,
requiring only slightly more processing time in general, and slightly less in the case of
PartialAnces on 1-d prefixes. As currently implemented and using the CPU speed available
in our measurement infrastructure, all of the methods were too slow to compute HHHs on
2-d prefixes at bit-level granularity; for coarser granularities, though, they can keep pace
with high speed packet streams.

As shown in Sections 4.2 and 4.3, the space savings of the proposed strategies compared
to the naive one were significant, by an order of magnitude, with respect to both data
structure and output size. This is due to hierarchy-aware bookkeeping, which results in
more accurate frequency estimates and thus smaller data structure sizes, and allows for
sophisticated bottom-up calculation of discounted countsand thus smaller output sizes.
Our experiments show that the space savings of the proposed strategies, compared to that
of the naive one, is more dramatic on 2-d prefixes than on 1-d prefixes; at fine granularity
(e.g., bit-level) than at coarse granularity (e.g., byte-level); and with smaller values ofǫ
andφ.

PartialAnces was the most aggressive at pruning, resultingin slightly slower perfor-
mance on 2-d prefixes, but always using the least amount of memory; even compared to
FullAnces, the data structure size was quite small, as much as a factor of ten at fine prefix
granularity and smallǫ. At the same time, PartialAnces yielded slightly larger output sizes
than FullAnces. The question of which of these proposed strategies is better depends on
several factors:

—In general, a smaller output size means a higher quality query answer; however, it is
difficult to quantify the “goodness” of an answer set due to complex combinatorics.
Some applications may be very sensitive to false-hits in output sets and thus may benefit
more from using FullAnces.

—The space needed during execution of an online strategy maybe crucial in some appli-
cations, for example, when there are multiple simultaneousgroups over which HHHs
are computed. When memory usage is of premium importance, PartialAnces may be the
best choice.

—Parameter value settings impacted the space usage of the proposed strategies. At larger
ratios ofφ/ǫ whenǫ was small, PartialAnces exhibited the best space usage in both data
structure and memory size, but it did not fare as well as FullAnces with respect to output
size forǫ-values close toφ.

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 39

5. EXTENSIONS

5.1 Merging Summaries

We have so far considered the case where all the data is observed at a single point, and so
the summaries for finding HHHs can be computed centrally at that point. A more general
scenario arises when the updates are being observed at multiple locations. This can happen
in a network, where we observe packets entering or leaving the network at multiple points,
and we monitor each of these incoming or outgoing links. It can also happen within a
single system, for example in the Gigascope monitoring system, where we periodically
want to merge recent observations made by a low level monitoring system with the high
level summary of all observations to date. In both cases, we need the ability to merge two
summaries over disjoint sets of data to give a summary that isǫ accurate over the union of
the sets of observations. Rather than give specific details of how to achieve this for each of
the different algorithms, we outline the main principles insufficient detail that they can be
applied to each of the algorithms in turn.

We focus on merging two summaries, since to merge more, we just have to repeatedly
merge each successive summary into one (initially empty) global summary. We assume
that each summary is made using the same value ofǫ; if not, our results follow by taking
ǫ = max{ǫ1, ǫ2}. Each node can be considered separately, and we have two cases to
consider: when the node is present in both input summaries, or only one. If a node is
present in both summaries, then we merge the counts: setfe to be the sum of thefe values
in each summary,∆e to be the sum of the∆es, and so on. It is straightforward to show
that we now have upper and lower bounds on the count for each node, and further that
these differ by at mostǫN = ǫN1 + ǫN2, on the assumption that the boundsǫN1 andǫN2

hold for the input summaries. If a node is present in only one of the summaries, then we
must be conservative in our setting of the new values. That is, we must insert the item and
set∆e = ∆e,1 + ma(e,2) where∆e,1 is the∆e,1 is the value of∆e from the summary
containinge, andma(e,2) is the value ofm we would get if insertinge into the second
summary. These are the tightest bounds we can give one given the available information,
but we have guaranteed accuracy from the previous results for inserting items. Lastly, note
that if a node is present in neither summary, then we can ignore it without any loss of
accuracy.

Although this merging procedure preserves the accuracy of the summaries, its size is
not directly bounded. In the worst case, if every merged summary contains a disjoint set of
items then the result of merging these summaries can grow without bound. This is because,
in the worst case, we are unable to prune any items from the summary in the compress
stage, and so the summary can continue to grow without bound.In practice we can argue
that such a situation is unlikely to occur, since it would be unusual to see disjoint sets of
values in each update. Space bounds can be given based on ideas introduced by Manjhi
et al. [2005]: each distributed site runs the algorithm witha smallerǫ than is needed, and
then using the “slack” between this and the desiredǫ in order to prune the result of merging
the distributed summaries.

5.2 Dynamic Data with Insertions and Deletions

The algorithms we have discussed so far have input which consists only of arrivals of new
items, which may be thought of as insert transactions. One can imagine more general
situations where the input stream includes deletions of previously seen items in addition

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

40 · Graham Cormode et al.

Insert (element e, count c):
01 l = Level(e);
02 for j = l to 0;
03 SketchUpdate(j,e,c);
04 e = par(e);

Output(prefix p,level l):
01 w = SketchQuery(l, p);
02 if w < ⌊φN⌋
03 return 0;
04 else
05 v = 0;
06 foreach child(e) of p do
07 v=v+Output(e, l + 1);
08 if (w − v > ⌊φN⌋)
09 print p;
10 return w;
11 else
12 return 0;

Fig. 19. Algorithm using Sketches over one dimension

to insertions. If there are very few deletions relative to the number of insertions, then by
simply modifying our online algorithms to subtract fromfmax(e) to simulate deletions,
the results will be reasonably accurate. If there areI insertions andD deletions, then the
error in the approximate counts will be in terms ofǫ(I + D), which will be close to the
“desired” error ofǫ(I −D) for smallD. However, if deletions are more frequent, then we
will not be able to prove that the counts are adequately approximated, and we will need a
different approach.

A sketchis a generic term for a small space data structure that allowsvarious properties
of a large data set to be approximated with only a bounded amount of space. We will focus
on sketches that are randomized data structures that give (probabilistic) guarantees to ap-
proximate the counts of items in the presence of insertions and deletions. For this problem,
appropriate sketch data structures are those defined in the literature [Gilbert et al. 2002;
Charikar et al. 2002; Cormode and Muthukrishnan 2005]. Since all algorithms give simi-
lar guarantees, any can be used. Where necessary, we will assume the use of Count-Min
Sketches [Cormode and Muthukrishnan 2005], since these have the best bounds. Because
they are randomized data structures, sketches also have a parameterδ which bounds the
probability of error: with probability at least1 − δ they are guaranteed to give an answer
which has error at mostǫN .

5.2.0.1 Sketch Algorithm for One Dimensional Data. .We keep a sketch for each level
of the hierarchy. One sketch allows to estimate the counts ofindividual items (the leaves
of the hierarchy). Other sketches allow us to estimate the counts of all leaves that are
descendants of individual internal nodes in the hierarchy.Every time a new item arrives or
departs, we update the approximate count of the item and of all its ancestor nodes in the
sketches.

To find the hierarchical heavy hitters, we perform a top down search of the hierarchy,
beginning at the root node. The search proceeds recursively, and the recursive procedure
run on a node returns the total weight of all hierarchical heavy hitters which are descendants
of that node. We assume that, given a node in the hierarchy, itis possible to enumerate all
children of this node, and to retrieve the index of the parentof the node. The algorithm is
given in Figure 19.

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 41

The above procedure works because of the observation that ifthere is a HHH in the
hierarchy below a node, then the range sum of leaf values mustexceed the threshold of
⌊φN⌋. We then include any node which exceeds the threshold, afterthe weight of any
HHHs below has been removed. The following analysis followsfrom the properties of
Count-Min sketches:

THEOREM 5. The space required for this algorithm is that used byh sketches, which
is O(h

ǫ
log 1

φδ
). Updates takes timeO(h log 1

φδ
).

5.2.0.2 Multidimensional Sketch Algorithms.A similar approach to that described above
can apply for the multidimensional case, with either split or overlap semantics. We can
keep sketches of items—one sketch for each node in the lattice—and starting from *, de-
scend the lattice looking for potential HHHs, then backtrack and adjust the counts as nec-
essary.5 There is one major disadvantage of this approach, which is that we must maintain
a sketch for every node in the lattice, and update this sketchwith every item insertion and
deletion. Thus the space cost scales withH , the product of the depths of the hierarchies,
which may be too costly in some applications. We state the following result:

THEOREM 6. The space required to identifyǫ approximate Hierarchical Heavy Hitters
under insertions and deletions using sketches isO(H

ǫ
log H

φδ
).

The proof case follows immediately, since we just keepH sketches, one for each node
in the lattice. In the split case, we keep one sketch for each level in the lattice. Since the
counts are divided up so that, over each level, the sum of all adjusted counts isN , then
we only need a single sketch over each level to estimate counts accurately up toǫN . The
space bounds follow.

6. RELATED WORK

Multidimensional aggregation has a rich history in database research. We will discuss the
most relevant research directions.

There are a number of “flat” methods for summarizing multidimensional data, that are
unaware of the hierarchy that defines the attributes. For example, there are histograms [Thaper
et al. 2002; Guha et al. 2001] that summarize data using piecewise constant regions. There
are also other representations like wavelets [Vitter et al.1998] or cosine transforms [Lee
et al. 1999]; these attempt to capture the skew in the data using hierarchical transforms,
but are not synchronized with the hierarchy in the attributes nor do they avoid outputting
many hierarchical prefixes that potentially form heavy hitters.

In recent years, there has been a great deal of work on finding the “Heavy Hitters”
(HHs) in network data: that is, finding individual addresses(or source-destination pairs)
which are responsible for a large fraction of the total network traffic [Manku and Motwani
2002; Cormode and Muthukrishnan 2003; Misra and Gries 1982;Metwally et al. 2005].
Like other flat methods, heavy hitters by themselves do not form an effective hierarchical
summarization mechanism. Generalizing HHs to multiple dimensions can be thought of
as Iceberg cube [Beyer and Ramakrishnan 1999]: finding points in the data cube which
satisfy a clause such asHAVING COUNT(*) >= n.

More recently, researchers have looked for hierarchy-aware summarization methods.
The Minimum Description Length (MDL) approach to data summarization uses hierarchi-

5This is similar to the bottom-up searching approaches in data-cubes.

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

42 · Graham Cormode et al.

cally derived regions to cover significant areas [Lakshmanan et al. 2002]. This approach is
useful for covering say the heavy hitters at a particular detail using higher level aggregate
regions, but it is not applicable for finding hierarchicallysignificant regions, i.e., a region
that contains many subregions that arenot significant by themselves, but the region itself
is significant. The case for finding heavy hitters within multiple hierarchies was advanced
by Estan et al. [2003] where the authors provide a variety of heuristics for computing the
multidimensional HHHs offline.

Subsequent work by Zhang et al. [2004] also considered the topic of HHH detection.
However, the authors principally consider the problem of HHH detection without compen-
sating for the count of HHH descendants. The problem therefore simplifies to finding all
nodes in the lattice whose count is above the threshold, which in turn can be thought of as
maintaining a “fringe” of heavy nodes. The algorithms givenby Zhang et al. [2004] give
output equivalent to that of what we label the naive algorithm in our context. In one di-
mension, their worst case bounds areO(H2/ǫ), and in two dimensions the space required
is O(AH/ǫ) (whereA is the size of the largest anti-chain in the lattice, as before). Our
results improve on these worst case bounds significantly, and extend results to arbitrary
dimensions.

The material presented in this paper derives from our earlier work [Cormode et al. 2003;
2004], which studied the one-dimensional and the multi-dimensional cases respectively.
Here, we extend our prior work with additional algorithms (in particular, PartialAnces for
the multi-dimensional case) and give full proofs of important properties of these algo-
rithms as well as analysis of their space and time requirements. We additionally conduct a
thorough set of experiments, both offline to evalute the goodness of approximate answers
returned with respect to the exact answer, as well as in a realdata stream management
system (Gigascope), and consider a variety of further extensions.

7. CONCLUSIONS

Finding truly multidimensional hierarchical summarization of data is of great importance
in traditional data warehousing environments as well as in emerging data stream applica-
tions. We formalized the notion of one-dimensional and multi-dimensional hierarchical
heavy hitters (HHHs), and studied them in depth.

For data stream applications, we proposed online algorithms for approximately deter-
mining the HHHs to provable accuracy in only one pass using very small space regardless
of the number of dimensions. In a detailed experimental study with data from real IP ap-
plications, the online algorithms are shown to be remarkably accurate in estimating HHHs.

REFERENCES

AGARWAL , S., AGRAWAL , R., DESHPANDE, P., GUPTA, A., NAUGHTON, J. F., RAMAKRISHNAN , R., AND

SARAWAGI , S. 1996. On the computation of multidimensional aggregates. InProceedings of the International
Conference on Very Large Data Bases.

BEYER, K. AND RAMAKRISHNAN , R. 1999. Bottom-up computation of sparse and Iceberg CUBE.In Proceed-
ings of ACM SIGMOD International Conference on Management of Data. SIGMOD Record (ACM Special
Interest Group on Management of Data), vol. 28(2). 359–370.

CHARIKAR , M., CHEN, K., AND FARACH-COLTON, M. 2002. Finding frequent items in data streams. In
Procedings of the International Colloquium on Automata, Languages and Programming (ICALP). 693–703.

CORMODE, G., KORN, F., MUTHUKRISHNAN, S., JOHNSON, T., SPATSCHECK, O., AND SRIVASTAVA , D.
2004. Holistic UDAFs at streaming speeds. InProceedings of ACM SIGMOD International Conference on
Management of Data. 35–46.

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

Finding Hierarchical Heavy Hitters in Streaming Data · 43

CORMODE, G., KORN, F., MUTHUKRISHNAN, S., AND SRIVASTAVA , D. 2003. Finding hierarchical heavy
hitters in data streams. InProceedings of the International Conference on Very Large Data Bases. 464–475.

CORMODE, G., KORN, F., MUTHUKRISHNAN, S.,AND SRIVASTAVA , D. 2004. Diamond in the rough: Finding
hierarchical heavy hitters in multi-dimensional data. InProceedings of ACM SIGMOD International Confer-
ence on Management of Data. 155–166.

CORMODE, G. AND MUTHUKRISHNAN, S. 2003. What’s hot and what’s not: Tracking most frequent items
dynamically. InProceedings of ACM Principles of Database Systems. 296–306.

CORMODE, G. AND MUTHUKRISHNAN, S. 2005. An improved data stream summary: The count-min sketch
and its applications.Journal of Algorithms 55,1, 58–75.

CRANOR, C., JOHNSON, T., SPATSCHECK, O., AND SHKAPENYUK , V. 2003. Gigascope: A stream database
for network applications. InProceedings of ACM SIGMOD International Conference on Management of Data.
647–651.

DEMAINE , E., LÓPEZ-ORTIZ, A., AND MUNRO, J. I. 2002. Frequency estimation of internet packet streams
with limited space. InProceedings of the European Symposium on Algorithms (ESA). Lecture Notes in Com-
puter Science, vol. 2461. 348–360.

ESTAN, C., SAVAGE , S.,AND VARGHESE, G. 2003. Automatically inferring patterns of resource consumption
in network traffic. InProceedings of ACM SIGCOMM.

GANESAN, P., GARCIA-MOLINA , H., AND WIDOM , J. 2003. Exploiting hierarchical domain structure to
compute similarity.ACM Trans. Inf. Syst. 21,1, 64–93.

GILBERT, A. C., KOTIDIS, Y., MUTHUKRISHNAN, S., AND STRAUSS, M. 2002. How to summarize the
universe: Dynamic maintenance of quantiles. InProceedings of the International Conference on Very Large
Data Bases. 454–465.

GUHA , S., KOUDAS, N., AND SHIM , K. 2001. Data streams and histograms. InProceedings of the ACM
Symposium on Theory of Computing. 471–475.

HERSHBERGER, J., SHRIVASTAVA , N., SURI, S.,AND TOTH, C. 2005. Space complexity of hierarchical heavy
hitters in multi-dimensional data streams. InProceedings of ACM Principles of Database Systems.

KARP, R., PAPADIMITRIOU , C.,AND SHENKER, S. 2003. A simple algorithm for finding frequent elements in
sets and bags.ACM Transactions on Database Systems 28, 51–55.

LAKSHMANAN , L. V. S., NG, R. T., WANG, C. X., ZHOU, X., AND JOHNSON, T. 2002. The generalized
MDL approach for summarization. InProceedings of the International Conference on Very Large Data Bases.
766–777.

LEE, J., KIM , D., AND CHUNG, C. 1999. Multidimensional selectivity estimation using compressed histogram
information. InProceedings of ACM SIGMOD International Conference on Management of Data. 205–214.

MANJHI, A., SHKAPENYUK , V., DHAMDHERE, K., AND OLSTON, C. 2005. Finding (recently) frequent items
in distributed data streams. InIEEE International Conference on Data Engineering. 767–778.

MANKU , G. AND MOTWANI , R. 2002. Approximate frequency counts over data streams. In Proceedings of the
International Conference on Very Large Data Bases. 346–357.

METWALLY, A., AGRAWAL , D., AND ABBADI , A. E. 2005. Efficient computation of frequent and top-k ele-
ments in data streams. InProceedings of ICDT.

M ISRA, J.AND GRIES, D. 1982. Finding repeated elements.Science of Computer Programming 2, 143–152.
NG, R. T., WAGNER, A. S.,AND Y IN , Y. 2001. Iceberg-cube computation with PC clusters. InProceedings of

ACM SIGMOD International Conference on Management of Data.
THAPER, N., INDYK , P., GUHA , S., AND KOUDAS, N. 2002. Dynamic multidimensional histograms. In

Proceedings of ACM SIGMOD International Conference on Management of Data. 359–366.
V ITTER, J. S., WANG, M., AND IYER, B. 1998. Data cube approximation and histograms via wavelets. In

Proceedings of the 7th ACM International Conferences on Information and Knowledge Management. 96–104.
ZHANG, Y., SINGH, S., SEN, S., DUFFIELD, N., AND LUND, C. 2004. Online identification of hieararchical

heavy hitters: Algorithms, evaluation and applications. In Proceedings of the Internet Measurement Confer-
ence (IMC).

ACM Transactions on Database Systems, Vol. V, No. N, October2007.

